WO2011040061A1 - 固体高分子形燃料電池用膜電極接合体、およびこれを有する固体高分子形燃料電池 - Google Patents

固体高分子形燃料電池用膜電極接合体、およびこれを有する固体高分子形燃料電池 Download PDF

Info

Publication number
WO2011040061A1
WO2011040061A1 PCT/JP2010/054378 JP2010054378W WO2011040061A1 WO 2011040061 A1 WO2011040061 A1 WO 2011040061A1 JP 2010054378 W JP2010054378 W JP 2010054378W WO 2011040061 A1 WO2011040061 A1 WO 2011040061A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
electrode assembly
polymer electrolyte
fuel cell
electrode
Prior art date
Application number
PCT/JP2010/054378
Other languages
English (en)
French (fr)
Inventor
早織 岡田
晴菜 畑澤
弘幸 盛岡
健一郎 太田
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to JP2011501834A priority Critical patent/JP4858658B2/ja
Publication of WO2011040061A1 publication Critical patent/WO2011040061A1/ja
Priority to US13/433,222 priority patent/US20120183879A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane electrode assembly and a polymer electrolyte fuel cell having the same, and more particularly to a membrane electrode assembly used for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell having the same.
  • a fuel cell is a power generation system that generates electricity by causing reverse reaction of water electrolysis using hydrogen and oxygen as fuel. This has features such as high efficiency, low environmental load and low noise compared with the conventional power generation method, and is attracting attention as a clean energy source in the future.
  • Fuel cells can be classified according to the electrolyte used in the fuel cell. The types of fuel cells include molten carbonate fuel cells, phosphoric acid fuel cells, solid oxide fuel cells, solid polymer fuel cells, and the like.
  • a polymer electrolyte fuel cell has a membrane electrode assembly (Membrane Electrode Assembly; hereinafter referred to as MEA) having a pair of electrodes disposed on both sides of a polymer electrolyte membrane.
  • MEA Membrane Electrode Assembly
  • the battery is sandwiched between a pair of separator plates that supply a fuel gas containing hydrogen and that have a gas flow path for supplying an oxidant gas containing oxygen to the other electrode.
  • the electrode for supplying the fuel gas is called a fuel electrode
  • the electrode for supplying the oxidant is called an air electrode.
  • These electrodes generally comprise an electrode catalyst layer formed by laminating carbon particles carrying a catalyst material such as a platinum-based noble metal and a polymer electrolyte, and a gas diffusion layer having both gas permeability and electronic conductivity.
  • Patent Document 1 describes a mixture of iron nitride and noble metal, which is a transition metal.
  • Patent Document 2 describes a nitride of molybdenum, which is a transition metal.
  • the catalyst materials described in Patent Document 1 and Patent Document 2 have insufficient oxygen reducing ability in the acidic electrolyte, and the catalyst material may be dissolved.
  • Non-Patent Document 1 describes a partially oxidized Ta carbonitride, which indicates excellent stability and catalytic ability.
  • this oxide-based non-platinum catalyst shows high oxygen reduction catalytic ability as a single catalyst, it is not supported on carbon particles like a platinum catalyst, and the electronic conductivity of the single catalyst is low. It is necessary to optimize the composition of the electrode catalyst layer.
  • Patent Document 3 describes an MEA using a non-platinum catalyst.
  • the electrode catalyst layer is produced by using, for example, a platinum catalyst described in Patent Document 4, Patent Document 5, and the like. Therefore, there is a problem that it is not suitable for a non-platinum catalyst.
  • JP 2005-44659 A Japanese Patent Laying-Open No. 2005-63677 JP 2008-270176 A Japanese Examined Patent Publication No. 2-48632 Japanese Patent Laid-Open No. 5-36418
  • the present invention seeks to solve the above-described conventional problems, and uses an oxide-based non-platinum catalyst as a catalyst material in an electrode catalyst layer having a polymer electrolyte, a catalyst material, and an electron conductive material. It is an object of the present invention to provide a membrane electrode assembly having an electrode catalyst layer with improved output performance, and a polymer electrolyte fuel cell having the same.
  • the invention according to claim 1 of the present invention is a membrane electrode assembly in which a solid polymer electrolyte membrane sandwiched between a pair of electrode catalyst layers is sandwiched between a pair of gas diffusion layers, wherein the electrode catalyst layer comprises a polymer electrolyte and a catalyst.
  • a content ratio of the catalyst material is 0.1 or more and 3 or less by weight with respect to the electron conductive material 1, and a content ratio of the polymer electrolyte is:
  • the membrane / electrode assembly is characterized by having a weight ratio of 0.5 to 3 with respect to the electron conductive substance 1.
  • the invention according to claim 2 of the present invention is characterized in that the catalyst material has a specific surface area of 1 m 2 / g or more and 100 m 2 / g or less, and an average particle diameter of 20 nm or more and 3 ⁇ m or less.
  • the membrane electrode assembly described is used.
  • the invention according to claim 3 of the present invention is characterized in that the catalyst material contains at least one transition metal element of Ta, Nb, Ti, and Zr. It is what.
  • the invention according to claim 4 of the present invention is the membrane electrode assembly according to claim 3, wherein the catalyst substance is obtained by partially oxidizing the carbonitride of the transition metal element in an atmosphere containing oxygen. It is what.
  • the invention according to claim 5 of the present invention is the membrane electrode assembly according to claim 4, wherein the catalyst material is obtained by partially oxidizing Ta carbonitride in an atmosphere containing oxygen. Is.
  • the invention according to claim 6 of the present invention is a polymer electrolyte fuel cell comprising the membrane electrode assembly according to claim 5.
  • the invention according to claim 7 of the present invention is characterized in that the electron conductive material has a specific surface area of 100 m 2 / g or more and 2000 m 2 / g or less, and an average particle diameter of 20 nm or more and 100 nm or less. 3.
  • the membrane / electrode assembly described in 3 is used.
  • the invention according to claim 8 of the present invention is the membrane electrode assembly according to claim 7, wherein the electron conductive substance is carbon particles.
  • the invention according to claim 9 of the present invention is a polymer electrolyte fuel cell comprising the membrane electrode assembly according to claim 8.
  • the content ratio of the catalyst material to the electron conductive material and the content ratio of the polymer electrolyte to the electron conductive material are: By controlling each of them, the electron conductivity and proton conductivity on the surface of the catalyst material can be enhanced. As a result, since the reaction active points are increased, it is possible to provide a membrane electrode assembly having an electrode catalyst layer with improved output characteristics, and a polymer electrolyte fuel cell having the same.
  • FIG. 1 is a schematic exploded view showing a polymer electrolyte fuel cell according to an embodiment of the present invention. It is a graph which shows the electric power generation characteristic of the polymer electrolyte fuel cell produced using the membrane electrode assembly of the Example which concerns on this invention, and a comparative example.
  • MEA membrane electrode assembly
  • fuel cell fuel cell
  • the embodiments of the present invention are not limited to the embodiments described below, and modifications such as design changes can be added based on the knowledge of those skilled in the art. Embodiments to which is added can also be included in the scope of the embodiments of the present invention.
  • FIG. 1 is a schematic sectional view showing a membrane electrode assembly (MEA) 12 according to an embodiment of the present invention.
  • a membrane electrode assembly (MEA) 12 according to an embodiment of the present invention includes a solid polymer electrolyte membrane 1 and an electrode catalyst layer (air electrode) on one surface of the solid polymer electrolyte membrane 1. Side) 2 and an electrode catalyst layer (fuel electrode side) 3 on the other surface of the solid polymer electrolyte membrane 1. Further, although not shown, an air electrode side gas diffusion layer is provided on the electrode catalyst layer 2 and a fuel electrode side gas diffusion layer is provided on the electrode catalyst layer 3.
  • FIG. 2 is a schematic exploded schematic view showing the polymer electrolyte fuel cell according to the embodiment of the present invention.
  • a polymer electrolyte fuel cell 13 according to an embodiment of the present invention includes a membrane electrode assembly 12 having an electrode catalyst layer 2 and an electrode catalyst layer on both sides of a solid polymer electrolyte membrane 1.
  • the air electrode side gas diffusion layer 4 and the fuel electrode side gas diffusion layer 5 are disposed opposite to the electrode catalyst layer 2 and the electrode catalyst layer 3, respectively. Thereby, the air electrode 6 and the fuel electrode 7 are comprised, respectively.
  • a set of separators 10 made of a conductive and impermeable material which is provided with a gas flow path 8 for gas flow and is provided with a cooling water flow path 9 for cooling water flow on the opposing main surface, is disposed.
  • hydrogen gas is supplied as a fuel gas from the gas flow path 8 of the separator 10 on the fuel electrode 7 side.
  • a gas containing oxygen for example, is supplied as an oxidant gas from the gas flow path 8 of the separator 10 on the air electrode 6 side.
  • a solid polymer fuel cell 13 includes a set of separators 10 and a solid polymer electrolyte membrane 1, an electrode catalyst layer 2, an electrode catalyst layer 3, and a gas diffusion layer. 4 and the gas diffusion layer 5 is a so-called single-cell solid polymer fuel cell 13.
  • a plurality of cells are stacked in series via a separator 10. It can also be a stack structure.
  • an electrode catalyst layer of the present invention it is suitable for the surface of the catalyst material by controlling the content ratio of the catalyst material to the electron conductive material and the content ratio of the polymer electrolyte to the electron conductive material, respectively.
  • An electron conductive material and a polymer electrolyte are disposed on the surface of the catalyst material, so that the electron conductivity and proton conductivity of the catalyst material surface can be improved.
  • the pair of electrode catalyst layers contains a polymer electrolyte, a catalyst material, and an electron conductive material, and the catalyst material is 0 in weight ratio to the electron conductive material 1. It is preferable that the polymer electrolyte is 0.5 or more and 3 or less by weight ratio with respect to the electron conductive material 1. Further, the catalyst material has a weight ratio of 0.1 to 0.9 with respect to the electron conductive material 1, and the polymer electrolyte has a weight ratio of 1 to 2 with respect to the electron conductive material 1. Preferably there is.
  • the content ratio of the catalyst material to the electron conductive material is larger than 3, sufficient electron conductive material cannot be disposed on the surface of the catalyst material, and the electron conductivity cannot be ensured, so that the resistance increases. Further, when the content ratio of the catalyst material to the electron conductive material is less than 0.1, the electron conductive material is excessively present in the electrode catalyst layer and cannot contact the surface of the catalyst material. It does not contribute to an increase in reaction active sites. Furthermore, when the entire volume of the electrode catalyst layer is increased, gas diffusibility is hindered and output characteristics are not improved.
  • the content ratio of the polymer electrolyte to the electron conductive material is less than 0.5, sufficient proton conductivity cannot be ensured, and when the content is greater than 3, the polymer electrolyte has pores in the electrode catalyst layer. There is a possibility that the gas diffusion property is hindered, and further, a phenomenon called flooding in which water generated by power generation accumulates in the electrode catalyst layer may occur.
  • the specific surface area of the catalyst material is preferably 1 m 2 / g or more and 100 m 2 / g or less, and the average particle diameter is preferably 20 nm or more and 3 ⁇ m or less.
  • the average particle diameter of the catalyst material is larger than 3 ⁇ m, it becomes impossible to arrange a sufficient electron conductive material on the surface of the catalyst material, so that the electron conductivity cannot be ensured.
  • the average particle size of the catalyst material is smaller than 20 nm, the electron conductive material cannot contact the surface of the catalyst material, and the electron conductive material is excessively present in the electrode catalyst layer, and the reaction activity It will not contribute to the increase in points.
  • the specific surface area of the catalyst material is disengaged from 1 m 2 / g or more 100 m 2 / g or less in the range can not be a polymer electrolyte content of the electrode catalyst layer to the desired range.
  • a substance containing at least one transition metal element selected from Ta, Nb, Ti, and Zr used as an air electrode of a polymer electrolyte fuel cell, as a platinum substitute material in an air electrode. May be used.
  • a material obtained by partially oxidizing these transition metal element carbonitrides in an oxygen-containing atmosphere may be used.
  • it may be a substance (TaCNO) obtained by partially oxidizing Ta carbonitride (TaCN) in an oxygen-containing atmosphere, and its specific surface area is approximately 1 m 2 / g or more and 20 m 2 / g or less. It is.
  • Carbon particles may be used as the electron conductive material according to the embodiment of the present invention.
  • the carbon particles may be any fine particles that are electrically conductive and not subject to the catalyst, but carbon black, graphite, graphite, activated carbon, carbon fibers, carbon nanotubes, fullerenes are used. Also good. If the average particle diameter of the carbon particles is smaller than 10 nm, it becomes difficult to form an electron conduction path. If the average particle diameter is larger than 2000 nm, the gas diffusibility of the electrode catalyst layer decreases or the utilization factor of the catalyst decreases. More than 2000 nm is preferable. More preferably, it is 20 nm or more and 100 nm or less.
  • the specific surface area of the electron conductive material is preferably 100 m 2 / g or more and 2000 m 2 / g or less.
  • the specific surface area of the electron conductive material is smaller than 100 m 2 / g, it becomes impossible to arrange a sufficient electron conductive material on the surface of the catalyst material, so that the electron conductivity cannot be ensured.
  • the specific surface area of the electron conductive material is greater than 2000 m 2 / g, the electron conductive material cannot contact the surface of the catalyst material, and the electron conductive material is excessively present in the electrode catalyst layer. This does not contribute to an increase in reaction active points.
  • a solid polymer electrolyte membrane 1 is prepared.
  • the solid polymer electrolyte membrane 1 is not particularly limited as long as it is made of a material that is excellent in proton conductivity and does not flow electrons.
  • perfluoro type sulfonic acid membranes such as Nafion (registered trademark) manufactured by Dupont, Flemion (registered trademark) manufactured by Asahi Glass Co., Aciplex (registered trademark) manufactured by Asahi Glass Co., Ltd., and Gore Select (registered trademark) manufactured by Japan Gore-Tex Corporation. ) Etc.
  • a hydrocarbon resin such as polyimide having a proton conductive group may be used.
  • the solid polymer electrolyte membrane 1 according to the embodiment of the present invention is preferably made of the same material as the polymer electrolyte used for the electrode catalyst layer 2 and the electrode catalyst layer 3.
  • the electrode catalyst layer 2 and the electrode catalyst layer 3 are formed on both surfaces of the prepared solid polymer electrolyte membrane 1.
  • a catalyst ink containing a polymer electrolyte, a catalyst substance, a carbon carrier carrying the catalyst substance, and a dispersion medium is prepared.
  • Various polymer electrolytes are used in the catalyst ink, but the same material as the solid polymer electrolyte membrane 1 can be used, and the same material as the solid polymer electrolyte membrane 1 is preferably used.
  • Nafion (registered trademark) manufactured by Dupont is used as the solid polymer electrolyte membrane 1
  • Nafion registered trademark
  • a material other than Nafion (registered trademark) is used for the solid polymer electrolyte membrane 1
  • the solvent used as the dispersion medium for the catalyst ink is not particularly limited as long as it does not erode the catalyst particles or the hydrogen ion conductive resin, and can dissolve or disperse the proton conductive polymer in a highly fluid state as a fine gel. Although there is no restriction
  • Examples of the solvent used as a dispersion medium for the catalyst ink include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, pentanol, 2-heptanol, Alcohols such as benzyl alcohol, acetone, methyl ethyl ketone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, pentanone, heptanone, cyclohexanone, methyl cyclohexanone, acetonyl acetone, diethyl ketone, dipropyl ketone, diisobutyl Ketones such as ketones, tetrahydrofuran, tetrahydropyran, dioxane, diethylene glycol dimethyl ether, anisole, methoxytoluene
  • the dispersion state of the polymer electrolyte in the catalyst ink can be controlled by using two types of solvents having different dielectric constants.
  • These solvents or those using lower alcohols as the solvent have a high risk of ignition, and when using such a solvent, it is preferable to use a mixed solvent with water.
  • water that is compatible with the polymer electrolyte may be contained. The amount of water added is not particularly limited as long as the proton conductive polymer is not separated to cause white turbidity or gelation.
  • the catalyst ink may contain a dispersant for storage stability.
  • a dispersant for storage stability.
  • an anionic surfactant a cationic surfactant, an amphoteric surfactant, a nonionic surfactant, or the like may be used.
  • a pore forming agent may be included in the catalyst ink. By removing the pore-forming agent after the formation of the electrode catalyst layer, pores can be formed.
  • a substance that dissolves in acid, alkali, or water, a sublimation substance such as camphor, a thermal decomposition substance, or the like may be used. If the substance is soluble in hot water, it may be removed with water generated during power generation.
  • acid-soluble inorganic salts such as calcium carbonate, barium carbonate, magnesium carbonate, magnesium sulfate, and magnesium oxide
  • inorganic salts that are soluble in an alkaline aqueous solution such as alumina, silica gel, and silica sol.
  • Metals soluble in acids or alkalis such as aluminum, zinc, tin, nickel, iron, water-soluble inorganic salts such as sodium chloride, potassium chloride, ammonium chloride, sodium carbonate, sodium sulfate, monosodium phosphate, polyvinyl alcohol, Examples include water-soluble organic compounds such as polyethylene glycol, and it is also effective to use two or more kinds in combination.
  • the viscosity of the catalyst ink is preferably 0.1 cP or more and 100 cP or less.
  • the viscosity is optimized by changing the type of solvent and the solid content concentration. Further, the viscosity can be controlled by adding a dispersing agent when the ink is dispersed.
  • the catalyst ink containing the polymer electrolyte, the catalyst material, the carbon carrier carrying the catalyst material, and the dispersion medium is appropriately dispersed by a known method.
  • the electrode catalyst layer 2 and the electrode catalyst layer 3 and the solid polymer electrolyte membrane 1 are joined by thermocompression bonding. Further, a solution containing a proton conductive polymer can be applied as a binder between the electrode catalyst layer 2 and the electrode catalyst layer 3 and the proton conductive polymer in order to enhance the bonding property.
  • the gas diffusion layer 4 the gas diffusion layer 5, and the separator 10 of the polymer electrolyte fuel cell according to the embodiment of the present invention
  • those used in a normal fuel cell may be used.
  • porous carbon materials such as carbon cloth, carbon paper, and nonwoven fabric may be used.
  • separator 10 a carbon type or a metal type may be used.
  • the fuel cell is manufactured by assembling other accompanying devices such as a gas supply device and a cooling device.
  • Example 1 [Preparation of catalyst ink 1] Partially oxidized tantalum carbonitride (TaCNO, specific surface area 9 m 2 / g, average particle size 650 nm) as a catalyst material, and ketjen black (trade name: EC300J, manufactured by Lion Corporation, specific surface area 800 m 2 / g, average particle size 50 nm), 20% by mass polymer electrolyte solution (Nafion: Nafion (registered trademark), manufactured by Dupont) was dispersed using a planetary ball mill (trade name: P-7, manufactured by Fritsch Japan). Processed. Ball mill pots and balls made of zirconia were used.
  • TaCNO Partially oxidized tantalum carbonitride
  • ketjen black trade name: EC300J, manufactured by Lion Corporation, specific surface area 800 m 2 / g, average particle size 50 nm
  • 20% by mass polymer electrolyte solution Nafion: Nafion (register
  • the content ratio of the catalyst substance was 0.5 by weight with respect to the electron conductive substance 1. Further, the catalyst ink 1 was prepared so that the content ratio of the polymer electrolyte was 0.8 by weight with respect to the electron conductive material 1.
  • Electrode Catalyst Layer Sheet 1 The catalyst ink 1 was applied onto the PTFE base material with a doctor blade and dried at 80 ° C. for 5 minutes to prepare an electrode catalyst layer sheet 1. The thickness of the electrode catalyst layer was adjusted so that the amount of the catalyst substance supported was 0.4 mg / cm 2, and the electrode catalyst layer on the air electrode side was formed.
  • Example 2 Preparation of catalyst ink 2
  • a partially oxidized tantalum carbonitride as a catalyst material and ketjen black, 20% by mass polymer electrolyte solution as a conductive material were subjected to dispersion treatment using a planetary ball mill. Ball mill pots and balls made of zirconia were used.
  • the content ratio of the catalyst material was set to 1 by weight with respect to the electron conductive material 1.
  • the catalyst ink 2 was prepared so that the content ratio of the polymer electrolyte was 0.8 by weight with respect to the electron conductive material 1.
  • Electrocatalyst Layer Sheet 2 In the same production method as in Example 1, the catalyst ink 2 was used and applied onto a PTFE substrate and dried at 80 ° C. for 5 minutes. The thickness of the electrode catalyst layer was adjusted so that the amount of the catalyst substance supported was 0.4 mg / cm 2, and the electrode catalyst layer on the air electrode side was formed.
  • Example 3 Preparation of catalyst ink 3
  • a catalyst ink 3 was produced by the same production method as in Examples 1 and 2.
  • the content ratio of the catalyst material was 2 with respect to the electron conductive material 1 by weight.
  • the catalyst ink 3 was prepared so that the content ratio of the polymer electrolyte was 0.8 with respect to the electron conductive material 1 by weight.
  • Electrocatalyst Layer Sheet 3 In the same production method as in Examples 1 and 2, the catalyst ink 3 was used and applied onto a PTFE substrate and dried at 80 ° C. for 5 minutes. The thickness of the electrode catalyst layer was adjusted so that the amount of the catalyst substance supported was 0.4 mg / cm 2, and the electrode catalyst layer on the air electrode side was formed.
  • the catalyst ink 4 and the catalyst layer sheet 4 were produced in the same manner as in Example except that the catalyst ink content was 4 by weight with respect to the electron conductive material 1 in the composition of the catalyst ink.
  • the thickness of the electrode catalyst layer was adjusted so that the amount of catalyst substance supported was 0.4 mg / cm 2 .
  • Electrode catalyst layer for fuel electrode For Examples and Comparative Examples, a platinum-supported carbon catalyst (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) having a platinum-supported amount of 50% by mass and a 20% by mass polymer electrolyte solution were mixed in a solvent, and a planetary ball mill We performed distributed processing. A catalyst ink having a dispersion time of 60 minutes was used. In the composition of the catalyst ink, the polymer electrolyte was set to 1 in mass ratio with respect to carbon in platinum-supporting carbon, which is an electron conductive substance. The solvent was 1: 1 in volume ratio of ultrapure water and 1-propanol. The solid content was 10% by mass.
  • the catalyst ink was applied to the PTFE base material and dried by the same production method as that for the air electrode side electrode catalyst layer.
  • the thickness of the electrode catalyst layer was adjusted so that the amount of catalyst material supported was 0.3 mg / cm 2 to form a fuel electrode catalyst layer.
  • Electrode catalyst layer sheet formed with the air electrode side electrode catalyst layer and the electrode catalyst layer sheet formed with the fuel electrode side electrode catalyst layer prepared in Examples and Comparative Examples were punched into a 5 cm 2 square, and a polymer electrolyte membrane An electrode catalyst layer sheet was placed so as to face both surfaces (Nafion (registered trademark) 212, manufactured by Dupont), and hot pressing was performed at 130 ° C. for 10 minutes to obtain a membrane electrode assembly 12. Carbon cloths 4 and 5 each having a sealing layer formed as a gas diffusion layer are disposed on both surfaces of the membrane electrode assembly 12 thus obtained, and are further sandwiched between a pair of separators 10 to provide a single cell solid polymer fuel. A battery was produced.
  • FIG. 3 shows the power generation characteristics of the polymer electrolyte fuel cells produced using the membrane electrode assemblies 12 of Examples and Comparative Examples.
  • the polymer electrolyte fuel cell of the example was able to obtain good power generation characteristics without causing flooding or the like.
  • the reaction active point is increased, and the power generation characteristics are improved even in the low load region where the catalytic reaction is dominant.
  • the comparative example it is confirmed that the resistance is increased about 1.5 times that of Example 1 because the content ratio of the catalyst substance is too high to provide sufficient electronic conductivity on the surface. It was.
  • a polymer electrolyte fuel cell with improved output performance can be provided. Therefore, the present invention can be suitably used for a single fuel cell or a stack in a polymer fuel cell, particularly a household fuel cell system or a fuel cell vehicle.

Abstract

【課題】触媒物質に酸化物系非白金触媒を用いて高い発電特性を示す電極触媒層を有する膜電極接合体及びこれを有する固体高分子形燃料電池を提供する。 【解決手段】一対の電極触媒層で挟持した固体高分子電解質膜を一対のガス拡散層で挟持した膜電極接合体において、前記電極触媒層は、高分子電解質と触媒物質と電子伝導性物質とを含有し、前記触媒物質の含有割合は、前記電子伝導性物質1に対して重量比で0.1以上3以下であり、且つ前記高分子電解質の含有割合は、前記電子伝導性物質1に対して重量比で0.5以上3以下であることを特徴とする膜電極接合体により、課題を解決する。

Description

固体高分子形燃料電池用膜電極接合体、およびこれを有する固体高分子形燃料電池
 本発明は、膜電極接合体、及びこれを有する固体高分子形燃料電池に関し、特に、固体高分子形燃料電池に用いる膜電極接合体、及びこれを有する固体高分子形燃料電池に関する。
 燃料電池は水素、酸素を燃料として、水の電気分解の逆反応を起こさせることにより電気を生み出す発電システムである。これは、従来の発電方式と比較して高効率、低環境負荷、低騒音といった特徴を持ち、将来のクリーンなエネルギー源として注目されている。燃料電池に用いる電解質により燃料電池を分類することができる。燃料電池の種類には、溶融炭酸塩形燃料電池、リン酸形燃料電池、固体酸化物形燃料電池、固体高分子形燃料電池等がある。
 燃料電池の中でも固体高分子形燃料電池は、室温程度で使用可能なことから、車載用電源や家庭据置用電源などへの使用が有望視されており、近年、様々な研究開発が行われている。固体高分子形燃料電池は、膜電極接合体(Membrane ElectrodeAssembly;以下、MEAと称すことがある)と呼ばれる高分子電解質膜の両面に一対の電極を配置させた接合体を、前記電極の一方に水素を含有する燃料ガスを供給し、前記電極の他方に酸素を含む酸化剤ガスを供給するためのガス流路を形成した一対のセパレータ板で挟持した電池である。ここで、燃料ガスを供給する電極を燃料極、酸化剤を供給する電極を空気極と呼んでいる。これらの電極は、一般に、白金系の貴金属などの触媒物質を担持したカーボン粒子と高分子電解質を積層してなる電極触媒層と、ガス通気性および電子伝導性を兼ね備えたガス拡散層からなる。
 固体高分子形燃料電池の実用化に向けての課題は、出力密度や耐久性の向上などが挙げられるが、最大の課題は低コスト化である。
 現在の固体高分子形燃料電池には、高価な白金が電極触媒として用いられており、本格普及には、代替材料の開発が強く求められている。特に、空気極では、燃料極よりも多くの白金を使用しているため、空気極において高い酸素還元触媒能を示す白金代替材料(非白金触媒)の開発が盛んである。
 空気極における非白金触媒の例として、例えば特許文献1には、遷移金属である鉄の窒化物と貴金属の混合物が記載されている。また、特許文献2には、遷移金属であるモリブデンの窒化物が記載されている。しかし、特許文献1及び特許文献2で記載されているような触媒物質は、酸性電解質中での酸素還元能が不充分であり、且つ、触媒物質が溶解する場合がある。
 一方、非特許文献1には、部分酸化されたTaの炭窒化物が記載されており、優れた安定性と触媒能を持つことを示している。しかし、この酸化物系非白金触媒は、触媒単体として高い酸素還元触媒能を示しているが、白金触媒のように炭素粒子に担持されておらず、また、触媒単体の電子伝導性が低い為、電極触媒層の組成を最適化する必要がある。
 また、特許文献3には、非白金触媒を用いたMEAが記載されているが、その電極触媒層の作製手法は、例えば、特許文献4及び特許文献5などに記載されている白金触媒で用いられる従来の作製手法であるため、非白金触媒に適していないという問題点がある。
特開2005-44659号公報 特開2005-63677号公報 特開2008-270176号公報 特公平2-48632号公報 特開平5-36418号公報
「Journal of The Electrochemical Society, Vol.155, No.4」 p.B400-B406 2008年
 本発明は、上記のような従来の問題を解決しようとするものであり、高分子電解質と触媒物質と電子伝導性物質とを有する電極触媒層において、触媒物質に酸化物系非白金触媒を用いて出力性能の向上された電極触媒層を有する膜電極接合体、及びこれを有する固体高分子形燃料電池を提供することを目的とする。
 本発明者は鋭意検討を重ねた結果、上記課題を解決することができ、本発明を完成するに至った。
 本発明の請求項1に係る発明は、一対の電極触媒層で挟持した固体高分子電解質膜を一対のガス拡散層で挟持した膜電極接合体において、前記電極触媒層は、高分子電解質と触媒物質と電子伝導性物質とを含有し、前記触媒物質の含有割合は、前記電子伝導性物質1に対して重量比で0.1以上3以下であり、且つ前記高分子電解質の含有割合は、前記電子伝導性物質1に対して重量比で0.5以上3以下であることを特徴とする膜電極接合体としたものである。
 本発明の請求項2に係る発明は、前記触媒物質の比表面積が1m/g以上100m/g以下であり、平均粒子径が20nm以上3μm以下であることを特徴とする請求項1に記載の膜電極接合体としたものである。
 本発明の請求項3に係る発明は、前記触媒物質が、Ta、Nb、Ti、およびZrのうち、少なくとも一つの遷移金属元素を含むことを特徴とする請求項2に記載の膜電極接合体としたものである。
 本発明の請求項4に係る発明は、前記触媒物質が、前記遷移金属元素の炭窒化物を、酸素を含む雰囲気中で部分酸化したことを特徴とする請求項3に記載の膜電極接合体としたものであ
る。
 本発明の請求項5に係る発明は、前記触媒物質が、Taの炭窒化物を、酸素を含む雰囲気中で部分酸化したことを特徴とする、請求項4に記載の膜電極接合体としたものである。
 本発明の請求項6に係る発明は、請求項5に記載の膜電極接合体を備えることを特徴とする固体高分子形燃料電池としたものである。
 本発明の請求項7に係る発明は、前記電子伝導性物質の比表面積が100m/g以上2000m/g以下であり、平均粒子径が20nm以上100nm以下であることを特徴とする請求項3に記載の膜電極接合体としたものである。
 本発明の請求項8に係る発明は、前記電子伝導性物質が、炭素粒子であることを特徴とする請求項7に記載の膜電極接合体としたものである。
 本発明の請求項9に係る発明は、請求項8に記載の膜電極接合体を備えることを特徴とする固体高分子形燃料電池としたものである。
 本発明によれば、高分子電解質と触媒物質と電子伝導性物質とを有する電極触媒層において、触媒物質の電子伝導性物質に対する含有割合と、高分子電解質の電子伝導性物質に対する含有割合とをそれぞれ制御することにより、触媒物質表面の電子伝導性およびプロトン伝導性を高めることができる。その結果、反応活性点が増加されるので、出力特性が向上された電極触媒層を有する膜電極接合体、およびこれを有する固体高分子形燃料電池を提供することができる。
本発明の実施の形態に係る膜電極接合体を示す概略断面図である。 本発明の実施の形態に係る固体高分子形燃料電池を示す概略分解模式図である。 本発明に係る実施例及び比較例の膜電極接合体を用いて作製した固体高分子形燃料電池の発電特性を示すグラフである。
 以下に、本発明の実施の形態に係る膜電極接合体(MEA)及び燃料電池について説明する。なお、本発明の実施の形態は、以下に記載する実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の実施の形態の範囲に含まれうるものである。
 図1は、本発明の実施の形態に係る膜電極接合体(MEA)12を示す概略断面図である。図1に示すように、本発明の実施の形態に係る膜電極接合体(MEA)12は、固体高分子電解質膜1と、固体高分子電解質膜1の一方の面に電極触媒層(空気極側)2と、固体高分子電解質膜1のもう一方の面に電極触媒層(燃料極側)3を備えている。さらに、図示してはいないが、電極触媒層2上に空気極側ガス拡散層、電極触媒層3上に燃料極側ガス拡散層を備えている。
 次に、本発明の実施の形態に係る膜電極接合体を用いた固体高分子形燃料電池について説明する。図2は、本発明の実施の形態に係る固体高分子形燃料電池を示す概略分解模式図である。図2に示すように、本発明の実施の形態に係る固体高分子形燃料電池13は、固体高分子電解質膜1の両面に電極触媒層2及び電極触媒層を有する膜電極接合体12を備え、電極触媒層2及び電極触媒層3と対向して、それぞれ空気極側ガス拡散層4及び燃料極側ガス拡散層5が配置される。これによりそれぞれ空気極6及び燃料極7が構成される。そしてガス流通用のガス流路8を備え、相対する主面に冷却水流通用の冷却水流路9を備えた導電性でかつ不透過性の材料よりなる1組のセパレータ10が配置される。燃料極7側のセパレータ10のガス流路8からは燃料ガスとして、例えば水素ガスが供給される。一方、空気極6側のセパレータ10のガス流路8からは、酸化剤ガスとして、例えば酸素を含むガスが供給される。
 図2に示すように、本発明の実施の形態に係る固体高分子形燃料電池13は、一組のセパレータ10に固体高分子電解質膜1、電極触媒層2、電極触媒層3、ガス拡散層4及びガス拡散層5を狭持するいわゆる単セル構造の固体高分子形燃料電池13であるが、本発明の実施の形態においては、セパレータ10を介して複数のセルを直列に積層して積層スタック構造とすることもできる。
 本発明の電極触媒層の製造方法にあっては、触媒物質の電子伝導性物質に対する含有割合と、高分子電解質の電子伝導性物質に対する含有割合とをそれぞれ制御することにより、触媒物質表面に好適に電子伝導性物質および高分子電解質が配置され、触媒物質表面の電子伝導性および、プロトン伝導性を高めることができる。その結果、反応活性点が増加し、出力特性の向上した電極触媒層並びに膜電極接合体、固体高分子形燃料電池を提供することができる。
 本発明の電極触媒層の製造方法において、一対の電極触媒層は、高分子電解質と触媒物質と電子伝導性物質とを含有し、触媒物質は、電子伝導性物質1に対して重量比で0.1以上3以下であり、且つ高分子電解質は、電子伝導性物質1に対して重量比で0.5以上3以下であることが好ましい。さらに、触媒物質は、電子伝導性物質1に対して重量比で0.1以上0.9以下であり、且つ高分子電解質は、電子伝導性物質1に対して重量比で1以上2以下であることが好ましい。触媒物質が電子伝導性物質に対する含有割合が3より大きい場合は、触媒物質の表面に十分な電子伝導物質を配置することができず、電子伝導性が確保できないため抵抗が増大する。また、触媒物質が電子伝導性物質に対する含有割合が0.1に満たない場合にあっては、電極触媒層内に電子伝導性物質が過剰に存在し、触媒物質表面と接することが出来ず、反応活性点の増加には寄与しない。更には、電極触媒層の全体体積が増加することで、ガス拡散性が阻害され、出力特性が向上しない。高分子電解質が電子伝導性物質に対する含有割合が0.5より小さい場合は、十分なプロトン伝導性を確保することができず、3より大きい場合は、電極触媒層の空孔を高分子電解質が塞いでしまい、ガス拡散性が阻害され、更には、発電による生成水が電極触媒層中に溜まる、フラッディングと呼ばれる現象を引き起こす可能性がある。
 本発明の実施の形態に係る触媒物質は、一般的に用いられているものを使用してもよい。本発明においては、触媒物質の比表面積が1m/g以上100m/g以下であり、平均粒子径が20nm以上3μm以下であることが好ましい。触媒物質の平均粒子径が3μmより大きい場合は、触媒物質の表面に十分な電子伝導物質を配置することができなくなるので、電子伝導性が確保できないこととなる。また、触媒物質の平均粒子径が20nmより小さい場合は、電子伝導性物質が触媒物質表面と接することが出来ずに、電極触媒層内に電子伝導性物質が過剰に存在することとなり、反応活性点の増加には寄与しないこととなる。また、触媒物質の比表面積が1m/g以上100m/g以下の範囲からはずれる場合、電極触媒層中の高分子電解質の含有割合を所望の範囲にすることができない。例えば、触媒物質としては、空気極における白金代替材料として、固体高分子形燃料電池の空気極として用いられる、Ta、Nb、Ti、Zrから選択される、少なくとも一つの遷移金属元素を含む物質を使用してもよい。
 また、より好ましくは、これら遷移金属元素の炭窒化物を、酸素を含む雰囲気中で部分酸化した物質を使用してもよい。
 具体的には、Taの炭窒化物(TaCN)を、酸素を含む雰囲気中で部分酸化した物質(TaCNO)であってもよく、その比表面積は、凡そ1m/g以上20m/g以下である。
 本発明の実施の形態に係る電子伝導物質としては、炭素粒子を用いても良い。炭素粒子は、微粒子状で導電性を有し、触媒におかされないものであればどのようなものでも構わないが、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンを使用してもよい。炭素粒子の平均粒子径は、10nmより小さいと電子伝導パスが形成されにくくなり、また2000nmより大きいと電極触媒層のガス拡散性が低下したり、触媒の利用率が低下したりするので、10nm以上2000nm以下が好ましい。より好ましくは、20nm以上100nm以下が良い。また、電子伝導性物質の比表面積は、100m/g以上2000m/g以下が好ましい。電子伝導性物質の比表面積が100m/gより小さい場合は、触媒物質の表面に十分な電子伝導物質を配置することができなくなるので、電子伝導性が確保できないこととなる。また電子伝導性物質の比表面積が2000m/gより大きい場合は、電子伝導性物質が触媒物質表面と接することが出来ずに、電極触媒層内に電子伝導性物質が過剰に存在することとなり、反応活性点の増加には寄与しないこととなる。
 次に、本発明の実施の形態に係る膜電極接合体(MEA)12の製造方法及び固体高分子形燃料電池13の製造方法について説明する。
 まず、図1に示すように、本発明の実施の形態に係る固体高分子電解質膜1を用意する。固体高分子電解質膜1は、プロトン伝導性に優れ、且つ電子を流さない材料からなるものであれば特に限定されない。特に、パーフルオロ型のスルホン酸膜、例えば、Dupont社製Nafion(登録商標)、旭硝子社製フレミオン(登録商標)、旭硝子社製アシプレックス(登録商標)、ジャパンゴアテックス社製ゴアセレクト(登録商標)等を用いてもよい。その他、プロトン伝導基を有するポリイミド等の炭化水素系樹脂など等も用いてもよい。
 本発明の実施の形態に係る固体高分子電解質膜1は、電極触媒層2及び電極触媒層3に用いられる高分子電解質と同一の材料からなることが好ましい。
 次に、用意した固体高分子電解質膜1の両面には電極触媒層2及び電極触媒層3を形成する。電極触媒層2及び電極触媒層3を形成するにあっては、高分子電解質と触媒物質と触媒物質を担持するカーボン担体と分散媒とを含む触媒インクを調製する。
 触媒インク中に含まれる高分子電解質には様々なものが用いられるが、固体高分子電解質膜1と同様の材料を用いることができ、固体高分子電解質膜1と同一の材料を用いることが好ましい。Dupont社製Nafion(登録商標)を固体高分子電解質膜1として用いた場合には、触媒インクに含まれる高分子電解質としてはNafion(登録商標)を使用するのが好ましい。固体高分子電解質膜1にNafion(登録商標)以外の材料を用いた場合は、触媒インク中に固体高分子電解質膜1と同じ成分を溶解させるなど最適化をはかることが好ましい。
 触媒インクの分散媒として使用される溶媒は、触媒粒子や水素イオン伝導性樹脂を浸食することがなく、流動性の高い状態でプロトン伝導性高分子を溶解または微細ゲルとして分散できるものあれば特に制限はないが、揮発性の液体有機溶媒が少なくとも含まれることが望ましく、特に限定されるものではない。触媒インクの分散媒として使用される溶媒には、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、ペンタノール、2-ヘプタノール、ベンジルアルコール等のアルコール類、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイゾブチルケトン、メチルアミルケトン、ペンタノン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトンなどのケトン類、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のエーテル類、イソプロピルアミン、ブチルアミン、イソブチルアミン、シクロヘキシルアミン、ジエチルアミン、アニリンなどのアミン類、蟻酸プロピル、蟻酸イソブチル、蟻酸アミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチルなどのエステル類、その他酢酸、プロピオン酸、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジアセトンアルコール、1-メトキシ-2-プロパノール等の極性溶媒等が使用されてもよい。また、これらの溶媒のうち二種以上を混合させたものも使用してもよい。
 これらの溶媒の中でも誘電率が異なる2種類の溶媒を用いることで、触媒インク中の高分子電解質の分散状態を制御することができる。これらの溶媒または溶剤として低級アルコールを用いたものは発火の危険性が高く、このような溶媒を用いる際は水との混合溶媒にするのが好ましい。また、高分子電解質となじみがよい水が含まれていてもよい。水の添加量は、プロトン伝導性ポリマーが分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限はない。
 また、触媒インクにあっては、保存安定性の為、分散剤が含まれていても良い。分散剤としては、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤などを用いてもよい。
 また、触媒インクに造孔剤が含まれても良い。造孔剤は、電極触媒層の形成後に除去することで、細孔を形成することができる。酸やアルカリ、水に溶ける物質や、ショウノウなどの昇華する物質、熱分解する物質などを用いても良い。温水で溶ける物質であれば、発電時に発生する水で取り除いても良い。
 酸やアルカリ、水に溶ける造孔剤としては、例えば、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム等の酸可溶性無機塩類、アルミナ、シリカゲル、シリカゾル等のアルカリ水溶液に可溶性の無機塩類、アルミニウム、亜鉛、スズ、ニッケル、鉄等の酸またはアルカリに可溶性の金属類、塩化ナトリウム、塩化カリウム、塩化アンモニウム、炭酸ナトリウム、硫酸ナトリウム、リン酸一ナトリウム等の水溶性無機塩類、ポリビニルアルコール、ポリエチレングリコール等の水溶性有機化合物類などが挙げられ、2種以上併用することも有効である。
 触媒インクの粘度は0.1cP以上100cP以下であることが好ましい。粘度は溶媒の種類、固形分濃度を変化させることで最適化する。またインキの分散時に分散剤を添加することで、粘度の制御をすることもできる。
 また、高分子電解質と触媒物質と触媒物質を担持するカーボン担体と分散媒を含む触媒インクは公知の方法により適宜分散処理がおこなわれる。
 電極触媒層2及び電極触媒層3と固体高分子電解質膜1とは熱圧着により接合される。さらに、その電極触媒層2及び電極触媒層3とプロトン伝導性高分子の間には、接合性を高める為に、プロトン伝導性高分子を含む溶液を結着剤として塗布することもできる。
 さらに、本発明の実施の形態に係る固体高分子形燃料電池のガス拡散層4、ガス拡散層5、及びセパレータ10としては通常の燃料電池に用いられているものを用いてもよい。具体的にはガス拡散層4及びガス拡散層5としては、カーボンクロス、カーボンペーパ、不織布などのポーラスカーボン材が用いられてもよい。セパレータ10としては、カーボンタイプのものや金属タイプのもの等を用いてもよい。また、燃料電池としては、ガス供給装置、冷却装置など、その他付随する装置を組み立てることにより製造される。
 以下、本発明を実施例および比較例を挙げてより具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
(実施例1)
[触媒インク1の調製]
 触媒物質として部分酸化したタンタル炭窒化物(TaCNO、比表面積9m/g、平均粒子径650nm)と、導電性物質として、ケッチェンブラック(商品名:EC300J、ライオン社製、比表面積800m/g、平均粒子径50nm)、20質量%高分子電解質溶液(ナフィオン:Nafion(登録商標)、Dupont社製)を、遊星ボールミル(商品名:P-7、フリッチュ・ジャパン社製)を用いて分散処理を行った。ボールミルのポット、ボールにはジルコニア製のものを用いた。触媒インクの組成において、触媒物質の含有割合は、電子伝導性物質1に対して重量比で0.5とした。また、高分子電解質の含有割合は、電子伝導性物質1に対して重量比で0.8になるように触媒インク1を調製した。
[電極触媒層シート1の作製]
 ドクターブレードにより、触媒インク1をPTFE基材上に塗布し、80℃で5分間乾燥させ、電極触媒層シート1を作製した。電極触媒層の厚さは、触媒物質担持量が0.4mg/cmになるように調製し、空気極側の電極触媒層を形成した。
(実施例2)
[触媒インク2の調製]
 触媒物質として部分酸化したタンタル炭窒化物と、導電性物質として、ケッチェンブラック、20質量%高分子電解質溶液を、遊星ボールミルを用いて分散処理を行った。ボールミルのポット、ボールにはジルコニア製のものを用いた。触媒インクの組成において、触媒物質の含有割合は、電子伝導性物質1に対して重量比で1とした。また、高分子電解質の含有割合は、電子伝導性物質1に対して重量比で0.8になるように触媒インク2を調製した。
[電極触媒層シート2の作製]
 実施例1と同様の作製方法で、触媒インク2を用いて、PTFE基材上に塗布し、80℃で5分間乾燥させた。電極触媒層の厚さは、触媒物質担持量が0.4mg/cmになるように調製し、空気極側の電極触媒層を形成した。
(実施例3)
[触媒インク3の調製]
 実施例1、2と同様の作製方法にて触媒インク3を作製した。触媒インクの組成において、触媒物質の含有割合は、電子伝導性物質1に対して重量比で2とした。また、高分子電解質の含有割合は、電子伝導性物質1に対して重量比で0.8になるように触媒インク3を調製した。
[電極触媒層シート3の作製]
 実施例1、2と同様の作製方法で、触媒インク3を用いて、PTFE基材上に塗布し、80℃で5分間乾燥させた。電極触媒層の厚さは、触媒物質担持量が0.4mg/cmになるように調製し、空気極側の電極触媒層を形成した。
(比較例)
 触媒インクの組成において、触媒物質の含有割合は、電子伝導性物質1に対して重量比で4とした以外は、実施例と同様の手法にて触媒インク4及び触媒層シート4を作製した。電極触媒層の厚さは触媒物質担持量が0.4mg/cmになるように調製した。
〔燃料極用電極触媒層の作製〕
 実施例および比較例について、白金担持量が50質量%である白金担持カーボン触媒(商品名:TEC10E50E、田中貴金属工業製)と、20質量%高分子電解質溶液を溶媒中で混合し、遊星型ボールミルで分散処理をおこなった。分散時間を60分間としたものを触媒インクとした。触媒インクの組成において、高分子電解質は、電子伝導性物質である、白金担持カーボン中のカーボンに対して質量比で1とした。溶媒は超純水と、1-プロパノ-ルとを体積比で1:1とした。また、固形分含有量は10質量%とした。実施例および比較例ともに、空気極側電極触媒層と同様の作製方法で、PTFE基材に触媒インクを塗布し、乾燥させた。電極触媒層の厚さは触媒物質担持量が0.3mg/cmになるように調節し、燃料極用電極触媒層を形成した。
[膜電極接合体の作製]
 実施例および比較例において作製した空気極側電極触媒層が形成された電極触媒層シートと、燃料極側電極触媒層を形成された電極触媒層シートを5cmの正方形に打ち抜き、高分子電解質膜(ナフィオン(登録商標)212、Dupont社製)の両面に対面するように電極触媒層シートを配置し、130℃、10分間の条件でホットプレスを行い、膜電極接合体12を得た。得られた膜電極接合体12の両面に、ガス拡散層として目処め層が形成されたカーボンクロス4、5を配置し、更に、一対のセパレータ10で挟持し、単セルの固体高分子形燃料電池を作製した。
〔発電特性〕
(評価条件)
 東陽テクニカ社製GFT-SG1の燃料電池測定装置を用いて、セル温度80℃で、アノードおよびカソードともに100%RHの条件で発電特性評価を行った。燃料ガスとして純水素、酸化剤ガスとして純酸素を用い、流量一定による流量制御を行い、燃料極側の背圧を200kPa、空気極側の背圧を300kPaとした。
(測定結果)
 図3に、実施例及び比較例の膜電極接合体12を用いて作製した、固体高分子形燃料電池の発電特性を示した。実施例の固体高分子形燃料電池は、フラッディング等が発生することなく、良好な発電特性を得ることができた。特に実施例1に関しては、電子伝導性物質が触媒物質表面に十分に配置されることで、反応活性点が増大し、触媒反応が支配的である低負荷領域においても発電特性が向上した。比較例に関しては、触媒物質の含有割合が高すぎて、表面に十分な電子伝導性を配置することができないため、抵抗が実施例1の約1.5倍に増大していることが確認された。
 以上より、本発明によれば、出力性能の向上した固体高分子形燃料電池を提供することができる。従って、本発明は、高分子形燃料電池、特に家庭用燃料電池システムや燃料電池自動車などにおける、燃料電池単セルやスタックに好適に活用することができる。
1…固体高分子電解質膜
2…電極触媒層(空気極側)
3…電極触媒層(燃料極側)
4…空気極側ガス拡散層
5…燃料極側ガス拡散層
6…空気極、
7…燃料極
8…ガス流路
9…冷却水流路
10…セパレータ
12…膜電極接合体
13…固体高分子形燃料電池

Claims (9)

  1.  一対の電極触媒層で挟持した固体高分子電解質膜を一対のガス拡散層で挟持した膜電極接合体において、
     前記電極触媒層は、高分子電解質と触媒物質と電子伝導性物質とを含有し、前記触媒物質の含有割合は、前記電子伝導性物質1に対して重量比で0.1以上3以下であり、且つ前記高分子電解質の含有割合は、前記電子伝導性物質1に対して重量比で0.5以上3以下であることを特徴とする膜電極接合体。
  2.  前記触媒物質の比表面積が1m/g以上100m/g以下であり、平均粒子径が20nm以上3μm以下であることを特徴とする請求項1に記載の膜電極接合体。
  3.  前記触媒物質が、Ta、Nb、Ti、およびZrのうち、少なくとも一つの遷移金属元素を含むことを特徴とする請求項2に記載の膜電極接合体。
  4.  前記触媒物質が、前記遷移金属元素の炭窒化物を、酸素を含む雰囲気中で部分酸化したことを特徴とする請求項3に記載の膜電極接合体。
  5.  前記触媒物質が、Taの炭窒化物を、酸素を含む雰囲気中で部分酸化したことを特徴とする、請求項4に記載の膜電極接合体。
  6.  請求項5に記載の膜電極接合体を備えることを特徴とする固体高分子形燃料電池。
  7.  前記電子伝導性物質の比表面積が100m/g以上2000m/g以下であり、平均粒子径が20nm以上100nm以下であることを特徴とする請求項3に記載の膜電極接合体。
  8.  前記電子伝導性物質が、炭素粒子であることを特徴とする請求項7に記載の膜電極接合体。
  9.  請求項8に記載の膜電極接合体を備えることを特徴とする固体高分子形燃料電池。
PCT/JP2010/054378 2009-09-29 2010-03-16 固体高分子形燃料電池用膜電極接合体、およびこれを有する固体高分子形燃料電池 WO2011040061A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011501834A JP4858658B2 (ja) 2009-09-29 2010-03-16 固体高分子形燃料電池用膜電極接合体、およびこれを有する固体高分子形燃料電池
US13/433,222 US20120183879A1 (en) 2009-09-29 2012-03-28 Membrane electrode assembly and fuel cell using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-223803 2009-09-29
JP2009223803 2009-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/433,222 Continuation US20120183879A1 (en) 2009-09-29 2012-03-28 Membrane electrode assembly and fuel cell using the same

Publications (1)

Publication Number Publication Date
WO2011040061A1 true WO2011040061A1 (ja) 2011-04-07

Family

ID=43825898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054378 WO2011040061A1 (ja) 2009-09-29 2010-03-16 固体高分子形燃料電池用膜電極接合体、およびこれを有する固体高分子形燃料電池

Country Status (3)

Country Link
US (1) US20120183879A1 (ja)
JP (1) JP4858658B2 (ja)
WO (1) WO2011040061A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098180A1 (ja) * 2013-12-27 2015-07-02 昭和電工株式会社 電極触媒インク組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6088048B2 (ja) 2012-06-12 2017-03-01 モナシュ ユニバーシティ 水分解用の通気性電極構造およびその方法並びにシステム
BR112016002269A2 (pt) 2013-07-31 2017-08-01 Aquahydrex Pty Ltd método e célula eletroquímica para gerenciar reações eletroquímicas
KR20210122260A (ko) 2019-02-01 2021-10-08 아쿠아하이드렉스, 인크. 제한된 전해질을 갖춘 전기화학적 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079917A (ja) * 2004-09-09 2006-03-23 Nissan Motor Co Ltd 燃料電池用mea、および、これを用いた燃料電池
JP2008108594A (ja) * 2006-10-26 2008-05-08 Yokohama National Univ 電極活物質及びそれを用いた正極用酸素還元電極
WO2009060777A1 (ja) * 2007-11-05 2009-05-14 National University Corporation Yokohama National University 電極触媒及びそれを用いた正極用酸素還元電極
WO2009091043A1 (ja) * 2008-01-18 2009-07-23 Showa Denko K.K. 触媒およびその製造方法ならびにその用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60234245D1 (de) * 2001-03-07 2009-12-17 Panasonic Corp Polymer-elektrolyttyp-brennstoffzelle und verfahren zur herstellung
JP3619826B2 (ja) * 2003-10-20 2005-02-16 三洋電機株式会社 燃料電池用電極及び燃料電池
JP2006198570A (ja) * 2005-01-24 2006-08-03 Sumitomo Chemical Co Ltd 電極触媒の製造方法
JP2009208070A (ja) * 2008-02-05 2009-09-17 Univ Of Tokyo 燃料電池用電極触媒及びその製造方法並びに燃料電池用電極
WO2009107518A1 (ja) * 2008-02-28 2009-09-03 昭和電工株式会社 触媒およびその製造方法ならびにその用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006079917A (ja) * 2004-09-09 2006-03-23 Nissan Motor Co Ltd 燃料電池用mea、および、これを用いた燃料電池
JP2008108594A (ja) * 2006-10-26 2008-05-08 Yokohama National Univ 電極活物質及びそれを用いた正極用酸素還元電極
WO2009060777A1 (ja) * 2007-11-05 2009-05-14 National University Corporation Yokohama National University 電極触媒及びそれを用いた正極用酸素還元電極
WO2009091043A1 (ja) * 2008-01-18 2009-07-23 Showa Denko K.K. 触媒およびその製造方法ならびにその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A.ISHIHARA ET AL.: "Partially Oxidized Tantalum Carbonitrides as a New Nonplatinum Cathode for PEFC-1", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 155, no. 4, 20 February 2008 (2008-02-20), pages B400 - B406 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098180A1 (ja) * 2013-12-27 2015-07-02 昭和電工株式会社 電極触媒インク組成物
JP5813257B1 (ja) * 2013-12-27 2015-11-17 昭和電工株式会社 電極触媒インク組成物
CN105814722A (zh) * 2013-12-27 2016-07-27 昭和电工株式会社 电极催化剂油墨组合物
US20170033367A1 (en) * 2013-12-27 2017-02-02 Showa Denko K.K. Electrode catalyst ink composition
US10205174B2 (en) 2013-12-27 2019-02-12 Showa Denko K.K. Electrode catalyst ink composition
CN105814722B (zh) * 2013-12-27 2019-12-06 昭和电工株式会社 电极催化剂油墨组合物

Also Published As

Publication number Publication date
JP4858658B2 (ja) 2012-01-18
JPWO2011040061A1 (ja) 2013-02-21
US20120183879A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5182338B2 (ja) 燃料電池用膜−電極接合体、および、これを用いた燃料電池
JP5481820B2 (ja) マイクロポーラス層およびこれを有するガス拡散層
JP4655168B1 (ja) 燃料電池用電極触媒層の製造方法
JP5428493B2 (ja) 固体高分子形燃料電池の製造方法
JP5581583B2 (ja) 膜電極接合体及び固体高分子形燃料電池
JP2008077974A (ja) 電極
JP5740889B2 (ja) 固体高分子形燃料電池用の炭素被覆触媒物質、その製造方法、電極触媒層、及び膜電極接合体
JP4858658B2 (ja) 固体高分子形燃料電池用膜電極接合体、およびこれを有する固体高分子形燃料電池
KR101881139B1 (ko) 연료전지용 미세다공층, 이를 포함하는 기체확산층 및 이를 포함하는 연료전지
US8278012B2 (en) Membrane electrode assembly for fuel cell, and fuel cell system including the same
JP5487701B2 (ja) 膜電極接合体及びその製造方法並びに固体高分子形燃料電池
JP2006085984A (ja) 燃料電池用mea、および、これを用いた燃料電池
JP2012212661A (ja) 燃料電池用の電極触媒層、当該電極触媒層の製造方法、燃料電池用の膜電極接合体、および固体高分子形燃料電池
JP5907065B2 (ja) 燃料電池電極触媒層用スラリー、電極触媒層の製造方法、膜電極接合体の製造方法、及び燃料電池の製造方法
JP5682390B2 (ja) 電極触媒層及びこの製造方法、膜電極接合体及びこの製造方法、固体高分子形燃料電池、並びに複合粒子及びこの製造方法
JP2009193910A (ja) 膜電極接合体及び固体高分子型燃料電池
JP2012195232A (ja) 膜電極接合体およびその製造方法並びに固体高分子形燃料電池
JP5434051B2 (ja) 膜電極接合体及び固体高分子形燃料電池
JP2018085260A (ja) 電極触媒の製造方法
JP5609474B2 (ja) 燃料電池電極触媒層の製造方法
JP2011198502A (ja) 固体高分子形燃料電池用膜電極接合体の製造方法および、それを使用した膜電極接合体、燃料電池単セル、燃料電池スタック
JP2006318824A (ja) 触媒膜形成用スラリー、固体高分子型燃料電池用触媒膜並びにその製造方法、膜−電極接合体及び固体高分子型燃料電池
JP2012190656A (ja) 膜電極接合体およびその製造方法並びに固体高分子形燃料電池
JP2011204605A (ja) 燃料電池用電極触媒層、この電極触媒層を備えた燃料電池用膜電極接合体、この膜電極接合体を備えた燃料電池および燃料電池用電極触媒層の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011501834

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820181

Country of ref document: EP

Kind code of ref document: A1