WO2011039934A1 - Stacking type heat exchanger and method for producing a stacking type heat exchanger - Google Patents

Stacking type heat exchanger and method for producing a stacking type heat exchanger Download PDF

Info

Publication number
WO2011039934A1
WO2011039934A1 PCT/JP2010/005204 JP2010005204W WO2011039934A1 WO 2011039934 A1 WO2011039934 A1 WO 2011039934A1 JP 2010005204 W JP2010005204 W JP 2010005204W WO 2011039934 A1 WO2011039934 A1 WO 2011039934A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
fluid
metal pipe
header
heat exchanger
Prior art date
Application number
PCT/JP2010/005204
Other languages
French (fr)
Japanese (ja)
Inventor
智教 菊野
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2011039934A1 publication Critical patent/WO2011039934A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/06Soldering, e.g. brazing, or unsoldering making use of vibrations, e.g. supersonic vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a stacked heat exchanger and a method for manufacturing the stacked heat exchanger.
  • heat exchangers for heat exchange between water or air and a refrigerant in a heat pump water heater, an air conditioner, and the like are known.
  • various metal parts are joined together by brazing or the like.
  • Patent Document 1 discloses a method for manufacturing a twisted tube heat exchanger in which metal parts are bonded together using a thermosetting resin adhesive. This manufacturing method eliminates the need for manufacturing equipment such as brazing, thereby reducing costs.
  • joining with a resin adhesive is not necessarily sufficient in terms of rigidity, adhesive strength, etc., for example, it is necessary to maintain a liquid-tight state by joining parts where high pressure is applied in a heat exchanger, for example. It is not necessarily suitable for the application.
  • An object of the present invention is to provide a stacked heat exchanger that does not require a large heating furnace that can be adjusted to a high temperature atmosphere at the time of manufacture, and that can maintain a liquid-tight state even when joining high-pressure sites, and a stacked mold It is in providing the manufacturing method of a heat exchanger.
  • the laminated heat exchanger of the present invention includes a refrigerant metal tube (13), a fluid metal tube (11), a refrigerant header portion (33b), and a fluid header portion (33a).
  • a refrigerant can flow through the metal pipe for refrigerant (13).
  • the fluid metal pipe (11) is capable of circulating a fluid that exchanges heat with the refrigerant, and is stacked on the refrigerant metal pipe (13) to be connected to the refrigerant metal pipe (13). It is joined to the metal pipe for refrigerant (13) by a solder layer (15) or a resin adhesive layer interposed therebetween.
  • the refrigerant header (33b) is joined to the end of the refrigerant metal pipe (13) by brazing or fusion welding.
  • the fluid header (33a) is joined to the end of the fluid metal pipe (11).
  • (A) is a perspective view which shows the laminated heat exchanger concerning one Embodiment of this invention
  • (B) is the top view. It is a front view of the laminated heat exchanger of FIG. (A) is sectional drawing which shows the header part for refrigerant
  • (A) is sectional drawing which shows the shaping
  • (B) is sectional drawing which shows the temporary assembly obtained by the said formation process. It is the schematic which shows the auxiliary heating process and joining process in the said manufacturing method.
  • the stacked heat exchanger 17 of the present embodiment is a heat exchange unit for exchanging heat between a fluid such as water and a refrigerant. 31 and header portions 33, 33 provided at both ends of the heat exchanging portion 31.
  • This laminated heat exchanger 17 can be used as a heat exchanger of a heat pump water heater, for example. In this case, the temperature of water is adjusted by heat exchange between the refrigerant circulating in the refrigerant circuit in the hot water heater (not shown) and the water.
  • the laminated heat exchanger 17 includes a fluid metal tube 11, a refrigerant metal tube 13 stacked on the fluid metal tube 11 at one position in the thickness direction of the fluid metal tube 11, and a fluid metal tube. 11 and a metal pipe for refrigerant 14 laminated on the metal pipe for fluid 11 at a position on the other side in the thickness direction.
  • the fluid metal tube 11 has a flat shape with a width larger than the thickness.
  • a fluid channel 11 a extending in the longitudinal direction is formed inside the metal pipe 11 for fluid.
  • the fluid metal tube 11 has a long shape as shown in FIGS. 1A, 1B, 2 and 3.
  • the refrigerant metal tubes 13 and 14 each have a flat shape whose width is larger than thickness. Moreover, the metal pipes 13 and 14 for refrigerant
  • the refrigerant metal tube 13 is a multi-hole tube in which a plurality of refrigerant channels 13a extending in the longitudinal direction are formed. The plurality of refrigerant flow paths 13a are independent from each other and are arranged in a line in the width direction.
  • the refrigerant metal tube 14 is a multi-hole tube in which a plurality of refrigerant channels 14a extending in the longitudinal direction are formed. The plurality of refrigerant flow paths 14a are independent from each other and are arranged in a line in the width direction.
  • the fluid metal tube 11 has an outer surface 11b which is one surface in the thickness direction and an outer surface 11c which is the other surface.
  • the refrigerant metal tube 13 has an outer surface 13 b that faces the outer surface 11 b on one side of the fluid metal tube 11.
  • the outer surface 13b is joined to the outer surface 11b of the fluid metal tube 11 by a solder layer 15a.
  • the refrigerant metal tube 14 has an outer surface 14 b that faces the outer surface 11 c on the other side of the fluid metal tube 11.
  • the outer surface 14b is joined to the outer surface 11c of the fluid metal tube 11 by a solder layer 15b.
  • the outer surfaces 13b and 14b may be joined to the outer surfaces 11b and 11c by a resin adhesive such as an epoxy resin adhesive instead of joining by the solder layers 15a and 15b.
  • the metal tubes can be joined by maintaining the temperature of the adhesive at a temperature equal to or higher than the curing temperature (for example, about 150 ° C.) for a predetermined time.
  • the header portion 33 includes a fluid header portion 33a joined to both ends of the fluid metal tube 11 and a refrigerant header portion 33b joined to both ends of the coolant metal tube 13, respectively.
  • the refrigerant header portion 33b has a structure in which the header body 41, the end of the refrigerant metal tube 13 and the end of the refrigerant metal tube 14 are joined. .
  • the header body 41 has a rectangular parallelepiped outer shape. Inside the header body 41, a coolant channel 41a through which a coolant can flow is formed.
  • the refrigerant flow path 41a has a circular cross-sectional shape.
  • the side wall of the header body 41 is provided with an insertion port 41b into which the end of the refrigerant metal tube 13 is inserted, and an insertion port 41c into which the end of the refrigerant metal tube 14 is inserted.
  • the end of the refrigerant metal tube 13 is joined to the header body 41 by an appropriate amount of brazing material 43 disposed between the inner surface of the insertion port 41 b and the outer surface of the refrigerant metal tube 13.
  • the end portion of the refrigerant metal tube 14 is joined to the header body 41 by an appropriate amount of brazing material 43 disposed between the inner surface of the insertion port 41 c and the outer surface of the refrigerant metal tube 14.
  • the refrigerant flow path 13a of the refrigerant metal tube 13 and the refrigerant flow path 14a of the refrigerant metal tube 14 communicate with the refrigerant flow path 41a of the header body 41, respectively.
  • the end portions of the refrigerant metal tubes 13 and 14 may be joined to the header body 41 by fusion welding instead of joining by the brazing material 43.
  • the fluid header 33a has a structure in which the header main body 45 and the end of the fluid metal tube 11 are joined.
  • the header main body 45 has a cylindrical shape. Inside the header body 45, a fluid channel 45a through which fluid can flow is formed.
  • the header body 45 is disposed between the refrigerant metal tube 13 and the refrigerant metal tube 14 positioned above and below.
  • An insertion port 45 b into which the end of the fluid metal tube 11 is inserted is provided on the side wall of the header body 45.
  • the end of the fluid metal tube 11 is joined to the header body 45 by an appropriate amount of brazing material 47 disposed between the inner surface of the insertion port 45 b and the outer surface of the fluid metal tube 11.
  • the fluid flow path 11 a of the fluid metal pipe 11 communicates with the fluid flow path 45 a of the header body 45. It should be noted that a high-pressure refrigerant flows through the joint portion (fluid header joint portion) between the end of the fluid metal tube 11 and the fluid header portion 33a, like the refrigerant metal tube 13 and the refrigerant header portion 33b. Rather, relatively low pressure water circulates.
  • the joint portion is not required to have a high joint strength unlike the refrigerant header joint portion. Therefore, the end portion of the metal pipe for fluid 11 may be joined to the header body 45 by other joining methods such as soldering, fusion welding, joining with a resin adhesive, instead of joining with the brazing material 47. Good.
  • each refrigerant header portion 33b has a pipe 41d through which the refrigerant in the refrigerant flow path 41a can enter and exit, and each fluid header section 33a has a fluid flow path.
  • a pipe 45c through which the fluid in 45a can enter and exit is provided.
  • a soldering device 35 shown in FIG. 4 can be used for soldering the outer surfaces 11b and 11c of the fluid metal tube 11 and the outer surfaces 13b and 14b of the refrigerant metal tubes 13 and 14.
  • the soldering device 35 includes an ultrasonic soldering iron 21 as the main heating unit 21a and the vibrating unit 21b, a heater 19 as an auxiliary heating unit, and a control unit 25 as a control unit.
  • the heater 19 of the soldering device 35 has a placement surface 19a on which an object to be heated (a temporary assembly 23 described later) is placed.
  • the mounting surface 19a has a size that allows the entire lower surface of the temporary assembly 23 to be in surface contact.
  • the heater 19 plays a role of heating the temporary assembly 23 in an auxiliary manner.
  • the ultrasonic soldering iron 21 functions as a main heating means 21a for heating the temporary assembly 23 to heat a solder layer 15 described later to a melting point or higher, and generates vibration of ultrasonic waves applied to the temporary assembly 23. And a function as a vibrating means 21b (or a vibrating means 21b for causing the temporary assembly 23 to generate vibration).
  • an ultrasonic wave means a sound wave with a high frequency (frequency) so that an auditory sense does not occur.
  • This ultrasonic soldering iron 21 incorporates an unillustrated vibrator that generates ultrasonic vibrations and an unillustrated heater that heats the temporary assembly 23.
  • the ultrasonic vibration generated by the vibrator and the heat generated by the heater are transmitted to the tip 22 of the ultrasonic soldering iron 21, respectively.
  • the tip 22 of the ultrasonic soldering iron 21 in the present embodiment has a contact surface that comes into surface contact with the surface of the temporary assembly 23.
  • This contact surface has a flat shape (a shape like the tip of a minus driver) whose width is larger than the thickness.
  • the control unit 25 controls the heater 19 and the ultrasonic soldering iron 21.
  • the control unit 25 includes a central processing unit and a memory for storing various data. Specifically, the control unit 25 controls the temperature of the mounting surface 19a of the heater 19, the temperature of the tip 22 of the ultrasonic soldering iron 21, the frequency of ultrasonic vibration, and the like.
  • control unit 25 can perform position control for moving the ultrasonic soldering iron 21 and / or the heater 19 in the vertical direction.
  • the control unit 25 heats the temporary assembly 23 and applies ultrasonic vibration to the temporary assembly 23, the tip 22 of the ultrasonic soldering iron 21 is in contact with the surface of the temporary assembly 23.
  • the control unit 25 uses an ultrasonic soldering iron so that the temporary assembly 23 can be inserted between the mounting surface 19a and the tip 22 when the temporary assembly 23 is attached to or detached from the soldering device 35. The position of the tip portion 22 of 21 is controlled.
  • a small heating device 81 shown in FIG. 3 can be used for brazing the header body 41 with the end of the refrigerant metal tube 13 and the end of the refrigerant metal tube 14.
  • the heating device 81 include heating means such as a high-frequency heating device, an infrared heater, a laser irradiation device, and an air heater.
  • a small heating device 83 shown in FIG. 3 can be used for joining the header main body 45 and the end of the fluid metal tube 11.
  • the heating device 83 include heating means such as a high-frequency heating device, an infrared heater, laser irradiation, and an air heater, as described above.
  • a metal having thermal conductivity, corrosion resistance, rigidity, workability, and the like is used. Specifically, aluminum, copper, stainless steel, and the like are used. Can be illustrated.
  • a material for the solder layer 15 a material suitable for the material of the metal tube may be appropriately selected.
  • the laminated heat exchanger 17 can be used in the form of a straight line as shown in FIG. 1, but may be used after being bent into a spiral shape (not shown), for example.
  • a fluid metal tube 11 and refrigerant metal tubes 13 and 14 are prepared. These metal tubes 11, 13, and 14 are obtained by extruding a metal material using, for example, dies each having an extrusion port having a cross-sectional shape of each metal tube as shown in FIG. It is done. Moreover, the header part 33a for fluids and the header part 33b for refrigerant
  • the refrigerant header 33b is joined to the end of the refrigerant metal pipe 13 and the end of the refrigerant metal pipe 14 by brazing (refrigerant header joining step).
  • each end of the refrigerant metal tubes 13, 14 is inserted into the insertion port 41 b of the header body 41. , 41c, and arranged as shown in FIG.
  • the brazing filler metal 43 and its surroundings are heated using the heating device 81 to raise the temperature of the brazing filler metal 43 to the melting point or higher, so that the end portions of the refrigerant metal tubes 13 and 14 become the refrigerant header portion 33b. Braze.
  • the brazing material 43 and its surroundings are formed by winding an induction coil around the ends of the refrigerant metal tubes 13 and 14 and / or the header body 41 to flow a high-frequency current. Can be heated.
  • a laser irradiation device can be used as the heating device 81.
  • a lamp excitation YAG laser, a diode excitation YAG laser, a CO 2 laser, or the like can be used as the laser of the laser irradiation apparatus.
  • the output of the YAG laser can be adjusted to, for example, a range of about 20 W to 1.5 kW, and the output of the CO 2 laser can be adjusted to, for example, about 250 W.
  • arc welding such as TIG welding and MIG welding
  • resistance welding such as spot welding and seam welding, and the like
  • the fluid header 33a is joined to the end of the fluid metal tube 11 by brazing or the like (fluid header joining step).
  • brazing it may be the same as in the case of the header joining process for refrigerant.
  • the solder material or the resin adhesive is disposed in the same manner as described above, and is heated and bonded by the heating device 81.
  • the refrigerant metal tube 13, the solder layer 15a, the fluid metal tube 11, the solder layer 15b, and the refrigerant metal tube 14 are laminated in this order in the thickness direction and temporarily assembled.
  • the body 23 is molded (molding process: FIG. 5B).
  • the fluid metal pipe 11 and the refrigerant metal pipes 13 and 14 are stacked and arranged with their longitudinal directions aligned in the same direction.
  • solder layers 15a and 15b for example, those previously formed into a sheet shape (foil shape) can be used. Further, for example, a cream-like solder material is used and applied to the outer surfaces 11b and 11c of the fluid metal tube 11 and / or the outer surfaces 13b and 14b of the refrigerant metal tubes 13 and 14, and the solder layers 15a and 15b. May be formed. Alternatively, solder layers 15a and 15b may be formed on the outer surfaces 11b and 11c by spraying a solder material onto the outer surfaces 11b and 11c of the metal pipe 11 for fluid.
  • the temporary assembly 23 is heated to join the refrigerant metal tube 13 and the fluid metal tube 11 with the solder layer 15 (metal tube joining step). Specifically, first, as shown in FIG. 6, the temporary assembly 23 is placed on the placement surface 19 a of the heater 19 of the soldering device 35. At this time, almost the entire lower surface of the refrigerant metal tube 14 in the temporary assembly 23 is in surface contact with the mounting surface 19a.
  • the control unit 25 performs control so that the temporary assembly 23 is auxiliary heated by the heater 19.
  • the control unit 25 controls the heater 19 based on the temperature of the temporary assembly 23 measured by a temperature sensor (not shown).
  • the temporary assembly 23 is heated so that the solder layer 15 (15a, 15b) is in a semi-molten state.
  • the temperature at which the solder layer 15 becomes a semi-molten state refers to a temperature between the solidus temperature and the liquidus temperature of the solder material constituting the solder layer 15.
  • the heater 19 is set to about 200 ° C., for example.
  • the solder layer 15 can be brought into a semi-molten state by auxiliary heating of the temporary assembly 23 by adjusting the temperature.
  • the control unit 25 applies ultrasonic vibrations to the temporary assembly 23 by the ultrasonic soldering iron 21 and also solder layer 15.
  • the temporary assembly 23 is subjected to main heating so that the temperature of is higher than the melting point.
  • the solder layer 15 is melted and the metal pipe for fluid 11 and the metal pipes for refrigerant 13 and 14 are joined.
  • the melting point of the solder material is 245 ° C.
  • the tip 22 of the ultrasonic soldering iron 21 is adjusted to a temperature of about 350 ° C. to 400 ° C., for example.
  • the heating means for example, a high-frequency heating device, a laser irradiation device, an infrared heater, an air heater, a torch or the like may be used together with or instead of the ultrasonic soldering iron 21.
  • the control unit 25 controls the ultrasonic soldering iron 21.
  • the ultrasonic soldering iron 21 is controlled by the control unit 25 so that the tip 22 of the ultrasonic soldering iron 21 is in contact with the upper surface of the temporary assembly 23 (the upper surface of the refrigerant metal tube 13). Move in the direction and longitudinal direction.
  • ultrasonic vibration is uniformly applied to almost the entire temporary assembly 23 and heated.
  • the main heating of the temporary assembly 23 may be performed not after the application of vibration but after the application of vibration to the temporary assembly 23 is completed.
  • tip part 22 of the ultrasonic soldering iron 21 is not limited to flat shape, For example, other shapes, such as column shape and prismatic shape, may be sufficient.
  • Conditions for joining such as the temperature of the mounting surface 19 a of the heater 19, the temperature of the tip 22 of the ultrasonic soldering iron 21, the frequency, amplitude, vibration applying time, and heating time of the ultrasonic wave are controlled by the control unit 25. Be controlled. These conditions are appropriately set according to the material and thickness of each metal tube and the material of the solder layer 15.
  • the stacked heat exchanger includes a metal pipe for refrigerant, a metal pipe for fluid, a header section for refrigerant, and a header section for fluid.
  • the refrigerant metal tube is capable of circulating a refrigerant therein.
  • the fluid metal tube has a solder layer in which a fluid exchanging heat with the refrigerant can flow, and is stacked on the refrigerant metal tube and interposed between the refrigerant metal tube and the fluid metal tube. Alternatively, it is joined to the refrigerant metal tube by a resin adhesive layer.
  • the refrigerant header is joined to the end of the metal pipe for refrigerant by brazing or fusion welding.
  • the fluid header portion is joined to the end of the fluid metal tube.
  • the joint portion (refrigerant header joint portion) between the end of the coolant metal tube and the coolant header portion is joined by brazing or fusion welding, while the refrigerant metal arranged in a stacked manner.
  • a joint portion between the pipe and the metal pipe for fluid, that is, a joint portion between the outer surfaces of the metal pipe is joined by a solder material or a resin adhesive.
  • brazing refers to a joining method performed using a solder having a melting point of 450 ° C. or higher
  • soldering refers to a joining method performed using solder having a low melting point of less than 450 ° C.
  • the fusion welding includes arc welding such as TIG welding and MIG welding, resistance welding such as spot welding and seam welding, and the like.
  • the refrigerant header joint portion communicates in a liquid-tight state (a state in which the refrigerant does not leak to the outside) between the refrigerant metal passage through which the high-pressure refrigerant circulates and the refrigerant header portion through which the high-pressure refrigerant circulates. It is necessary to let Therefore, the refrigerant header joint portion is required to have high joint strength. Therefore, in this configuration, it is possible to ensure the joining reliability of the refrigerant header joint portion by joining the header joint portion for refrigerant by brazing or fusion welding having excellent joint strength. Thereby, the header joint part for refrigerant is maintained in a liquid-tight state.
  • a heating furnace that can be adjusted to a high temperature atmosphere is not necessary.
  • a high-frequency heating device and an infrared heater as described later are used.
  • a small heating device such as a laser irradiation device or an air heater can be used.
  • a heating furnace is not required when the header joint portion for refrigerant is joined by fusion welding.
  • the joint strength thereof does not need to be as high as that of the coolant header joint portion. Therefore, in this configuration, the joint portions of the outer surfaces that are joined over a wide range in a state of surface contact with each other are joined using a solder material or a resin adhesive. Regardless of whether solder material or resin adhesive is used, it is possible to join in a low temperature atmosphere compared to brazing material, so a heating furnace that can be adjusted to a high temperature atmosphere as required for brazing Is unnecessary.
  • a large-sized heating furnace that can be adjusted to a high temperature atmosphere at the time of manufacture is unnecessary, and a liquid-tight state can be maintained even when parts subjected to high pressure are joined. it can.
  • the manufacturing method of the laminated heat exchanger includes a refrigerant metal pipe through which a refrigerant can circulate, and a stacked arrangement with respect to the metal pipe for the refrigerant, and a fluid that exchanges heat with the refrigerant circulates through the inside. It is for producing a laminated heat exchanger with a possible metal tube for fluid.
  • This manufacturing method includes a header joining process for refrigerant, a header joining process for fluid, a forming process, and a metal pipe joining process.
  • the refrigerant header joining step the refrigerant header part is joined to the end of the refrigerant metal pipe by brazing or fusion welding.
  • a fluid header portion is joined to an end portion of the fluid metal pipe.
  • the refrigerant metal tube and the fluid metal tube are laminated with a solder layer or a resin adhesive layer interposed therebetween to form a temporary assembly.
  • the temporary assembly is heated to join the refrigerant metal tube and the fluid metal tube with the solder layer or the resin adhesive layer.
  • the metal pipe joining step is performed after the refrigerant header joining step. If the refrigerant header joining step is performed after the metal tube joining step, the solder layer or the resin adhesive layer joining the metal tubes in the metal tube joining step is either brazed or fused in the refrigerant header joining step. There is a possibility that problems such as softening, melting, and decomposition occur due to exposure to a high temperature atmosphere, but according to the present method, such problems can be prevented from occurring.
  • a stacked heat exchanger that does not require a large heating furnace that can be adjusted to a high temperature atmosphere at the time of manufacture, and that can maintain a liquid-tight state even when parts subjected to high pressure are joined. be able to.
  • the ultrasonic vibration is applied to the temporary assembly that has been auxiliary heated so that the solder layer is in a semi-molten state.
  • the temporary assembly is auxiliary heated so that the solder layer is at a temperature at which the solder layer is in a semi-molten state (a temperature between the solidus temperature and the liquidus temperature). Since ultrasonic vibration is applied, the oxide removal effect by ultrasonic vibration can be further enhanced. The reason is estimated as follows. That is, when the solder layer is a solid phase (when the temperature of the solder layer is equal to or lower than the solidus temperature), an air layer is easily formed between the metal tube and the solder layer. When such an air layer exists, for example, the vibration of the ultrasonic wave applied to the fluid metal tube may be blocked or attenuated in the air layer, so that it is difficult to be transmitted to the refrigerant metal tube.
  • the solder layer when the solder layer is in a semi-molten state, the air layer is reduced, so that ultrasonic vibration is efficiently transmitted from the fluid metal tube to the refrigerant metal tube through the solder layer.
  • the shape stability of the solder layer itself when it is in a semi-molten state, so there is a shift in the relative positional relationship between the metal tube and the solder layer. It becomes difficult to occur.
  • the ultrasonic vibration is applied to the temporary assembly using an ultrasonic soldering iron, and the temperature of the solder layer is set to a melting point or higher. Is preferred.
  • the ultrasonic vibration is applied to the temporary assembly using an ultrasonic soldering iron and the temperature of the solder layer is set to the melting point or higher.
  • ultrasonic vibration provision and metal tube heating joining can be performed with one instrument (ultrasonic soldering iron).
  • the structure of the apparatus can be simplified.
  • brazing material heating method in the refrigerant header joining step for example, high-frequency heating can be used.
  • the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the spirit of the present invention.
  • the vibration treatment and the heat treatment are performed using an ultrasonic soldering iron has been described as an example, but the present invention is not limited to this.
  • the soldering device 35 may include vibration means and heating means provided separately from each other.
  • the soldering device 35 includes the control unit 25 that controls the auxiliary heating unit 19, the main heating unit 21a, and the vibration unit 21b has been described as an example.
  • the present invention is not limited thereto.
  • the auxiliary heating means 19, the main heating means 21a, and the vibration means 21b may be manually controlled (operated) by an operator.
  • the stacked heat exchanger according to the present invention is configured such that the refrigerant and another fluid (for example, a gas such as air) are exchanged. It may be used for heat exchange or for heat exchange between refrigerants.
  • coolants have the three metal pipes laminated
  • the embodiment has been described by taking as an example a form having two metal tubes 11 laminated in this order, but may be a form in which four or more metal tubes are laminated.
  • each metal tube has a flat shape whose width is larger than the thickness.
  • the present invention is not limited to this.
  • Each metal tube may have, for example, the same size as the thickness and the width, or may have a shape in which the thickness is larger than the width.
  • auxiliary heating means for the temporary assembly 23 other heating means such as laser and high frequency heating can be used in addition to the heater 19 described above.
  • Metal Pipe for Fluid Metal Pipe for Refrigerant 14 Metal Pipe for Refrigerant 15 Solder Layer 17 Laminated Heat Exchanger 19 Heater 21 Ultrasonic Soldering Iron 21a Main Heating Means 21b Vibrating Means 23 Temporary Assembly 25 Control Unit 29 Roller 31 Heat Exchanger 33 Header 33a Fluid Header 33b Refrigerant Header 35 Soldering Device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A stacking type heat exchanger (17) is provided with a metal pipe (13) for a cooling medium, a metal pipe (11) for a fluid, header sections (33b) for the cooling medium, and header sections (33a) for the fluid. A cooling medium can flow through the inside of the metal pipe (13) for a cooling medium. A fluid which can exchange heat with the aforementioned cooling medium can flow through the metal pipe (11) for a fluid. The metal pipe (11) for a fluid is stacked onto the metal pipe (13) for a cooling medium and is joined to the metal pipe (13) for a cooling medium via a solder layer (15) or a resin bonding layer which are positioned between the metal pipe (11) for a fluid and the metal pipe (13) for a cooling medium. The header sections (33b) for the cooling medium is joined to the ends of the metal pipe (13) of a cooling medium by means of brazing or fusion welding. The header sections (33a) for the fluid is joined to the ends of the metal pipe (11) for a fluid.

Description

積層型熱交換器、及び積層型熱交換器の製造方法Laminated heat exchanger and method for producing laminated heat exchanger
 本発明は、積層型熱交換器、及び積層型熱交換器の製造方法に関するものである。 The present invention relates to a stacked heat exchanger and a method for manufacturing the stacked heat exchanger.
 従来から、ヒートポンプ給湯機、空気調和機などにおいて水又は空気と冷媒との間で熱交換させるための熱交換器が知られている。この熱交換器においては、種々の金属部品がろう付けなどによって互いに接合されている。 Conventionally, heat exchangers for heat exchange between water or air and a refrigerant in a heat pump water heater, an air conditioner, and the like are known. In this heat exchanger, various metal parts are joined together by brazing or the like.
 しかし、ろう付けを用いた製造方法では、高温雰囲気に調整可能な大型の加熱炉内で金属部品同士を接合する必要があるので、製造設備にかかる費用、ランニングコストなどが増大するという問題がある。 However, in the manufacturing method using brazing, since it is necessary to join metal parts in a large heating furnace that can be adjusted to a high temperature atmosphere, there is a problem that costs for manufacturing equipment, running costs, and the like increase. .
 特許文献1には、金属部品同士を熱硬化樹脂系接着剤を用いて接合する捩り管形熱交換器の製造方法が開示されている。この製造方法では、ろう付けのような製造設備が不要になるので、コストダウンが可能である。 Patent Document 1 discloses a method for manufacturing a twisted tube heat exchanger in which metal parts are bonded together using a thermosetting resin adhesive. This manufacturing method eliminates the need for manufacturing equipment such as brazing, thereby reducing costs.
特開2006-284009号公報JP 2006-284209 A
 しかしながら、樹脂製接着剤による接合は、剛性、接着強度などの点で必ずしも十分とは言えないので、例えば熱交換器において高い圧力がかかる部位を接合して液密な状態を維持する必要がある用途には必ずしも適していない。 However, since joining with a resin adhesive is not necessarily sufficient in terms of rigidity, adhesive strength, etc., for example, it is necessary to maintain a liquid-tight state by joining parts where high pressure is applied in a heat exchanger, for example. It is not necessarily suitable for the application.
 本発明の目的は、製造時に高温雰囲気に調整可能な大型の加熱炉が不要で、しかも高い圧力がかかる部位を接合しても液密な状態を維持可能な積層型熱交換器、及び積層型熱交換器の製造方法を提供することにある。 An object of the present invention is to provide a stacked heat exchanger that does not require a large heating furnace that can be adjusted to a high temperature atmosphere at the time of manufacture, and that can maintain a liquid-tight state even when joining high-pressure sites, and a stacked mold It is in providing the manufacturing method of a heat exchanger.
 本発明の積層型熱交換器は、冷媒用金属管(13)と、流体用金属管(11)と、冷媒用ヘッダー部(33b)と、流体用ヘッダー部(33a)とを備えている。前記冷媒用金属管(13)は、冷媒が流通可能である。前記流体用金属管(11)は、前記冷媒との間で熱交換する流体が流通可能であり、前記冷媒用金属管(13)に積層配置され、前記冷媒用金属管(13)との間に介在するはんだ層(15)又は樹脂製接着層により前記冷媒用金属管(13)に接合されている。前記冷媒用ヘッダー部(33b)は、前記冷媒用金属管(13)の端部がろう付け又は融接により接合されている。前記流体用ヘッダー部(33a)は、前記流体用金属管(11)の端部が接合されている。 The laminated heat exchanger of the present invention includes a refrigerant metal tube (13), a fluid metal tube (11), a refrigerant header portion (33b), and a fluid header portion (33a). A refrigerant can flow through the metal pipe for refrigerant (13). The fluid metal pipe (11) is capable of circulating a fluid that exchanges heat with the refrigerant, and is stacked on the refrigerant metal pipe (13) to be connected to the refrigerant metal pipe (13). It is joined to the metal pipe for refrigerant (13) by a solder layer (15) or a resin adhesive layer interposed therebetween. The refrigerant header (33b) is joined to the end of the refrigerant metal pipe (13) by brazing or fusion welding. The fluid header (33a) is joined to the end of the fluid metal pipe (11).
(A)は、本発明の一実施形態にかかる積層型熱交換器を示す斜視図であり、(B)はその平面図である。(A) is a perspective view which shows the laminated heat exchanger concerning one Embodiment of this invention, (B) is the top view. 図1の積層型熱交換器の正面図である。It is a front view of the laminated heat exchanger of FIG. (A)は、図1の積層型熱交換器における冷媒用ヘッダー部を示す断面図であり、(B)は、流体用ヘッダー部を示す断面図である。(A) is sectional drawing which shows the header part for refrigerant | coolants in the laminated heat exchanger of FIG. 1, (B) is sectional drawing which shows the header part for fluids. 本発明の一実施形態にかかる積層型熱交換器の製造方法に用いるはんだ付け装置の構成を示す概略図である。It is the schematic which shows the structure of the soldering apparatus used for the manufacturing method of the laminated heat exchanger concerning one Embodiment of this invention. (A)は、前記製造方法において、仮組体を成形する成形工程を示す断面図であり、(B)は、前記成形工程により得られる仮組体を示す断面図である。(A) is sectional drawing which shows the shaping | molding process which shape | molds a temporary assembly in the said manufacturing method, (B) is sectional drawing which shows the temporary assembly obtained by the said formation process. 前記製造方法における補助加熱工程及び接合工程を示す概略図である。It is the schematic which shows the auxiliary heating process and joining process in the said manufacturing method.
 以下、本発明の一実施形態にかかる積層型熱交換器及びその製造方法ついて図面を参照しながら詳細に説明する。 Hereinafter, a stacked heat exchanger according to an embodiment of the present invention and a manufacturing method thereof will be described in detail with reference to the drawings.
 <積層型熱交換器>
 図1(A),(B)、図2及び図3に示すように、本実施形態の積層型熱交換器17は、水などの流体と冷媒との間で熱交換するための熱交換部31と、この熱交換部31の両端に設けられたヘッダー部33,33とを備えている。この積層型熱交換器17は、例えばヒートポンプ給湯機の熱交換器として使用できる。この場合、図略の給湯機における冷媒回路を循環する冷媒と水との間で熱交換されることにより水の温度が調節される。
<Laminated heat exchanger>
As shown in FIGS. 1A, 1B, 2 and 3, the stacked heat exchanger 17 of the present embodiment is a heat exchange unit for exchanging heat between a fluid such as water and a refrigerant. 31 and header portions 33, 33 provided at both ends of the heat exchanging portion 31. This laminated heat exchanger 17 can be used as a heat exchanger of a heat pump water heater, for example. In this case, the temperature of water is adjusted by heat exchange between the refrigerant circulating in the refrigerant circuit in the hot water heater (not shown) and the water.
 積層型熱交換器17は、流体用金属管11と、この流体用金属管11の厚み方向の一方側の位置で流体用金属管11に積層された冷媒用金属管13と、流体用金属管11の厚み方向の他方側の位置で流体用金属管11に積層された冷媒用金属管14とを含む。 The laminated heat exchanger 17 includes a fluid metal tube 11, a refrigerant metal tube 13 stacked on the fluid metal tube 11 at one position in the thickness direction of the fluid metal tube 11, and a fluid metal tube. 11 and a metal pipe for refrigerant 14 laminated on the metal pipe for fluid 11 at a position on the other side in the thickness direction.
 流体用金属管11は、図5(A)に示すように、厚みよりも幅の方が大きい扁平な形状を有している。この流体用金属管11の内部には、長手方向に延びる流体流路11aが形成されている。また、流体用金属管11は、図1(A),(B)、図2及び図3に示すように、長尺状の形状を有している。 As shown in FIG. 5 (A), the fluid metal tube 11 has a flat shape with a width larger than the thickness. A fluid channel 11 a extending in the longitudinal direction is formed inside the metal pipe 11 for fluid. The fluid metal tube 11 has a long shape as shown in FIGS. 1A, 1B, 2 and 3.
 冷媒用金属管13,14は、厚みよりも幅の方が大きい扁平な形状をそれぞれ有している。また、冷媒用金属管13,14は、長尺状の形状をそれぞれ有している。冷媒用金属管13は、内部に長手方向に延びる冷媒流路13aが複数形成された多穴管である。複数の冷媒流路13aは互いに独立しており、幅方向に一列に並んで配列されている。同様に、冷媒用金属管14は、内部に長手方向に延びる冷媒流路14aが複数形成された多穴管である。複数の冷媒流路14aは互いに独立しており、幅方向に一列に並んで配列されている。 The refrigerant metal tubes 13 and 14 each have a flat shape whose width is larger than thickness. Moreover, the metal pipes 13 and 14 for refrigerant | coolants have an elongate shape, respectively. The refrigerant metal tube 13 is a multi-hole tube in which a plurality of refrigerant channels 13a extending in the longitudinal direction are formed. The plurality of refrigerant flow paths 13a are independent from each other and are arranged in a line in the width direction. Similarly, the refrigerant metal tube 14 is a multi-hole tube in which a plurality of refrigerant channels 14a extending in the longitudinal direction are formed. The plurality of refrigerant flow paths 14a are independent from each other and are arranged in a line in the width direction.
 図5(A)に示すように、流体用金属管11は、厚み方向の一方側の面である外表面11bと、他方側の面である外表面11cとを有している。冷媒用金属管13は、流体用金属管11の一方側の外表面11bに対向する外表面13bを有している。この外表面13bは、はんだ層15aにより流体用金属管11の外表面11bに接合されている。冷媒用金属管14は、流体用金属管11の他方側の外表面11cに対向する外表面14bを有している。この外表面14bは、はんだ層15bにより流体用金属管11の外表面11cに接合されている。 As shown in FIG. 5 (A), the fluid metal tube 11 has an outer surface 11b which is one surface in the thickness direction and an outer surface 11c which is the other surface. The refrigerant metal tube 13 has an outer surface 13 b that faces the outer surface 11 b on one side of the fluid metal tube 11. The outer surface 13b is joined to the outer surface 11b of the fluid metal tube 11 by a solder layer 15a. The refrigerant metal tube 14 has an outer surface 14 b that faces the outer surface 11 c on the other side of the fluid metal tube 11. The outer surface 14b is joined to the outer surface 11c of the fluid metal tube 11 by a solder layer 15b.
 なお、外表面13b,14bは、はんだ層15a,15bによる接合に代えて、外表面11b,11cに対してエポキシ樹脂系接着剤などの樹脂製接着剤により接合されてもよい。この場合、接着剤の温度を、その硬化温度(例えば150℃程度)以上に所定時間維持することにより、金属管同士を接合できる。 The outer surfaces 13b and 14b may be joined to the outer surfaces 11b and 11c by a resin adhesive such as an epoxy resin adhesive instead of joining by the solder layers 15a and 15b. In this case, the metal tubes can be joined by maintaining the temperature of the adhesive at a temperature equal to or higher than the curing temperature (for example, about 150 ° C.) for a predetermined time.
 ヘッダー部33は、流体用金属管11の両端にそれぞれ接合された流体用ヘッダー部33aと、冷媒用金属管13の両端にそれぞれ接合された冷媒用ヘッダー部33bとを含む。 The header portion 33 includes a fluid header portion 33a joined to both ends of the fluid metal tube 11 and a refrigerant header portion 33b joined to both ends of the coolant metal tube 13, respectively.
 図3(A)に示すように、冷媒用ヘッダー部33bは、ヘッダー本体41と、冷媒用金属管13の端部及び冷媒用金属管14の端部とが接合された構造を有している。ヘッダー本体41は、直方体状の外形を有している。ヘッダー本体41の内部には、冷媒が流通可能な冷媒流路41aが形成されている。この冷媒流路41aは、円状の断面形状を有している。 As shown in FIG. 3A, the refrigerant header portion 33b has a structure in which the header body 41, the end of the refrigerant metal tube 13 and the end of the refrigerant metal tube 14 are joined. . The header body 41 has a rectangular parallelepiped outer shape. Inside the header body 41, a coolant channel 41a through which a coolant can flow is formed. The refrigerant flow path 41a has a circular cross-sectional shape.
 ヘッダー本体41の側壁には、冷媒用金属管13の端部が挿入される挿入口41bと、冷媒用金属管14の端部が挿入される挿入口41cとが設けられている。冷媒用金属管13の端部は、挿入口41bの内面と冷媒用金属管13の外面との間に配置された適量のろう材43によりヘッダー本体41に接合されている。同様に、冷媒用金属管14の端部は、挿入口41cの内面と冷媒用金属管14の外面との間に配置された適量のろう材43によりヘッダー本体41に接合されている。冷媒用金属管13の冷媒流路13a及び冷媒用金属管14の冷媒流路14aは、ヘッダー本体41の冷媒流路41aとそれぞれ連通している。なお、冷媒用金属管13,14の端部は、ろう材43による接合に代えて、ヘッダー本体41に対して融接により接合されてもよい。 The side wall of the header body 41 is provided with an insertion port 41b into which the end of the refrigerant metal tube 13 is inserted, and an insertion port 41c into which the end of the refrigerant metal tube 14 is inserted. The end of the refrigerant metal tube 13 is joined to the header body 41 by an appropriate amount of brazing material 43 disposed between the inner surface of the insertion port 41 b and the outer surface of the refrigerant metal tube 13. Similarly, the end portion of the refrigerant metal tube 14 is joined to the header body 41 by an appropriate amount of brazing material 43 disposed between the inner surface of the insertion port 41 c and the outer surface of the refrigerant metal tube 14. The refrigerant flow path 13a of the refrigerant metal tube 13 and the refrigerant flow path 14a of the refrigerant metal tube 14 communicate with the refrigerant flow path 41a of the header body 41, respectively. The end portions of the refrigerant metal tubes 13 and 14 may be joined to the header body 41 by fusion welding instead of joining by the brazing material 43.
 流体用ヘッダー部33aは、ヘッダー本体45と流体用金属管11の端部とが接合された構造を有している。ヘッダー本体45は、円筒形状を有している。ヘッダー本体45の内部には、流体が流通可能な流体流路45aが形成されている。ヘッダー本体45は、この上下に位置する冷媒用金属管13及び冷媒用金属管14の間に配置されている。 The fluid header 33a has a structure in which the header main body 45 and the end of the fluid metal tube 11 are joined. The header main body 45 has a cylindrical shape. Inside the header body 45, a fluid channel 45a through which fluid can flow is formed. The header body 45 is disposed between the refrigerant metal tube 13 and the refrigerant metal tube 14 positioned above and below.
 ヘッダー本体45の側壁には、流体用金属管11の端部が挿入される挿入口45bが設けられている。流体用金属管11の端部は、挿入口45bの内面と流体用金属管11の外面との間に配置された適量のろう材47によりヘッダー本体45に接合されている。流体用金属管11の流体流路11aは、ヘッダー本体45の流体流路45aと連通している。なお、流体用金属管11の端部と流体用ヘッダー部33aとの接合部分(流体用ヘッダー接合部)は、冷媒用金属管13及び冷媒用ヘッダー部33bのように高圧の冷媒が流通するのではなく、比較的低圧の水が流通する。このため、当該接合部分には、冷媒用ヘッダー接合部のように高い接合強度は要求されない。したがって、流体用金属管11の端部は、ろう材47による接合に代えて、ヘッダー本体45に対してはんだ付け、融接、樹脂製接着剤による接合などの他の接合方法により接合されてもよい。 An insertion port 45 b into which the end of the fluid metal tube 11 is inserted is provided on the side wall of the header body 45. The end of the fluid metal tube 11 is joined to the header body 45 by an appropriate amount of brazing material 47 disposed between the inner surface of the insertion port 45 b and the outer surface of the fluid metal tube 11. The fluid flow path 11 a of the fluid metal pipe 11 communicates with the fluid flow path 45 a of the header body 45. It should be noted that a high-pressure refrigerant flows through the joint portion (fluid header joint portion) between the end of the fluid metal tube 11 and the fluid header portion 33a, like the refrigerant metal tube 13 and the refrigerant header portion 33b. Rather, relatively low pressure water circulates. For this reason, the joint portion is not required to have a high joint strength unlike the refrigerant header joint portion. Therefore, the end portion of the metal pipe for fluid 11 may be joined to the header body 45 by other joining methods such as soldering, fusion welding, joining with a resin adhesive, instead of joining with the brazing material 47. Good.
 図1(A),(B)に示すように、各冷媒用ヘッダー部33bは、冷媒流路41a内の冷媒が出入り可能な配管41dを有し、各流体用ヘッダー部33aは、流体流路45a内の流体が出入り可能な配管45cを有している。 As shown in FIGS. 1A and 1B, each refrigerant header portion 33b has a pipe 41d through which the refrigerant in the refrigerant flow path 41a can enter and exit, and each fluid header section 33a has a fluid flow path. A pipe 45c through which the fluid in 45a can enter and exit is provided.
 流体用金属管11の外表面11b,11cと冷媒用金属管13,14の外表面13b,14bとのはんだ付けには、例えば図4に示すはんだ付け装置35を用いることができる。このはんだ付け装置35は、本加熱手段21a及び振動手段21bとしての超音波はんだこて21と、補助加熱手段としてのヒーター19と、制御手段としての制御部25とを備えている。 For example, a soldering device 35 shown in FIG. 4 can be used for soldering the outer surfaces 11b and 11c of the fluid metal tube 11 and the outer surfaces 13b and 14b of the refrigerant metal tubes 13 and 14. The soldering device 35 includes an ultrasonic soldering iron 21 as the main heating unit 21a and the vibrating unit 21b, a heater 19 as an auxiliary heating unit, and a control unit 25 as a control unit.
 はんだ付け装置35のヒーター19は、被加熱物(後述の仮組体23)が載置される載置面19aを有している。載置面19aは、仮組体23の下面のほぼ全体が面接触可能な大きさを有している。ヒーター19は、仮組体23を補助的に加熱する役割を担う。 The heater 19 of the soldering device 35 has a placement surface 19a on which an object to be heated (a temporary assembly 23 described later) is placed. The mounting surface 19a has a size that allows the entire lower surface of the temporary assembly 23 to be in surface contact. The heater 19 plays a role of heating the temporary assembly 23 in an auxiliary manner.
 超音波はんだこて21は、仮組体23を加熱して後述するはんだ層15を融点以上に加熱する本加熱手段21aとしての機能と、仮組体23に付与される超音波の振動を発生する振動手段21b(又は仮組体23に振動を発生させるための振動手段21b)としての機能とを備えている。なお、超音波とは、聴感覚を生じないほど周波数(振動数)が高い音波をいう。 The ultrasonic soldering iron 21 functions as a main heating means 21a for heating the temporary assembly 23 to heat a solder layer 15 described later to a melting point or higher, and generates vibration of ultrasonic waves applied to the temporary assembly 23. And a function as a vibrating means 21b (or a vibrating means 21b for causing the temporary assembly 23 to generate vibration). In addition, an ultrasonic wave means a sound wave with a high frequency (frequency) so that an auditory sense does not occur.
 この超音波はんだこて21は、超音波の振動を発生する図略の振動子と、仮組体23を加熱する図略のヒーターとを内蔵している。振動子により発生する超音波の振動、及びヒーターにより生じる熱は、超音波はんだこて21の先端部22にそれぞれ伝わる。本実施形態における超音波はんだこて21の先端部22は、仮組体23の表面に面接触する接触面を有している。この接触面は、厚みよりも幅の方が大きな扁平な形状(マイナスドライバーの先端のような形状)を有している。 This ultrasonic soldering iron 21 incorporates an unillustrated vibrator that generates ultrasonic vibrations and an unillustrated heater that heats the temporary assembly 23. The ultrasonic vibration generated by the vibrator and the heat generated by the heater are transmitted to the tip 22 of the ultrasonic soldering iron 21, respectively. The tip 22 of the ultrasonic soldering iron 21 in the present embodiment has a contact surface that comes into surface contact with the surface of the temporary assembly 23. This contact surface has a flat shape (a shape like the tip of a minus driver) whose width is larger than the thickness.
 制御部25は、ヒーター19及び超音波はんだこて21を制御する。この制御部25は、中央演算処理装置、種々のデータを記憶するメモリーなどを含む。具体的には、制御部25は、ヒーター19の載置面19aの温度、超音波はんだこて21の先端部22の温度、超音波の振動の周波数などを制御する。 The control unit 25 controls the heater 19 and the ultrasonic soldering iron 21. The control unit 25 includes a central processing unit and a memory for storing various data. Specifically, the control unit 25 controls the temperature of the mounting surface 19a of the heater 19, the temperature of the tip 22 of the ultrasonic soldering iron 21, the frequency of ultrasonic vibration, and the like.
 また、制御部25は、超音波はんだこて21及び/又はヒーター19を上下方向に移動させる位置制御が可能である。制御部25は、仮組体23を加熱し仮組体23に超音波振動を付与する際には、超音波はんだこて21の先端部22が仮組体23の表面に接触した状態となるように制御する。一方、制御部25は、仮組体23のはんだ付け装置35への着脱時には、仮組体23を載置面19aと先端部22との間に挿入可能となるように、超音波はんだこて21の先端部22の位置を制御する。 Further, the control unit 25 can perform position control for moving the ultrasonic soldering iron 21 and / or the heater 19 in the vertical direction. When the control unit 25 heats the temporary assembly 23 and applies ultrasonic vibration to the temporary assembly 23, the tip 22 of the ultrasonic soldering iron 21 is in contact with the surface of the temporary assembly 23. To control. On the other hand, the control unit 25 uses an ultrasonic soldering iron so that the temporary assembly 23 can be inserted between the mounting surface 19a and the tip 22 when the temporary assembly 23 is attached to or detached from the soldering device 35. The position of the tip portion 22 of 21 is controlled.
 また、ヘッダー本体41と、冷媒用金属管13の端部及び冷媒用金属管14の端部とのろう付けには、例えば図3に示す小型の加熱装置81を用いることができる。この加熱装置81としては、例えば高周波加熱装置、赤外線ヒータ、レーザ照射装置、エアヒータなどの加熱手段が挙げられる。 Further, for example, a small heating device 81 shown in FIG. 3 can be used for brazing the header body 41 with the end of the refrigerant metal tube 13 and the end of the refrigerant metal tube 14. Examples of the heating device 81 include heating means such as a high-frequency heating device, an infrared heater, a laser irradiation device, and an air heater.
 また、ヘッダー本体45と流体用金属管11の端部の接合には、例えば図3に示す小型の加熱装置83を用いることができる。この加熱装置83としては、上記と同様に、例えば高周波加熱装置、赤外線ヒータ、レーザ照射、エアヒータなどの加熱手段が挙げられる。 Further, for example, a small heating device 83 shown in FIG. 3 can be used for joining the header main body 45 and the end of the fluid metal tube 11. Examples of the heating device 83 include heating means such as a high-frequency heating device, an infrared heater, laser irradiation, and an air heater, as described above.
 流体用金属管11、及び冷媒用金属管13,14の材料としては、熱伝導性、耐食性、剛性、加工性などを備えた金属などが用いられ、具体的にはアルミニウム、銅、ステンレス鋼などが例示できる。はんだ層15の材料としては、金属管の材料に適したものを適宜選択すればよい。 As the material for the fluid metal pipe 11 and the refrigerant metal pipes 13 and 14, a metal having thermal conductivity, corrosion resistance, rigidity, workability, and the like is used. Specifically, aluminum, copper, stainless steel, and the like are used. Can be illustrated. As a material for the solder layer 15, a material suitable for the material of the metal tube may be appropriately selected.
 積層型熱交換器17は、図1に示すような直線状の形態のままでも使用できるが、例えば図略の渦巻き状などに曲げ加工して用いてもよい。 The laminated heat exchanger 17 can be used in the form of a straight line as shown in FIG. 1, but may be used after being bent into a spiral shape (not shown), for example.
 <製造方法>
 次に、積層型熱交換器17の製造方法について説明する。
<Manufacturing method>
Next, a method for manufacturing the laminated heat exchanger 17 will be described.
 まず、流体用金属管11、及び冷媒用金属管13,14を作製する。これらの金属管11,13,14は、例えば図5(A)に示すような各金属管の断面形状を有する押出口を備えた金型をそれぞれ用いて、金属材料を押し出し成形することにより得られる。また、流体用ヘッダー部33a、及び冷媒用ヘッダー部33bを公知の成形方法を用いて作製する。 First, a fluid metal tube 11 and refrigerant metal tubes 13 and 14 are prepared. These metal tubes 11, 13, and 14 are obtained by extruding a metal material using, for example, dies each having an extrusion port having a cross-sectional shape of each metal tube as shown in FIG. It is done. Moreover, the header part 33a for fluids and the header part 33b for refrigerant | coolants are produced using a well-known shaping | molding method.
 次に、冷媒用金属管13の端部及び冷媒用金属管14の端部に冷媒用ヘッダー部33bをろう付けにより接合する(冷媒用ヘッダー接合工程)。 Next, the refrigerant header 33b is joined to the end of the refrigerant metal pipe 13 and the end of the refrigerant metal pipe 14 by brazing (refrigerant header joining step).
 具体的には、冷媒用金属管13,14の各端部の外周面に帯状のろう材43を巻き付けた状態で、冷媒用金属管13,14の各端部をヘッダー本体41の挿入口41b,41cにそれぞれ挿入して図3(A)のように配置する。ついで、加熱装置81を用いてろう材43及びその周辺を加熱してろう材43の温度をその融点以上に上昇させることにより冷媒用金属管13,14の各端部を冷媒用ヘッダー部33bにろう付けする。 Specifically, in the state where the belt-shaped brazing material 43 is wound around the outer peripheral surface of each end of the refrigerant metal tubes 13, 14, each end of the refrigerant metal tubes 13, 14 is inserted into the insertion port 41 b of the header body 41. , 41c, and arranged as shown in FIG. Next, the brazing filler metal 43 and its surroundings are heated using the heating device 81 to raise the temperature of the brazing filler metal 43 to the melting point or higher, so that the end portions of the refrigerant metal tubes 13 and 14 become the refrigerant header portion 33b. Braze.
 加熱装置81として例えば高周波加熱装置を用いる場合には、冷媒用金属管13,14の端部及び/又はヘッダー本体41の周囲に誘導コイルを巻いて高周波電流を流すことによりろう材43及びその周辺を加熱することができる。 When a high-frequency heating device is used as the heating device 81, for example, the brazing material 43 and its surroundings are formed by winding an induction coil around the ends of the refrigerant metal tubes 13 and 14 and / or the header body 41 to flow a high-frequency current. Can be heated.
 加熱装置81として例えばレーザ照射装置を用いることもできる。レーザ照射装置のレーザとしては、例えばランプ励起YAGレーザ、ダイオード励起YAGレーザ、COレーザなどを用いることができる。YAGレーザの出力は、例えば20W~1.5kW程度の範囲に調節可能であり、COレーザの出力は、例えば250W程度に調節可能であり、これらは、金属管及びはんだ材の材質、厚みなどに応じて適宜設定すればよい。 For example, a laser irradiation device can be used as the heating device 81. As the laser of the laser irradiation apparatus, for example, a lamp excitation YAG laser, a diode excitation YAG laser, a CO 2 laser, or the like can be used. The output of the YAG laser can be adjusted to, for example, a range of about 20 W to 1.5 kW, and the output of the CO 2 laser can be adjusted to, for example, about 250 W. These include the material and thickness of the metal tube and solder material, etc. What is necessary is just to set suitably according to.
 また、ろう付けに代えて、融接により接合する場合には、ティグ溶接、ミグ溶接などのアーク溶接、スポット溶接、シーム溶接などの抵抗溶接などを用いることができる。 Also, instead of brazing, when joining by fusion welding, arc welding such as TIG welding and MIG welding, resistance welding such as spot welding and seam welding, and the like can be used.
 次に、流体用金属管11の端部に流体用ヘッダー部33aをろう付けなどにより接合する(流体用ヘッダー接合工程)。ろう付けにより接合する場合には、冷媒用ヘッダー接合工程の場合と同様にすればよい。また、はんだ材、樹脂製接着剤などを用いて接合する場合にも上記と同様にしてはんだ材又は樹脂製接着剤を配置し加熱装置81により加熱して接合する。 Next, the fluid header 33a is joined to the end of the fluid metal tube 11 by brazing or the like (fluid header joining step). When joining by brazing, it may be the same as in the case of the header joining process for refrigerant. Also, in the case of bonding using a solder material, a resin adhesive, or the like, the solder material or the resin adhesive is disposed in the same manner as described above, and is heated and bonded by the heating device 81.
 次に、図5(A)に示すように冷媒用金属管13、はんだ層15a、流体用金属管11、はんだ層15b、及び冷媒用金属管14を、この順に厚み方向に積層して仮組体23を成形する(成形工程:図5(B))。流体用金属管11及び冷媒用金属管13,14は、それぞれの長手方向を同じ向きに揃えて積層配置される。 Next, as shown in FIG. 5A, the refrigerant metal tube 13, the solder layer 15a, the fluid metal tube 11, the solder layer 15b, and the refrigerant metal tube 14 are laminated in this order in the thickness direction and temporarily assembled. The body 23 is molded (molding process: FIG. 5B). The fluid metal pipe 11 and the refrigerant metal pipes 13 and 14 are stacked and arranged with their longitudinal directions aligned in the same direction.
 はんだ層15a,15bとしては、例えば、予めシート状(箔状)に成形されたものを用いることができる。また、例えばクリーム状のはんだ材を用いて、これを流体用金属管11の外表面11b,11c及び/又は冷媒用金属管13,14の外表面13b,14bに塗布してはんだ層15a,15bを形成してもよい。また、流体用金属管11の外表面11b,11cに溶射によってはんだ材を吹き付けて、外表面11b,11cにはんだ層15a,15bを形成してもよい。 As the solder layers 15a and 15b, for example, those previously formed into a sheet shape (foil shape) can be used. Further, for example, a cream-like solder material is used and applied to the outer surfaces 11b and 11c of the fluid metal tube 11 and / or the outer surfaces 13b and 14b of the refrigerant metal tubes 13 and 14, and the solder layers 15a and 15b. May be formed. Alternatively, solder layers 15a and 15b may be formed on the outer surfaces 11b and 11c by spraying a solder material onto the outer surfaces 11b and 11c of the metal pipe 11 for fluid.
 次に、仮組体23を加熱して冷媒用金属管13と流体用金属管11をはんだ層15により接合する(金属管接合工程)。具体的には、まず、図6に示すように、はんだ付け装置35のヒーター19の載置面19aに仮組体23を載置する。このとき、仮組体23における冷媒用金属管14の下面のほぼ全体が載置面19aと面接触している。 Next, the temporary assembly 23 is heated to join the refrigerant metal tube 13 and the fluid metal tube 11 with the solder layer 15 (metal tube joining step). Specifically, first, as shown in FIG. 6, the temporary assembly 23 is placed on the placement surface 19 a of the heater 19 of the soldering device 35. At this time, almost the entire lower surface of the refrigerant metal tube 14 in the temporary assembly 23 is in surface contact with the mounting surface 19a.
 ついで、制御部25は、ヒーター19により仮組体23を補助加熱するように制御する。制御部25は、図略の温度センサにより計測される仮組体23の温度に基づいてヒーター19を制御する。この工程では、はんだ層15(15a,15b)が半溶融状態となるように仮組体23が加熱される。はんだ層15が半溶融状態となる温度とは、はんだ層15を構成するはんだ材の固相線温度と液相線温度との間の温度のことをいう。具体例を挙げると、例えば、はんだ材の融点が245℃であり、はんだ材の固相線温度と液相線温度との間に200℃が含まれる場合に、ヒーター19を例えば200℃程度に温度調節して仮組体23を補助加熱してはんだ層15を半溶融状態とすることができる。 Next, the control unit 25 performs control so that the temporary assembly 23 is auxiliary heated by the heater 19. The control unit 25 controls the heater 19 based on the temperature of the temporary assembly 23 measured by a temperature sensor (not shown). In this step, the temporary assembly 23 is heated so that the solder layer 15 (15a, 15b) is in a semi-molten state. The temperature at which the solder layer 15 becomes a semi-molten state refers to a temperature between the solidus temperature and the liquidus temperature of the solder material constituting the solder layer 15. For example, when the melting point of the solder material is 245 ° C. and 200 ° C. is included between the solidus temperature and the liquidus temperature of the solder material, the heater 19 is set to about 200 ° C., for example. The solder layer 15 can be brought into a semi-molten state by auxiliary heating of the temporary assembly 23 by adjusting the temperature.
 ついで、制御部25は、はんだ層15が半溶融状態になったことを温度センサにより検知した後、超音波はんだこて21により仮組体23に超音波の振動を付与するとともに、はんだ層15の温度が融点以上になるように仮組体23を本加熱する。この本加熱によりはんだ層15が溶融して流体用金属管11及び冷媒用金属管13,14が接合される。具体例を挙げると、はんだ材の融点が例えば245℃である場合には、超音波はんだこて21の先端部22は、例えば350℃~400℃程度の温度に調節される。これにより、仮組体23のほぼ全体が約260℃程度に加熱される。なお、この加熱手段としては、超音波はんだこて21とともに、又は超音波はんだこて21に代えて、例えば高周波加熱装置、レーザ照射装置、赤外線ヒータ、エアヒータ、トーチなどを用いてもよい。 Next, after detecting that the solder layer 15 is in a semi-molten state by the temperature sensor, the control unit 25 applies ultrasonic vibrations to the temporary assembly 23 by the ultrasonic soldering iron 21 and also solder layer 15. The temporary assembly 23 is subjected to main heating so that the temperature of is higher than the melting point. By this main heating, the solder layer 15 is melted and the metal pipe for fluid 11 and the metal pipes for refrigerant 13 and 14 are joined. As a specific example, when the melting point of the solder material is 245 ° C., for example, the tip 22 of the ultrasonic soldering iron 21 is adjusted to a temperature of about 350 ° C. to 400 ° C., for example. Thereby, almost the entire temporary assembly 23 is heated to about 260 ° C. As the heating means, for example, a high-frequency heating device, a laser irradiation device, an infrared heater, an air heater, a torch or the like may be used together with or instead of the ultrasonic soldering iron 21.
 この金属管接合工程において、制御部25は、超音波はんだこて21を制御する。この制御部25により超音波はんだこて21は、超音波はんだこて21の先端部22が仮組体23の上面(冷媒用金属管13の上面)に接触しながら、仮組体23の幅方向及び長手方向に移動する。これによって、仮組体23のほぼ全体に満遍なく超音波振動が付与され、かつ、加熱される。なお、仮組体23の本加熱は、振動付与と同時ではなく、仮組体23への振動付与が終了した後に行ってもよい。また、超音波はんだこて21の先端部22は、扁平形状に限定されず、例えば円柱状、角柱状などの他の形状であってもよい。 In this metal tube joining process, the control unit 25 controls the ultrasonic soldering iron 21. The ultrasonic soldering iron 21 is controlled by the control unit 25 so that the tip 22 of the ultrasonic soldering iron 21 is in contact with the upper surface of the temporary assembly 23 (the upper surface of the refrigerant metal tube 13). Move in the direction and longitudinal direction. As a result, ultrasonic vibration is uniformly applied to almost the entire temporary assembly 23 and heated. The main heating of the temporary assembly 23 may be performed not after the application of vibration but after the application of vibration to the temporary assembly 23 is completed. Moreover, the front-end | tip part 22 of the ultrasonic soldering iron 21 is not limited to flat shape, For example, other shapes, such as column shape and prismatic shape, may be sufficient.
 ヒーター19の載置面19aの温度、超音波はんだこて21の先端部22の温度、超音波の振動の周波数、振幅、振動付与時間、加熱時間などの接合時の条件は、制御部25により制御される。これらの条件は、各金属管の材質や厚み、はんだ層15の材質などに応じて適宜設定される。 Conditions for joining such as the temperature of the mounting surface 19 a of the heater 19, the temperature of the tip 22 of the ultrasonic soldering iron 21, the frequency, amplitude, vibration applying time, and heating time of the ultrasonic wave are controlled by the control unit 25. Be controlled. These conditions are appropriately set according to the material and thickness of each metal tube and the material of the solder layer 15.
 <実施形態の概要>
 上記実施形態をまとめると、以下の通りである。
<Outline of Embodiment>
The above embodiment is summarized as follows.
 (1) 前記積層型熱交換器は、冷媒用金属管と、流体用金属管と、冷媒用ヘッダー部と、流体用ヘッダー部とを備えている。前記冷媒用金属管は、その内部を冷媒が流通可能である。前記流体用金属管は、前記冷媒との間で熱交換する流体が内部を流通可能であり、前記冷媒用金属管に対して積層配置され、前記冷媒用金属管との間に介在するはんだ層又は樹脂製接着層により前記冷媒用金属管に接合されている。前記冷媒用ヘッダー部は、前記冷媒用金属管の端部がろう付け又は融接により接合されている。前記流体用ヘッダー部は、前記流体用金属管の端部が接合されている。 (1) The stacked heat exchanger includes a metal pipe for refrigerant, a metal pipe for fluid, a header section for refrigerant, and a header section for fluid. The refrigerant metal tube is capable of circulating a refrigerant therein. The fluid metal tube has a solder layer in which a fluid exchanging heat with the refrigerant can flow, and is stacked on the refrigerant metal tube and interposed between the refrigerant metal tube and the fluid metal tube. Alternatively, it is joined to the refrigerant metal tube by a resin adhesive layer. The refrigerant header is joined to the end of the metal pipe for refrigerant by brazing or fusion welding. The fluid header portion is joined to the end of the fluid metal tube.
 この構成では、前記冷媒用金属管の端部と前記冷媒用ヘッダー部との接合部分(冷媒用ヘッダー接合部)がろう付け又は融接により接合される一方で、積層配置された前記冷媒用金属管と前記流体用金属管との接合部分、すなわち金属管の外表面同士の接合部分がはんだ材又は樹脂製接着剤により接合されている。 In this configuration, the joint portion (refrigerant header joint portion) between the end of the coolant metal tube and the coolant header portion is joined by brazing or fusion welding, while the refrigerant metal arranged in a stacked manner. A joint portion between the pipe and the metal pipe for fluid, that is, a joint portion between the outer surfaces of the metal pipe is joined by a solder material or a resin adhesive.
 ここで、ろう付けとは450℃以上の融点を持つろうを用いて行う接合方法をいい、はんだ付けとは450℃未満の低い融点を持つはんだを用いて行う接合方法をいう。また、融接には、ティグ溶接、ミグ溶接などのアーク溶接、スポット溶接、シーム溶接などの抵抗溶接などを含む。 Here, brazing refers to a joining method performed using a solder having a melting point of 450 ° C. or higher, and soldering refers to a joining method performed using solder having a low melting point of less than 450 ° C. The fusion welding includes arc welding such as TIG welding and MIG welding, resistance welding such as spot welding and seam welding, and the like.
 前記冷媒用ヘッダー接合部は、高圧の冷媒が流通する冷媒用金属管と高圧の冷媒が流通する冷媒用ヘッダー部の冷媒流通経路同士を液密な状態(冷媒が外部に漏れない状態)で連通させる必要がある。したがって、前記冷媒用ヘッダー接合部は、高い接合強度が要求される。そこで、本構成では、前記冷媒用ヘッダー接合部を接合強度に優れたろう付け又は融接により接合することにより前記冷媒用ヘッダー接合部の接合信頼性を確保することができる。これにより、前記冷媒用ヘッダー接合部が液密な状態に維持される。このように冷媒用ヘッダー接合部という比較的狭い範囲のろう付け(局所的なろう付け)においては、高温雰囲気に調整可能な加熱炉は不要であり、例えば後述するような高周波加熱装置、赤外線ヒータ、レーザ照射装置、エアヒータなどの小型の加熱装置を用いることができる。また、冷媒用ヘッダー接合部を融接により接合する場合にも加熱炉は不要である。 The refrigerant header joint portion communicates in a liquid-tight state (a state in which the refrigerant does not leak to the outside) between the refrigerant metal passage through which the high-pressure refrigerant circulates and the refrigerant header portion through which the high-pressure refrigerant circulates. It is necessary to let Therefore, the refrigerant header joint portion is required to have high joint strength. Therefore, in this configuration, it is possible to ensure the joining reliability of the refrigerant header joint portion by joining the header joint portion for refrigerant by brazing or fusion welding having excellent joint strength. Thereby, the header joint part for refrigerant is maintained in a liquid-tight state. In this way, in a relatively narrow range brazing (local brazing) of the header joint portion for refrigerant, a heating furnace that can be adjusted to a high temperature atmosphere is not necessary. For example, a high-frequency heating device and an infrared heater as described later are used. A small heating device such as a laser irradiation device or an air heater can be used. Also, a heating furnace is not required when the header joint portion for refrigerant is joined by fusion welding.
 一方で、前記冷媒用金属管と前記流体用金属管の外表面同士の接合部分には冷媒が流通しないので、これらの接合強度は、冷媒用ヘッダー接合部ほどの高いレベルを必要としない。そこで、本構成では、互いに面接触した状態で広い範囲にわたって接合される前記外表面同士の接合部分をはんだ材又は樹脂製接着剤を用いて接合している。はんだ材及び樹脂製接着剤のいずれを用いる場合であっても、ろう材と比べて低温雰囲気下で接合が可能であるので、ろう付けで必要とされるような高温雰囲気に調整可能な加熱炉は不要である。 On the other hand, since the coolant does not flow through the joint portion between the outer surfaces of the coolant metal tube and the fluid metal tube, the joint strength thereof does not need to be as high as that of the coolant header joint portion. Therefore, in this configuration, the joint portions of the outer surfaces that are joined over a wide range in a state of surface contact with each other are joined using a solder material or a resin adhesive. Regardless of whether solder material or resin adhesive is used, it is possible to join in a low temperature atmosphere compared to brazing material, so a heating furnace that can be adjusted to a high temperature atmosphere as required for brazing Is unnecessary.
 よって、本構成の積層型熱交換器によれば、製造時に高温雰囲気に調整可能な大型の加熱炉が不要で、しかも高い圧力がかかる部位を接合しても液密な状態を維持することができる。 Therefore, according to the stacked heat exchanger of this configuration, a large-sized heating furnace that can be adjusted to a high temperature atmosphere at the time of manufacture is unnecessary, and a liquid-tight state can be maintained even when parts subjected to high pressure are joined. it can.
 (2) 前記積層型熱交換器の製造方法は、冷媒が内部を流通可能な冷媒用金属管と、前記冷媒用金属管に対して積層配置され、前記冷媒と熱交換する流体が内部を流通可能な流体用金属管とを備えた積層型熱交換器を製造するためのものである。この製造方法は、冷媒用ヘッダー接合工程と、流体用ヘッダー接合工程と、成形工程と、金属管接合工程とを備えている。前記冷媒用ヘッダー接合工程では、前記冷媒用金属管の端部に冷媒用ヘッダー部をろう付け又は融接により接合する。前記流体用ヘッダー接合工程では、前記流体用金属管の端部に流体用ヘッダー部を接合する。前記成形工程では、前記冷媒用金属管と前記流体用金属管とを、これらの間にはんだ層又は樹脂製接着層を介在させた状態で積層して仮組体を成形する。前記金属管接合工程では、少なくとも前記冷媒用ヘッダー接合工程の後に、前記仮組体を加熱して前記冷媒用金属管と前記流体用金属管を前記はんだ層又は樹脂製接着層により接合する。 (2) The manufacturing method of the laminated heat exchanger includes a refrigerant metal pipe through which a refrigerant can circulate, and a stacked arrangement with respect to the metal pipe for the refrigerant, and a fluid that exchanges heat with the refrigerant circulates through the inside. It is for producing a laminated heat exchanger with a possible metal tube for fluid. This manufacturing method includes a header joining process for refrigerant, a header joining process for fluid, a forming process, and a metal pipe joining process. In the refrigerant header joining step, the refrigerant header part is joined to the end of the refrigerant metal pipe by brazing or fusion welding. In the fluid header joining step, a fluid header portion is joined to an end portion of the fluid metal pipe. In the molding step, the refrigerant metal tube and the fluid metal tube are laminated with a solder layer or a resin adhesive layer interposed therebetween to form a temporary assembly. In the metal pipe joining step, at least after the refrigerant header joining step, the temporary assembly is heated to join the refrigerant metal tube and the fluid metal tube with the solder layer or the resin adhesive layer.
 この方法では、冷媒用ヘッダー接合工程の後に前記金属管接合工程を行う。仮に、前記金属管接合工程の後に冷媒用ヘッダー接合工程を行うと、金属管接合工程において金属管同士を接合したはんだ層又は樹脂製接着層が、冷媒用ヘッダー接合工程におけるろう付け時又は融接時の高温雰囲気にさらされて軟化、溶融、分解などの不具合が生じるおそれがあるが、本方法によればこのような不具合が生じるのを防止できる。また、前述したように、製造時に高温雰囲気に調整可能な大型の加熱炉が不要で、しかも高い圧力がかかる部位を接合しても液密な状態を維持可能な積層型熱交換器を提供することができる。 In this method, the metal pipe joining step is performed after the refrigerant header joining step. If the refrigerant header joining step is performed after the metal tube joining step, the solder layer or the resin adhesive layer joining the metal tubes in the metal tube joining step is either brazed or fused in the refrigerant header joining step. There is a possibility that problems such as softening, melting, and decomposition occur due to exposure to a high temperature atmosphere, but according to the present method, such problems can be prevented from occurring. In addition, as described above, there is provided a stacked heat exchanger that does not require a large heating furnace that can be adjusted to a high temperature atmosphere at the time of manufacture, and that can maintain a liquid-tight state even when parts subjected to high pressure are joined. be able to.
 (3) 前記製造方法の前記金属管接合工程においては、前記仮組体に対して超音波の振動を付与するのが好ましい。 (3) In the metal tube joining step of the manufacturing method, it is preferable to apply ultrasonic vibration to the temporary assembly.
 この方法では、前記金属管接合工程において、前記仮組体に対して超音波の振動を付与するので、金属管の外表面の酸化膜を効果的に除去することができる。これにより、金属管同士の接合信頼性がさらに向上する。 In this method, since the ultrasonic vibration is applied to the temporary assembly in the metal tube joining step, the oxide film on the outer surface of the metal tube can be effectively removed. Thereby, the joining reliability of metal tubes is further improved.
 (4) 前記製造方法の前記金属管接合工程においては、前記はんだ層が半溶融状態となるように補助加熱された前記仮組体に対して、前記超音波の振動を付与するのが好ましい。 (4) In the metal tube joining step of the manufacturing method, it is preferable that the ultrasonic vibration is applied to the temporary assembly that has been auxiliary heated so that the solder layer is in a semi-molten state.
 この方法では、前記はんだ層が半溶融状態となる温度(固相線温度と液相線温度との間の温度)になるように前記仮組体が補助加熱され、この状態で仮組体に超音波の振動が付与されるので、超音波振動による酸化物除去効果をより高めることができる。その理由は次の通りであると推測される。すなわち、はんだ層が固相である場合(はんだ層の温度が固相線温度以下である場合)には、金属管とはんだ層との間には空気層が形成されやすい。このような空気層が存在すると、例えば流体用金属管に付与された超音波の振動は、空気層において遮断され、又は減衰される場合があるので、冷媒用金属管に伝わりにくくなる。一方で、はんだ層が半溶融状態である場合には、前記空気層が減少するので、超音波の振動が流体用金属管からはんだ層を介して冷媒用金属管に効率的に伝達される。しかも、はんだ層が半溶融状態である場合には、溶融状態である場合と比べてはんだ層自体の形状安定性も維持されるので、金属管とはんだ層との相対的な位置関係にずれが生じにくくなる。 In this method, the temporary assembly is auxiliary heated so that the solder layer is at a temperature at which the solder layer is in a semi-molten state (a temperature between the solidus temperature and the liquidus temperature). Since ultrasonic vibration is applied, the oxide removal effect by ultrasonic vibration can be further enhanced. The reason is estimated as follows. That is, when the solder layer is a solid phase (when the temperature of the solder layer is equal to or lower than the solidus temperature), an air layer is easily formed between the metal tube and the solder layer. When such an air layer exists, for example, the vibration of the ultrasonic wave applied to the fluid metal tube may be blocked or attenuated in the air layer, so that it is difficult to be transmitted to the refrigerant metal tube. On the other hand, when the solder layer is in a semi-molten state, the air layer is reduced, so that ultrasonic vibration is efficiently transmitted from the fluid metal tube to the refrigerant metal tube through the solder layer. In addition, when the solder layer is in a semi-molten state, the shape stability of the solder layer itself is maintained as compared to when it is in a molten state, so there is a shift in the relative positional relationship between the metal tube and the solder layer. It becomes difficult to occur.
 (5) 前記製造方法の前記金属管接合工程においては、超音波はんだこてを用いて前記仮組体に対して前記超音波の振動を付与するとともに前記はんだ層の温度を融点以上にするのが好ましい。 (5) In the metal pipe joining step of the manufacturing method, the ultrasonic vibration is applied to the temporary assembly using an ultrasonic soldering iron, and the temperature of the solder layer is set to a melting point or higher. Is preferred.
 この方法では、前記金属管接合工程において、超音波はんだこてを用いて前記仮組体に対して前記超音波の振動を付与するとともに前記はんだ層の温度を融点以上にする。これにより、超音波振動付与と金属管同士の加熱接合とを、一つの器具(超音波はんだこて)により行うことができる。これにより、装置の構造を簡略化することができる。 In this method, in the metal pipe joining step, the ultrasonic vibration is applied to the temporary assembly using an ultrasonic soldering iron and the temperature of the solder layer is set to the melting point or higher. Thereby, ultrasonic vibration provision and metal tube heating joining can be performed with one instrument (ultrasonic soldering iron). Thereby, the structure of the apparatus can be simplified.
 前記冷媒用ヘッダー接合工程における具体的なろう材の加熱方法としては、例えば高周波加熱を用いることができる。 As a specific brazing material heating method in the refrigerant header joining step, for example, high-frequency heating can be used.
 <他の実施形態>
 なお、本発明は、前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。例えば、前記実施形態では、超音波はんだこてにより振動処理及び加熱処理を施す場合を例に挙げて説明したが、これに限定されない。例えば、はんだ付け装置35は、互いに別体で設けられた振動手段と加熱手段とを備えていてもよい。
<Other embodiments>
Note that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the spirit of the present invention. For example, in the above embodiment, the case where the vibration treatment and the heat treatment are performed using an ultrasonic soldering iron has been described as an example, but the present invention is not limited to this. For example, the soldering device 35 may include vibration means and heating means provided separately from each other.
 また、前記実施形態では、はんだ付け装置35が補助加熱手段19、本加熱手段21a、及び振動手段21bを制御する制御部25を備えている場合を例に挙げて説明したが、これに限定されない。例えば、はんだ付け装置35において、補助加熱手段19、本加熱手段21a、及び振動手段21bを作業者が手動で制御(操作)してもよい。 In the above embodiment, the case where the soldering device 35 includes the control unit 25 that controls the auxiliary heating unit 19, the main heating unit 21a, and the vibration unit 21b has been described as an example. However, the present invention is not limited thereto. . For example, in the soldering device 35, the auxiliary heating means 19, the main heating means 21a, and the vibration means 21b may be manually controlled (operated) by an operator.
 また、前記実施形態では、水と冷媒との間で熱交換する場合を例に挙げて説明したが、本発明の積層型熱交換器は冷媒と他の流体(例えば空気などの気体)との熱交換に用いてもよく、冷媒同士の熱交換に用いてもよい。 In the above embodiment, the case where heat is exchanged between water and the refrigerant has been described as an example. However, the stacked heat exchanger according to the present invention is configured such that the refrigerant and another fluid (for example, a gas such as air) are exchanged. It may be used for heat exchange or for heat exchange between refrigerants.
 また、前記実施形態では、冷媒用金属管13、流体用金属管11、及び冷媒用金属管14がこの順に積層された3つの金属管を有する形態、並びに冷媒用金属管13及び流体用金属管11がこの順に積層された2つの金属管を有する形態を例に挙げて説明したが、4つ以上の金属管が積層された形態であってもよい。 Moreover, in the said embodiment, the metal pipe 13 for refrigerant | coolants, the metal pipe 11 for fluid, and the metal pipe 14 for refrigerant | coolants have the three metal pipes laminated | stacked in this order, the metal pipe 13 for refrigerant | coolants, and the metal pipe for fluids The embodiment has been described by taking as an example a form having two metal tubes 11 laminated in this order, but may be a form in which four or more metal tubes are laminated.
 また、前記実施形態では、各金属管が厚みよりも幅の方が大きい扁平形状である場合を例に挙げて説明したが、これに限定されない。各金属管は、例えば厚みと幅が同程度の大きさであってもよく、幅よりも厚みの方が大きい形状であってもよい。 In the above-described embodiment, the case where each metal tube has a flat shape whose width is larger than the thickness has been described as an example. However, the present invention is not limited to this. Each metal tube may have, for example, the same size as the thickness and the width, or may have a shape in which the thickness is larger than the width.
 また、仮組体23の補助加熱手段としては、前記したヒーター19の他、例えばレーザ、高周波加熱などの他の加熱手段を用いることもできる。 Further, as the auxiliary heating means for the temporary assembly 23, other heating means such as laser and high frequency heating can be used in addition to the heater 19 described above.
 11 流体用金属管
 13 冷媒用金属管
 14 冷媒用金属管
 15 はんだ層
 17 積層型熱交換器
 19 ヒーター
 21 超音波はんだこて
 21a 本加熱手段
 21b 振動手段
 23 仮組体
 25 制御部
 29 ローラー
 31 熱交換部
 33 ヘッダー部
 33a 流体用ヘッダー部
 33b 冷媒用ヘッダー部
 35 はんだ付け装置
 
11 Metal Pipe for Fluid 13 Metal Pipe for Refrigerant 14 Metal Pipe for Refrigerant 15 Solder Layer 17 Laminated Heat Exchanger 19 Heater 21 Ultrasonic Soldering Iron 21a Main Heating Means 21b Vibrating Means 23 Temporary Assembly 25 Control Unit 29 Roller 31 Heat Exchanger 33 Header 33a Fluid Header 33b Refrigerant Header 35 Soldering Device

Claims (6)

  1.  冷媒が流通可能な冷媒用金属管(13)と、
     前記冷媒との間で熱交換する流体が流通可能であり、前記冷媒用金属管(13)に積層配置され、前記冷媒用金属管(13)との間に介在するはんだ層(15)又は樹脂製接着層により前記冷媒用金属管(13)に接合された流体用金属管(11)と、
     前記冷媒用金属管(13)の端部がろう付け又は融接により接合された冷媒用ヘッダー部(33b)と、
     前記流体用金属管(11)の端部が接合された流体用ヘッダー部(33a)と、を備えている積層型熱交換器。
    A refrigerant metal pipe (13) through which a refrigerant can flow;
    A fluid that exchanges heat with the refrigerant can be circulated, and is stacked on the metal pipe for refrigerant (13) and interposed between the metal pipe for refrigerant (13) or a resin layer A fluid metal pipe (11) joined to the refrigerant metal pipe (13) by an adhesive layer;
    A refrigerant header (33b) in which the end of the refrigerant metal pipe (13) is joined by brazing or fusion welding; and
    A laminated heat exchanger comprising: a fluid header (33a) joined to an end of the fluid metal pipe (11).
  2.  冷媒が流通可能な冷媒用金属管(13)と、前記冷媒用金属管(13)に積層配置され、前記冷媒と熱交換する流体が流通可能な流体用金属管(11)とを備えた積層型熱交換器を製造するための方法であって、
     前記冷媒用金属管(13)の端部に冷媒用ヘッダー部(33b)をろう付け又は融接により接合する冷媒用ヘッダー接合工程と、
     前記流体用金属管(11)の端部に流体用ヘッダー部(33a)を接合する流体用ヘッダー接合工程と、
     前記冷媒用金属管(13)と前記流体用金属管(11)とを、これらの間にはんだ層(15)又は樹脂製接着層を介在させた状態で積層して仮組体(23)を成形する成形工程と、
     少なくとも前記冷媒用ヘッダー接合工程の後に、前記仮組体(23)を加熱して前記冷媒用金属管(13)と前記流体用金属管(11)とを前記はんだ層(15)又は樹脂製接着層により接合する金属管接合工程と、を備えている積層型熱交換器の製造方法。
    A laminate comprising a refrigerant metal tube (13) through which a refrigerant can circulate, and a fluid metal tube (11) arranged on the refrigerant metal tube (13) and through which a fluid exchanging heat with the refrigerant can circulate. A method for producing a mold heat exchanger, comprising:
    A refrigerant header joining step of joining the refrigerant header (33b) to the end of the refrigerant metal pipe (13) by brazing or fusion welding;
    A fluid header joining step of joining a fluid header portion (33a) to an end of the fluid metal pipe (11);
    The refrigerant metal pipe (13) and the fluid metal pipe (11) are laminated with a solder layer (15) or a resin adhesive layer interposed therebetween, and a temporary assembly (23) is obtained. Molding process to mold;
    At least after the refrigerant header joining step, the temporary assembly (23) is heated to bond the refrigerant metal pipe (13) and the fluid metal pipe (11) to the solder layer (15) or resin. A metal pipe joining step for joining by layers, and a method for manufacturing a laminated heat exchanger.
  3.  前記金属管接合工程において、前記仮組体(23)に超音波の振動を付与する、請求項2に記載の積層型熱交換器の製造方法。 The method for manufacturing a stacked heat exchanger according to claim 2, wherein in the metal tube joining step, ultrasonic vibration is applied to the temporary assembly (23).
  4.  前記金属管接合工程において、前記はんだ層(15)が半溶融状態となるように補助加熱された前記仮組体(23)に、前記超音波の振動を付与する、請求項3に記載の積層型熱交換器の製造方法。 The lamination according to claim 3, wherein in the metal tube joining step, the ultrasonic vibration is applied to the temporary assembly (23) that is auxiliary-heated so that the solder layer (15) is in a semi-molten state. A manufacturing method of a mold heat exchanger.
  5.  前記金属管接合工程において、超音波はんだこてを用いて前記仮組体(23)に前記超音波の振動を付与するとともに前記はんだ層(15)の温度を融点以上にする、請求項3又は4に記載の積層型熱交換器の製造方法。 The said metal pipe joining process WHEREIN: The vibration of the said ultrasonic wave is provided to the said temporary assembly (23) using an ultrasonic soldering iron, and the temperature of the said solder layer (15) is made more than melting | fusing point. 4. A method for producing a stacked heat exchanger according to 4.
  6.  前記冷媒用ヘッダー接合工程において、前記冷媒用金属管(13)の端部と冷媒用ヘッダー部(33b)との間にろう材を配置した状態で高周波加熱により前記ろう材を加熱して前記冷媒用金属管(13)の端部に冷媒用ヘッダー部(33b)を接合する、請求項2~5のいずれかに記載の積層型熱交換器の製造方法。
     
    In the refrigerant header joining step, the brazing material is heated by high-frequency heating in a state where a brazing material is disposed between the end of the refrigerant metal pipe (13) and the refrigerant header portion (33b), and the refrigerant The method for manufacturing a stacked heat exchanger according to any one of claims 2 to 5, wherein the refrigerant header (33b) is joined to the end of the metal pipe (13).
PCT/JP2010/005204 2009-09-30 2010-08-24 Stacking type heat exchanger and method for producing a stacking type heat exchanger WO2011039934A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-226319 2009-09-30
JP2009226319A JP5180174B2 (en) 2009-09-30 2009-09-30 Laminated heat exchanger and method for producing laminated heat exchanger

Publications (1)

Publication Number Publication Date
WO2011039934A1 true WO2011039934A1 (en) 2011-04-07

Family

ID=43825789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005204 WO2011039934A1 (en) 2009-09-30 2010-08-24 Stacking type heat exchanger and method for producing a stacking type heat exchanger

Country Status (2)

Country Link
JP (1) JP5180174B2 (en)
WO (1) WO2011039934A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2563056A (en) * 2017-06-01 2018-12-05 Transp For London Heat exchanger
US10916782B2 (en) 2016-08-30 2021-02-09 Rhodia Operations Solid-liquid electrolyte for use in a battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271065A (en) * 1988-04-20 1989-10-30 Showa Alum Corp Manufacture of heat exchanger
JPH0569120A (en) * 1991-08-29 1993-03-23 Showa Alum Corp Method for brazing aluminum material through ultrasonic waves
JP2000246430A (en) * 1999-03-01 2000-09-12 Suzuki Motor Corp Joining method for aluminum alloy member
JP2002098424A (en) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2002333294A (en) * 2001-04-24 2002-11-22 Modine Mfg Co Header structure of heat exchanger
JP2004347258A (en) * 2003-05-23 2004-12-09 Zexel Valeo Climate Control Corp Heat exchanger
WO2005075925A1 (en) * 2004-02-04 2005-08-18 Hidaka Seiki Kabushiki Kaisha Heat exchanger manufacturing method
JP2007040680A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Heat exchanger and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3861569B2 (en) * 2000-06-26 2006-12-20 スズキ株式会社 Ultrasonic soldering method and ultrasonic soldering control method
JP4341524B2 (en) * 2003-10-27 2009-10-07 株式会社デンソー Heat exchanger
JP2005331201A (en) * 2004-05-21 2005-12-02 Matsushita Electric Ind Co Ltd Heat exchanger
JP4819765B2 (en) * 2007-08-22 2011-11-24 三菱電機株式会社 Method for manufacturing twisted tube heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01271065A (en) * 1988-04-20 1989-10-30 Showa Alum Corp Manufacture of heat exchanger
JPH0569120A (en) * 1991-08-29 1993-03-23 Showa Alum Corp Method for brazing aluminum material through ultrasonic waves
JP2000246430A (en) * 1999-03-01 2000-09-12 Suzuki Motor Corp Joining method for aluminum alloy member
JP2002098424A (en) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp Refrigerating cycle
JP2002333294A (en) * 2001-04-24 2002-11-22 Modine Mfg Co Header structure of heat exchanger
JP2004347258A (en) * 2003-05-23 2004-12-09 Zexel Valeo Climate Control Corp Heat exchanger
WO2005075925A1 (en) * 2004-02-04 2005-08-18 Hidaka Seiki Kabushiki Kaisha Heat exchanger manufacturing method
JP2007040680A (en) * 2005-08-05 2007-02-15 Matsushita Electric Ind Co Ltd Heat exchanger and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916782B2 (en) 2016-08-30 2021-02-09 Rhodia Operations Solid-liquid electrolyte for use in a battery
GB2563056A (en) * 2017-06-01 2018-12-05 Transp For London Heat exchanger

Also Published As

Publication number Publication date
JP5180174B2 (en) 2013-04-10
JP2011075186A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP5900967B2 (en) Heat exchanger for refrigeration cycle and manufacturing method thereof
JP2015210032A (en) Water-cooling type plate cooling unit
KR20130056892A (en) Cell block and method for manufacturing same
CN105171259A (en) Composite pipe and manufacturing method and application thereof
WO2011039934A1 (en) Stacking type heat exchanger and method for producing a stacking type heat exchanger
JP2004020174A (en) Flat radiating fin, heat exchanger using it, and its manufacturing method
JP2017032261A (en) Heat exchanger and producing method thereof
JP2012097773A (en) Method of manufacturing channel switching valve and channel switching valve
JP5798445B2 (en) Refrigeration cycle heat exchanger, refrigerator, and refrigeration cycle heat exchanger manufacturing method
JP6772731B2 (en) How to make a heat exchanger
JP2007144496A (en) Joint structure and its manufacturing method
JP5608802B2 (en) Manufacturing method of flow path switching valve and flow path switching valve
JP5903444B2 (en) Heat exchanger manufacturing method and heat exchanger obtained thereby
JP6231800B2 (en) Al member for heat exchanger having fine passage and method for manufacturing the same
JP5533031B2 (en) Laminate type heat exchanger soldering apparatus and method for producing laminated heat exchanger
JP2001241870A (en) Small-diameter tunnel plate heat pipe
JP6132424B2 (en) Double pipe fitting method
JP2015021159A (en) HEAT EXCHANGER Al MEMBER COMPRISING FINE PATHS, AND METHOD FOR PRODUCING THE SAME
JPH0768374A (en) Method for joining aluminum material to stainless steel
JP2016112599A (en) Joint device, joint method, manufacturing method of panel type heat exchanger, and cooling device
JP2007212008A (en) Heat exchanger and its manufacturing method
JP2009024956A (en) Header tank of heat exchanger and manufacturing method for it
JP2006292226A (en) Heat exchanger
JP2009072820A (en) Joined body, joining method and joining apparatus of copper tube with aluminum tube, and fluid circuit device
JP2000039274A (en) Sealing method for roll bond heat pipe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820060

Country of ref document: EP

Kind code of ref document: A1