JP2007040680A - Heat exchanger and its manufacturing method - Google Patents

Heat exchanger and its manufacturing method Download PDF

Info

Publication number
JP2007040680A
JP2007040680A JP2005228229A JP2005228229A JP2007040680A JP 2007040680 A JP2007040680 A JP 2007040680A JP 2005228229 A JP2005228229 A JP 2005228229A JP 2005228229 A JP2005228229 A JP 2005228229A JP 2007040680 A JP2007040680 A JP 2007040680A
Authority
JP
Japan
Prior art keywords
heat exchanger
slit
recess
processing
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005228229A
Other languages
Japanese (ja)
Inventor
Mitsunori Taniguchi
光徳 谷口
Kiyoshi Kinoshita
清志 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005228229A priority Critical patent/JP2007040680A/en
Publication of JP2007040680A publication Critical patent/JP2007040680A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and reliable heat exchanger extremely easy to manufacture while retaining extremely excellent heat exchanging performance. <P>SOLUTION: The method for manufacturing a heat exchanger comprises a recess 20 processing step, a dent 30 processing process for forming a substantially parallel slit 30 on a flat surface each between recesses 20, a step for laminating a plurality of substrates 10 processed by the recess 20 processing step and the slit 30 processing step so that the slits 30 are overlapped to form a heat exchanger core in which the recesses 20 constitute a pipe inner passage 70 and the slits 30 constitute a pipe outer passage, and a step for mounting headers on both the outer sides of the heat exchanger core. By a recess 20 machining step and a slit 30 machining step for forming a slit 30 substantially parallel on a flat surface between recesses 20 successively to the recess 20 machining step. The heat exchanger can be constituted from the substrates having the recesses 20 and the slits 30, and easily manufactured. The recess 20 processing is performed first, whereby the accuracy of the recess 20 processing is improved because it is processing to the sheet-like substrate 10. Accordingly, a reliable heat exchanger can be manufactured at low cost. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は冷却システム、放熱システムや加熱システム等用の熱交換器に関するもので、特にコンパクト性を要求されるシステムで使用される熱交換器及びその製造方法に関するものである。   The present invention relates to a heat exchanger for a cooling system, a heat dissipation system, a heating system, and the like, and more particularly to a heat exchanger used in a system that requires compactness and a manufacturing method thereof.

従来、この種の熱交換器としては、管とフィンとから構成されたものが一般的であるが、近年はそのコンパクト化を図るために、管径及び管ピッチを小さくし、管を高密度化する傾向にある。その極端な形態としては、管外径が0.5mm程度の非常に細い管のみから熱交換部が構成されたものがある(例えば、特許文献1参照)。   Conventionally, this type of heat exchanger is generally composed of tubes and fins. However, in recent years, in order to achieve compactness, the tube diameter and tube pitch are reduced, and the tubes are made dense. It tends to become. As an extreme form thereof, there is one in which the heat exchanging portion is composed only of a very thin tube having a tube outer diameter of about 0.5 mm (for example, see Patent Document 1).

図8は、特許文献1に記載された従来の熱交換器の正面図である。図9は、図8のA−A線断面図である。   FIG. 8 is a front view of a conventional heat exchanger described in Patent Document 1. FIG. 9 is a cross-sectional view taken along line AA in FIG.

従来の熱交換器は、所定間隔を置いて対向配置される入口ヘッダー1と出口ヘッダー2と、入口ヘッダー1と出口ヘッダー2の間に断面円環の複数の管3が配置され、管3の外部を外部流体が流通される熱交換コア4が構成されている。管3内を流通する内部流体としては主に水や不凍液が用いられ、外部流体としては空気が主流であり、それぞれが流通し、熱交換を行う。   In the conventional heat exchanger, an inlet header 1 and an outlet header 2 which are opposed to each other with a predetermined interval, and a plurality of tubes 3 having a circular cross section are arranged between the inlet header 1 and the outlet header 2. A heat exchange core 4 through which an external fluid is circulated is configured. Water or antifreeze is mainly used as an internal fluid that circulates in the pipe 3, and air is mainly used as an external fluid, and each circulates and performs heat exchange.

そして、管3を碁盤目状に配置するとともに、管3の外径を0.2mm以上0.8mm以下とし、隣接する管3のピッチを管外径で除した値を0.5以上3.5以下とすることで、使用動力に対する熱交換量を大幅に向上できるとしている。
特開2001−116481号公報
And while arrange | positioning the pipe | tube 3 in grid shape, the outer diameter of the pipe | tube 3 shall be 0.2 mm or more and 0.8 mm or less, and the value which remove | divided the pitch of the adjacent pipe | tube 3 by the pipe outer diameter is 0.5 or more. By setting it to 5 or less, it is said that the amount of heat exchange for the power used can be greatly improved.
JP 2001-116481 A

上記従来の熱交換器を構成する具体的な要素や製造方法については示されていないが、一般的には、多数の細い管3と、特定の面に多数の細かい円孔を予め空けた入口ヘッダー1と出口ヘッダー2を用意し、入口ヘッダー1及び出口ヘッダー2の円孔に管3の両端を挿入し、溶接等によって管3の挿入部を入口ヘッダー1及び出口ヘッダー2に接着する方法が考えられる。   Although the specific elements and manufacturing method constituting the conventional heat exchanger are not shown, in general, a large number of thin tubes 3 and a large number of fine circular holes on a specific surface are previously opened. There is a method in which the header 1 and the outlet header 2 are prepared, both ends of the pipe 3 are inserted into the circular holes of the inlet header 1 and the outlet header 2, and the insertion portion of the pipe 3 is bonded to the inlet header 1 and the outlet header 2 by welding or the like. Conceivable.

しかしながら、長くて細い管3は非常に高価であるばかりでなく、入口ヘッダー1や出口ヘッダー2に管3の挿入用の微細な円孔を所定の微細なピッチで設けることと、非常に多くの管3を入口ヘッダー1や出口ヘッダー2に挿入し接着する工程が非常に困難であり、熱交換性能が高くても、非常に高価でかつ洩れに対する信頼性が低いものになるという課題を有していた。   However, not only the long and thin tube 3 is very expensive, but also a very small number of holes for inserting the tube 3 in the inlet header 1 and the outlet header 2 are provided at a predetermined fine pitch, The process of inserting and bonding the tube 3 into the inlet header 1 and the outlet header 2 is very difficult, and even if the heat exchange performance is high, there is a problem that it is very expensive and has low reliability against leakage. It was.

本発明は、上記従来の課題を解決するもので、非常に優れた熱交換性能を保持しながら、非常に容易に製造ができる熱交換器の製造方法を提供することにより、安価で、かつ信頼性の高い熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a method for manufacturing a heat exchanger that can be manufactured very easily while maintaining extremely excellent heat exchange performance. It aims at providing a heat exchanger with high property.

上記従来の課題を解決するために、本発明の熱交換器の製造方法は、平面上の基板に所定の間隔をおいて凹みを形成する凹み加工工程と、前記基板の前記凹み加工工程に続いて前記凹み相互間の平面上に前記凹みと略平行となるスリットを形成するスリット加工工程と、前記基板を前記スリットが重合するように複数枚積層して前記凹みが管内流路を構成し、前記スリットが管外流路を構成する熱交換器コアを成形する工程と、前記熱交換器コアの両外側にヘッダーを取り付ける工程と、からなるものである。   In order to solve the above-described conventional problems, a method for manufacturing a heat exchanger according to the present invention includes a recess processing step of forming recesses on a flat substrate at a predetermined interval, and the recess processing step of the substrate. A slit processing step of forming a slit that is substantially parallel to the recess on the plane between the recesses, and a plurality of the substrates are laminated so that the slits overlap, and the recess constitutes an in-tube flow path, The slit comprises a step of forming a heat exchanger core that constitutes a flow path outside the tube, and a step of attaching headers to both outer sides of the heat exchanger core.

これにより、管のみによって構成された熱交換器コアを凹みとスリットを設けた基板から構成することができ、容易に製作することができる。また、スリット加工を先に行うと細管の外形を形成してから凹み加工を行うこととなり、細管の曲がりや歪みによって凹み加工の精度が低下するが、先に凹み加工を行うことにより、平板状の基板への加工であるため、凹み加工の精度が向上する。よって、安価にかつ信頼性の高い熱交換器を製造することができる。   Thereby, the heat exchanger core comprised only with the pipe | tube can be comprised from the board | substrate which provided the dent and the slit, and can be manufactured easily. In addition, if slit processing is performed first, dent processing will be performed after forming the outer shape of the thin tube, and the accuracy of the dent processing will decrease due to bending or distortion of the thin tube, but by performing the dent processing first, a flat plate shape Therefore, the accuracy of the dent processing is improved. Therefore, it is possible to manufacture a heat exchanger that is inexpensive and highly reliable.

また、本発明の熱交換器の製造方法は、平面上の基板に所定の間隔をおいて凹みを形成する凹み加工工程と、前記基板の前記凹み加工工程とほぼ同時に前記凹み相互間の平面上に前記凹みと略平行となるスリットを形成するスリット加工工程と、前記基板を前記スリットが重合するように複数枚積層して前記凹みが管内流路を構成し、前記スリットが管外流路を構成する熱交換器コアを成形する工程と、前記熱交換器コアの両外側にヘッダーを取り付ける工程と、からなるものである。   In addition, the method for manufacturing a heat exchanger according to the present invention includes a recess processing step for forming recesses on a planar substrate at a predetermined interval, and a plane between the recesses substantially simultaneously with the recess processing step for the substrate. Forming a slit substantially parallel to the recess, laminating a plurality of the substrates so that the slit overlaps, the recess forming an in-tube flow path, and the slit forming an out-tube flow path Forming a heat exchanger core, and attaching a header to both outer sides of the heat exchanger core.

これにより、管のみによって構成された熱交換器コアを凹みとスリットを設けた基板から構成することができ、容易に製作することができる。また、凹み加工とほぼ同時にスリット加工を行うことにより、細管の曲がりや歪みによる凹み加工の加工精度の低下を防ぐことができ、安価にかつ信頼性の高い熱交換器を製造することができる。   Thereby, the heat exchanger core comprised only with the pipe | tube can be comprised from the board | substrate which provided the dent and the slit, and can be manufactured easily. Further, by performing slit processing almost simultaneously with the dent processing, it is possible to prevent a reduction in processing accuracy of the dent processing due to bending or distortion of the thin tube, and it is possible to manufacture a heat exchanger that is inexpensive and highly reliable.

本発明の熱交換器は、製造が容易なため、安価に熱交換器を提供することができる。   Since the heat exchanger of the present invention is easy to manufacture, the heat exchanger can be provided at low cost.

また、本発明の熱交換器の製造方法は、安価にかつ信頼性の高い熱交換器を提供することができる。   Moreover, the manufacturing method of the heat exchanger of this invention can provide a heat exchanger cheaply and highly reliable.

請求項1に記載の発明は、平面上の基板に所定の間隔をおいて凹みを形成する凹み加工工程と、前記基板の前記凹み加工工程に続いて前記凹み相互間の平面上に前記凹みと略平行となるスリットを形成するスリット加工工程と、前記基板を前記スリットが重合するように複数枚積層して前記凹みが管内流路を構成し、前記スリットが管外流路を構成する熱交換器コアを成形する工程と、前記熱交換器コアの両外側にヘッダーを取り付ける工程と、からなるものであり、管のみによって構成された熱交換器コアを凹みとスリットを設けた基板から構成することができ、容易に製作することができる。また、スリット加工を先に行うと細管の外形を形成してから凹み加工を行うこととなり、細管の曲がりや歪みによって凹み加工の精度が低下するが、先に凹み加工を行うことにより、平板状の基板への加工であるため、凹み加工の精度が向上する。よって、安価にかつ信頼性の高い熱交換器を製造することができる。   The invention according to claim 1 is a recess processing step of forming recesses at a predetermined interval in a substrate on a plane, and the recesses on a plane between the recesses following the recess processing step of the substrates. A slit processing step for forming slits that are substantially parallel, and a heat exchanger in which a plurality of the substrates are laminated so that the slits overlap, and the recess constitutes an in-tube flow path, and the slits constitute an external flow path. A step of forming a core and a step of attaching headers to both outer sides of the heat exchanger core, and the heat exchanger core constituted only by tubes is constituted by a substrate provided with a recess and a slit. Can be manufactured easily. In addition, if slit processing is performed first, dent processing will be performed after forming the outer shape of the thin tube, and the accuracy of the dent processing will decrease due to bending or distortion of the thin tube, but by performing the dent processing first, a flat plate shape Therefore, the accuracy of the dent processing is improved. Therefore, it is possible to manufacture a heat exchanger that is inexpensive and highly reliable.

請求項2に記載の発明は、平面上の基板に所定の間隔をおいて凹みを形成する凹み加工工程と、前記基板の前記凹み加工工程とほぼ同時に前記凹み相互間の平面上に前記凹みと略平行となるスリットを形成するスリット加工工程と、前記基板を前記スリットが重合するように複数枚積層して前記凹みが管内流路を構成し、前記スリットが管外流路を構成する熱交換器コアを成形する工程と、前記熱交換器コアの両外側にヘッダーを取り付ける工程と、からなるものであり、管のみによって構成された熱交換コアを凹みとスリットを設けた基板から構成することができ、容易に製作することができる。また、凹み加工とほぼ同時にスリット加工を行うことにより、細管の曲がりや歪みによる凹み加工の加工精度の低下を防ぐことができ、安価にかつ信頼性の高い熱交換器を製造することができる。   According to a second aspect of the present invention, there is provided a recess processing step of forming recesses at a predetermined interval in a substrate on a plane, and the recesses on a plane between the recesses substantially simultaneously with the recess processing step of the substrate. A slit processing step for forming slits that are substantially parallel, and a heat exchanger in which a plurality of the substrates are stacked so that the slits overlap, and the recesses form a flow path in the pipe, and the slits form a flow path in the pipe A step of forming a core and a step of attaching headers to both outer sides of the heat exchanger core, wherein the heat exchange core constituted only by a tube is constituted by a substrate provided with a recess and a slit. Can be manufactured easily. Further, by performing slit processing almost simultaneously with the dent processing, it is possible to prevent a reduction in processing accuracy of the dent processing due to bending or distortion of the thin tube, and it is possible to manufacture a heat exchanger that is inexpensive and highly reliable.

請求項3に記載の発明は、請求項1または2に記載の発明の前記凹みは、型形状を転写して加工されるものであり、凹みの形状を精度よく加工することができ、信頼性の高い熱交換器を製造することができる。   According to a third aspect of the present invention, the dent of the first or second aspect of the invention is processed by transferring the shape of the mold, and the shape of the dent can be processed with high accuracy and reliability. High heat exchanger can be manufactured.

請求項4に記載の発明は、請求項3に記載の発明の前記基板もしくは前記型の少なくともいずれか一方を加熱したものであり、型形状が転写しやすくなり、加工精度が向上するとともに加工工数を低減でき安価に熱交換器を製造することができる。   The invention described in claim 4 is obtained by heating at least one of the substrate and the mold according to the invention described in claim 3, and the mold shape is easily transferred, the processing accuracy is improved and the processing man-hours are improved. The heat exchanger can be manufactured at low cost.

請求項5に記載の発明は、請求項1または4に記載の発明の前記スリットが、プレスにより加工されるものであり、スリット形状を精度よく加工することができ、安価にかつ信頼性の高い熱交換器を製造することができる。   According to a fifth aspect of the present invention, the slit according to the first or fourth aspect of the present invention is processed by pressing, and the slit shape can be processed with high accuracy, and is inexpensive and highly reliable. A heat exchanger can be manufactured.

請求項6に記載の発明は、請求項1または4に記載の発明の前記スリットは、ローラーカッターにより加工されるものであり、スリット形状を連続的に加工することができ、加工工数が低減でき、安価に熱交換器を製造することができる。   In the invention according to claim 6, the slit of the invention according to claim 1 or 4 is processed by a roller cutter, the slit shape can be continuously processed, and the number of processing steps can be reduced. A heat exchanger can be manufactured at low cost.

請求項7に記載の発明は、請求項1から6のいずれか一項に記載の発明の前記基板の材料は、樹脂材料であり、凹み加工やスリット加工が行いやすく、加工工数が低減できるとともに、材料費も安く、安価に熱交換器を提供することができる。   In the invention according to claim 7, the material of the substrate according to any one of claims 1 to 6 is a resin material, and it is easy to perform dent processing and slit processing, and the processing man-hour can be reduced. The material cost is also low, and the heat exchanger can be provided at low cost.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the embodiments described above, and detailed descriptions thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における熱交換器の基板の製造工程の斜視図である。図2は、同実施の形態における熱交換器の熱交換器コアの斜視図である。図3は、同実施の形態における熱交換器の斜視図である。
(Embodiment 1)
1 is a perspective view of a manufacturing process of a substrate of a heat exchanger according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of a heat exchanger core of the heat exchanger in the same embodiment. FIG. 3 is a perspective view of the heat exchanger in the same embodiment.

基板10には、所定の間隔をおいて凹み20と、凹み20相互間の平面上に凹み20と略平行となるようにスリット30と、が加工されている。   The substrate 10 is processed with a recess 20 at a predetermined interval and a slit 30 on the plane between the recesses 20 so as to be substantially parallel to the recess 20.

本実施の形態では、基板10はABS、PC、PP等の樹脂材料でシート状に成型されている。   In the present embodiment, the substrate 10 is molded into a sheet shape from a resin material such as ABS, PC, PP or the like.

まず初めに、凹み20形状を転写する型40を基板10に押しつけ、凹み20形状を転写する(工程(1)、工程(2)、工程(3))。   First, the mold 40 for transferring the shape of the recess 20 is pressed against the substrate 10 to transfer the shape of the recess 20 (step (1), step (2), step (3)).

この際、基板10を軟化点近傍まで加熱することにより、形状転写がしやすくなる。   At this time, shape transfer is facilitated by heating the substrate 10 to the vicinity of the softening point.

次に、ローラーカッター50により、スリット30を加工する(工程(4)、工程(5)、工程(6))。ローラーカッター50では連続的に加工ができるため、加工工数が低減できる。   Next, the slit 30 is processed by the roller cutter 50 (step (4), step (5), step (6)). Since the roller cutter 50 can process continuously, the number of processing steps can be reduced.

尚、スリット30は、基板10の上面と下面が貫通している。   The slit 30 penetrates the upper surface and the lower surface of the substrate 10.

また、ローラーカッター50は、スリット30と同形状の歯32がローラー35周上に加工されており、基板10上をローラー35が回転することによりスリット30を形成する。尚、ローラー35周上には歯32を加工していない個所37を設けることにより、管を分断せずに基板10を製作できる。   In the roller cutter 50, teeth 32 having the same shape as the slit 30 are processed on the circumference of the roller 35, and the slit 30 is formed by the roller 35 rotating on the substrate 10. In addition, the board | substrate 10 can be manufactured without dividing | segmenting a pipe | tube by providing the location 37 which has not processed the tooth | gear 32 on the roller 35 periphery.

尚、本実施の形態ではローラー35周上に歯32を1つも受けたが、ローラー35の直径を大きくし、歯32を加工していない個所37をはさんで歯32を複数設けてもよい。   In the present embodiment, one tooth 32 is received on the circumference of the roller 35. However, the diameter of the roller 35 may be increased, and a plurality of teeth 32 may be provided across a portion 37 where the tooth 32 is not processed. .

尚、基板10を軟化点近傍まで加熱したが、型40を軟化点近傍まで加熱してもよい。   In addition, although the board | substrate 10 was heated to the softening point vicinity, you may heat the type | mold 40 to the softening point vicinity.

尚、本実施の形態では、スリット30は、ローラーカッター50により加工したが、プレスにより加工した場合、スリット形状を精度よく加工することができ、安価にかつ信頼性の高い熱交換器を製造することができる。   In addition, in this Embodiment, although the slit 30 was processed with the roller cutter 50, when it processes with a press, a slit shape can be processed with sufficient precision and a heat exchanger cheaply and highly reliable is manufactured. be able to.

このように加工された基板10を積層し、相互間を接合して熱交換器コア11が製作される。   The substrates 10 processed in this way are stacked and joined together to produce the heat exchanger core 11.

接合方法としては、接着剤、熱圧着、熱溶着、超音波接合及び拡散接合等が考えられるが、凹み20を目詰まりさせなければよい。この際、積層方向端には凹み20を設けていない基板60を積層し、端部の管内流路70をシールしている。   As a bonding method, an adhesive, thermocompression bonding, heat welding, ultrasonic bonding, diffusion bonding, and the like are conceivable, but it is sufficient that the dent 20 is not clogged. At this time, the substrate 60 not provided with the recess 20 is stacked at the end in the stacking direction, and the in-pipe flow path 70 at the end is sealed.

本実施の形態ではこのように端部の管内流路70をシールしたが、これに限定されるものではない。   In this embodiment, the end pipe passage 70 is sealed as described above, but the present invention is not limited to this.

次に、図3に示すように、管内流路70の両端部にヘッダー80を取り付けて熱交換器が完成することとなる。   Next, as shown in FIG. 3, headers 80 are attached to both ends of the in-pipe flow path 70 to complete the heat exchanger.

尚、基板の材料は、樹脂材料であり、凹み加工やスリット加工が行いやすく、加工工数が低減できるとともに、材料費も安く、安価に熱交換器を提供することができる。   In addition, the material of the substrate is a resin material, and it is easy to perform dent processing and slit processing, and the number of processing steps can be reduced, and the material cost is low, and a heat exchanger can be provided at low cost.

以上のように製造された熱交換器は、凹み20が管内流路70となり、水や不凍液等の冷媒が流動し、スリット30が管外流路90となって空気等が流動し、冷媒と熱交換する。   In the heat exchanger manufactured as described above, the recess 20 becomes the in-tube flow path 70, the refrigerant such as water and antifreeze liquid flows, the slit 30 becomes the external pipe flow path 90, the air etc. flows, the refrigerant and heat Exchange.

この際、管内流路70となる凹み20を型40の形状を転写して加工するため、管を微細な形状に加工でき熱交換器の高性能化が図れる。   At this time, since the recess 20 serving as the in-tube flow path 70 is processed by transferring the shape of the mold 40, the tube can be processed into a fine shape, and the performance of the heat exchanger can be improved.

以上、述べてきたように、スリット加工を先に行うと細管の外形を形成してから凹み加工を行うこととなり、細管の曲がりや歪みによって凹み加工の精度が低下するが、本実施の形態では、先に凹み20の加工を行うことにより、平板状の基板10に加工するため、凹み20加工の精度が向上する。   As described above, if slitting is performed first, the outer shape of the thin tube is formed and then the dent processing is performed, and the accuracy of the dent processing decreases due to bending or distortion of the thin tube. By processing the recess 20 first, the flat substrate 10 is processed, so that the accuracy of the recess 20 processing is improved.

また、加熱して型40の形状を転写することによって凹み20の加工を行うため、微細な形状でも高精度に加工できる。よって、容易にかつ信頼性の高い熱交換器を製造することができる。   Further, since the recess 20 is processed by transferring the shape of the mold 40 by heating, even a fine shape can be processed with high accuracy. Therefore, a heat exchanger with high reliability can be manufactured easily.

また、ローラーカッター50によりスリット30を加工することにより、スリット30形状の加工工数を低減することができる。   Further, by processing the slit 30 with the roller cutter 50, the number of processing steps of the slit 30 shape can be reduced.

(実施の形態2)
図4は、本発明の実施の形態2における熱交換器の基板の製造工程の斜視図である。図5は、同実施の形態における熱交換器の基板の製造工程の正面図である。図6は、同実施の形態の熱交換器における熱交換器コアの斜視図であり、図7は、同実施の形態における熱交換器の斜視図である。
(Embodiment 2)
FIG. 4 is a perspective view of the manufacturing process of the substrate of the heat exchanger according to Embodiment 2 of the present invention. FIG. 5 is a front view of the manufacturing process of the substrate of the heat exchanger in the same embodiment. FIG. 6 is a perspective view of a heat exchanger core in the heat exchanger according to the embodiment, and FIG. 7 is a perspective view of the heat exchanger according to the embodiment.

基板110には実施の形態1と同様に、凹み120とスリット130が加工されている。   As in the first embodiment, the substrate 110 is processed with a recess 120 and a slit 130.

本実施の形態では、基板110はABS、PC、PP等の樹脂材料でシート状に成型されている。   In the present embodiment, the substrate 110 is molded into a sheet shape from a resin material such as ABS, PC, PP, or the like.

型140は、凹み120を成形する突起形状141と、スリット130を成形する突起形状142と、が設けられており、型140を基板110に押しつけ凹み120形状を転写するとともに、スリット130を加工することができる(工程(7)、工程(8)、工程(9))。   The mold 140 is provided with a protrusion shape 141 for forming the recess 120 and a protrusion shape 142 for forming the slit 130. The mold 140 is pressed against the substrate 110 to transfer the shape of the recess 120 and process the slit 130. (Step (7), step (8), step (9)).

尚、スリット130は、基板110の上面と下面が貫通している。   The slit 130 passes through the upper surface and the lower surface of the substrate 110.

次に、基板110を積層し相互間を接合して、熱交換器コア111が製作される。   Next, the heat exchanger core 111 is manufactured by laminating the substrates 110 and bonding them together.

接合方法としては、接着剤、熱圧着、熱溶着、超音波接合及び拡散接合等が考えられるが、凹み120を目詰まりさせなければよい。   As a bonding method, an adhesive, thermocompression bonding, thermal welding, ultrasonic bonding, diffusion bonding, and the like are conceivable, but the recess 120 may not be clogged.

この際、積層方向端の基板110aは、一つ手前の基板110bの凹み120と突き合わせる方向に積層接合することによって、管内流路170をシールしている。   At this time, the substrate 110a at the stacking direction end seals the in-tube flow path 170 by stacking and bonding in a direction in which the substrate 110a abuts the recess 120 of the immediately preceding substrate 110b.

本実施の形態では、このように端部の管内流路170をシールしたが、これに限定されるものではない。   In the present embodiment, the pipe flow path 170 at the end is sealed in this way, but the present invention is not limited to this.

次に、図6に示すように、管内流路170の両端部にヘッダー180を取り付けて熱交換器が完成することとなる。   Next, as shown in FIG. 6, headers 180 are attached to both ends of the in-tube flow path 170 to complete the heat exchanger.

以上のように製造された熱交換器は、凹み120が管内流路170となり、水や不凍液等の冷媒が流動し、スリット130が管外流路190となって空気等が流動し、冷媒と熱交換する。この際、管内流路170となる凹み120を型140の形状を転写して加工し、同時にスリット130を加工するため、管を微細な形状に加工でき熱交換器の高性能化が図れる。また、凹み120とスリット130の加工工数が低減できるため、安価に熱交換器を製作することができる。   In the heat exchanger manufactured as described above, the recess 120 becomes the in-tube flow path 170, the coolant such as water or antifreeze flows, the slit 130 becomes the external flow path 190, the air flows, and the refrigerant and heat. Exchange. At this time, the recess 120 serving as the in-tube flow path 170 is processed by transferring the shape of the mold 140, and the slit 130 is processed at the same time. Therefore, the tube can be processed into a fine shape, and the performance of the heat exchanger can be improved. Further, since the man-hours for processing the recess 120 and the slit 130 can be reduced, a heat exchanger can be manufactured at low cost.

以上、述べてきたように、本実施の形態では、凹み120を加工すると同時にスリット130の加工を行うことにより、凹み120とスリット130ともに加工の精度が向上するとともに、加工工数を低減することができ、さらに安価に熱交換器を提供することができる。   As described above, in the present embodiment, by processing the slit 130 at the same time as processing the recess 120, the processing accuracy of both the recess 120 and the slit 130 can be improved and the number of processing steps can be reduced. The heat exchanger can be provided at a lower cost.

以上のように、本発明にかかる熱交換器は、非常に優れた熱交換性能を維持しながら、安価に実現でき、冷凍冷蔵機器や空調機器用の熱交換器や、廃熱回収機器等の用途にも適用できる。   As described above, the heat exchanger according to the present invention can be realized at low cost while maintaining very excellent heat exchange performance, such as heat exchangers for refrigeration equipment and air conditioning equipment, waste heat recovery equipment, etc. It can also be applied to applications.

本発明の実施の形態1における熱交換器の基板の製造工程の斜視図The perspective view of the manufacturing process of the board | substrate of the heat exchanger in Embodiment 1 of this invention 同実施の形態における熱交換器の熱交換器コアの斜視図The perspective view of the heat exchanger core of the heat exchanger in the embodiment 同実施の形態における熱交換器の斜視図The perspective view of the heat exchanger in the same embodiment 本発明の実施の形態2における熱交換器の基板の製造工程の斜視図The perspective view of the manufacturing process of the board | substrate of the heat exchanger in Embodiment 2 of this invention 同実施の形態における熱交換器の基板の製造工程の正面図The front view of the manufacturing process of the board | substrate of the heat exchanger in the embodiment 同実施の形態における熱交換器の熱交換器コアの斜視図The perspective view of the heat exchanger core of the heat exchanger in the embodiment 同実施の形態における熱交換器の斜視図The perspective view of the heat exchanger in the same embodiment 従来の熱交換器の正面図Front view of conventional heat exchanger 図8のA−A線断面図AA line sectional view of FIG.

符号の説明Explanation of symbols

10、60、110、110a、110b 基板
11、111 熱交換器コア
20、120 凹み
30、130 スリット
40、140 型
50 ローラーカッター
70、170 管内流路
80、180 ヘッダー
90、190 管外流路
10, 60, 110, 110a, 110b Substrate 11, 111 Heat exchanger core 20, 120 Recess 30, 130 Slit 40, 140 Type 50 Roller cutter 70, 170 In-pipe channel 80, 180 Header 90, 190 Out-pipe channel

Claims (7)

平面上の基板に所定の間隔をおいて凹みを形成する凹み加工工程と、前記基板の前記凹み加工工程に続いて前記凹み相互間の平面上に前記凹みと略平行となるスリットを形成するスリット加工工程と、前記基板を前記スリットが重合するように複数枚積層して前記凹みが管内流路を構成し、前記スリットが管外流路を構成する熱交換器コアを成形する工程と、前記熱交換器コアの管内流路の両外側にヘッダーを取り付ける工程と、からなる熱交換器の製造方法。   A recess forming step for forming recesses at a predetermined interval in a substrate on a plane, and a slit for forming a slit substantially parallel to the recesses on a plane between the recesses following the recess processing step for the substrate. A step of forming a heat exchanger core in which a plurality of the substrates are laminated so that the slits overlap, the recesses form a flow path in the tube, and the slits form a flow path in the tube, and the heat A method of manufacturing a heat exchanger, comprising: attaching headers to both outer sides of the in-pipe flow path of the exchanger core. 平面上の基板に所定の間隔をおいて凹みを形成する凹み加工工程と、前記基板の前記凹み加工工程とほぼ同時に前記凹み相互間の平面上に前記凹みと略平行となるスリットを形成するスリット加工工程と、前記基板を前記スリットが重合するように複数枚積層して前記凹みが管内流路を構成し、前記スリットが管外流路を構成する熱交換器コアを成形する工程と、前記熱交換器コアの管内流路の両外側にヘッダーを取り付ける工程と、からなる熱交換器の製造方法。   A recess forming step for forming recesses at a predetermined interval on a substrate on a plane, and a slit for forming a slit substantially parallel to the recesses on the plane between the recesses substantially simultaneously with the recess processing step for the substrate. A step of forming a heat exchanger core in which a plurality of the substrates are laminated so that the slits overlap, the recesses form a flow path in the tube, and the slits form a flow path in the tube, and the heat A method of manufacturing a heat exchanger, comprising: attaching headers to both outer sides of the in-pipe flow path of the exchanger core. 前記凹みは、型形状を転写して加工される請求項1または2に記載の熱交換器の製造方法。   The method of manufacturing a heat exchanger according to claim 1, wherein the recess is processed by transferring a mold shape. 前記基板もしくは前記型の少なくともいずれか一方を加熱することを特徴とした請求項3に記載の熱交換器の製造方法。   The method for manufacturing a heat exchanger according to claim 3, wherein at least one of the substrate and the mold is heated. 前記スリットが、プレスにより加工される請求項1または4に記載の熱交換器の製造方法。   The method for manufacturing a heat exchanger according to claim 1 or 4, wherein the slit is processed by a press. 前記スリットは、ローラーカッターにより加工される請求項1または4に記載の熱交換器の製造方法。   The said slit is a manufacturing method of the heat exchanger of Claim 1 or 4 processed with a roller cutter. 前記基板の材料は、樹脂材料である請求項1から6のいずれか一項に記載の熱交換器の製造方法で製造された熱交換器。   The heat exchanger manufactured by the manufacturing method of the heat exchanger as described in any one of Claim 1 to 6 whose material of the said board | substrate is a resin material.
JP2005228229A 2005-08-05 2005-08-05 Heat exchanger and its manufacturing method Pending JP2007040680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228229A JP2007040680A (en) 2005-08-05 2005-08-05 Heat exchanger and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228229A JP2007040680A (en) 2005-08-05 2005-08-05 Heat exchanger and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007040680A true JP2007040680A (en) 2007-02-15

Family

ID=37798830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228229A Pending JP2007040680A (en) 2005-08-05 2005-08-05 Heat exchanger and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007040680A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942420B1 (en) 2008-04-10 2010-02-17 (주)에이치박엔지니어링 Manufacturing method of heat exchanger
WO2011039934A1 (en) * 2009-09-30 2011-04-07 ダイキン工業株式会社 Stacking type heat exchanger and method for producing a stacking type heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942420B1 (en) 2008-04-10 2010-02-17 (주)에이치박엔지니어링 Manufacturing method of heat exchanger
WO2011039934A1 (en) * 2009-09-30 2011-04-07 ダイキン工業株式会社 Stacking type heat exchanger and method for producing a stacking type heat exchanger
JP2011075186A (en) * 2009-09-30 2011-04-14 Daikin Industries Ltd Laminated type heat exchanger and method of manufacturing the laminated type heat exchanger

Similar Documents

Publication Publication Date Title
US8230909B2 (en) Heat exchanger and its manufacturing method
JP2007053307A (en) Stacked heat exchanger and its manufacturing method
JP5335568B2 (en) Flat tube heat exchanger
CN112384745B (en) Heat transport device and method for manufacturing the same
JP2007040680A (en) Heat exchanger and its manufacturing method
JP2005337606A (en) Stacked heat exchanger and its manufacturing method
JP6559334B2 (en) Heat exchanger
JP4774753B2 (en) Heat exchanger and manufacturing method thereof
JP4742919B2 (en) Manufacturing method of heat exchanger
JP2005300062A (en) Heat exchanger and manufacturing method of the same
JP2006207937A (en) Heat exchanger, and its manufacturing method
CN112368537B (en) Heat transport device and method for manufacturing the same
JP2006153360A (en) Heat exchanger and its manufacturing method
JP2005326068A (en) Plate for heat exchanger and heat exchanger
JP4622492B2 (en) Heat exchanger and manufacturing method thereof
WO2012043380A1 (en) Heat exchanger
JP2006078063A (en) Heat exchanger and manufacturing method thereof
CN214666291U (en) Heat exchange fin and heat exchange device
JP5835907B2 (en) Heat exchanger
KR100795269B1 (en) Heat exchanger and method of producing the same
JP2009276013A (en) Heat exchanger and joining method of pipe of the heat exchanger
JP2009300065A (en) Heat exchanger
JP2007278568A (en) Heat exchanger
JP4765619B2 (en) Heat exchanger and manufacturing method thereof
JP4569267B2 (en) Heat exchanger and manufacturing method thereof