JP5835907B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP5835907B2
JP5835907B2 JP2011032452A JP2011032452A JP5835907B2 JP 5835907 B2 JP5835907 B2 JP 5835907B2 JP 2011032452 A JP2011032452 A JP 2011032452A JP 2011032452 A JP2011032452 A JP 2011032452A JP 5835907 B2 JP5835907 B2 JP 5835907B2
Authority
JP
Japan
Prior art keywords
heat transfer
cut
raised
region
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011032452A
Other languages
Japanese (ja)
Other versions
JP2012172860A (en
Inventor
青木 泰高
泰高 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2011032452A priority Critical patent/JP5835907B2/en
Publication of JP2012172860A publication Critical patent/JP2012172860A/en
Application granted granted Critical
Publication of JP5835907B2 publication Critical patent/JP5835907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、空調機または冷凍機で使用され、冷媒と空気等の流体との間で熱交換を行う熱交換器に関するものである。   The present invention relates to a heat exchanger that is used in an air conditioner or a refrigerator and performs heat exchange between a refrigerant and a fluid such as air.

従来の熱交換器として、冷媒が流れるパイプと、パイプが挿通されるフィン孔を有するフィンとを備えたフィンチューブ型熱交換器が知られている(例えば、特許文献1参照)。この熱交換器において、フィン同士の間の距離であるフィンピッチは、1.1mm〜1.4mmとなっている。そして、熱交換性能を高めるために、フィンには、その表面側へ突出する切り起こしと、裏面側へ突出する切り起こしとが形成されており、これらの切り起こしは、フィン孔の中心同士を結ぶ直線とのなす角度が5°〜10°に設定されている。   As a conventional heat exchanger, a fin tube type heat exchanger including a pipe through which a refrigerant flows and a fin having a fin hole through which the pipe is inserted is known (for example, see Patent Document 1). In this heat exchanger, the fin pitch, which is the distance between the fins, is 1.1 mm to 1.4 mm. In order to enhance heat exchange performance, the fin is formed with a cut and raised protruding to the front surface side and a cut and raised protruding to the back surface side, and these cut and raised are formed between the centers of the fin holes. The angle formed by the connecting straight line is set to 5 ° to 10 °.

特開2008−202907号公報JP 2008-202907 A

しかしながら、特許文献1の構成によれば、フィンの両面から突出する切り起こしを形成したため、フィンピッチが狭くなるにつれて隣接するフィン同士の間において対向する切り起こし同士が近接した位置関係となることがある。切り起こしを形成することによる熱交換性能の向上は、空気が流れる方向の上流側で発達した温度境界層を、切り起こしが更新することで伝熱を促進する、いわゆる「前縁効果」によるものであるが、切り起こし同士が近接した位置関係にある場合、下流側の切り起こしが、上流側の切り起こしにより発達した温度境界層内に埋没され、伝熱に寄与し難くなり、熱交換性能が低下するという問題があった。   However, according to the configuration of Patent Document 1, since the cuts and protrusions that protrude from both surfaces of the fin are formed, the cuts and protrusions that face each other between adjacent fins may be in a positional relationship as the fin pitch becomes narrower. is there. The improvement of the heat exchange performance by forming the cut and raised is due to the so-called “leading edge effect” that promotes heat transfer by updating the cut and raised temperature boundary layer developed upstream in the direction of air flow. However, when the cut-and-raised parts are close to each other, the downstream-side cut-and-raised part is buried in the temperature boundary layer developed by the upstream-side raised part, making it difficult to contribute to heat transfer and heat exchange performance. There was a problem that decreased.

そこで、本発明は、伝熱板ピッチが狭くても、熱交換性能を向上させることができる熱交換器を提供することを課題とする。   Then, even if a heat exchanger plate pitch is narrow, this invention makes it a subject to provide the heat exchanger which can improve heat exchange performance.

本発明の熱交換器は、冷媒が流通する伝熱管と、伝熱管の軸方向に積層させて伝熱管に取り付けられる複数の伝熱板と、を備えた熱交換器において、各伝熱板は、その両面に設けられた複数の切り起こしを有し、複数の伝熱板は、積層方向における伝熱板同士の間の距離となる伝熱板ピッチが、0.9mm以上1.3mm以下となっており、積層方向における切り起こし同士の間の距離が、0.3mm以上となっていることを特徴とする。   The heat exchanger of the present invention is a heat exchanger including a heat transfer tube through which a refrigerant flows and a plurality of heat transfer plates attached to the heat transfer tube in the axial direction of the heat transfer tube. The plurality of heat transfer plates provided on both sides of the heat transfer plate have a distance between the heat transfer plates in the stacking direction of 0.9 mm or more and 1.3 mm or less. The distance between the cut-and-raised parts in the stacking direction is 0.3 mm or more.

この構成によれば、切り起こし同士の間の距離を0.3mm以上にすることで、伝熱板を通過する空気等の媒体の流れを好適にすることができる。これにより、切り起こし同士の間の距離を広くすることができ、前縁効果が有効に機能するため、熱交換性能を高めることができる。   According to this structure, the flow of media, such as air which passes a heat exchanger plate, can be made suitable by making the distance between cuts and raisings into 0.3 mm or more. Thereby, the distance between the cut and raised portions can be increased, and the leading edge effect functions effectively, so that the heat exchange performance can be enhanced.

この場合、各切り起こしは、各伝熱板の板面に対する角度が、5°以上10°以下となっていることが好ましい。   In this case, each cut and raised is preferably such that the angle of each heat transfer plate to the plate surface is 5 ° or more and 10 ° or less.

この構成によれば、切り起こしが伝熱板の板面に対して傾けて形成された場合であっても、切り起こし同士の間の距離を広くすることができ、前縁効果が有効に機能するため、熱交換性能を高めることができる。また、切り起こしが伝熱板の板面に対して傾けて形成された場合、伝熱板を通過する空気等の媒体の流れを蛇行させることで、伝熱板と熱交換する距離を長くすることができるため、熱交換性能をさらに高めることができる。   According to this configuration, even when the cut-and-raised portion is formed to be inclined with respect to the plate surface of the heat transfer plate, the distance between the cut-and-raised portions can be increased, and the leading edge effect functions effectively. Therefore, heat exchange performance can be improved. Further, when the cut and raised are formed to be inclined with respect to the plate surface of the heat transfer plate, the distance of heat exchange with the heat transfer plate is increased by meandering the flow of a medium such as air passing through the heat transfer plate. Therefore, the heat exchange performance can be further enhanced.

この場合、伝熱管は、各伝熱板の板面内において、奥行き方向となる列方向に並べて配設されると共に、奥行き方向に直交する段方向に並べて配設されており、伝熱管は、伝熱管の外径Doと、段方向における伝熱管の中心同士の間の距離となる段ピッチDpとの関係が、「2.8≦Dp/Do≦3.8」となっており、伝熱管の外径Doと、列方向における伝熱管の中心同士の間の距離となる列ピッチLpとの関係が、「1.2≦Lp/Do≦2.0」となっていることが好ましい。   In this case, the heat transfer tubes are arranged in the row direction which is the depth direction in the plate surface of each heat transfer plate, and are arranged in the step direction orthogonal to the depth direction. The relationship between the outer diameter Do of the heat transfer tube and the step pitch Dp that is the distance between the centers of the heat transfer tubes in the step direction is “2.8 ≦ Dp / Do ≦ 3.8”, and the heat transfer tube The relationship between the outer diameter Do and the row pitch Lp, which is the distance between the centers of the heat transfer tubes in the row direction, is preferably “1.2 ≦ Lp / Do ≦ 2.0”.

この構成によれば、各伝熱管の外径に対し、複数の伝熱管の段ピッチおよび列ピッチを、熱交換性能が最適となるように設定することができる。   According to this configuration, the step pitch and the row pitch of the plurality of heat transfer tubes can be set with respect to the outer diameter of each heat transfer tube so that the heat exchange performance is optimized.

この場合、伝熱管は、各伝熱板の板面内において、奥行き方向に直交する段方向に並べて配設され、複数の切り起こしは、段方向において隣り合う伝熱管の間の板面である切り起こし領域に形成され、切り起こし領域は、段方向における中央に設けられた切り起こしが形成されない非形成領域と、非形成領域を挟んで段方向の両側に設けられた切り起こしが形成される形成領域と、を有していることが好ましい。   In this case, the heat transfer tubes are arranged side by side in a step direction orthogonal to the depth direction in the plate surface of each heat transfer plate, and the plurality of cuts and rises are plate surfaces between adjacent heat transfer tubes in the step direction. The cut-and-raised region is formed in the cut-and-raised region, and the cut-and-raised region is formed in the center in the step direction where the cut-and-raised region is not formed, and the cut-and-raised portion provided on both sides in the step direction across the non-formed region. And a formation region.

この構成によれば、形成領域に比して非形成領域の方が、伝熱板を通過する空気等の媒体に対する抵抗は小さい。このため、媒体は、抵抗の小さい非形成領域の方が形成領域に比して流れ易い。これにより、伝熱管の下流側に形成される、媒体が流れ難い死水領域に対し、非形成領域を設けることで、媒体を伝熱管の下流側に回り込む流れとすることができる。これにより、形成される死水領域を小さくすることができるため、熱交換性能をさらに高めることができる。   According to this configuration, the resistance to the medium such as air passing through the heat transfer plate is smaller in the non-formation region than in the formation region. For this reason, the medium flows more easily in the non-formation region having a lower resistance than in the formation region. Thereby, by providing a non-formation area | region with respect to the dead water area | region formed in the downstream of a heat exchanger tube and in which a medium does not flow easily, it can be set as the flow which flows a medium around to the downstream of a heat exchanger tube. Thereby, since the dead water area | region formed can be made small, heat exchange performance can further be improved.

本発明の熱交換器によれば、伝熱板ピッチが狭くても、切り起こし同士の間の距離を広くすることができ、空気等の媒体の流れを好適にすることができるため、熱交換性能を高めることができる。   According to the heat exchanger of the present invention, even if the heat transfer plate pitch is narrow, the distance between the cut and raised portions can be increased, and the flow of a medium such as air can be made suitable. Performance can be increased.

図1は、本実施例に係る熱交換器を表した模式図である。FIG. 1 is a schematic diagram illustrating a heat exchanger according to the present embodiment. 図2は、伝熱管の軸方向から見た伝熱板の一部を表した平面図である。FIG. 2 is a plan view showing a part of the heat transfer plate viewed from the axial direction of the heat transfer tube. 図3は、伝熱管の外径および段ピッチによって変化する熱交換性能のグラフである。FIG. 3 is a graph of heat exchange performance that varies depending on the outer diameter and step pitch of the heat transfer tubes. 図4は、伝熱管の外径および列ピッチによって変化する熱交換性能のグラフである。FIG. 4 is a graph of heat exchange performance that varies depending on the outer diameter of the heat transfer tubes and the row pitch. 図5は、伝熱板を板厚方向に切った断面図である。FIG. 5 is a cross-sectional view of the heat transfer plate cut in the plate thickness direction. 図6は、積層した複数の伝熱板における複数の切り起こしを表した説明図である。FIG. 6 is an explanatory diagram showing a plurality of cuts and raises in a plurality of stacked heat transfer plates. 図7は、切り起こし同士の間の距離によって変化する熱交換性能のグラフである。FIG. 7 is a graph of the heat exchange performance that varies depending on the distance between the cut and raised parts.

以下、添付した図面を参照して、本発明に係る熱交換器について説明する。なお、以下の実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Hereinafter, a heat exchanger according to the present invention will be described with reference to the accompanying drawings. The present invention is not limited to the following examples. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

本実施例に係る熱交換器は、空調機の室内ユニットに設けられており、循環する冷媒を空気(媒体)と熱交換するものである。以下、図1および図2を参照して、熱交換器について説明する。図1は、本実施例に係る熱交換器を表した模式図であり、図2は、伝熱管の軸方向から見た伝熱板の一部を表した平面図である。図1に示すように、熱交換器1は、冷媒が流通する伝熱管5と、伝熱管5に取り付けられる複数の伝熱板6とを備えている。なお、この熱交換器1に流れ込む空気は、その風速が0.5〜2.0m/sとなっている。   The heat exchanger according to the present embodiment is provided in an indoor unit of an air conditioner, and exchanges heat between circulating refrigerant and air (medium). Hereinafter, the heat exchanger will be described with reference to FIGS. 1 and 2. FIG. 1 is a schematic view showing a heat exchanger according to the present embodiment, and FIG. 2 is a plan view showing a part of a heat transfer plate viewed from the axial direction of the heat transfer tube. As shown in FIG. 1, the heat exchanger 1 includes a heat transfer tube 5 through which a refrigerant flows, and a plurality of heat transfer plates 6 attached to the heat transfer tube 5. The air flowing into the heat exchanger 1 has a wind speed of 0.5 to 2.0 m / s.

伝熱管5は、銅管で構成され、その外径Doが、「4mm≦Do≦6mm」となっている。伝熱管5は、複数の直管部5aと、直管部5aを接続する湾曲管部5bとを有し、ひだ状に構成されている。このとき、図2に示すように、複数の直管部5aは、奥行き方向となる列方向に並べて配設されると共に、奥行き方向に直交する段方向に並べて配設されている。つまり、複数の直管部5aは、列方向の上流側に位置すると共に段方向に並んだ複数の直管部5aで構成される上流段と、列方向の下流側に位置すると共に段方向に並んだ複数の直管部5aで構成される下流段と、に分けられている。上流段における複数の直管部5aと、下流段における複数の直管部5aとは、段方向に位置ズレさせて設けられており、千鳥状に配置されている。つまり、下流段における各直管部5aは、上流段の段方向に隣接する直管部5aの間に位置するように設けられている。なお、空気は、列方向に向かって流れている。   The heat transfer tube 5 is made of a copper tube, and its outer diameter Do is “4 mm ≦ Do ≦ 6 mm”. The heat transfer tube 5 includes a plurality of straight tube portions 5a and a curved tube portion 5b that connects the straight tube portions 5a, and is configured in a pleat shape. At this time, as shown in FIG. 2, the plurality of straight pipe portions 5 a are arranged side by side in the row direction that is the depth direction, and are arranged in a row direction orthogonal to the depth direction. In other words, the plurality of straight pipe portions 5a are located on the upstream side in the row direction and are arranged on the upstream side composed of the plurality of straight pipe portions 5a arranged in the step direction, and on the downstream side in the row direction and in the step direction. And a downstream stage composed of a plurality of straight pipe portions 5a arranged side by side. The plurality of straight pipe portions 5a in the upstream stage and the plurality of straight pipe portions 5a in the downstream stage are provided to be shifted in the step direction and are arranged in a staggered manner. That is, each straight pipe part 5a in the downstream stage is provided so as to be positioned between the straight pipe parts 5a adjacent to each other in the upstream stage direction. Note that air flows in the row direction.

図3は、伝熱管の外径および段ピッチによって変化する熱交換性能のグラフであり、図4は、伝熱管の外径および列ピッチによって変化する熱交換性能のグラフである。ここで、伝熱管5は、段方向における直管部5aの軸心同士の間の距離となる段ピッチDpと、列方向における直管部5aの軸心同士の間の距離となる列ピッチLpとを、下記する所定の範囲となるように設定されることにより、熱交換性能を高めている。つまり、図3に示すように、伝熱管5の外径Doおよび段ピッチDpの関係が、「2.8≦Dp/Do≦3.8」の範囲となるように、伝熱管5および段ピッチDpを構成することで、熱交換性能を高めている。また、図4に示すように、伝熱管の外径Doおよび列ピッチLpの関係が、「1.2≦Lp/Do≦2.0」の範囲となるように、伝熱管5および列ピッチLpを構成することで、熱交換性能を高めている。なお、Dp/DoおよびLp/Doは、最高となる熱交換性能に対して、3%分だけ熱交換性能が低下する範囲内、すなわち、熱交換性能が97%〜100%となる範囲内となっている。   FIG. 3 is a graph of heat exchange performance that varies depending on the outer diameter and step pitch of the heat transfer tube, and FIG. 4 is a graph of heat exchange performance that varies depending on the outer diameter and row pitch of the heat transfer tube. Here, the heat transfer tubes 5 have a step pitch Dp that is a distance between the axial centers of the straight tube portions 5a in the step direction and a row pitch Lp that is a distance between the axes of the straight tube portions 5a in the row direction. Is set so as to be within a predetermined range described below, thereby improving the heat exchange performance. That is, as shown in FIG. 3, the heat transfer tube 5 and the step pitch are set so that the relationship between the outer diameter Do and the step pitch Dp of the heat transfer tube 5 is in the range of “2.8 ≦ Dp / Do ≦ 3.8”. By configuring Dp, the heat exchange performance is enhanced. Further, as shown in FIG. 4, the heat transfer tube 5 and the row pitch Lp are set so that the relationship between the outer diameter Do and the row pitch Lp of the heat transfer tube is in the range of “1.2 ≦ Lp / Do ≦ 2.0”. By configuring, heat exchange performance is enhanced. Note that Dp / Do and Lp / Do are within the range where the heat exchange performance is reduced by 3% with respect to the maximum heat exchange performance, that is, within the range where the heat exchange performance is 97% to 100%. It has become.

次に、図2、図5および図6を参照して、複数の伝熱板6について説明する。図5は、伝熱板を板厚方向に切った断面図であり、図6は、積層した複数の伝熱板における複数の切り起こしを表した説明図である。複数の伝熱板6は、伝熱管5の軸方向に積層して取り付けられており、伝熱板6の積層方向と、伝熱管5の軸方向とは同方向となっている。複数の伝熱板6は、積層方向における伝熱板6同士の間の距離となる伝熱板ピッチFpが、0.9mm以上1.3mm以下となっている。   Next, the plurality of heat transfer plates 6 will be described with reference to FIGS. 2, 5, and 6. FIG. 5 is a cross-sectional view of the heat transfer plate cut in the plate thickness direction, and FIG. 6 is an explanatory view showing a plurality of cut-ups in a plurality of stacked heat transfer plates. The plurality of heat transfer plates 6 are attached by being stacked in the axial direction of the heat transfer tube 5, and the stacking direction of the heat transfer plates 6 and the axial direction of the heat transfer tube 5 are the same direction. The plurality of heat transfer plates 6 have a heat transfer plate pitch Fp, which is a distance between the heat transfer plates 6 in the stacking direction, of 0.9 mm to 1.3 mm.

各伝熱板6は、アルミニウムまたはアルミニウム合金で構成され、その板厚が、0.05mm〜0.15mmとなっている。また、図2に示すように、各伝熱板6は、伝熱管5の直管部5aを挿通する複数の挿通孔7が設けられており、複数の直管部5aと相補的な配置となるように、千鳥状に配置されている。すなわち、複数の挿通孔7は、複数の直管部5aと同様に、上流段と下流段とに分けられ、上流段における複数の挿通孔7と、下流段における複数の挿通孔7とは、段方向に位置ズレさせて設けられている。つまり、下流段における各挿通孔7は、上流段の段方向に隣接する挿通孔7の間に位置するように設けられている。また、図5に示すように、各挿通孔7は、その周縁が、伝熱板6の一方の板面から突出するように形成されている。   Each heat transfer plate 6 is made of aluminum or an aluminum alloy and has a thickness of 0.05 mm to 0.15 mm. Further, as shown in FIG. 2, each heat transfer plate 6 is provided with a plurality of insertion holes 7 through which the straight tube portion 5 a of the heat transfer tube 5 is inserted, and has a complementary arrangement with the plurality of straight tube portions 5 a. They are arranged in a staggered pattern. That is, the plurality of insertion holes 7 are divided into an upstream stage and a downstream stage, similarly to the plurality of straight pipe portions 5a, and the plurality of insertion holes 7 in the upstream stage and the plurality of insertion holes 7 in the downstream stage are: The position is shifted in the step direction. That is, each insertion hole 7 in the downstream stage is provided so as to be positioned between the insertion holes 7 adjacent in the upstream stage direction. Further, as shown in FIG. 5, each insertion hole 7 is formed so that the peripheral edge protrudes from one plate surface of the heat transfer plate 6.

また、各伝熱板6には、その両面に複数の切り起こし8が形成されている。複数の切り起こし8は、切り起こし領域Eに形成され、切り起こし領域Eは、段方向において隣り合う挿通孔7の間の板面に設けられている。この切り起こし領域Eは、段方向における中央に設けられた非形成領域Eaと、非形成領域Eaを挟んで段方向の両側に設けられた一対の形成領域Ebとを有している。非形成領域Eaは、切り起こし8が形成されない領域であり、各形成領域Ebは、切り起こし8が形成される領域である。このため、形成領域Ebは、非形成領域Eaに比して空気が流れ難く、換言すれば、非形成領域Eaは、形成領域Ebに比して空気が流れ易くなる。   Each heat transfer plate 6 is formed with a plurality of cut-and-raised portions 8 on both sides thereof. The plurality of cut-and-raised portions 8 are formed in the cut-and-raised region E, and the cut-and-raised region E is provided on the plate surface between the adjacent insertion holes 7 in the step direction. The cut-and-raised region E has a non-forming region Ea provided in the center in the step direction and a pair of forming regions Eb provided on both sides in the step direction with the non-forming region Ea interposed therebetween. The non-formed region Ea is a region where the cut and raised 8 is not formed, and each formed region Eb is a region where the cut and raised 8 is formed. For this reason, air is less likely to flow in the formation region Eb than in the non-formation region Ea. In other words, air is more likely to flow in the non-formation region Ea than in the formation region Eb.

切り起こし領域Eの形成領域Ebに形成された複数の切り起こし8は、例えば、4本形成されており、段方向に平行に形成されている。また、4本の切り起こし8は、伝熱板6の両面から突出するように形成されており、列方向外側の2本の切り起こし8が、挿通孔7と同じ方向に突出しており、列方向内側の2本の切り起こし8が、挿通孔7と反対側の方向に突出している。   The plurality of cut and raised portions 8 formed in the cut-and-raised region E forming region Eb are, for example, formed in four and are formed in parallel to the step direction. Further, the four cut-and-raised parts 8 are formed so as to protrude from both surfaces of the heat transfer plate 6, and the two cut-and-raised parts 8 on the outer side in the row direction protrude in the same direction as the insertion holes 7. Two cut-and-raised portions 8 on the inner side in the direction protrude in the direction opposite to the insertion hole 7.

各切り起こし8は、その列方向における長さLが、略1.0mmとなっている。また、各切り起こし8は、列方向における伝熱板6の板面に対する角度θが、5°以上10°以下となっている。このとき、複数の切り起こし8は、列方向の中央を中心とするV字状に配置されている。また、積層方向における切り起こし8同士の間の距離S1は、いずれの箇所においても0.3mm以上となっている。なお、距離S1は、同一符号を付しているが、全て同じ距離とは限らない。また、図6に示すように、上記の伝熱板6を積層方向に重ね合わせたときに、隣接する伝熱板6にそれぞれ形成された複数の切り起こし8は、その積層方向における切り起こし8同士の間の距離S2が、0.3mm以上となっている。なお、距離S2も、距離S1と同様に、同一符号を付しているが、全て同じ距離とは限らない。   Each cut and raised 8 has a length L in the row direction of approximately 1.0 mm. Each cut and raised 8 has an angle θ with respect to the plate surface of the heat transfer plate 6 in the row direction of 5 ° or more and 10 ° or less. At this time, the plurality of cut-and-raised portions 8 are arranged in a V shape centered at the center in the column direction. Further, the distance S1 between the cut-and-raised portions 8 in the stacking direction is 0.3 mm or more at any location. In addition, although the distance S1 attaches | subjects the same code | symbol, it is not necessarily the same distance. As shown in FIG. 6, when the heat transfer plates 6 are overlapped in the stacking direction, the plurality of cuts 8 formed on the adjacent heat transfer plates 6 are cut and raised 8 in the stacking direction. The distance S2 between them is 0.3 mm or more. The distance S2 is also given the same symbol as the distance S1, but is not necessarily the same distance.

図7は、切り起こし同士の間の距離によって変化する熱交換性能のグラフである。図7に示すグラフは、その横軸が切り起こし同士の間の距離S1,S2であり、その縦軸が熱交換性能である。図7に示すように、切り起こし同士の間の距離S1,S2は、0.3mm以上となることで、熱交換性能を高めている。   FIG. 7 is a graph of the heat exchange performance that varies depending on the distance between the cut and raised parts. In the graph shown in FIG. 7, the horizontal axis represents the distances S <b> 1 and S <b> 2 between the cuts and the vertical axis, and the vertical axis represents the heat exchange performance. As shown in FIG. 7, the distances S1 and S2 between the cut and raised portions are 0.3 mm or more, thereby improving the heat exchange performance.

本実施例の構成によれば、切り起こし同士の間の距離S1,S2を0.3mm以上にすることで、伝熱板6を通過する空気の流れ方向(列方向)の下流側の切り起こし8が、上流側の切り起こし8により発達した温度境界層内に埋没することなく、前縁効果が有効に機能するため、熱交換性能を高めることができる。   According to the configuration of the present embodiment, the distances S1 and S2 between the cuts and raises are set to 0.3 mm or more, so that the cuts and raises on the downstream side in the flow direction (row direction) of the air passing through the heat transfer plate 6 are performed. Since the leading edge effect functions effectively without being embedded in the temperature boundary layer developed by the cut and raised 8 on the upstream side, the heat exchange performance can be enhanced.

また、段ピッチDpが大きくなると、切り起こし領域Eが広くなり、切り起こし8の形成領域Ebを広くすることができるため、熱交換が促進される。一方で、段ピッチDpが大きくなると、伝熱板6のフィン効率が低下する。したがって、本実施例の構成のように、伝熱管5の外径Doおよび段ピッチDpの関係が、「2.8≦Dp/Do≦3.8」の範囲となるように、伝熱管5および段ピッチDpを構成することで、熱交換性能をさらに高めることができる。   Further, when the step pitch Dp is increased, the cut-and-raised region E is widened, and the formation region Eb of the cut-and-raised 8 can be widened, so that heat exchange is promoted. On the other hand, when the step pitch Dp increases, the fin efficiency of the heat transfer plate 6 decreases. Therefore, as in the configuration of the present embodiment, the heat transfer tube 5 and the heat transfer tube 5 are set so that the relationship between the outer diameter Do and the step pitch Dp of the heat transfer tube 5 is in the range of “2.8 ≦ Dp / Do ≦ 3.8”. By configuring the step pitch Dp, the heat exchange performance can be further enhanced.

また、列ピッチLpが大きくなると、熱交換器1の伝熱面積が増加する一方で、フィン効率が低下する。したがって、本実施例の構成のように、伝熱管5の外径Doおよび列ピッチLpの関係が、「1.2≦Lp/Do≦2.0」の範囲となるように、伝熱管5および列ピッチLpを構成することで、熱交換性能をさらに高めることができる。   Further, when the row pitch Lp is increased, the heat transfer area of the heat exchanger 1 is increased while the fin efficiency is decreased. Therefore, as in the configuration of the present embodiment, the heat transfer tube 5 and the heat transfer tube 5 are set so that the relationship between the outer diameter Do and the row pitch Lp of the heat transfer tube 5 is in the range of “1.2 ≦ Lp / Do ≦ 2.0”. By configuring the row pitch Lp, the heat exchange performance can be further enhanced.

また、本実施例の構成によれば、切り起こし領域Eにおいて、段方向における中央に非形成領域Eaを設け、非形成領域Eaを挟んで段方向の両側に形成領域Ebを設けた。このため、空気は非形成領域Eaに流れ易くなる。ところで、複数の直管部5aによって伝熱板6の板面には、図2に示す死水領域Mが形成され、死水領域Mは、上流側の各直管部5aの下流側に形成される。このとき、非形成領域Eaは、死水領域Mの下流側に位置しており、空気は、非形成領域Eaに流れ易くなっていることから、死水領域Mの形成を抑制することができるため、形成される死水領域Mを小さくすることができ、これにより、熱交換性能をさらに高めることができる。   Further, according to the configuration of this example, in the cut-and-raised region E, the non-forming region Ea is provided in the center in the step direction, and the forming regions Eb are provided on both sides in the step direction with the non-forming region Ea interposed therebetween. For this reason, air becomes easy to flow into non-formation field Ea. By the way, the dead water area | region M shown in FIG. 2 is formed in the plate | board surface of the heat exchanger plate 6 by the some straight pipe part 5a, and the dead water area | region M is formed in the downstream of each straight pipe part 5a of an upstream. . At this time, the non-forming region Ea is located on the downstream side of the dead water region M, and since air easily flows into the non-forming region Ea, the formation of the dead water region M can be suppressed. The formed dead water region M can be reduced, and thereby the heat exchange performance can be further enhanced.

1 熱交換器
5 伝熱管
5a 直管部
5b 湾曲管部
6 伝熱板
7 挿通孔
8 切り起こし
Do 外径
Dp 段ピッチ
Lp 列ピッチ
Fp 伝熱板ピッチ
S1,S2 切り起こし同士の間の距離
L 切り起こしの列方向における長さ
θ 切り起こしの伝熱板に対する角度
E 切り起こし領域
Ea 非形成領域
Eb 形成領域
M 死水領域
DESCRIPTION OF SYMBOLS 1 Heat exchanger 5 Heat transfer tube 5a Straight pipe part 5b Curved tube part 6 Heat transfer plate 7 Insertion hole 8 Cut and raised Do Outer diameter Dp Step pitch Lp Row pitch Fp Heat transfer plate pitch S1, S2 Distance between cut and raised L Length in row direction of cut and raised θ Angle of cut and raised to heat transfer plate E Cut and raised region Ea Non-formed region Eb formed region M Dead water region

Claims (3)

冷媒が流通する伝熱管と、前記伝熱管の軸方向に積層させて前記伝熱管に取り付けられる複数の伝熱板と、を備えた熱交換器において、
前記各伝熱板は、その両面に設けられた複数の切り起こしを有し、
前記複数の伝熱板は、積層方向における前記伝熱板同士の間の距離となる伝熱板ピッチが、0.9mm以上1.3mm以下となっており、
前記各伝熱板での積層方向における前記切り起こし同士の間の距離と、隣接する前記伝熱板での積層方向における前記切り起こし同士の間の距離と、を含む切り起こし同士の間の距離が、0.3mm以上となっており、
前記各切り起こしは、前記各伝熱板の板面に対する角度が、5°以上10°以下となっていることを特徴とする熱交換器。
In a heat exchanger comprising a heat transfer tube through which a refrigerant circulates and a plurality of heat transfer plates attached to the heat transfer tube by being stacked in the axial direction of the heat transfer tube,
Each of the heat transfer plates has a plurality of cut and raised portions provided on both sides thereof,
The plurality of heat transfer plates have a heat transfer plate pitch of 0.9 mm or more and 1.3 mm or less, which is a distance between the heat transfer plates in the stacking direction,
The distance between the cut and raised parts including the distance between the cut and raised parts in the stacking direction of the heat transfer plates and the distance between the cut and raised parts in the stacking direction of the adjacent heat transfer plates. Is 0.3 mm or more ,
Each of the cut and raised portions has an angle with respect to the plate surface of each of the heat transfer plates of 5 ° or more and 10 ° or less .
前記伝熱管は、前記各伝熱板の板面内において、奥行き方向となる列方向に並べて配設されると共に、前記奥行き方向に直交する段方向に並べて配設されており、
前記伝熱管は、前記伝熱管の外径Doと、前記段方向における前記伝熱管の中心同士の間の距離となる段ピッチDpとの関係が、「2.8≦Dp/Do≦3.8」となっており、前記伝熱管の外径Doと、前記列方向における前記伝熱管の中心同士の間の距離となる列ピッチLpとの関係が、「1.2≦Lp/Do≦2.0」となっていることを特徴とする請求項1に記載の熱交換器。
The heat transfer tubes are arranged in a row direction that is a depth direction in the plate surface of each heat transfer plate, and are arranged in a step direction orthogonal to the depth direction,
In the heat transfer tube, the relationship between the outer diameter Do of the heat transfer tube and the step pitch Dp that is the distance between the centers of the heat transfer tubes in the step direction is “2.8 ≦ Dp / Do ≦ 3.8. The relationship between the outer diameter Do of the heat transfer tubes and the row pitch Lp that is the distance between the centers of the heat transfer tubes in the row direction is “1.2 ≦ Lp / Do ≦ 2. The heat exchanger according to claim 1, wherein the heat exchanger is “0”.
前記伝熱管は、前記各伝熱板の板面内において、奥行き方向に直交する段方向に並べて配設され、
前記複数の切り起こしは、前記段方向において隣り合う前記伝熱管の間の板面である切り起こし領域に形成され、
前記切り起こし領域は、前記段方向における中央に設けられた前記切り起こしが形成されない非形成領域と、前記非形成領域を挟んで前記段方向の両側に設けられた前記切り起こしが形成される形成領域と、を有していることを特徴とする請求項1または2に記載の熱交換器。
The heat transfer tubes are arranged side by side in a step direction orthogonal to the depth direction in the plate surface of each heat transfer plate,
The plurality of cut and raised portions are formed in a cut and raised region that is a plate surface between the heat transfer tubes adjacent in the step direction,
The cut-and-raised region is formed at the center in the step direction where the cut-and-raised region is not formed, and the cut-and-raised region is formed on both sides of the step direction with the non-formed region interposed therebetween. the heat exchanger according to claim 1 or 2, characterized in that it has a, and region.
JP2011032452A 2011-02-17 2011-02-17 Heat exchanger Active JP5835907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032452A JP5835907B2 (en) 2011-02-17 2011-02-17 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032452A JP5835907B2 (en) 2011-02-17 2011-02-17 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2012172860A JP2012172860A (en) 2012-09-10
JP5835907B2 true JP5835907B2 (en) 2015-12-24

Family

ID=46975936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032452A Active JP5835907B2 (en) 2011-02-17 2011-02-17 Heat exchanger

Country Status (1)

Country Link
JP (1) JP5835907B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032181A (en) * 2015-07-30 2017-02-09 株式会社富士通ゼネラル Heat exchanger

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315096A (en) * 1986-07-07 1988-01-22 Matsushita Refrig Co Heat exchanger of fin tube type
JPH02147679U (en) * 1989-04-28 1990-12-14
JP3099714B2 (en) * 1996-01-17 2000-10-16 ダイキン工業株式会社 Cross fin heat exchanger
JP2001041671A (en) * 1999-07-28 2001-02-16 Toyo Radiator Co Ltd Heat exchanger for air conditioning
US7428920B2 (en) * 2003-08-21 2008-09-30 Visteon Global Technologies, Inc. Fin for heat exchanger
JP4536583B2 (en) * 2005-04-28 2010-09-01 株式会社神戸製鋼所 Heat exchanger
JP4537272B2 (en) * 2005-06-28 2010-09-01 株式会社豊田中央研究所 Heat exchanger
JP4952196B2 (en) * 2005-12-07 2012-06-13 パナソニック株式会社 Heat exchanger
JP2008202907A (en) * 2007-02-22 2008-09-04 Mitsubishi Heavy Ind Ltd Heat exchanger
EP2313728A1 (en) * 2008-06-13 2011-04-27 Goodman Global, Inc. Method for manufacturing tube and fin heat exchanger with reduced tube diameter and optimized fin produced thereby
JP2010078289A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the same

Also Published As

Publication number Publication date
JP2012172860A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP2009127937A (en) Heat exchanger
JP6011481B2 (en) Heat exchanger fins
JP5803768B2 (en) Heat exchanger fins and heat exchangers
KR20190124820A (en) Heat exchanger
JP2010114174A (en) Core structure for heat sink
JP2015017776A5 (en)
WO2009144909A1 (en) Fin-tube heat exchanger
JP2014020580A (en) Fin tube type heat exchanger
JP2018025373A (en) Heat exchanger for refrigerator, and refrigerator
CN107709917A (en) The interior fin of heat exchanger
CN104089517B (en) Fin and the heat exchanger with this fin for heat exchanger
JP2011112331A (en) Heat exchanger for exhaust gas
CN103890527B (en) Fin-tube heat exchanger
JP2009121708A (en) Heat exchanger
JP5835907B2 (en) Heat exchanger
JP6194471B2 (en) Finned tube heat exchanger
CN203964745U (en) For the fin and the heat exchanger with this fin of heat exchanger
JPWO2013018270A1 (en) Finned tube heat exchanger
JP2013019578A (en) Finned tube heat exchanger
JP2011144998A (en) Heat exchanger, and air conditioner including the heat exchanger
JP2009204278A (en) Heat exchanger
JP2009281703A (en) Heat exchanger
JP2002195774A (en) Air heat exchanger
US11808530B2 (en) Louvered fin
JP5446379B2 (en) Finned heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5835907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350