JP6194471B2 - Finned tube heat exchanger - Google Patents

Finned tube heat exchanger Download PDF

Info

Publication number
JP6194471B2
JP6194471B2 JP2013152488A JP2013152488A JP6194471B2 JP 6194471 B2 JP6194471 B2 JP 6194471B2 JP 2013152488 A JP2013152488 A JP 2013152488A JP 2013152488 A JP2013152488 A JP 2013152488A JP 6194471 B2 JP6194471 B2 JP 6194471B2
Authority
JP
Japan
Prior art keywords
heat transfer
fin
tube
transfer tube
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013152488A
Other languages
Japanese (ja)
Other versions
JP2014142163A (en
Inventor
崇裕 大城
崇裕 大城
横山 昭一
昭一 横山
誠 朔晦
誠 朔晦
富之 野間
富之 野間
木田 琢己
琢己 木田
憲昭 山本
憲昭 山本
広田 正宣
正宣 広田
健二 名越
健二 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013152488A priority Critical patent/JP6194471B2/en
Publication of JP2014142163A publication Critical patent/JP2014142163A/en
Application granted granted Critical
Publication of JP6194471B2 publication Critical patent/JP6194471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はフィンチューブ熱交換器に関するものである。   The present invention relates to a finned tube heat exchanger.

一般にフィンチューブ熱交換器は、所定間隔で並べられた複数のフィンと、複数のフィンを貫通する伝熱管とによって構成されている。空気は、フィンとフィンとの間を流れて伝熱管の中の流体と熱交換する。   Generally, the fin tube heat exchanger is configured by a plurality of fins arranged at predetermined intervals and a heat transfer tube penetrating the plurality of fins. The air flows between the fins and exchanges heat with the fluid in the heat transfer tubes.

積層された複数のフィンと複数のフィンを貫通する伝熱管とによって構成されるフィンチューブ熱交換器においては、フィンの熱伝達を高めるために、フィン表面にスリット形の切り起こしを設ける技術が広く知られている(例えば、特許文献1参照)。   In a finned tube heat exchanger composed of a plurality of laminated fins and heat transfer tubes penetrating the plurality of fins, a wide range of techniques for providing slit-shaped cuts and protrusions on the fin surface in order to enhance heat transfer of the fins It is known (see, for example, Patent Document 1).

図7は特許文献1に記載されているフィンチューブ熱交換器のフィンを示し、このフィン101は、複数の平板フィン101の表面と裏面を流動する気流が伝熱管102の周囲で乱流化しかつ混合されるように、気流の流動方向に対して開口した複数のスリット形切り起こし103群を前記伝熱管102の中心から放射状に設けてある。   FIG. 7 shows the fins of the fin tube heat exchanger described in Patent Document 1, and the fins 101 turbulently flow around the heat transfer tubes 102 with the airflow flowing on the front and back surfaces of the plurality of flat plate fins 101. In order to be mixed, a plurality of slit-shaped cut and raised 103 groups opened in the flow direction of the air flow are provided radially from the center of the heat transfer tube 102.

特開平8−210662号公報Japanese Patent Laid-Open No. 8-21062

しかしながら、特許文献1に記載のフィンチューブ熱交換器は、スリット形の切り起こし103群を伝熱管102周囲に多数設けることで、フィン101の熱伝達を高めているものの、切り起こし103の数を多く設けることで、熱交換器を通過する気流の通風抵抗が増加している。気流の通風抵抗が増加すると、風量が低下して熱交換量を低下させてしまうことになる。加えて、熱交換器に気流を導入する送風機の消費電力が増加し、この熱交換器を搭載する冷凍サイクル装置のエネルギー消費効率が低下してしまうという課題があった。   However, although the fin tube heat exchanger described in Patent Document 1 increases the heat transfer of the fins 101 by providing a large number of slit-shaped cut and raised groups 103 around the heat transfer tube 102, the number of cut and raised parts 103 is reduced. By providing many, the ventilation resistance of the airflow which passes a heat exchanger is increasing. When the ventilation resistance of the airflow increases, the air volume decreases and the heat exchange amount decreases. In addition, there is a problem that the power consumption of the blower that introduces the airflow into the heat exchanger is increased, and the energy consumption efficiency of the refrigeration cycle apparatus equipped with the heat exchanger is reduced.

本発明はこのような従来の課題を解決するものであり、スリットの切り起こしを気流方向に対しフィン風下側にのみ形成することで通風抵抗の増大を抑制し、かつ高い熱交換効率をもつフィンチューブ熱交換器を提供することを目的とする。   The present invention solves such a conventional problem. A fin having a high heat exchange efficiency is formed by suppressing the increase in ventilation resistance by forming slits only on the fin leeward side with respect to the airflow direction. An object is to provide a tube heat exchanger.

上記課題を解決するために本発明は、積層された複数のフィンと、前記複数のフィンを貫通する伝熱管とを備え、前記フィンは気流方向に対して風下側にのみ、気流方向に対して傾斜するスリット形切起こしを有するとともに、前記伝熱管の気流方向風下側に突起物を備えた構成としてある。   In order to solve the above-mentioned problems, the present invention includes a plurality of laminated fins and a heat transfer tube penetrating the plurality of fins, and the fins are only on the leeward side with respect to the airflow direction, and with respect to the airflow direction. In addition to having an inclined slit-shaped cut-and-raised, a projection is provided on the leeward side in the airflow direction of the heat transfer tube.

これにより、フィン風下側に設けたスリット形切起こしによって、風速の遅い気流の温度境界層を分断できるとともに、スリット形切起こしの2辺の立ち上がり面に衝突した気流を伝熱管後方に導き、前記伝熱管後方の気流の停滞域を減少させることができる。しかもこの気流は伝熱管風下側に位置する突起物に衝突するようになるので伝熱管後方の熱伝達を向上することができる。   Thereby, by the slit-shaped cut and raised provided on the fin leeward side, the temperature boundary layer of the air flow having a low wind speed can be divided, and the air flow colliding with the rising surfaces of the two sides of the slit-shaped cut and raised is guided to the rear of the heat transfer tube, The stagnation area of the airflow behind the heat transfer tube can be reduced. In addition, since this airflow comes to collide with a protrusion located on the leeward side of the heat transfer tube, heat transfer behind the heat transfer tube can be improved.

本発明は、風速の遅い風下側で気流の温度境界層を分断し、しかも伝熱管後方の熱伝達を向上することができ、通風抵抗が少なく高い熱交換効率をもつフィンチューブ熱交換器を提供することができる。   The present invention provides a finned tube heat exchanger that can divide the temperature boundary layer of the airflow on the leeward side where the wind speed is slow, can improve heat transfer behind the heat transfer tube, and has low heat resistance and high heat exchange efficiency. can do.

本発明の実施の形態1におけるフィンチューブ熱交換器の構成図The block diagram of the finned-tube heat exchanger in Embodiment 1 of this invention 同実施の形態1におけるフィンチューブ熱交換器のフィンの正面図The front view of the fin of the finned-tube heat exchanger in Embodiment 1 同実施の形態1におけるフィンチューブ熱交換器の作用を示す説明図Explanatory drawing which shows the effect | action of the finned-tube heat exchanger in the same Embodiment 1. 同実施の形態1におけるフィンチューブ熱交換器のフィンの斜視図The perspective view of the fin of the finned-tube heat exchanger in Embodiment 1 同実施の形態1におけるフィンチューブ熱交換器のフィン部断面図Fin section sectional view of the fin tube heat exchanger in the first embodiment 同実施の形態2におけるフィンチューブ熱交換器のフィンの正面図The front view of the fin of the finned-tube heat exchanger in Embodiment 2 従来のフィンチューブ熱交換器のフィンを示す正面図Front view showing fins of a conventional finned tube heat exchanger

第1の発明は、積層された複数のフィンと、前記複数のフィンを貫通する伝熱管とを備え、前記フィンは気流方向に対して風下側にのみ、気流方向に対して傾斜するスリット形切起こしを有するとともに、前記伝熱管の気流方向風下側に突起物を備えた構成としてある。   A first invention includes a plurality of laminated fins and a heat transfer tube penetrating the plurality of fins, and the fins are slit-shaped slits that are inclined only to the leeward side with respect to the airflow direction and to the airflow direction. While having a raising, it is set as the structure provided with the protrusion in the airflow direction leeward side of the said heat exchanger tube.

これにより、風速の遅いフィン風下側でスリット形切起こしに衝突した気流は、温度境界層が分断され、かつ伝熱管風下側の突起物に衝突することでフィンの熱伝達が向上し、高い熱交換効率をもつフィンチューブ熱交換器を提供することができる。   As a result, the airflow that collided with the slit-shaped cut on the leeward side of the fin, where the wind speed is low, is divided in the temperature boundary layer and collided with the protrusion on the leeward side of the heat transfer tube, improving the heat transfer of the fin and increasing the heat A finned tube heat exchanger having exchange efficiency can be provided.

第2の発明は、特に第1の発明において、前記スリット形切起こしは、前記伝熱管の半径方向の延長線上に形成され、かつ前記伝熱管に対し、略ハの字型になるよう配設した構成としてある。   In a second aspect of the invention, particularly in the first aspect of the invention, the slit-shaped cut-and-raised portion is formed on an extension line in the radial direction of the heat transfer tube, and is disposed so as to be substantially C-shaped with respect to the heat transfer tube. It is as a configuration.

これにより、同形状のスリット形切起こしを前記伝熱管後方に略ハの字型に設けることで、前記伝熱管の段方向上下の通風抵抗を、均等に保つことができ、前記伝熱管後方の前記突起物方向に気流を導くことができる。前記フィン風下側の通風抵抗が、前記伝熱管段方向上下で異なる場合は、気流は通風抵抗の小さい箇所に流動してしまうため、前記伝熱管後方の前記突起物から気流がそれてしまい、熱伝達が悪いが、前記した本発明の構成によれば熱伝達率が向上し、より熱交換効率を向上させることができる。   Thereby, by providing the slit-shaped cut-and-raised shape of the same shape in a substantially C shape at the rear of the heat transfer tube, it is possible to keep the airflow resistance in the vertical direction of the heat transfer tube equal, Airflow can be guided in the direction of the protrusion. When the airflow resistance on the fin leeward side is different in the upper and lower direction of the heat transfer tube, the airflow flows to a portion where the airflow resistance is small. Although the transmission is poor, according to the configuration of the present invention described above, the heat transfer rate can be improved and the heat exchange efficiency can be further improved.

第3の発明は、第1、第2の発明において、前記スリット形切起こしは、2辺の立ち上がり辺を有し、前記伝熱管側の前記立ち上がり辺の立ち上がり面が、前記伝熱管に対し垂直方向になるよう形成した構成としてある。   According to a third invention, in the first and second inventions, the slit-shaped cut and raised portion has two rising edges, and the rising surface of the rising edge on the heat transfer tube side is perpendicular to the heat transfer tube. The structure is formed so as to be in the direction.

上記構成により、前記立ち上がり辺の立ち上がり面を前記伝熱管に対し、略垂直方向に形成したことで、前記伝熱管側の、前記立ち上がり面に衝突した気流を、前記伝熱管の後方に導き、前記伝熱管後方の気流の停滞域を減少させ、かつ前記伝熱管風下側の突起物に衝突させることで、前記伝熱管後方の熱伝達を向上させることができる。従来のフィンでは、前記伝熱管後方に気流を導く形状がないため、気流は伝熱管と衝突して、伝熱管円周状を回りこむように流動し、伝熱管後方に気流の停滞域と呼ばれる、気流の流れにくいスポットが存在し、熱伝達が悪いが、本発明の構成によれば前記した如く熱伝達率が向上する。   With the above configuration, the rising surface of the rising side is formed in a substantially vertical direction with respect to the heat transfer tube, so that the airflow that collides with the rising surface on the heat transfer tube side is guided to the rear of the heat transfer tube, Heat transfer behind the heat transfer tube can be improved by reducing the stagnation region of the air flow behind the heat transfer tube and causing the air flow to collide with the protrusion on the leeward side of the heat transfer tube. In the conventional fin, since there is no shape that guides the air flow behind the heat transfer tube, the air flow collides with the heat transfer tube and flows around the circumference of the heat transfer tube, and is called a stagnation region of the air flow behind the heat transfer tube. Although there are spots where the airflow hardly flows and heat transfer is poor, according to the configuration of the present invention, the heat transfer rate is improved as described above.

第4の発明は、前記フィンは、気流方向に対して、山と谷が交互に形成されるコルゲート形状を有する構成としてある。   In a fourth aspect of the present invention, the fin has a corrugated shape in which peaks and valleys are alternately formed with respect to the airflow direction.

これにより、気流はフィン表面を蛇行しながら流れるようになるので、気流の温度境界層が薄くなり、前記フィンの熱伝達は向上する。また、前記フィン風下側に山部を設けた場合は、前記伝熱管後方の山部が、突起物の代わりとして機能し、熱伝達率が向上する。   As a result, the airflow flows while meandering on the fin surface, so that the temperature boundary layer of the airflow becomes thin and the heat transfer of the fin is improved. Moreover, when the peak part is provided in the said fin leeward side, the peak part behind the said heat exchanger tube functions as a substitute of a protrusion, and a heat transfer rate improves.

第5の発明は、風下側の前記立ち上がり辺の立ち上がり面が、気流方向に対し、略垂直方向になるよう形成した構成としてある。   In the fifth aspect of the invention, the rising surface of the rising side on the leeward side is formed so as to be substantially perpendicular to the airflow direction.

上記構成により、熱交換器が蒸発器として機能し、前記フィンに水が付着したとき、前記立ち上がり辺の立ち上がり面が、重力方向に略水平方向になるよう形成されていることで、気流により運ばれてきた水が、フィン後縁を伝って、熱交換器から落ちやすくなり、熱交換器の水落ち性を高めることができる。   With the above configuration, the heat exchanger functions as an evaporator, and when water adheres to the fin, the rising surface of the rising side is formed so as to be substantially horizontal with respect to the direction of gravity. The water that has been discharged can easily fall from the heat exchanger along the trailing edge of the fin, and the water dropping property of the heat exchanger can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following embodiments.

(実施の形態1)
図1は実施の形態1におけるフィンチューブ熱交換器を示し、このフィンチューブ熱交換器は、所定の間隔で並行に並べられたフィン1と、このフィン1に略直角に挿入されて内部を冷媒が流動する多数の伝熱管2とで構成される。伝熱管2は、多数の伝熱管2の間に流入する気流100に対して略直角で段方向に隣り合う。
(Embodiment 1)
FIG. 1 shows a finned-tube heat exchanger according to the first embodiment. The finned-tube heat exchanger includes fins 1 arranged in parallel at predetermined intervals, inserted into the fins 1 at a substantially right angle, and a refrigerant inside. It is comprised with many heat-transfer tubes 2 which flow. The heat transfer tubes 2 are adjacent to each other in the step direction at a substantially right angle to the airflow 100 flowing between the plurality of heat transfer tubes 2.

図2は同実施の形態1における熱交換器のフィンの正面図である。フィン1は、気流100の流れ方向に対して、風上側をフィン風上部1a、風下側をフィン風下部1bとするとき、フィン風上部1aに1山、フィン風下部1bにさらに1山、各々フィン1の表側(図4参照)に隆起された2山の波形状(一般にはコルゲート、ワッフルなどとも呼ばれる)を成している。一般的にこの種の波形状を有するフィンは、波形状の加工後に側面を裁断するために気流100の流れ方向に対して、最も風上側、および最も風下側に各々、最風上平坦部15a、最風下平坦部15bを有する形状を成している。ただし、本実施の形態では、伝熱管2の中心線Sに対し、略ハの字型に平坦部15cを成形しているため、フィン風下部1bの山部は平坦部15cによって分断されている。本実施の形態では、フィン風上部1aの山部を山部30a、フィン風下部1bのうち、伝熱管2側の山部を山部30b、最風下平坦部15bに近い山部を山部30c(突起物)、伝熱管2中心線S上の谷部を谷部31とする。   FIG. 2 is a front view of the fins of the heat exchanger according to the first embodiment. The fin 1 has a fin wind upper part 1a and a leeward side fin fin lower part 1b with respect to the flow direction of the air flow 100. It forms a wave shape (generally called a corrugate, a waffle, etc.) that is raised on the front side of the fin 1 (see FIG. 4). Generally, the fin having a wave shape of this type has the windward flat portion 15a on the most windward side and the most leeward side with respect to the flow direction of the airflow 100 in order to cut the side surface after the wave shape processing. The shape has the flattened part 15b at the leeward side. However, in the present embodiment, since the flat portion 15c is formed in a substantially C shape with respect to the center line S of the heat transfer tube 2, the peak portion of the fin wind lower portion 1b is divided by the flat portion 15c. . In the present embodiment, the peak part of the fin wind upper part 1a is the peak part 30a, and among the fin wind lower part 1b, the peak part on the heat transfer tube 2 side is the peak part 30b, and the peak part near the coolest flat part 15b is the peak part 30c. (Protrusions), the valley on the heat transfer tube 2 center line S is a valley 31.

伝熱管2が貫通する貫通孔10は、フィン風上部1aとフィン風下部1bに跨って備えられた略円形のフィン平面部1cに設けられている。貫通孔10の周囲には、フィン平面部1cに対し略直交する方向に延びる略円筒状のフィンカラー3が形成されている。伝熱管2は、例えば拡径することによりフィンカラー3に密着した状態で貫通孔10に挿通されている。   The through hole 10 through which the heat transfer tube 2 passes is provided in a substantially circular fin plane portion 1c provided across the fin wind upper portion 1a and the fin wind lower portion 1b. A substantially cylindrical fin collar 3 extending in a direction substantially orthogonal to the fin plane portion 1 c is formed around the through hole 10. The heat transfer tube 2 is inserted into the through hole 10 in a state of being in close contact with the fin collar 3 by, for example, expanding the diameter.

図5において、フィン1に流入した気流100は、フィン1に設けられた山部30aと谷部31を蛇行するように流れるため、温度境界層が薄くなり、熱伝達が向上する。そして、図2〜図4に示すように、フィン風下部1bには、伝熱管の中心線Sに対し、略ハの字型になるように形成された平坦部15cに対し、平坦部15c鉛直方向にスリット形切起こし4が形成されているから、フィン風下部1bに流入してきた気流100aの温度境界層を分断することができる。また、山部30bの頂点から平坦部15cに向かって、それぞれ傾斜面5が形成されている。この傾斜面5は、スリット形切起こし4に対し並行するよう形成されているため、気流100をスリット形切起こし4に対し略直交するよう導くことができ、フィン1の熱伝達を高めることができる。   In FIG. 5, the airflow 100 flowing into the fin 1 flows so as to meander through the peaks 30 a and valleys 31 provided in the fin 1, so that the temperature boundary layer becomes thin and heat transfer is improved. As shown in FIGS. 2 to 4, the fin wind lower part 1 b is perpendicular to the flat part 15 c with respect to the flat part 15 c formed so as to be substantially C-shaped with respect to the center line S of the heat transfer tube. Since the slit-shaped cut-and-raised part 4 is formed in the direction, the temperature boundary layer of the airflow 100a flowing into the fin wind lower part 1b can be divided. Moreover, the inclined surface 5 is formed from the peak of the peak part 30b toward the flat part 15c, respectively. Since the inclined surface 5 is formed so as to be parallel to the slit-shaped cut and raised 4, the air flow 100 can be guided so as to be substantially orthogonal to the slit-shaped raised and raised 4, and heat transfer of the fin 1 can be improved. it can.

また、図2〜図4において、スリット形切起こし4は立ち上がり辺を2辺もっており、伝熱管2側を立ち上がり辺40a、最風下平坦部15b側を立ち上がり辺40bとする。立ち上がり辺40aの立ち上がり面は、伝熱管2に対し、垂直方向に形成されているため、立ち上がり辺40aに衝突した気流は100bで示すように伝熱管2後方に導かれ、伝熱管2後方の停滞域を減少させ、かつ伝熱管2後方に配設された突起物となる山部30cと熱交換を行い、伝熱管2後方の熱伝達効果を高めることができる。また、立ち上がり辺40bの立ち上がり面を気流方向に対し、略平行に形成することで、フィン1後方の気流100の流れを妨げず、通風抵抗の増大を抑制することができる。   2 to 4, the slit-shaped cut and raised 4 has two rising edges, and the heat transfer tube 2 side is set as the rising edge 40 a and the leeward flat part 15 b side is set as the rising edge 40 b. Since the rising surface of the rising edge 40a is formed in a direction perpendicular to the heat transfer tube 2, the airflow colliding with the rising edge 40a is guided to the rear of the heat transfer tube 2 as indicated by 100b, and the stagnation behind the heat transfer tube 2 The heat transfer effect behind the heat transfer tube 2 can be enhanced by reducing the area and exchanging heat with the crest 30c that is a protrusion disposed behind the heat transfer tube 2. In addition, by forming the rising surface of the rising edge 40b substantially parallel to the airflow direction, it is possible to suppress an increase in ventilation resistance without hindering the flow of the airflow 100 behind the fins 1.

以上のように、このフィンチューブ熱交換器は、フィンの熱交換効率を高めながら、通風抵抗の増大を抑制することができる。   As described above, the fin tube heat exchanger can suppress an increase in ventilation resistance while increasing the heat exchange efficiency of the fins.

なお、上記実施の形態では、フィンに山部と谷部をもつコルゲートフィンを用いて説明したが、山部や谷部をもたない平板フィンにおいても、伝熱管の中心線に対し、略ハの字型のスリットを設けることで、伝熱管後方に気流を導き、気流の停滞域を減少させ、かつ伝熱管後方に突起物を設けることで、フィンの伝熱を高めることができる。   In the above-described embodiment, the corrugated fin having the peak portion and the valley portion is used for the fin. However, the flat fin having no peak portion or the valley portion is substantially By providing the letter-shaped slit, the air flow is guided behind the heat transfer tube, the stagnation area of the air flow is reduced, and the protrusions are provided behind the heat transfer tube, so that the heat transfer of the fins can be increased.

(実施の形態2)
図6は実施の形態2におけるフィンチューブ熱交換器を示している。実施の形態1では、切起こし4の立ち上がり辺40bの立ち上がり面が、気流方向に対して略水平方向であるのに対し、本実施の形態では、立ち上がり辺40bの立ち上がり面が気流方向に対して略鉛直方向に構成されている。その他の構成は、実施の形態1と同様である。
(Embodiment 2)
FIG. 6 shows a finned tube heat exchanger according to the second embodiment. In the first embodiment, the rising surface of the rising edge 40b of the cut and raised 4 is substantially horizontal with respect to the airflow direction, whereas in this embodiment, the rising surface of the rising edge 40b is relative to the airflow direction. It is configured in a substantially vertical direction. Other configurations are the same as those in the first embodiment.

つまり、本実施の形態では、風上側の前記立ち上がり辺40aの立ち上がり面が伝熱管に対し、略垂直になるように形成され、かつ風下側の立ち上がり辺40bの立ち上がり面が、気流方向に対し略垂直になるように形成されている。   That is, in the present embodiment, the rising surface of the rising side 40a on the windward side is formed so as to be substantially perpendicular to the heat transfer tube, and the rising surface of the rising side 40b on the leeward side is approximately the airflow direction. It is formed to be vertical.

立ち上がり辺40bの立ち上がり面を気流方向に対し、略鉛直方向に形成することで、フィンチューブ熱交換器が蒸発器として機能するとき、フィン1に付着した水が気流100により、立ち上がり辺40bに押し流されたとき、立ち上がり面が重力方向に水平なため、フィン1の後縁を伝って水が流れ落ちやすくなる。   By forming the rising surface of the rising edge 40b in a substantially vertical direction with respect to the airflow direction, when the finned tube heat exchanger functions as an evaporator, the water attached to the fin 1 is pushed away by the airflow 100 to the rising edge 40b. Since the rising surface is horizontal in the direction of gravity, the water tends to flow down along the rear edge of the fin 1.

以上のように、このフィンチューブ熱交換器は、フィンの熱交換効率および水落性を高めることができる。   As described above, this finned tube heat exchanger can improve the heat exchange efficiency and water drainage of the fins.

本発明は、フィン間の通風抵抗の増大を抑制し、かつ高い熱交換効率をもつフィンチューブ熱交換器を提供することができ、空気調和機をはじめとする各種冷凍機器に適用できる。   INDUSTRIAL APPLICABILITY The present invention can provide a finned tube heat exchanger that suppresses an increase in ventilation resistance between fins and has high heat exchange efficiency, and can be applied to various refrigeration equipment such as an air conditioner.

1 フィン
1a フィン風上部
1b フィン風下部
1c フィン平面部
2 伝熱管
3 フィンカラー
4 スリット形切起こし
5 傾斜面
10 貫通孔
15a 最風上平坦部
15b 最風下平坦部
15c 平坦部
30a、30b 山部
30c 山部(突起物)
31 谷部
40a、40b 立ち上がり辺
100 気流
DESCRIPTION OF SYMBOLS 1 Fin 1a Fin wind upper part 1b Fin wind lower part 1c Fin plane part 2 Heat transfer tube 3 Fin collar 4 Slit-shaped cut and raised 5 Inclined surface 10 Through-hole 15a Most windward flat part 15b Most windest flat part 15c Flat part 30a, 30b Mountain part 30c Mountain (projection)
31 Valley 40a, 40b Rising edge 100 Airflow

Claims (4)

積層された複数のフィンと、前記複数のフィンを貫通する伝熱管とを備え、前記伝熱管は各フィンに対して1列をなして配列されており、前記フィンは、気流方向に対して山と谷とが交互に形成されたコルゲート形状を有し、前記伝熱管の周囲の前記フィンには、前記伝熱管を中心とした同心円状に前記山と前記谷のいずれもが無いフィン平面部と、前記フィン平面部から前記伝熱管を中心として二方向にのみ放射状に延伸した、前記山と前記谷のいずれもが無い平坦部とを有し、前記平坦部のそれぞれにスリットを有し、前記伝熱管の風下側に前記フィン平面部と前記平坦部とに沿う形状の突起物を備えたことを特徴とするフィンチューブ熱交換器。 A plurality of stacked fins and a heat transfer tube penetrating the plurality of fins, wherein the heat transfer tubes are arranged in a row with respect to each fin, and the fins are ridges with respect to the airflow direction. A fin plane portion having a corrugated shape in which the ridges and valleys are alternately formed, the fins around the heat transfer tubes being concentrically centered on the heat transfer tubes and having neither the peaks nor the valleys , Having a flat portion that extends radially only in two directions around the heat transfer tube from the fin plane portion, and has a flat portion without any of the peaks and valleys, and has a slit in each of the flat portions, A finned tube heat exchanger comprising protrusions having a shape along the fin flat portion and the flat portion on the leeward side of the heat transfer tube . スリットは、伝熱管の半径方向の延長線上に形成され、かつ伝熱管の段方向中心線に対し、略ハの字型になるよう配設したことを特徴とする請求項1記載のフィンチューブ熱交換器。 2. The finned tube heat according to claim 1, wherein the slit is formed on an extension line in the radial direction of the heat transfer tube, and is disposed so as to be substantially in a U shape with respect to the center line in the step direction of the heat transfer tube. Exchanger. スリットは、2辺の立ち上がり辺を有し、前記立ち上がり辺の立ち上がり面が伝熱管に対し垂直方向になるように形成されていることを特徴とする請求項1または2記載のフィンチューブ熱交換器。 The finned tube heat exchanger according to claim 1 or 2, wherein the slit has two rising edges, and the rising surfaces of the rising edges are perpendicular to the heat transfer tubes. . スリットは、2辺の立ち上がり辺を有し、前記立ち上がり辺のうち、風下側の前記立ち上がり辺の立ち上がり面が、気流方向に対し略垂直になるように形成されたことを特徴とする請求項1〜3のいずれか1項記載のフィンチューブ熱交換器。 Slit has a rising edge of the two sides, of the rising edges, according to claim 1 in which the rising surface of the rising edge of the leeward side, characterized in that it is formed to be substantially perpendicular to the air flow direction The finned-tube heat exchanger of any one of -3 .
JP2013152488A 2012-12-25 2013-07-23 Finned tube heat exchanger Expired - Fee Related JP6194471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013152488A JP6194471B2 (en) 2012-12-25 2013-07-23 Finned tube heat exchanger

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012280657 2012-12-25
JP2012280657 2012-12-25
JP2013152488A JP6194471B2 (en) 2012-12-25 2013-07-23 Finned tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2014142163A JP2014142163A (en) 2014-08-07
JP6194471B2 true JP6194471B2 (en) 2017-09-13

Family

ID=51423590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013152488A Expired - Fee Related JP6194471B2 (en) 2012-12-25 2013-07-23 Finned tube heat exchanger

Country Status (1)

Country Link
JP (1) JP6194471B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817553B1 (en) 2014-08-01 2018-02-21 리앙비 왕 Streamline wavy fin for finned tube heat exchanger
CN114110785B (en) * 2021-11-23 2023-01-06 珠海格力电器股份有限公司 Heat exchange air port structure, control method thereof and air conditioner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699291U (en) * 1979-12-26 1981-08-05
JPH06300474A (en) * 1993-04-12 1994-10-28 Daikin Ind Ltd Heat exchanger with fin
JPH10339594A (en) * 1997-06-09 1998-12-22 Toshiba Corp Heat exchanger
EP2141435B1 (en) * 2003-05-23 2011-08-17 Mitsubishi Electric Corporation Plate fin tube-type heat exchanger
JP5251237B2 (en) * 2008-04-30 2013-07-31 ダイキン工業株式会社 Fin tube type heat exchanger, refrigeration apparatus and hot water supply apparatus provided with the same

Also Published As

Publication number Publication date
JP2014142163A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
US20070151716A1 (en) Heat exchanger and fin of the same
JP5678392B2 (en) Corrugated fin heat exchanger drainage structure
JP2014020580A (en) Fin tube type heat exchanger
JP2013245884A (en) Fin tube heat exchanger
EP3171114B1 (en) Fin for heat exchanger and heat exchanger having fin
JP2006078035A (en) Heat exchange device
JP2018025373A (en) Heat exchanger for refrigerator, and refrigerator
JP6194471B2 (en) Finned tube heat exchanger
JP2008215670A (en) Heat transfer fin, fin tube-type heat exchanger and refrigerating cycle device
JP6021081B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus including the same
JP2004263881A (en) Heat transfer fin, heat exchanger, evaporator and condenser for car air conditioner
JP2019002588A5 (en)
JP2008116095A (en) Air heat exchanger
JP2017161186A (en) Fin tube heat exchanger
JP5958917B2 (en) Finned tube heat exchanger
JP2008249168A (en) Heat exchanger
JP5569410B2 (en) Heat exchanger tubes and heat exchangers
JP2015001307A (en) Fin tube heat exchanger
JP2005140454A (en) Heat exchanger
JP5835907B2 (en) Heat exchanger
JP2014089019A (en) Fin tube heat exchanger and refrigeration cycle device including the same
JP7006376B2 (en) Heat exchanger
JP2014126212A (en) Fin tube heat exchanger
JP2008185307A (en) Fin for heat exchanger
JP2013087977A (en) Fin tube type heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R151 Written notification of patent or utility model registration

Ref document number: 6194471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees