JP2006078035A - Heat exchange device - Google Patents

Heat exchange device Download PDF

Info

Publication number
JP2006078035A
JP2006078035A JP2004260740A JP2004260740A JP2006078035A JP 2006078035 A JP2006078035 A JP 2006078035A JP 2004260740 A JP2004260740 A JP 2004260740A JP 2004260740 A JP2004260740 A JP 2004260740A JP 2006078035 A JP2006078035 A JP 2006078035A
Authority
JP
Japan
Prior art keywords
air flow
radiator
heat
heat exchange
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004260740A
Other languages
Japanese (ja)
Inventor
Tatsuo Ozaki
竜雄 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004260740A priority Critical patent/JP2006078035A/en
Priority to PCT/JP2005/016864 priority patent/WO2006028253A1/en
Priority to DE112005002177T priority patent/DE112005002177T5/en
Priority to CNA2005800294930A priority patent/CN101010555A/en
Publication of JP2006078035A publication Critical patent/JP2006078035A/en
Priority to GB0703282A priority patent/GB2431464A/en
Priority to US11/714,523 priority patent/US20070193730A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/08Air inlets for cooling; Shutters or blinds therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat transfer performance of a heat exchanger positioned in an air flow downstream side by using turbulence of a heat exchanger positioned in an air flow upstream side. <P>SOLUTION: A perpendicularly cut and raised impact wall 12c is provided as a turbulence forming means for disturbing an air flow on at least a fin 12 of the heat exchanger 10 in the air flow upstream side of the plurality of heat exchangers 10 and 20 serially arranged in an air flowing direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、空気流れの方向に複数の熱交換器を直列に配置する熱交換装置に関するもので、車両空調用の冷媒放熱器と車両エンジン冷却用ラジエータとを直列配置する熱交換装置として好適なものである。   The present invention relates to a heat exchange device in which a plurality of heat exchangers are arranged in series in the direction of air flow, and is suitable as a heat exchange device in which a refrigerant radiator for vehicle air conditioning and a radiator for cooling a vehicle engine are arranged in series. Is.

従来の熱交換器用のフィンでは、空気流れに対して千鳥状に配置したセグメントをなす
スリット片を設けるとともに、このスリット片の空気流れ上流側を約90°折り曲げて折
曲部を設けることにより、空気流れを乱して温度境界層が成長することを抑制して熱伝達
率の向上を図っている(例えば、特許文献1参照)。
特開昭63−83591号公報
In a conventional fin for a heat exchanger, by providing slit pieces that form segments arranged in a staggered manner with respect to the air flow, and bending the air flow upstream side of the slit pieces by about 90 ° to provide a bent portion, The heat transfer coefficient is improved by suppressing the growth of the temperature boundary layer by disturbing the air flow (for example, see Patent Document 1).
JP-A 63-83591

ところで、特許文献1に記載の発明では、薄板状のフィンの一部を切り起こすことによ
りスリット片を形成するととともに、その切り起こしたスリット片の前端(前縁)側を約
90°折り曲げて折曲部を形成しているので、以下に述べる製造上の問題を有している。
By the way, in the invention described in Patent Document 1, a slit piece is formed by cutting and raising a part of a thin plate-like fin, and the front end (front edge) side of the cut and raised slit piece is bent by about 90 ° and folded. Since the curved portion is formed, it has the following manufacturing problems.

すなわち、特許文献1に記載の発明では、全ての折曲部は、スリット片の前端側を折り
曲げることにより形成されているので、同一方向の折り曲げ力が連続的に薄板状のフィン
材に作用してしまい、折曲部を形成する際に、フィン材が一方向に偏って変形してしまう。
In other words, in the invention described in Patent Document 1, since all the bent portions are formed by bending the front end side of the slit pieces, the bending force in the same direction continuously acts on the thin plate-like fin material. Thus, when forming the bent portion, the fin material is deformed by being biased in one direction.

また、スリット片は一定のピッチ寸法にて規則正しく設ける必要があるが、前述したよ
うに、特許文献1に記載の発明では、フィン材が一方向に寄り集まってしまい易いので、
スリット片間のピッチ寸法のバラツキを小さくすることが難しい。そして、スリット片間
のピッチ寸法のバラツキが大きくなると、熱伝達率が低下して所望の熱交換能力を得るこ
とができなくなる恐れが高い。
Moreover, although it is necessary to provide the slit pieces regularly with a constant pitch dimension, as described above, in the invention described in Patent Document 1, since the fin material tends to gather in one direction,
It is difficult to reduce the variation in pitch dimension between the slit pieces. And when the variation in the pitch dimension between the slit pieces increases, there is a high possibility that the heat transfer rate is lowered and the desired heat exchange capability cannot be obtained.

上記の不具合を解消するために、本発明者らは、特願2004−62236号の特許出願において簡素なフィン形状にて熱交換性能を向上できる熱交換器を提案している。   In order to solve the above problems, the present inventors have proposed a heat exchanger capable of improving the heat exchange performance with a simple fin shape in the patent application of Japanese Patent Application No. 2004-62236.

この先願においては、流体が流れるチューブの外表面に、チューブ周りを流れる空気との熱交換面積を増大させるフィンを設けるとともに、このフィンに、平板状の平板部及びこの平板部の一部を直角状に切り起こすことにより形成された衝突壁を設け、この衝突壁を、空気の流れ方向において互いに対称的に複数個設けている。   In this prior application, a fin that increases the heat exchange area with the air flowing around the tube is provided on the outer surface of the tube through which the fluid flows, and a flat plate portion and a part of the flat plate portion are perpendicular to the fin. A collision wall formed by cutting up and down is provided, and a plurality of the collision walls are provided symmetrically with respect to the air flow direction.

これによると、衝突壁を形成する際に空気流れの上流側と下流側とで互いに相殺するような向きの折り曲げ力が薄板状のフィン材料に作用する。したがって、衝突壁を形成する際に、フィン材料が一方向に偏って変形することを未然に防止できるので、衝突壁の寸法バラツキを小さく抑えることができる。   According to this, when the collision wall is formed, a bending force in such a direction as to cancel each other on the upstream side and the downstream side of the air flow acts on the thin plate-like fin material. Therefore, when the collision wall is formed, it is possible to prevent the fin material from being biased and deformed in one direction, so that the dimensional variation of the collision wall can be reduced.

この結果、衝突壁による乱流効果にて空気とフィンとの熱伝達率を高めて熱交換効率を高めつつ、フィンの形状を簡素なものとしてフィンの生産性を向上できる。   As a result, it is possible to improve the fin productivity by simplifying the shape of the fins while increasing the heat transfer efficiency by increasing the heat transfer coefficient between the air and the fins due to the turbulent flow effect by the collision wall.

ところで、上記先願は熱交換器単体としての伝熱性能の向上に関するものである。   By the way, the prior application relates to the improvement of heat transfer performance as a single heat exchanger.

そこで、本発明は、空気流れの方向に複数の熱交換器を直列に配置する熱交換装置において、空気流れ上流側に位置する熱交換器の乱流形成構造を利用して、空気流れ下流側に位置する熱交換器の伝熱性能を向上することを目的とする。   Therefore, the present invention provides a heat exchange device in which a plurality of heat exchangers are arranged in series in the direction of air flow, and uses the turbulent flow forming structure of the heat exchanger located on the air flow upstream side to It aims at improving the heat-transfer performance of the heat exchanger located in this.

上記目的を達成するため、請求項1に記載の発明では、空気の流れ方向に複数の熱交換器(10、20)を直列に配置する熱交換装置であって、
前記複数の熱交換器(10、20)は、それぞれ流体が流れるチューブ(11、21)、及び前記チューブ(11、21)の外表面に設けられて前記チューブ(11、21)周りを流れる空気との熱交換面積を増大させるフィン(12、22)を備えており、
前記複数の熱交換器(10、20)のうち空気流れ上流側の熱交換器(10)の前記フィン(12)に空気流れを攪乱する乱流形成手段(12c、12g)を設けることを特徴としている。
In order to achieve the above object, the invention according to claim 1 is a heat exchange device in which a plurality of heat exchangers (10, 20) are arranged in series in the air flow direction,
The plurality of heat exchangers (10, 20) are provided on the outer surfaces of the tubes (11, 21) through which the fluid flows and the tubes (11, 21), respectively, and flow around the tubes (11, 21). Fins (12, 22) that increase the heat exchange area with
Turbulent flow forming means (12c, 12g) for disturbing the air flow is provided in the fin (12) of the heat exchanger (10) on the upstream side of the air flow among the plurality of heat exchangers (10, 20). It is said.

これによると、空気流れ上流側の熱交換器(10)のフィン(12)において空気流れを攪乱して乱流を形成できるので、空気流れ上流側の熱交換器(10)の熱伝達率を向上して熱交換性能を向上できる。しかも、この空気流れ上流側の乱流形成の影響を空気流れ下流側の熱交換器(20)にも及ぼして、空気流れ下流側の熱交換器(20)においても乱流形成による熱交換性能の向上を実現できる。   According to this, since the turbulent flow can be formed by disturbing the air flow in the fin (12) of the heat exchanger (10) on the upstream side of the air flow, the heat transfer coefficient of the heat exchanger (10) on the upstream side of the air flow is reduced. The heat exchange performance can be improved. In addition, the influence of the turbulent flow formation on the upstream side of the air flow is also exerted on the heat exchanger (20) on the downstream side of the air flow, and the heat exchange performance by the turbulent flow formation also on the heat exchanger (20) on the downstream side of the air flow. Can be improved.

請求項2に記載の発明では、請求項1に記載の熱交換装置において、前記複数の熱交換器(10、20)のうち空気流れ下流側の熱交換器(20)の前記フィン(22)にも空気流れを攪乱する乱流形成手段(22c、22g)を設けることを特徴とする。   According to a second aspect of the present invention, in the heat exchange device according to the first aspect, the fins (22) of the heat exchanger (20) on the downstream side of the air flow among the plurality of heat exchangers (10, 20). Also, turbulent flow forming means (22c, 22g) for disturbing the air flow is provided.

これによると、請求項1の効果に加えて、空気流れ下流側の熱交換器(20)のフィン(22)においてそれ自身の乱流形成作用が追加されるので、空気流れ下流側の熱交換器(20)の熱交換性能をより一層向上できる。   According to this, in addition to the effect of claim 1, its own turbulent flow forming action is added in the fin (22) of the heat exchanger (20) on the downstream side of the air flow. The heat exchange performance of the vessel (20) can be further improved.

請求項3に記載のの発明では、請求項1または2に記載の熱交換装置において、前記複数の熱交換器(10、20)相互間の距離(L)は20mm以内であることを特徴とする。   According to a third aspect of the present invention, in the heat exchange device according to the first or second aspect, a distance (L) between the plurality of heat exchangers (10, 20) is within 20 mm. To do.

本発明者の実験検討によると、後述の図7に例示するように距離(L)を20mm以内にすることで、気流れ上流側の乱流形成の影響を空気流れ下流側の熱交換器(20)に効果的に及ぼして、空気流れ下流側の熱交換器(20)の熱交換性能を有効に向上できることが分かった。   According to the inventor's experimental study, by setting the distance (L) within 20 mm as illustrated in FIG. 7 to be described later, the influence of the turbulent flow formation on the upstream side of the air flow can be reduced by the heat exchanger on the downstream side of the air flow ( 20), it was found that the heat exchange performance of the heat exchanger (20) on the downstream side of the air flow can be effectively improved.

請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載の熱交換装置において、前記フィン(12、22)は、平板状の平板部(12a、22a)の一部を直角状に切り起こすことにより形成された直角状衝突壁(12c、22c)を有しており、
前記直角状衝突壁(12c、22c)は、前記空気の流れ方向において対称的に複数個設けられており、
前記直角状衝突壁(12c、22c)により前記乱流形成手段が構成されることを特徴とする。
According to a fourth aspect of the present invention, in the heat exchanging device according to any one of the first to third aspects, the fins (12, 22) are a part of a flat plate portion (12a, 22a). Having right-angled impact walls (12c, 22c) formed by cutting up at right angles;
A plurality of the right-angled collision walls (12c, 22c) are provided symmetrically in the air flow direction,
The turbulent flow forming means is constituted by the right-angled collision walls (12c, 22c).

このように、乱流形成手段は具体的には、フィン平板部から直角状に切り起こし形成した衝突壁により構成できる。   Thus, specifically, the turbulent flow forming means can be configured by a collision wall formed by cutting and raising the fin flat plate portion at a right angle.

ここで、直角状衝突壁(12c、22c)を空気の流れ方向において対称的に複数個設けることにより、直角状衝突壁を形成する際に空気流れの上流側と下流側とで互いに相殺するような向きの折り曲げ力が薄板状のフィン材料に作用する。したがって、衝突壁を形成する際に、フィン材料が一方向に偏って変形することを未然に防止できるので、衝突壁の寸法バラツキを小さく抑えることができる。   Here, by providing a plurality of right-angled collision walls (12c, 22c) symmetrically in the air flow direction, the upstream and downstream sides of the air flow cancel each other when forming the right-angled collision wall. The bending force in the proper direction acts on the thin fin material. Therefore, when the collision wall is formed, it is possible to prevent the fin material from being biased and deformed in one direction, so that the dimensional variation of the collision wall can be reduced.

請求項5に記載の発明では、請求項1ないし3のいずれか1つに記載の熱交換装置において、前記フィン(12、22)は、平板状の平板部(12a、22a)の一部を断面V形状に切り起こすことにより形成されたV状衝突壁(12g、22g)を有しており、
前記V状衝突壁(12g、22g)は、前記断面V形状の形成方向が前記空気の流れ方向において交互に反転するように設けられており、
前記V状衝突壁(12g、22g)により前記乱流形成手段が構成されることを特徴とする。
According to a fifth aspect of the present invention, in the heat exchanging device according to any one of the first to third aspects, the fins (12, 22) have a portion of a flat plate portion (12a, 22a) formed thereon. It has a V-shaped collision wall (12g, 22g) formed by cutting up into a V-shaped cross section,
The V-shaped collision wall (12g, 22g) is provided such that the formation direction of the cross-sectional V shape is alternately reversed in the air flow direction,
The turbulent flow forming means is configured by the V-shaped collision wall (12g, 22g).

このように、乱流形成手段は具体的には、フィン平板部から断面V形状に切り起こし形成したV状衝突壁により構成してもよい。   Thus, specifically, the turbulent flow forming means may be constituted by a V-shaped collision wall formed by cutting and raising the fin flat plate portion into a V-shaped cross section.

そして、断面V形状の形成方向が空気の流れ方向において交互に反転するようにV状衝突壁を設けることにより、フィン材料の切り起こし成形時における曲げ応力が相殺されてフィンに特定の一方向への残留応力が生じることを回避できる。   Then, by providing the V-shaped collision wall so that the formation direction of the V-shaped cross section is alternately reversed in the air flow direction, the bending stress at the time of cutting and raising the fin material is offset, and the fin has a specific direction. It is possible to avoid the occurrence of residual stress.

したがって、V状衝突壁(12g、22g)を形成する際に、フィン材料が一方向に偏って変形することを未然に防止できるので、V状衝突壁(12g、22g)の寸法バラツキを小さく抑えることができる。   Therefore, when forming the V-shaped collision wall (12g, 22g), it is possible to prevent the fin material from being biased and deformed in one direction, so that the dimensional variation of the V-shaped collision wall (12g, 22g) can be reduced. be able to.

請求項6に記載の発明では、請求項1ないし5のいずれか1つに記載の熱交換装置において、前記複数の熱交換器(10、20)のうち空気流れ上流側の熱交換器は車両空調用冷媒放熱器(10)であり、空気流れ下流側の熱交換器は車両エンジン冷却用ラジエータ(20)であることを特徴とする。   According to a sixth aspect of the present invention, in the heat exchange device according to any one of the first to fifth aspects, a heat exchanger upstream of the air flow among the plurality of heat exchangers (10, 20) is a vehicle. It is a refrigerant radiator (10) for air conditioning, and the heat exchanger on the downstream side of the air flow is a vehicle engine cooling radiator (20).

これによると、空気流れ上流側の冷媒放熱器(10)における空気流れの乱流形成によって、空気流れ下流側のラジエータ(20)の熱交換性能(放熱性能)を効果的に向上できる。   According to this, the heat exchange performance (heat radiation performance) of the radiator (20) on the downstream side of the air flow can be effectively improved by forming the turbulent flow of the air flow in the refrigerant radiator (10) on the upstream side of the air flow.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
図1〜図5および図6(a)は本発明の第1実施形態を示すもので、本実施形態は、車両空調用の冷媒放熱器と車両エンジン冷却用ラジエータとを直列配置する車両用熱交換装置に関する。
(First embodiment)
1 to 5 and FIG. 6 (a) show a first embodiment of the present invention, which is a vehicle heat in which a refrigerant radiator for vehicle air conditioning and a radiator for cooling a vehicle engine are arranged in series. It relates to an exchange device.

図1(a)は本実施形態による車両用熱交換装置の車両搭載図であり、図1(b)は車両用熱交換装置のコア部の一部断面図である。車両空調用の冷媒放熱器10と車両エンジン冷却用ラジエータ20は空気流れ(冷却風)の方向aに対して直列に配置されている。   FIG. 1A is a vehicle mounting diagram of a vehicle heat exchange device according to the present embodiment, and FIG. 1B is a partial cross-sectional view of a core portion of the vehicle heat exchange device. The refrigerant radiator 10 for vehicle air conditioning and the radiator 20 for cooling the vehicle engine are arranged in series with respect to the direction a of the air flow (cooling air).

この熱交換器搭載構造をより具体的に説明すると、車両のボンネット30の下方にエンジンルーム31が形成され、このエンジンルーム31内の最前部にグリル開口部32a、32bが開口している。このグリル開口部32a、32bの直後の部位に冷媒放熱器10とラジエータ20が直列に配置されている。ここで、空気流れの上流側に冷媒放熱器10が配置され、この冷媒放熱器10の下流側(車両後方側)にラジエータ20が配置されている。   The heat exchanger mounting structure will be described more specifically. An engine room 31 is formed below the hood 30 of the vehicle, and grill openings 32a and 32b are opened at the foremost part in the engine room 31. The refrigerant radiator 10 and the radiator 20 are arranged in series at a portion immediately after the grill openings 32a and 32b. Here, the refrigerant radiator 10 is arranged on the upstream side of the air flow, and the radiator 20 is arranged on the downstream side (vehicle rear side) of the refrigerant radiator 10.

ラジエータ20の下流側にはシュラウド21を介して軸流式ファンからなる冷却ファン22が配置されている。この冷却ファン22は、軸流式ファンを電動モータ22aにより回転駆動する電動ファンである。   On the downstream side of the radiator 20, a cooling fan 22 including an axial flow fan is disposed via a shroud 21. The cooling fan 22 is an electric fan that rotationally drives an axial flow fan by an electric motor 22a.

この冷却ファン22の下流側(車両後方側)に車両走行用のエンジン(内燃機関)33が搭載されている。この車両エンジン33は水冷式であり、この車両エンジン33の冷却水を図示しない水ポンプによりラジエータ20に循環して冷却するようになっている。   A vehicle running engine (internal combustion engine) 33 is mounted on the downstream side (vehicle rear side) of the cooling fan 22. The vehicle engine 33 is water-cooled, and the cooling water of the vehicle engine 33 is circulated to the radiator 20 and cooled by a water pump (not shown).

また、冷媒放熱器10は図示しない車両空調用冷凍サイクルの圧縮機吐出側に接続されて、圧縮機吐出冷媒(高圧側冷媒)の熱を空気流れに放出して冷媒を冷却するものである。通常のフロン系冷媒を用いる冷凍サイクルでは圧縮機の冷媒吐出圧が冷媒の臨界圧力未満であるので、冷媒放熱器10内で冷媒は凝縮しながら放熱を行う。これに対し、冷媒として二酸化炭素(CO2)等の冷媒を用いる冷凍サイクルでは圧縮機の冷媒吐出圧が冷媒の臨界圧力以上になるので、冷媒放熱器10内で冷媒は凝縮することなく超臨界状態にて放熱を行う。 The refrigerant radiator 10 is connected to a compressor discharge side of a vehicle air conditioning refrigeration cycle (not shown), and cools the refrigerant by releasing heat of the compressor discharge refrigerant (high-pressure side refrigerant) into the air flow. In a refrigeration cycle using a normal chlorofluorocarbon refrigerant, the refrigerant discharge pressure of the compressor is less than the critical pressure of the refrigerant, so that the refrigerant radiates heat while condensing in the refrigerant radiator 10. On the other hand, in the refrigeration cycle using a refrigerant such as carbon dioxide (CO 2 ) as the refrigerant, the refrigerant discharge pressure of the compressor becomes equal to or higher than the critical pressure of the refrigerant, so that the refrigerant does not condense in the refrigerant radiator 10 and is supercritical. Dissipate heat in the state.

冷媒放熱器10の下流側にラジエータ20を配置する理由は冷媒放熱器10およびラジエータ20の双方における空気との温度差確保のためである。すなわち、車両エンジン33の定常運転状態では、ラジエータ20におけるエンジン冷却水の温度が冷媒放熱器10における冷媒温度に比較してかなり高くなるので、冷媒放熱器10およびラジエータ20の双方における空気との温度差確保のためには冷媒放熱器10の下流側にラジエータ20を配置する方が有利である。   The reason for disposing the radiator 20 on the downstream side of the refrigerant radiator 10 is to ensure a temperature difference from the air in both the refrigerant radiator 10 and the radiator 20. That is, in the steady operation state of the vehicle engine 33, the temperature of the engine cooling water in the radiator 20 is considerably higher than the refrigerant temperature in the refrigerant radiator 10, so that the temperature of the air in both the refrigerant radiator 10 and the radiator 20 is In order to ensure the difference, it is advantageous to arrange the radiator 20 on the downstream side of the refrigerant radiator 10.

図2は冷媒放熱器10の具体的構成を例示するもので、冷媒が流れる複数本のチューブ11を所定間隔を置いて並列配置し、この複数本のチューブ11相互間にフィン12を設けている。このフィン12は、チューブ11の外表面に接合されて空気との伝熱面積を増大させて冷媒と空気との熱交換を促進するものである。   FIG. 2 illustrates a specific configuration of the refrigerant radiator 10, in which a plurality of tubes 11 through which refrigerant flows are arranged in parallel at predetermined intervals, and fins 12 are provided between the plurality of tubes 11. . The fins 12 are joined to the outer surface of the tube 11 to increase the heat transfer area with air and promote heat exchange between the refrigerant and air.

チューブ11の長手方向両端側にはヘッダタンク13、14を設けている。このヘッダタンク13、14は、チューブ11の長手方向と直交する方向に延びて各チューブ11内の冷媒通路と連通する。そして、チューブ11及びフィン12等からなるコア部のチューブ・フィン積層方向(図2の上下方向)の両端部に、補強部材をなすサイドプレート15、16を配置している。   Header tanks 13 and 14 are provided at both longitudinal ends of the tube 11. The header tanks 13 and 14 extend in a direction orthogonal to the longitudinal direction of the tubes 11 and communicate with the refrigerant passages in the tubes 11. Then, side plates 15 and 16 that form reinforcing members are disposed at both ends of the core portion including the tube 11 and the fins 12 in the tube-fin stacking direction (vertical direction in FIG. 2).

なお、本実施形態では、チューブ11、フィン12、ヘッダタンク13、14及びサイドプレート15、16をすべて、熱伝導性に優れた金属であるアルミニウム合金にて成形し、これらの金属部材11〜16をろう付けにて一体に接合している。   In the present embodiment, the tubes 11, fins 12, header tanks 13 and 14, and side plates 15 and 16 are all formed of an aluminum alloy that is a metal having excellent thermal conductivity, and these metal members 11 to 16 are formed. Are joined together by brazing.

冷媒放熱器10のチューブ11は、図1(b)および図3に示すように押し出し加工又は引き抜き加工により内部に複数個の冷媒通路穴11aが並列に形成された扁平状の多穴チューブである。チューブ11の扁平形状は空気流れ方向aと平行になっている。   The tube 11 of the refrigerant radiator 10 is a flat multi-hole tube in which a plurality of refrigerant passage holes 11a are formed in parallel by an extrusion process or a drawing process as shown in FIGS. . The flat shape of the tube 11 is parallel to the air flow direction a.

また、フィン12は図3に示すように平板状の平板部12a及び隣り合う平板部12aを繋ぐように湾曲した湾曲部12bを有するように波状に曲げ形成されたコルゲートフィンである。この波状のコルゲートフィン12は本実施形態では、薄板金属材料にローラ成形法を施すことにより成形されている。フィン12の湾曲部12bは図3に示すようにチューブ11の扁平部(平面部)に接触してろう付けされる。   Further, as shown in FIG. 3, the fin 12 is a corrugated fin bent in a wave shape so as to have a flat plate portion 12a and a curved portion 12b curved so as to connect adjacent flat plate portions 12a. In this embodiment, the wavy corrugated fin 12 is formed by subjecting a thin plate metal material to a roller forming method. The curved portion 12b of the fin 12 is brazed in contact with the flat portion (plane portion) of the tube 11 as shown in FIG.

そして、フィン12の平板部12aには、平板部12aの一部を直角状に切り起こした切り起こし形状からなる衝突壁12cが複数個形成されている。ここで、直角状に切り起こすとは、具体的には、平板部12aの一部を平板部12aの面に対して90°の角度で切り起こすことであるが、衝突壁12cの切り起こし角度を90°より微小量増減した90°付近の角度にしてもよい。   The flat plate portion 12a of the fin 12 is formed with a plurality of collision walls 12c having a cut-and-raised shape in which a portion of the flat plate portion 12a is cut and raised at a right angle. Here, cutting up at right angles means specifically cutting up a part of the flat plate portion 12a at an angle of 90 ° with respect to the surface of the flat plate portion 12a, but the cut-up angle of the collision wall 12c. May be set to an angle in the vicinity of 90 ° obtained by increasing or decreasing the minute amount by 90 °.

この衝突壁12cにフィン12、つまり平板部12aの表面を流れる空気を衝突させて平板部12aの表面を流れる空気の流れを攪乱してフィン12と空気との熱伝達率を増大させるようなっている。   The air flowing on the surface of the fin 12, that is, the flat plate portion 12 a is collided with the collision wall 12 c to disturb the air flow flowing on the surface of the flat plate portion 12 a to increase the heat transfer coefficient between the fin 12 and the air. Yes.

ここで、フィン12の平板部12aのうち、衝突壁12cの根本部と連なる平板部をスリット片12dと称する。このスリット片12dと衝突壁12cとによりL字状の断面形状が形成される。そして、このL字状の断面形状が、空気流れ上流側と空気流れ下流側とで、平板部12aと直交する仮想の面Mに対して互いに対称の関係となるように形成されている。   Here, among the flat plate portions 12a of the fins 12, the flat plate portion connected to the root portion of the collision wall 12c is referred to as a slit piece 12d. The slit piece 12d and the collision wall 12c form an L-shaped cross-sectional shape. And this L-shaped cross-sectional shape is formed so that it may become a mutually symmetrical relationship with respect to the virtual surface M orthogonal to the flat plate part 12a by the air flow upstream and the air flow downstream.

具体的には、空気の流れ方向において、平板部12aを仮想面Mにて上流側と下流側とに2等分したとき、上流側の衝突壁12cの個数と下流側の衝突壁12cの個数とを同一個数とするとともに、空気流れ上流側についてはスリット片12dの空気流れ下流側を直角状に切り起こし、一方、空気流れ下流側についてはスリット片12dの空気流れ上流側を直角状に切り起こしている。   Specifically, when the flat plate portion 12a is equally divided into the upstream side and the downstream side by the virtual plane M in the air flow direction, the number of the upstream collision walls 12c and the number of the downstream collision walls 12c are divided. And the air flow downstream side of the slit piece 12d is cut at a right angle on the upstream side of the air flow, while the air flow upstream side of the slit piece 12d is cut at a right angle on the downstream side of the air flow. I am waking up.

なお、車両空調用の冷媒放熱器10と車両エンジン冷却用ラジエータ20の基本的構成は同じでよいので、車両エンジン冷却用ラジエータ20の構成部材の符号を図2、3の冷媒放熱器10の対応部材の符号の括弧内に記入して、車両エンジン冷却用ラジエータ20の具体的説明を省略する。   Since the basic configuration of the vehicle radiator air-cooling radiator 10 and the vehicle engine cooling radiator 20 may be the same, the reference numerals of the components of the vehicle engine cooling radiator 20 correspond to those of the refrigerant radiator 10 of FIGS. It fills in the parenthesis of the code | symbol of a member, and the concrete description of the radiator 20 for vehicle engine cooling is abbreviate | omitted.

但し、車両エンジン冷却用ラジエータ20を循環するエンジン冷却水の圧力は、車両空調用冷媒放熱器10内の冷媒圧力に比較して大幅に低いので、ラジエータ20のチューブ21の耐圧強度は冷媒放熱器10のチューブ11のように高める必要がない。そのため、ラジエータ20のチューブ21は図1(b)に示すように1つの冷却水通路のみを形成する単純な扁平断面形状になっている。   However, since the pressure of the engine cooling water circulating through the vehicle engine cooling radiator 20 is significantly lower than the refrigerant pressure in the vehicle air conditioning refrigerant radiator 10, the pressure resistance strength of the tube 21 of the radiator 20 is the refrigerant radiator. There is no need to increase as with ten tubes 11. Therefore, the tube 21 of the radiator 20 has a simple flat cross-sectional shape that forms only one cooling water passage as shown in FIG.

本実施形態では、空気流れ下流側に位置するラジエータ20のフィン22においても、冷媒放熱器10のフィン12と同様に図3に示すごとくL字状の断面形状を構成する衝突壁22cとスリット片22dとを形成している。   In the present embodiment, the fins 22 of the radiator 20 located on the downstream side of the air flow also have the collision wall 22c and the slit pieces constituting the L-shaped cross section as shown in FIG. 22d.

なお、スリット片12dと衝突壁12cとにより形成されるL字状の断面形状は、図3に示す形態に限らず、これとは逆に、図4に示すようにフィン12、22の空気流れ上流側領域ではスリット片12d、22dの空気流れ上流側に衝突壁12c、22cを形成し、一方、空気流れ下流側領域ではスリット片12d、22dの空気流れ下流側に衝突壁12c、22cを形成するようにしてもよい。   The L-shaped cross-sectional shape formed by the slit piece 12d and the collision wall 12c is not limited to the form shown in FIG. 3, but conversely, the air flow of the fins 12 and 22 as shown in FIG. In the upstream area, the collision walls 12c, 22c are formed on the upstream side of the air flow of the slit pieces 12d, 22d, while in the downstream area of the air flow, the collision walls 12c, 22c are formed on the downstream side of the air flow of the slit pieces 12d, 22d. You may make it do.

要は、フィン12、22の空気流れ上流側領域の衝突壁12c、22cと空気流れ下流側領域の衝突壁12c、22cとを対称的に形成すればよい。   In short, the collision walls 12c and 22c in the air flow upstream region of the fins 12 and 22 and the collision walls 12c and 22c in the air flow downstream region may be formed symmetrically.

次に、フィン12、22の具体的寸法例について説明すると、フィン12、22は上述のごとく隣り合う平板部12a、22a相互間を湾曲部12b、22bにより連結して波状に曲げ形成されたコルゲートフィンであって、このコルゲートフィン12、22のフィンピッチPfは図3(b)に示すように隣り合う平板部12a、22a間の距離の2倍であり、このフィンピッチPfは例えば、2.5mmである。   Next, specific examples of dimensions of the fins 12 and 22 will be described. The fins 12 and 22 are corrugated formed by bending the adjacent flat plate portions 12a and 22a into curved shapes by connecting the curved portions 12b and 22b. The fin pitch Pf of the corrugated fins 12 and 22 is twice the distance between the adjacent flat plate portions 12a and 22a, as shown in FIG. 5 mm.

コルゲートフィン12、22の板厚t(図5参照)は例えば、0.05mm、衝突壁12c、22cの高さH(図5参照)は例えば、0.3mm、L字状断面形状部のピッチPは例えば、0.5mmである。   The thickness t (see FIG. 5) of the corrugated fins 12 and 22 is, for example, 0.05 mm, and the height H (see FIG. 5) of the collision walls 12c and 22c is, for example, 0.3 mm. P is, for example, 0.5 mm.

また、空気流れ前後の2つの熱交換器10、20間の距離L(図1(b)、図6参照)は、20mm以内の短い距離に設定することが好ましく、より具体的には、距離L=5mm付近が好ましい。   Moreover, it is preferable to set the distance L (refer FIG.1 (b), FIG. 6) between the two heat exchangers 10 and 20 before and behind an air flow to a short distance within 20 mm, and more specifically, distance. The vicinity of L = 5 mm is preferable.

次に、本実施形態の作用効果を説明する。図6(a)は本実施形態による空気流れ上流側に位置する冷媒放熱器10での空気流れ、および空気流れ下流側に位置するラジエータ20での空気流れを示す。なお、図6(a)のフィン12、22における衝突壁12c、22cとスリット片12d、22dの形成形態は図4と同じである。   Next, the effect of this embodiment is demonstrated. FIG. 6A shows an air flow in the refrigerant radiator 10 located on the upstream side of the air flow and an air flow in the radiator 20 located on the downstream side of the air flow according to the present embodiment. In addition, the formation form of the collision walls 12c and 22c and the slit pieces 12d and 22d in the fins 12 and 22 in FIG. 6A is the same as that in FIG.

冷媒放熱器10の空気流れ上流側領域では、衝突壁12cが微小寸法であるため、流入空気がほぼ層流状態を維持して通過するが、空気流れが下流側へ行くにつれて衝突壁12cによる流れの攪乱作用が徐々に増大する。このため、冷媒放熱器10の空気流れ下流側領域では図6(a)に示すように空気流れが乱流状態となって、空気側熱伝達率を向上できる。   In the upstream region of the air flow of the refrigerant radiator 10, the collision wall 12 c has a minute size, so that the inflowing air passes while maintaining a substantially laminar flow state, but the flow by the collision wall 12 c as the air flow goes downstream. The disturbance effect increases gradually. For this reason, in the downstream area of the air flow of the refrigerant radiator 10, the air flow becomes a turbulent state as shown in FIG. 6A, and the air-side heat transfer coefficient can be improved.

ここで、空気流れ前後の2つの熱交換器10、20間の距離Lを20mm以内の短い距離に設定しているので、冷媒放熱器10の空気流れ下流側領域における乱流状態の影響を、ラジエータ20の空気流れ上流側領域にも及ぼして、このラジエータ20の上流側領域にも空気流れの乱流状態を形成できる。図6(a)のα部は冷媒放熱器10での乱流状態の影響範囲を示す。   Here, since the distance L between the two heat exchangers 10 and 20 before and after the air flow is set to a short distance within 20 mm, the influence of the turbulent flow state in the air flow downstream region of the refrigerant radiator 10 is A turbulent state of the air flow can also be formed in the upstream region of the radiator 20 by affecting the upstream region of the radiator 20. The part α in FIG. 6A indicates the influence range of the turbulent flow state in the refrigerant radiator 10.

以上により、ラジエータ20側のフィン22では、空気流れの上流側領域および下流側領域の双方で乱流状態を形成できるので、ラジエータ20側の放熱性能を効果的に向上できる。   As described above, in the fins 22 on the radiator 20 side, a turbulent state can be formed in both the upstream region and the downstream region of the air flow, so that the heat dissipation performance on the radiator 20 side can be effectively improved.

本実施形態では、上流側の衝突壁12c、22cと下流側の衝突壁12c、22cとを空気流れ方向において互いに対称となるように設けているので、フィン成形工程時に互いに相殺するような向きの折り曲げ力が薄板状のフィン材料に作用する。   In the present embodiment, the upstream collision walls 12c and 22c and the downstream collision walls 12c and 22c are provided so as to be symmetrical with each other in the air flow direction, so that they are offset in the fin forming process. The bending force acts on the thin fin material.

したがって、衝突壁12c、22cを形成する際に、フィン材料が一方向に偏って変形することを未然に防止できるので、スリット片12d、22d及び衝突壁12c、22cの寸法バラツキを小さく抑えることができる。   Therefore, when the collision walls 12c and 22c are formed, it is possible to prevent the fin material from being biased and deformed in one direction, so that the dimensional variation of the slit pieces 12d and 22d and the collision walls 12c and 22c can be suppressed to be small. it can.

この結果、衝突壁12c、22cによる乱流効果にて空気とフィン12、22との熱伝達率を高めて熱交換効率を高めつつ、フィン12、22の形状を簡素なものとしてフィン12、22の生産性を向上することができる。
(第2実施形態)
図6(b)は第2実施形態であり、空気流れ上流側に位置する冷媒放熱器10のフィン12の構成を第1実施形態と同一構成とし、これに対し、空気流れ下流側に位置するラジエータ20のフィン22の構成を図6(c)に示す従来技術と同一構成にしている。
As a result, the shape of the fins 12 and 22 is simplified while the heat transfer efficiency between the air and the fins 12 and 22 is increased by the turbulent flow effect by the collision walls 12c and 22c, and the heat exchange efficiency is enhanced. Productivity can be improved.
(Second Embodiment)
FIG. 6B shows the second embodiment, in which the configuration of the fins 12 of the refrigerant radiator 10 located on the upstream side of the air flow is the same as that of the first embodiment, whereas it is located on the downstream side of the air flow. The structure of the fins 22 of the radiator 20 is the same as that of the prior art shown in FIG.

すなわち、第2実施形態におけるラジエータ20のフィン22は第1実施形態のような衝突壁22cを形成せず、図6(c)に示す従来技術と同様に所定角度で斜めに切り起こし成形した斜めルーバ22fを形成している。この斜めルーバ22fは空気流れ上流側と下流側とで切り起こし方向が反対方向になっている。   That is, the fins 22 of the radiator 20 in the second embodiment do not form the collision wall 22c as in the first embodiment, but are obliquely cut and raised at a predetermined angle as in the prior art shown in FIG. 6C. A louver 22f is formed. This oblique louver 22f is cut and raised between the upstream side and the downstream side of the air flow, and the directions are opposite.

第2実施形態によると、ラジエータ20のフィン22それ自身は乱流形成手段を備えていないが、冷媒放熱器10の空気流れ下流側領域における乱流状態の影響を、ラジエータ20の空気流れ上流側領域にも及ぼすことができる。この結果、このラジエータ20の上流側領域にも図6(b)のα部に示す通り空気流れの乱流状態を形成できる。   According to the second embodiment, the fins 22 themselves of the radiator 20 are not provided with turbulent flow forming means. However, the influence of the turbulent flow state in the downstream region of the air flow of the refrigerant radiator 10 is affected by the upstream of the air flow of the radiator 20. Can also affect the area. As a result, a turbulent state of the air flow can also be formed in the upstream region of the radiator 20 as indicated by a part α in FIG.

これにより、ラジエータ20側においても空気流れの乱流形成によって熱伝達率を向上できるので、ラジエータ20側の放熱性能を効果的に向上できる。   Thereby, since the heat transfer rate can be improved by the turbulent flow of the air flow also on the radiator 20 side, the heat dissipation performance on the radiator 20 side can be effectively improved.

なお、図6(c)に示す従来技術は製品化されている代表的なもので、冷媒放熱器10のフィン12およびラジエータ20のフィン22の双方に所定角度で斜めに切り起こし成形した斜めルーバ12f、22fを形成したものである。この従来技術では、ルーバ12f、22f間を空気が層流状態で通過するので、第1、第2実施形態のごとく衝突壁12c、22cによる乱流形成によって放熱性能を向上させることができない。   The conventional technology shown in FIG. 6 (c) is a typical product, and is an oblique louver that is cut and raised at a predetermined angle at both the fin 12 of the refrigerant radiator 10 and the fin 22 of the radiator 20. 12f and 22f are formed. In this prior art, since air passes between the louvers 12f and 22f in a laminar flow state, the heat radiation performance cannot be improved by turbulent flow formation by the collision walls 12c and 22c as in the first and second embodiments.

また、図6(d)は本発明の比較例であり、風下側のラジエータ20のフィン22のみに衝突壁22cを直角状に切り起こし成形している。この比較例では、風上側の冷媒放熱器10のフィン12に空気流れの乱流状態を形成できないので、風上側の冷媒放熱器10での空気流れの乱流状態を利用して風下側のラジエータ20の放熱性能を向上させることができない。   FIG. 6D is a comparative example of the present invention, in which the collision wall 22c is cut and raised at right angles only on the fins 22 of the leeward radiator 20. FIG. In this comparative example, since the turbulent state of the air flow cannot be formed in the fins 12 of the leeward refrigerant radiator 10, the leeward radiator is utilized by utilizing the turbulent state of the air flow in the leeward refrigerant radiator 10. The heat dissipation performance of 20 cannot be improved.

次に、図7、図8に示す実験結果に基づいて第1実施形態による効果を具体的に説明する。図7、図8に示す実験条件として、第1実施形態によるフィン12、22の各部寸法は前述の寸法例と同じである。すなわち、フィン板厚t=0.05mm、フィンピッチPf=2.5mm、衝突壁12c、22cの高さH=0.3mm、L字状断面形状部のピッチP=0.5mmである。   Next, the effect by 1st Embodiment is demonstrated concretely based on the experimental result shown in FIG. 7, FIG. As experimental conditions shown in FIGS. 7 and 8, the dimensions of the fins 12 and 22 according to the first embodiment are the same as the above-described dimension examples. That is, the fin plate thickness t = 0.05 mm, the fin pitch Pf = 2.5 mm, the height H of the collision walls 12c and 22c = 0.3 mm, and the pitch P of the L-shaped cross-sectional shape portion = 0.5 mm.

そして、入口空気温度:25℃(室温)、ラジエータ20の入口冷却水温度:80℃、冷却空気の風速:4m/s、ラジエータ20への冷却水循環流量:40L/minとし、風上側の冷媒放熱器10での放熱なしの状態を設定して、第1実施形態によるラジエータ20の放熱性能(KW)と図6(c)に示す従来技術によるラジエータ20の放熱性能(KW)とを測定し、従来技術によるラジエータ20の放熱性能を100%としたときの、第1実施形態によるラジエータ20の放熱性能の比率(%)を図7に示す。   The inlet air temperature is 25 ° C. (room temperature), the inlet cooling water temperature of the radiator 20 is 80 ° C., the cooling air wind speed is 4 m / s, and the cooling water circulation flow rate to the radiator 20 is 40 L / min. The heat radiation performance (KW) of the radiator 20 according to the first embodiment and the heat radiation performance (KW) of the radiator 20 according to the prior art shown in FIG. FIG. 7 shows the ratio (%) of the heat dissipation performance of the radiator 20 according to the first embodiment when the heat dissipation performance of the radiator 20 according to the prior art is 100%.

なお、第1実施形態によるラジエータ20と従来技術によるラジエータ20のコア部体格を同一寸法に設定していることはもちろんである。   Of course, the core dimensions of the radiator 20 according to the first embodiment and the radiator 20 according to the prior art are set to the same size.

第1実施形態によるラジエータ20では、距離Lを20mm付近まで縮小すると放熱性能を従来技術に比較して102%程度に向上できる。   In the radiator 20 according to the first embodiment, when the distance L is reduced to about 20 mm, the heat dissipation performance can be improved to about 102% as compared with the prior art.

そして、距離Lを5mm付近まで縮小するとラジエータ20の放熱性能を従来技術に比較して104%程度に向上できることを確認できた。   It was confirmed that when the distance L was reduced to about 5 mm, the heat dissipation performance of the radiator 20 could be improved to about 104% compared to the conventional technology.

次に、図8は第1実施形態による通風抵抗の影響を示すもので、第1実施形態による冷媒放熱器10とラジエータ20の合計通風抵抗(Pa)と、従来技術による冷媒放熱器10とラジエータ20の合計通風抵抗(Pa)とを測定し、従来技術による合計通風抵抗を100%としたときの、第1実施形態による合計通風抵抗の比率(%)を図8に示す。   Next, FIG. 8 shows the influence of the ventilation resistance according to the first embodiment. The total ventilation resistance (Pa) of the refrigerant radiator 10 and the radiator 20 according to the first embodiment, and the refrigerant radiator 10 and the radiator according to the prior art. FIG. 8 shows the ratio (%) of the total ventilation resistance according to the first embodiment when the total ventilation resistance (Pa) of 20 is measured and the total ventilation resistance according to the prior art is 100%.

第1実施形態によると、距離Lを20mm以内にすると、風上側の冷媒放熱器10での空気流れの乱流形成によって風下側のラジエータ20での空気流れに乱流を形成するので、通風抵抗が上昇していくが、その上昇程度は従来技術と比較して僅少値であるから、実用上、ほとんど支障がない。   According to the first embodiment, when the distance L is set to 20 mm or less, turbulent flow is formed in the air flow in the leeward radiator 20 by forming turbulent air flow in the leeward refrigerant radiator 10, so that the ventilation resistance However, since the degree of increase is a slight value compared with the prior art, there is almost no problem in practical use.

なお、図7には、第2実施形態の場合の放熱性能比を図示していないが、第2実施形態ではラジエータ20のフィン22に乱流形成手段を備えていないので、第1実施形態に比較してラジエータ20の放熱性能の向上割合が小さくなるが、本発明者の実験によると、第2実施形態においても距離Lを5mm付近まで縮小するとラジエータ20の放熱性能を従来技術に比較して102%程度に向上できることを確認できた。   FIG. 7 does not show the heat dissipation performance ratio in the case of the second embodiment, but in the second embodiment, the fins 22 of the radiator 20 are not provided with turbulent flow forming means, so Compared with the prior art, when the distance L is reduced to about 5 mm in the second embodiment, the heat dissipation performance of the radiator 20 is compared with the prior art. It was confirmed that it could be improved to about 102%.

ところで、本発明者の実験検討によると、直角状の衝突壁12c、22cを有するフィン12、22の寸法範囲としては、フィン板厚t=0.01〜0.1mm、衝突壁12c、22cの高さH=0.1〜0.5mm、L字状断面形状部のピッチPは、高さHの1.5倍から5倍程度の範囲が性能向上、フィン成形性、フィン強度等の観点から好ましい。   By the way, according to the experimental study by the present inventor, the dimension range of the fins 12 and 22 having the right-angled collision walls 12c and 22c is as follows: fin plate thickness t = 0.01 to 0.1 mm, collision walls 12c and 22c. Height H = 0.1 to 0.5 mm, and the pitch P of the L-shaped cross-section is about 1.5 to 5 times the height H. From the viewpoint of performance improvement, fin formability, fin strength, etc. To preferred.

(第3実施形態)
第1実施形態では、冷媒放熱器10およびラジエータ20における乱流形成手段として、フィン12、22の平板部12a、22aから直角状に衝突壁12c、22cを形成し、第2実施形態では冷媒放熱器10における乱流形成手段として、フィン12の平板部12aから直角状に衝突壁(衝突部)12cを形成しているが、第3実施形態では、乱流形成手段として、V状断面形状からなる衝突壁をフィン12、22に形成する。
(Third embodiment)
In the first embodiment, the collision walls 12c and 22c are formed at right angles from the flat plate portions 12a and 22a of the fins 12 and 22 as turbulent flow forming means in the refrigerant radiator 10 and the radiator 20, and in the second embodiment, the refrigerant heat is radiated. As a turbulent flow forming means in the vessel 10, a collision wall (collision part) 12c is formed perpendicularly from the flat plate portion 12a of the fin 12, but in the third embodiment, the turbulent flow forming means has a V-shaped cross-sectional shape. Are formed on the fins 12 and 22.

すなわち、図9(a)(b)は第3実施形態によるフィン12、22の構成を示すもので、フィン12、22の平板部12a、22aに、V状の断面形状が空気流れ方向aと直交する方向に延びるV状衝突壁12g(22g)を形成している。このV状衝突壁12g(22g)は空気流れを衝突攪乱させて乱流を形成するものであって、ローラ成形機等で切り起こし形成できる。   9A and 9B show the configuration of the fins 12 and 22 according to the third embodiment. The flat plate portions 12a and 22a of the fins 12 and 22 have a V-shaped cross-sectional shape in the air flow direction a. A V-shaped collision wall 12g (22g) extending in the orthogonal direction is formed. The V-shaped collision wall 12g (22g) forms a turbulent flow by colliding the air flow and can be cut and raised by a roller molding machine or the like.

V状衝突壁12g(22g)の形状をより具体的に述べると、V状衝突壁12g(22g)は、そのV状断面形状の形成方向が空気流れ方向aにおいて交互に上下反転するように形成されている。   To describe the shape of the V-shaped collision wall 12g (22g) more specifically, the V-shaped collision wall 12g (22g) is formed so that the formation direction of the V-shaped cross-sectional shape is alternately turned upside down in the air flow direction a. Has been.

ここで、V状の断面形状の頂部が平板部12a、22a側に位置し、V字状の断面形状の二股先端部が平板部12a、22aから離れる側に位置する。   Here, the top of the V-shaped cross-sectional shape is located on the flat plate portions 12a and 22a, and the bifurcated tip portion of the V-shaped cross-sectional shape is located on the side away from the flat plate portions 12a and 22a.

このようなV状衝突壁12g(22g)は、平板部12a、22a(換言すると切り起こし成形前のフィン材料面S)を挟んで千鳥状に並ぶように形成される。   Such V-shaped collision walls 12g (22g) are formed so as to be arranged in a staggered manner across flat plate portions 12a and 22a (in other words, the fin material surface S before being cut and raised).

第3実施形態によると、空気流れがV状衝突壁12g(22g)に衝突して空気流れを攪乱し、空気流れの乱流を形成するので、この乱流の形成によってフィン12、22の熱伝達率を向上できる。   According to the third embodiment, the air flow collides with the V-shaped collision wall 12g (22g) to disturb the air flow and form a turbulent flow of the air flow. The transmission rate can be improved.

そして、風上側の冷媒放熱器10のフィン12にV状衝突壁12gを形成して、フィン12の下流領域に空気流れの乱流を形成することにより、風下側のラジエータ20のフィン22の上流領域に空気流れの乱流を形成できる。これによって、第3実施形態でも第1、第2実施形態と同様に風下側のラジエータ20の放熱性能を効果的に向上できる。   Then, a V-shaped collision wall 12g is formed on the fin 12 of the leeward refrigerant radiator 10, and a turbulent flow of air flow is formed in the downstream region of the fin 12, so that the upstream side of the fin 22 of the leeward radiator 20 is formed. Air flow turbulence can be formed in the region. As a result, the heat dissipation performance of the leeward radiator 20 can be effectively improved in the third embodiment as in the first and second embodiments.

また、第3実施形態においても、図9(b)に示すように空気流れ方向aの仮想の面Mに対して上流部と下流部のV状衝突壁12g、22gを対称に形成している。そして、V状衝突壁12g(22g)のV状断面形状の形成方向を空気流れ方向aにおいて交互に上下反転させているから、フィン材料の切り起こし成形時における曲げ応力が相殺されてフィンに特定の一方向への残留応力が生じることを回避できる。   Also in the third embodiment, as shown in FIG. 9B, the upstream and downstream V-shaped collision walls 12g and 22g are formed symmetrically with respect to the virtual plane M in the air flow direction a. . Since the V-shaped cross-sectional shape of the V-shaped collision wall 12g (22g) is alternately turned upside down in the air flow direction a, the bending stress at the time of cutting and raising the fin material is offset to identify the fin. It is possible to avoid the occurrence of residual stress in one direction.

したがって、V状衝突壁12g、22gを形成する際に、フィン材料が一方向に偏って変形することを未然に防止できるので、V状衝突壁12g、22gの寸法バラツキを小さく抑えることができる。   Accordingly, when the V-shaped collision walls 12g and 22g are formed, it is possible to prevent the fin material from being biased and deformed in one direction, so that the dimensional variation of the V-shaped collision walls 12g and 22g can be reduced.

また、V状衝突壁12g、22gの個々の断面形状自体がV字状による対称形状であるので、V状衝突壁12g、22gの数は奇数個であっても偶数個であってもよい。   In addition, since the individual cross-sectional shapes of the V-shaped collision walls 12g and 22g themselves are symmetrical with a V shape, the number of the V-shaped collision walls 12g and 22g may be an odd number or an even number.

(他の実施形態)
上述の実施形態では、冷媒放熱器10とラジエータ20を直列配置した車両用熱交換装置について説明したが、本発明は、空気の流れ方向に複数の熱交換器を直列に配置する熱交換装置であれば、車両用に限らず、種々の用途に対して幅広く適用できる。
(Other embodiments)
In the above-described embodiment, the vehicle heat exchange device in which the refrigerant radiator 10 and the radiator 20 are arranged in series has been described. However, the present invention is a heat exchange device in which a plurality of heat exchangers are arranged in series in the air flow direction. If it exists, it is applicable not only for vehicles but also for various uses.

(a)は本発明の第1実施形態による熱交換装置の車両搭載状態を示す模式的断面図、(b)は(a)の熱交換装置のコア部の一部断面図である。(A) is typical sectional drawing which shows the vehicle mounting state of the heat exchange apparatus by 1st Embodiment of this invention, (b) is a partial cross section figure of the core part of the heat exchange apparatus of (a). 第1実施形態による熱交換器の正面図である。It is a front view of the heat exchanger by a 1st embodiment. (a)は本発明の第1実施形態による熱交換器のコア部の部分斜視図、(b)は(a)のA−A断面図である。(A) is a fragmentary perspective view of the core part of the heat exchanger by 1st Embodiment of this invention, (b) is AA sectional drawing of (a). 第1実施形態によるフィンの衝突壁の別形態を示す断面図である。It is sectional drawing which shows another form of the collision wall of the fin by 1st Embodiment. 切り起こし高さHおよびL字状断面形状部のピッチ寸法Pの定義を説明するフィン部拡大断面図である。It is a fin part expanded sectional view explaining the definition of the pitch dimension P of the cut-and-raised height H and the L-shaped cross-sectional shape part. 冷媒放熱器とラジエータを直列配置した各種熱交換装置における空気流れ説明図である。It is air flow explanatory drawing in the various heat exchange apparatus which has arrange | positioned the refrigerant | coolant heat radiator and the radiator in series. ラジエータ放熱性能比のグラフである。It is a graph of a radiator heat dissipation performance ratio. 冷媒放熱器とラジエータの合計通風抵抗比のグラフである。It is a graph of the total ventilation resistance ratio of a refrigerant radiator and a radiator. (a)は本発明の第3実施形態による熱交換器のコア部の部分斜視図、(b)は(a)のB−B断面図である。(A) is a fragmentary perspective view of the core part of the heat exchanger by 3rd Embodiment of this invention, (b) is BB sectional drawing of (a).

符号の説明Explanation of symbols

10…冷媒放熱器(空気流れ上流側の熱交換器)、
20…ラジエータ(空気流れ下流側の熱交換器)、11、21…チューブ、
12、22…フィン、12c、12g、22c、22g…衝突壁(乱流形成手段)。
10: Refrigerant radiator (heat exchanger on the upstream side of the air flow),
20 ... Radiator (heat exchanger on the downstream side of the air flow), 11, 21 ... Tube,
12, 22 ... Fins, 12c, 12g, 22c, 22g ... Collision walls (turbulent flow forming means).

Claims (6)

空気の流れ方向に複数の熱交換器(10、20)を直列に配置する熱交換装置であって、
前記複数の熱交換器(10、20)は、それぞれ流体が流れるチューブ(11、21)、及び前記チューブ(11、21)の外表面に設けられて前記チューブ(11、21)周りを流れる空気との熱交換面積を増大させるフィン(12、22)を備えており、
前記複数の熱交換器(10、20)のうち空気流れ上流側の熱交換器(10)の前記フィン(12)に空気流れを攪乱する乱流形成手段(12c、12g)を設けることを特徴とする熱交換装置。
A heat exchange device in which a plurality of heat exchangers (10, 20) are arranged in series in the air flow direction,
The plurality of heat exchangers (10, 20) are provided on the outer surfaces of the tubes (11, 21) through which the fluid flows and the tubes (11, 21), respectively, and flow around the tubes (11, 21). Fins (12, 22) that increase the heat exchange area with
Turbulent flow forming means (12c, 12g) for disturbing the air flow is provided in the fin (12) of the heat exchanger (10) on the upstream side of the air flow among the plurality of heat exchangers (10, 20). Heat exchange device.
前記複数の熱交換器(10、20)のうち空気流れ下流側の熱交換器(20)の前記フィン(22)にも空気流れを攪乱する乱流形成手段(22c、22g)を設けることを特徴とする請求項1に記載の熱交換装置。 Of the plurality of heat exchangers (10, 20), the fins (22) of the heat exchanger (20) on the downstream side of the air flow are also provided with turbulent flow forming means (22c, 22g) for disturbing the air flow. The heat exchange device according to claim 1, wherein the heat exchange device is a heat exchanger. 前記複数の熱交換器(10、20)相互間の距離(L)は20mm以内であることを特徴とする請求項1または2に記載の熱交換装置。 The heat exchanger according to claim 1 or 2, wherein a distance (L) between the plurality of heat exchangers (10, 20) is within 20 mm. 前記フィン(12、22)は、平板状の平板部(12a、22a)の一部を直角状に切り起こすことにより形成された直角状衝突壁(12c、22c)を有しており、
前記直角状衝突壁(12c、22c)は、前記空気の流れ方向において対称的に複数個設けられており、
前記直角状衝突壁(12c、22c)により前記乱流形成手段が構成されることを特徴とする請求項1ないし3のいずれか1つに記載の熱交換装置。
The fin (12, 22) has a right-angled collision wall (12c, 22c) formed by cutting and raising a part of a flat plate-shaped plate portion (12a, 22a) at a right angle,
A plurality of the right-angled collision walls (12c, 22c) are provided symmetrically in the air flow direction,
The heat exchange device according to any one of claims 1 to 3, wherein the turbulent flow forming means is constituted by the right-angled collision walls (12c, 22c).
前記フィン(12、22)は、平板状の平板部(12a、22a)の一部を断面V形状に切り起こすことにより形成されたV状衝突壁(12g、22g)を有しており、
前記V状衝突壁(12g、22g)は、前記断面V形状の形成方向が前記空気の流れ方向において交互に反転するように設けられており、
前記V状衝突壁(12g、22g)により前記乱流形成手段が構成されることを特徴とする請求項1ないし3のいずれか1つに記載の熱交換装置。
The fins (12, 22) have V-shaped collision walls (12g, 22g) formed by cutting and raising a part of a flat plate portion (12a, 22a) into a V-shaped cross section,
The V-shaped collision wall (12g, 22g) is provided such that the formation direction of the cross-sectional V shape is alternately reversed in the air flow direction,
The heat exchange device according to any one of claims 1 to 3, wherein the turbulent flow forming means is configured by the V-shaped collision wall (12g, 22g).
前記複数の熱交換器(10、20)のうち空気流れ上流側の熱交換器は車両空調用冷媒放熱器(10)であり、空気流れ下流側の熱交換器は車両エンジン冷却用ラジエータ(20)であることを特徴とする請求項1ないし5のいずれか1つに記載の熱交換装置。 Of the plurality of heat exchangers (10, 20), the heat exchanger on the upstream side of the air flow is a refrigerant heat radiator (10) for air conditioning of the vehicle, and the heat exchanger on the downstream side of the air flow is a radiator for cooling the vehicle engine (20). The heat exchange apparatus according to any one of claims 1 to 5, wherein
JP2004260740A 2004-09-08 2004-09-08 Heat exchange device Withdrawn JP2006078035A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004260740A JP2006078035A (en) 2004-09-08 2004-09-08 Heat exchange device
PCT/JP2005/016864 WO2006028253A1 (en) 2004-09-08 2005-09-07 Heat exchanger
DE112005002177T DE112005002177T5 (en) 2004-09-08 2005-09-07 heat exchanger device
CNA2005800294930A CN101010555A (en) 2004-09-08 2005-09-07 Heat exchanger device
GB0703282A GB2431464A (en) 2004-09-08 2007-02-20 Heat exchanger
US11/714,523 US20070193730A1 (en) 2004-09-08 2007-03-06 Heat exchanger device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260740A JP2006078035A (en) 2004-09-08 2004-09-08 Heat exchange device

Publications (1)

Publication Number Publication Date
JP2006078035A true JP2006078035A (en) 2006-03-23

Family

ID=36036532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260740A Withdrawn JP2006078035A (en) 2004-09-08 2004-09-08 Heat exchange device

Country Status (6)

Country Link
US (1) US20070193730A1 (en)
JP (1) JP2006078035A (en)
CN (1) CN101010555A (en)
DE (1) DE112005002177T5 (en)
GB (1) GB2431464A (en)
WO (1) WO2006028253A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135049A (en) * 2015-01-21 2016-07-25 東芝三菱電機産業システム株式会社 Hermetically sealed rotary electric machine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175603A (en) * 2004-12-20 2006-07-06 Alps Electric Co Ltd Heat dissipating member and thermal head using this
US7866042B2 (en) * 2007-01-12 2011-01-11 Centrum Equities Acquisition, Llc Method for producing a split louver heat exchanger fin
US8408283B2 (en) 2007-06-28 2013-04-02 Centrum Equities Acquisition, Llc Heat exchanger fin with ribbed hem
EP2096397B1 (en) * 2007-10-08 2015-01-21 Behr GmbH & Co. KG Fin for a heat exchanger
FR2924491B1 (en) * 2007-12-04 2009-12-18 Valeo Systemes Thermiques WIRELESS INTERCALIARY WITH PERSIANS FOR HEAT EXCHANGER
CN102802991B (en) * 2009-06-15 2015-09-30 沃尔沃拉斯特瓦格纳公司 Cooling intallation and the vehicle comprising cooling intallation
US8315055B2 (en) * 2009-07-10 2012-11-20 Hewlett-Packard Development Company, L.P. Systems and methods for providing heat transfer
US20110073291A1 (en) * 2009-09-30 2011-03-31 Zaiqian Hu Cooling module for a vehicle
CN104995476B (en) * 2013-02-18 2016-12-21 株式会社电装 Heat exchanger and manufacture method thereof
US10015913B2 (en) * 2016-02-15 2018-07-03 Fuji Electric Co., Ltd. Power converter and cooler
CN105806500B (en) * 2016-05-18 2018-12-04 南安市柳信光电科技有限公司 Electrical equipment temperature monitoring device easy to maintain
CN106017728B (en) * 2016-05-18 2018-08-07 珠海思特自动化系统工程有限公司 electrical equipment temperature monitoring device
CN108447213A (en) * 2016-05-18 2018-08-24 龙文凯 The electrical equipment temperature monitoring device of low noise
CN108507691A (en) * 2016-05-18 2018-09-07 龙文凯 Anti-slip type electrical equipment temperature monitoring device
CN107662470A (en) * 2016-07-28 2018-02-06 长城汽车股份有限公司 Air ducting and air conditioning for automobiles
US10739832B2 (en) 2018-10-12 2020-08-11 International Business Machines Corporation Airflow projection for heat transfer device
KR20210056798A (en) * 2019-11-11 2021-05-20 현대자동차주식회사 Vehicle heat exchanger and vehicle front structure having the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105194A (en) * 1979-02-07 1980-08-12 Hitachi Ltd Heat-exchanger
US4705105A (en) * 1986-05-06 1987-11-10 Whirlpool Corporation Locally inverted fin for an air conditioner
US4860822A (en) * 1987-12-02 1989-08-29 Carrier Corporation Lanced sine-wave heat exchanger
US5168923A (en) * 1991-11-07 1992-12-08 Carrier Corporation Method of manufacturing a heat exchanger plate fin and fin so manufactured
US5360060A (en) * 1992-12-08 1994-11-01 Hitachi, Ltd. Fin-tube type heat exchanger
US5992514A (en) * 1995-11-13 1999-11-30 Denso Corporation Heat exchanger having several exchanging portions
US6170565B1 (en) * 1996-12-04 2001-01-09 Zexel Corporation Heat exchanger
JP4379967B2 (en) * 1999-03-30 2009-12-09 株式会社デンソー Double heat exchanger
JP2001050678A (en) * 1999-08-09 2001-02-23 Tokyo Radiator Mfg Co Ltd Heat exchanger
JP4482991B2 (en) * 1999-12-14 2010-06-16 株式会社デンソー Double heat exchanger
JP2002062061A (en) * 2000-08-17 2002-02-28 Matsushita Refrig Co Ltd Heat exchanger with tubes and manufacturing method of the same
JP4029000B2 (en) * 2002-01-25 2008-01-09 カルソニックカンセイ株式会社 Manufacturing method of integrated heat exchanger and integrated heat exchanger
JP3922164B2 (en) * 2002-11-18 2007-05-30 株式会社デンソー Double heat exchanger
DE102004012796A1 (en) * 2003-03-19 2004-11-11 Denso Corp., Kariya Heat exchanger and heat transfer element with symmetrical angle sections

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135049A (en) * 2015-01-21 2016-07-25 東芝三菱電機産業システム株式会社 Hermetically sealed rotary electric machine

Also Published As

Publication number Publication date
CN101010555A (en) 2007-08-01
DE112005002177T5 (en) 2007-07-05
US20070193730A1 (en) 2007-08-23
WO2006028253A1 (en) 2006-03-16
GB2431464A (en) 2007-04-25
GB0703282D0 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US20070193730A1 (en) Heat exchanger device
EP2236972B1 (en) Fin for heat exchanger and heat exchanger using the fin
JP6011481B2 (en) Heat exchanger fins
US20070287334A1 (en) Flat tube adapted for heat exchanger
JP2006322698A (en) Heat exchanger
JP2007178015A (en) Heat exchanger
JP5803768B2 (en) Heat exchanger fins and heat exchangers
JP2012017943A (en) Oil cooler
JP2015017776A5 (en)
JP2011043322A (en) Heat exchanger
JP4483536B2 (en) Heat exchanger
JP2006349208A (en) Heat exchanger
JP2007278571A (en) Heat transfer member and heat exchanger using the same
JP4196857B2 (en) Heat exchanger and heat transfer member
JP2009162433A (en) Heat transfer member
JP4536583B2 (en) Heat exchanger
JP2003083690A (en) Corrugated fin heat-exchanger
JP5569410B2 (en) Heat exchanger tubes and heat exchangers
JP5589860B2 (en) Heat exchanger
JP2005003350A (en) Heat exchanger fin, heat exchanger, condenser and evaporator
WO2018087923A1 (en) Heat exchanger, method for manufacturing heat exchanger, and fin assembly
JP2014142163A (en) Fin tube heat exchanger
JP2006317117A (en) Heat exchanger
JP2010243067A (en) Multi-stage cross fin tube type heat exchanger
JP7155538B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081120