WO2011039091A1 - Herzunterstützungssystem - Google Patents

Herzunterstützungssystem Download PDF

Info

Publication number
WO2011039091A1
WO2011039091A1 PCT/EP2010/063989 EP2010063989W WO2011039091A1 WO 2011039091 A1 WO2011039091 A1 WO 2011039091A1 EP 2010063989 W EP2010063989 W EP 2010063989W WO 2011039091 A1 WO2011039091 A1 WO 2011039091A1
Authority
WO
WIPO (PCT)
Prior art keywords
catheter
pressure
pressure measuring
heart
assist system
Prior art date
Application number
PCT/EP2010/063989
Other languages
English (en)
French (fr)
Inventor
Thorsten Siess
Original Assignee
Abiomed Europe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abiomed Europe Gmbh filed Critical Abiomed Europe Gmbh
Publication of WO2011039091A1 publication Critical patent/WO2011039091A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • A61B5/02154Measuring pressure in heart or blood vessels by means inserted into the body by optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6851Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/13Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel by means of a catheter allowing explantation, e.g. catheter pumps temporarily introduced via the vascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/135Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting
    • A61M60/139Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel inside a blood vessel, e.g. using grafting inside the aorta, e.g. intra-aortic balloon pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/295Balloon pumps for circulatory assistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • A61M60/531Regulation using real-time patient data using blood pressure data, e.g. from blood pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/878Electrical connections within the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/117Extracorporeal pumps, i.e. the blood being pumped outside the patient's body for assisting the heart, e.g. transcutaneous or external ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/36Medical purposes thereof other than the enhancement of the cardiac output for specific blood treatment; for specific therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/562Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow
    • A61M60/569Electronic control means, e.g. for feedback regulation for making blood flow pulsatile in blood pumps that do not intrinsically create pulsatile flow synchronous with the native heart beat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • A61M60/816Sensors arranged on or in the housing, e.g. ultrasound flow sensors

Definitions

  • the invention relates to a cardiac assist system comprising a catheter tube having at least one lumen and a pressure sensor for measuring the pressure distal of the catheter tube.
  • IABP intra-arterial balloon pump
  • the IABP has a catheter tube which is surrounded by an inflatable and deflatable balloon over part of its length.
  • the balloon is inflated and deflated synchronously with the heart's pulsation to increase the overall pumping power.
  • ECG Triggering via ECG requires a pressure sensor to measure the arterial pressure or the pressure pulsation.
  • the pressure sensor is in the periphery and is pressurized over a pressure medium along the catheter filled with fluid.
  • the pressure transmission is usually damped and superimposed by movement artifacts of the catheter.
  • the pressure sensor is at the distal end of the catheter tube which projects beyond the elongated balloon. If the pressure sensor does not work properly, the entire catheter must be removed from the aorta and replaced with another catheter.
  • cardiac catheters are designed to be advanced with the distal end into the heart, for example into the left ventricle.
  • the invention has for its object to provide a heart support system, which is designed as a modular system with interchangeable components.
  • the cardiac assist system is defined by patent claim 1.
  • the pressure sensor is an optical pressure measuring catheter that can be advanced through the catheter tube of the cardiac catheter.
  • the pressure measuring catheter has an optical waveguide which leads to an optical sensor head with a pressure-dependent movable diaphragm.
  • the pressure measuring catheter is displaceable relative to the catheter tube in its longitudinal direction.
  • the optical pressure measuring catheter has the advantage that it allows a small-sized measuring head with a small diameter of a maximum of 600 pm, wherein the optical waveguide has an even smaller diameter of 80 - 100 pm.
  • the lumen of the catheter tube is continuous, ie it is open at the distal end of the tube. For example, after the catheter tube has been placed in the descending aorta using a guidewire, the pressure measuring catheter can be subsequently inserted into the lumen of the catheter tube.
  • the sensor head can be positioned as needed.
  • Another advantage is that the pressure measuring catheter is replaceable.
  • a malfunctioning pressure measuring catheter can be exchanged or different pressure measuring catheters with different parameters can be kept, of which one can be selected at a time, or the pressure measuring catheter can be calibrated ex-vivo if necessary, provided that there is a sensor drift.
  • Optical pressure sensors suitable for an optical pressure measuring catheter are sold by Opsens.
  • An optical pressure measuring sensor has a cavity in the sensor head (Fabri Perot), which is closed off with a thin glass membrane against which the blood pressure acts and which deforms in a pressure-dependent manner.
  • Light emerges from the end of an optical waveguide and is modulated by the silicon diaphragm and reflected into the optical waveguide.
  • a CCD camera At the feed end of the optical waveguide is a CCD camera that records the resulting interference pattern, which shifts pressure-dependent in the image, so that its position can be correlated with a measured pressure.
  • an optical pressure sensor In addition to the small format, an optical pressure sensor has the important advantage that it is not attacked by the surrounding blood. Blood is highly corrosive. It decomposes components of metals. Electrical lines would need insulation.
  • the optical sensor consists mainly or exclusively of glass, which is not attacked by the blood.
  • a tube is provided which receives the pressure measuring catheter including a portion of the light guide and is removable after positioning the pressure measuring catheter in the proximal direction.
  • a pipe It does not need to be corrosion resistant to blood because it is removed after laying the pressure measuring catheter.
  • the pressure measuring catheter preferably including the sensor head, has a maximum diameter of not more than 600 ⁇ m. Accordingly, the diameter of the lumen of the catheter tube is preferably 0.7 - 0.8 mm.
  • the pressure measuring catheter has a greater length than the catheter tube, such that the sensor head can protrude out of the catheter tube by a length of at least 10 cm, preferably at least 20 cm. This makes it possible to advance the pressure measuring catheter beyond the balloon lying in the descending aorta through the aortic arch and the aortic valve into the left ventricle. The pressure measuring point is then in the left ventricle. Ventricular pressure is the most significant signal, which is very well suited as a trigger signal for the control of the balloon. Ventricular pressure measurement eliminates the need for an ECG lead. The advantage for the patient is that no extracorporeal electrodes have to be applied to the body as ECG adhesive dots.
  • the pressure measuring catheter can also be used as a guide wire, which is laid first and then pushed over the catheter tube of the balloon catheter. In this case, the pressure measuring catheter is preferably provided with a flexible catheter tip distal from the sensor head.
  • Another possible application of the heart support system according to the invention is in connection with a motor-driven blood pump, which has an axially conveying impeller and can be placed in the heart.
  • the pressure measuring catheter is thereby pushed through the catheter tube connected to the blood pump and leaves this catheter tube proximally from the blood pump.
  • the pressure measuring catheter is then inserted bypassing the blood pump into the left ventricle, where the pressure measurement takes place.
  • a further pressure sensor may be provided, so that the pressure difference between the left ventricle and the aorta can be measured.
  • FIG. 1 Another variant of a cardiac assist system according to the invention results from the cannulation of the heart, wherein two cannulas are connected to the heart wall and the adjacent vascular system which are connected extracorporeally to a paracorporeal blood pump.
  • each of the cannulas may contain a pressure measuring catheter displaceable therein in a separate pressure measuring lumen.
  • Heart pressure measurement can also be used to measure cardiac recovery by determining the slope of systole, which is the measure of contractility. Or the slope of the diastolic relaxation can be measured, which allows a statement about the stiffness of the heart muscle, whereby contractility and rigidity are essential data for the heart muscle function.
  • Fig. 1 is an illustration of the heart with a catheter tube containing a pump balloon in the descending aorta controlled by an extracorporeal control device in response to the natural pulsation of the heart;
  • Fig. 2 is an illustration of the pressure measuring catheter, through the
  • Catheter tube is advanced through, with an additional sectional view of the sensor head, in a section along the line III-III of Fig. 1 different variants of the cross section of the catheter tube with pressure measuring lumens and air lumens, an embodiment in which the pressure measuring catheter is advanced from the distal end of the tube lumen out into the left ventricle to there the pulsation signal
  • an embodiment of a bypass system with two cannulas which are connected at different locations of the heart and the adjacent vascular system and connected to an extracorporeal pump, a cross section of the one cardiac catheter with the pressure measuring lumen in the catheter wall along the line VII - VII of Fig.
  • a catheter 10 is provided which is intended to retrograde introduced into the descending aorta 11 to become.
  • the descending aorta is part of the aorta 12, which rises from the heart ascending and has the aortic arch 14.
  • aortic valve 15 which connects the left ventricle 16 with the aorta 12.
  • the catnet 10 has an elongate catheter tube 20 on which an intra-arterial balloon pump IABP 21 is located.
  • the balloon pump consists of an elongated, substantially cylindrical balloon 22 which coaxially surrounds the catheter tube 20.
  • the catheter tube 20 contains two lumens, namely a pressure measuring lumen 24 and an air lumen 25.
  • FIG. 3 shows that both lumens 24, 25 are arranged next to one another.
  • the pressure measuring lumen 24 consists of a separate tube which passes through the air lumen 25 therethrough.
  • the pressure measuring lumen 24 serves to receive a pressure measuring catheter 26, which is shown in FIG.
  • the pressure measuring catheter 26 has an elongate tube 27 (preferably made of metal or a high-strength plastic, for example PEEK), through which an optical waveguide 28 passes.
  • a sensor head 30 At the front (distal) end of the pressure measuring catheter 26 is a sensor head 30, which is positioned at the pressure measuring point. However, the sensor head 30 is further reduced in size, known by the term "Fabri Perot.” It has a head housing 31 containing a thin glass membrane 32 which seals off a cavity 33. The head housing 31 has its end 34 of the optical waveguide 28. The pressure-sensitive glass membrane 32 deforms depending on the size of the sensor head 30 acting on it Pressure.
  • the light emerging from the optical waveguide 28 is reflected in a modulating manner and fed back into the optical waveguide.
  • an evaluation unit with integrated CCD camera which evaluates the light obtained in the form of an interference pattern. In response, a pressure-dependent electrical signal is generated.
  • the sensor head 30 has a maximum diameter of 0.4 mm.
  • the outer diameter of the metal tube 27 is typically 0.6 mm.
  • the metal tube 27 serves to advance the pressure measuring catheter 26 through the catheter tube 20. When the sensor head 30 has reached the intended measuring point, the metal tube 27 is withdrawn. Alternatively, it may also remain in the pressure measuring lumen 24 of the catheter 20, or is an integral part of the pressure lumen catheter.
  • the evaluation of the optical image or optical pattern supplied by the camera and the calculation of the pressure are performed by a computer connected to the camera. This also controls the pulsation of the air supply to the IABP 21 as a function of the evaluation of the pressure signal.
  • FIG. 5 shows a similar embodiment as FIG. 1, but with a modified pressure measuring catheter 26.
  • the pressure measuring catheter is advanced far beyond the distal end 35 of the catheter tube 20 so that it passes the aortic arch 14 and the aortic valve 15 and protrudes into the left ventricle 16 , There is the sensor head 30, which now measures the ventricular pressure.
  • a soft-flexible catheter tip 36 Distal from the sensor head 30 is a soft-flexible catheter tip 36 in the form of a pig's tail or J-shape, which facilitates insertion of the pressure measuring catheter and minimizes the risk of injury to the valve or the vessel and heart structures.
  • the sensor head 30 measures the ventricular pressure and thus determines the systolic and diastolic pressure. These represent a significant signal used to generate the IABP pulsatile control trigger signal. Therefore, an additional ECG lead is not required.
  • a sensor 30c may further be placed near the tip of the balloon and at the same time record the aortic pressure. In this way, the diastolic aortic pressure augmentation can also be detected.
  • Figures 6 and 7 show an embodiment in which a bypass system is provided, which has two connectable to the heart 13 and the adjacent vascular system cannulas 40, 41.
  • the cannula 40 is connected to the inlet and the cannula 41 is connected to the outlet of a paracorporal pump 42.
  • the cannula 40 is connected to the ventricle 16 and the cannula 41 is connected to the aortic arch. The connection is made by making a hole in the respective heart wall or aortic wall and by suturing the respective cannula.
  • the bypass system with the pump 42 and the cannulas 40, 41 serves to support an insufficient heart.
  • the cannula 40 contains a pressure measuring catheter 26a of the type described with a sensor head 30a, wherein the pressure measuring catheter within the cannula 40 is displaceable in the longitudinal direction.
  • the cannula 41 contains a pressure measuring catheter 26b of the type described with a sensor head 30b, which is displaceable within the cannula 41 in the longitudinal direction.
  • the sensor head can be withdrawn far enough so that it does not protrude out of the cannula.
  • the pressure inside the cannula is measured. This makes it possible to control aspiration states in which tissue of the heart wall is sucked into the cannula.
  • One Another advantage is the possibility of synchronization of the pump with the heart activity. By measuring the pressure inside the heart, it is also possible to control the cardiac recovery, whereby the increase in pressure dP / dt during systole is measured. The larger this gradient, the more the heart is strengthened again.
  • FIG. 7 shows a cross section through the cannula 40, which has a blood lumen 44.
  • a smaller lumen 45 which receives the pressure measuring catheter 26a, so that it is displaceable in the lumen in the longitudinal direction of the cannula.
  • FIG. 8 shows a similar construction as in FIG. However, this is a 1-cannula displacement pump, which can be arranged extracorporeal or implanted.
  • the pump 42 works in copulatory to the heart. This means that cannula 40 fills with blood during diastole and releases it back into the ventricle during systole. Again, the integrated pressure measuring catheter 26 is used for synchronization, detection of Ansaugereignissen and to determine the cardiac recovery.
  • FIG. 9 shows a cardiac catheter having at the distal end of the catheter tube 20 a motor-driven rotary blood pump 50 which has a motor part 51 and a pump part 52 arranged at an axial distance therefrom.
  • the pump part 52 consists of a pump housing and a rotary impeller rotating therein, which accelerates the incoming blood in the axial direction.
  • the pump is an intracardiac pump that is placed completely inside the heart. From the suction end of the pump part 52 is in the distal direction from a cannula 53, at the end of a Saugeiniass 54 is located. Distal from the Saugeiniass 54 a soft flexible tip 55 is provided.
  • the catheter tube 20 Through the catheter tube 20 extend the electrical lines for the pump 50 and also the pressure measuring catheter 26 which is displaceable relative to the catheter tube 20.
  • the pressure measuring catheter 26 At an exit point 57, proximal to the blood pump 50, the pressure measuring catheter 26 exits laterally from the catheter tube 20. It then passes by the pump 50 and the cannula 53.
  • the sensor head 30 At the distal end of the pressure measuring catheter 26 is the sensor head 30, at which the pressure measurement takes place. The sensor head is surmounted by the calibrated catheter tip 36.
  • the catheter tube 20 is passed through the aorta 12 with the pump 50 placed at the inlet end of the aorta so that it is still in the aorta but the cannula 53 protrudes into the ventricle 16.
  • the pump 50 is another pressure sensor 60, which measures the aortic pressure.
  • the position of the sensor head 30 can be changed by displacing the pressure measuring catheter 26 relative to the catheter tube 20.

Abstract

Das Herzunterstützungssystem weist einen Katheter (10) auf, der in das Herz oder in Herznähe einführbar ist. Der Katheter (10) enthält in einem durchgehenden separaten Lumen einen optischen Druckmesskatheter, der eine druckempfindliche Membran aus Glas und einen Lichtwellenleiter aufweist. Die Membran befindet sich in einem Sensorkopf (30) am distalen Ende des Druckmessers. Der Druckmesskatheter (26) ist in dem Katheterschlauch (20) in Längsrichtung verschiebbar. Wenn der Katheter (10) eine intraarterielle Ballonpumpe aufweist, kann diese in der absteigenden Aorta platziert werden und der Druckmesskatheter kann nachträglich eingeführt und erforderlichenfalls ausgewechselt werden. Er kann auch über das distale Ende des Katheters hinaus vorgeschoben werden.

Description

Herzunterstützunqssystem
Die Erfindung betrifft ein Herzunterstützungssystem mit einem Katheterschlauch, der mindestens ein Lumen aufweist, und einem Drucksensor zur Messung des Druckes distal von dem Katheterschlauch .
Es gibt zahlreiche Fälle, in denen ein Katheter in das Herz eingeführt oder bis in dies Nähe des Herzens vorgeschoben wird. Ein spezieller Fall besteht in der Anwendung einer intraarteriellen Ballonpumpe (IABP), die zur Herzunterstützung eingesetzt wird. Die IABP weist einen Katheterschlauch auf, der auf einen Teil seiner Länge von einem inflatierbaren und deflatierbaren Ballon umgeben ist. Der Ballon wird synchron mit der Pulsation des Herzens inflatiert und deflatiert, um die Gesamtpumpleistung zu erhöhen . Für die Synchronisation ist neben der Triggerung über EKG ein Drucksensor zur Messung des arteriellen Druckes bzw. der Druckpulsation erforderlich. Bei den meisten IABP-Systemen befindet sich der Drucksensor in der Peripherie und wird über ein Druckiumen längs des Katheters, das mit Flüssigkeit gefüllt ist, mit Druck beaufschlagt. Hierbei ist die Druckübertragung in der Regel gedämpft und von Bewegungsartefakten des Katheters überlagert. Bei einer IABP mit verbesserter Druckmessung befindet sich der Drucksensor an dem distalen Ende des Katheterschlauchs, das über den länglichen Ballon hinaus vorsteht. Wenn sich ergibt, dass der Drucksensor nicht ordnungsgemäß arbeitet, muss der gesamte Katheter aus der Aorta entfernt und durch einen anderen Katheter ersetzt werden.
Andere Herzkatheter sind dazu bestimmt, mit dem distalen Ende in das Herz hinein vorgeschoben zu werden, beispielsweise in den linken Ventrikel.
Der Erfindung liegt die Aufgabe zugrunde, ein Herzunterstützungssystem zu schaffen, das als modulares System mit austauschbaren Komponenten ausgebildet ist.
Das erfindungsgemäße Herzunterstützungssystem ist durch den Patentanspruch 1 definiert. Der Drucksensor ist ein optischer Druckmesskatheter, der durch den Katheterschlauch des Herzkatheters vorgeschoben werden kann. Der Druckmesskatheter weist einen Lichtwellenleiter auf, der zu einem optischen Sensorkopf mit einer druckabhängig bewegbaren Membran führt. Der Druckmesskatheter ist relativ zu dem Katheterschlauch in dessen Längsrichtung verschiebbar.
Der optische Druckmesskatheter hat den Vorteil, dass er einen kleinformatigen Messkopf mit geringem Durchmesser von maximal 600 pm ermöglicht, wobei der Lichtwellenleiter einen noch geringeren Durchmesser von 80 - 100 pm hat. Das Lumen des Katheterschlauchs ist durchgehend, d. h. es ist an dem distalen Schlauchende offen. Nachdem der Katheterschlauch beispielsweise unter Verwendung eines Führungsdrahtes, in der absteigenden Aorta platziert wurde, kann nachträglich der Druckmesskatheter in das Lumen des Katheterschlauchs eingeführt werden. Der Sensorkopf kann dabei nach Bedarf positioniert werden. Ein weiterer Vorteil besteht darin, dass der Druckmesskatheter auswechselbar ist. So kann beispielsweise ein nicht ordnungsgemäß funktionierender Druckmesskatheter ausgewechselt werden oder es können unterschiedliche Druckmesskatheter mit verschiedenen Parametern bereitgehalten werden, von denen jeweils einer ausgewählt werden kann, oder der Druckmesskatheter kann bei Bedarf ex-vivo kalibriert werden, sofern eine Sensordrift vorliegt.
Optische Drucksensoren, die sich für einen optischen Druckmesskatheter eignen, werden von der Firma Opsens vertrieben. Ein optischer Druckmesssensor weist im Sensorkopf (Fabri Perot) eine Kavität auf, die mit einer dünnen Glasmembran abgeschlossen ist, gegen welche der Blutdruck wirkt und die sich druckabhängig verformt. Aus dem Ende eines Lichtwellenleiters tritt Licht aus, das von der Siliziummembran moduliert und in den Lichtwellenleiter hinein reflektiert wird. Am Einspeisungsende des Lichtwellenleiters befindet sich eine CCD-Kamera, die das entstehende Interferenzmuster aufzeichnet, welches sich druckabhängig im Bild verschiebt, so dass dessen Position mit einem gemessenen Druck korreliert werden kann.
Neben der Kleinformatigkeit hat ein optischer Drucksensor den wichtigen Vorteil, dass er von dem umgebenden Blut nicht angegriffen wird. Blut ist in hohem Maße korrosiv. Es zersetzt Komponenten aus Metallen. Elektrische Leitungen würden eine Isolierung benötigen. Der optische Sensor besteht vorwiegend oder ausschließlich aus Glas, das von dem Blut nicht angegriffen wird.
Vorzugsweise ist ein Rohr vorgesehen, das den Druckmesskatheter einschließlich einer Strecke des Lichtleiters aufnimmt und nach Positionierung des Druckmesskatheters in proximaler Richtung entfernbar ist. Ein solches Rohr braucht nicht korrosionsbeständig gegen Blut zu sein, weil es nach dem Verlegen des Druckmesskatheters entfernt wird .
Der Druckmesskatheter hat vorzugsweise einschließlich des Sensorkopfes einen maximalen Durchmesser von nicht mehr als 600 pm. Demnach beträgt der Durchmesser des Lumens des Katheterschlauchs vorzugsweise 0,7 - 0,8 mm.
Bei einer bevorzugten Ausführungsform der Erfindung hat der Druckmesskatheter eine größere Länge als der Katheterschlauch, derart, dass der Sensorkopf aus dem Katheterschlauch heraus um eine Länge von mindestens 10 cm, vorzugsweise von mindestens 20 cm, vorstehen kann . Dadurch ist es möglich, den Druckmesskatheter über den in der Aorta descendens liegenden Ballon hinaus durch den Aortenbogen und die Aortenklappe bis in den linken Ventrikel vorzuschieben. Die Druckmessstelle liegt dann im linken Ventrikel. Der Ventrikuläre Druck ist das signifikanteste Signal, das als Trigger-Signal für die Steuerung des Ballons sehr gut geeignet ist. Die ventrikuläre Druckmessung macht eine EKG-Ableitung entbehrlich. Für den Patienten besteht der Vorteil, dass keine extrakorporalen Elektroden an den Körper als EKG-Klebepunkte angelegt werden müssen. Der Druckmesskatheter kann zusätzlich als Führungsdraht benutzbar sein, der zuerst verlegt wird und über den anschließend der Katheterschlauch des Ballonkatheters geschoben wird. Hierbei ist der Druckmesskatheter vorzugsweise mit einer flexiblen Katheterspitze distal von dem Sensorkopf versehen.
Eine andere Anwendungsmöglichkeit des erfindungsgemäßen Herzunterstützungssystems besteht in Verbindung mit einer motorbetriebenen Blutpumpe, die ein axial förderndes Flügelrad aufweist und im Herzen platzierbar ist. Der Druckmesskatheter wird hierbei durch den mit der Blutpumpe verbundenen Katheterschlauch hindurchgeschoben und er verlässt diesen Katheterschlauch proximal von der Blutpumpe. Der Druckmesskatheter wird dann unter Umgehung der Blutpumpe bis in den linken Ventrikel eingeführt, wo die Druckmessung erfolgt. An der Blutpumpe kann ein weiterer Drucksensor vorgesehen sein, so dass die Druckdifferenz zwischen linkem Ventrikel und Aorta gemessen werden kann.
Eine andere Variante eines Herzunterstützungssystems nach der Erfindung ergibt sich bei der Kanülierung des Herzens, wobei an die Herzwand und das angrenzende Gefäßsystem zwei Kanülen angeschlossen werden, welche extrakorporal mit einer parakorporalen Blutpumpe verbunden werden. Hierbei kann jede der Kanülen einen darin verschiebbaren Druckmesskatheter in einem separaten Druckmesslumen enthalten.
Bei der Druckmessung im Herzen kann auch eine Messung der Herzerholung durch Bestimmung der Steigung der Systole erfolgen, was dem Maß der Kontraktilität entspricht. Oder es kann die Steigung der diastolischen Erschlaffung gemessen werden, was eine Aussage über die Steifigkeit des Herzmuskels erlaubt, wobei Kontraktilität sowie Steifigkeit wesentliche Daten für die Herzmuskelfunktion darstellen.
Im folgenden werden unter Bezugnahme auf die Zeichnungen Ausführungsbeispiele der Erfindung näher erläutert.
Es zeigen :
Fig . 1 eine Darstellung des Herzens mit einem Katheterschlauch, der in der Aorta descendens einen Pumpenballon enthält, welcher von einer extrakorporalen Steuereinrichtung in Abhängigkeit von der natürlichen Pulsation des Herzens gesteuert ist,
Fig. 2 eine Darstellung des Druckmesskatheters, der durch den
Katheterschlauch hindurch vorgeschoben wird, mit einer zusätzlichen Schnittdarstellung des Sensorkopfes, in einem Schnitt entlang der Linie III-III von Fig. 1 verschiedene Varianten des Querschnitts des Katheterschlauchs mit Druckmesslumen und Luftlumen, ein Ausführungsbeispiel, bei dem der Druckmesskatheter aus dem distalen Ende des Schlauchlumens heraus bis in den linken Ventrikel vorgeschoben ist, um dort das Pulsationssignal für die Erzeugung des Triggersignals zu gewinnen, ein Ausführungsbeispiel eines Bypasssystems mit zwei Kanülen, die an unterschiedlichen Stellen des Herzens und des angrenzenden Gefäßsystems angeschlossen und mit einer extrakorporalen Pumpe verbunden sind, einen Querschnitt des einen Herzkatheters mit dem Druckmesslumen in der Katheterwand entlang der Linie VII- VII von Fig. 6, ein Ausführungsbeispiel eines apikal angeschlossenen pulsatilen Bypasssystems mit nur einer Kanüle, die druckgetriggert in Kopulsation mit dem Herzen Blutvolumen entnimmt (während Diastole) und Blutvolumen wieder freigibt (während Systole) und ein Ausführungsbeispiel, bei dem der Katheterschlauch eine motorbetriebene intrakardiale Blutpumpe aufweist.
Bei dem Ausführungsbeispiel der Figuren 1 - 4 ist ein Katheter 10 vorgesehen, der dazu bestimmt ist, retrograd in die Aorta descendens 11 eingeführt zu werden. Die Aorta descendens ist Bestandteil der Aorta 12, die vom Herzen aufsteigend abgeht und den Aortenbogen 14 aufweist.
Am Beginn der Aorta 12 befindet sich die Aortenklappe 15, die den linken Ventrikel 16 mit der Aorta 12 verbindet.
Durch die Pulsation des Herzens erfolgt während der Systole eine Herzkontraktion, wobei Blut in die Aorta ausgestoßen wird. Während der Diastole weitet sich das Herzvolumen wieder aus.
Der Katneter 10 weist einen langgestreckten Katheterschlauch 20 auf, an dem sich eine intraarterielle Ballonpumpe IABP 21 befindet. Die Ballonpumpe besteht aus einem langgestreckten, im wesentlichen zylindrischen Ballon 22, der den Katheterschlauch 20 koaxial umgibt. Der Katheterschlauch 20 enthält zwei Lumen, nämlich ein Druckmesslumen 24 und ein Luftlumen 25. In Figur 3 ist dargestellt, dass beide Lumen 24, 25 nebeneinander angeordnet sind. Bei dem Ausführungsbeispiel von Figur 4 besteht das Druckmesslumen 24 aus einem separaten Schlauch, der durch das Luftlumen 25 hindurch verläuft. Das Druckmesslumen 24 dient dazu, einen Druckmesskatheter 26 aufzunehmen, der in Figur 2 dargestellt ist.
Der Druckmesskatheter 26 weist ein langgestrecktes Rohr 27 auf (bevorzugt aus Metall oder einem hochfesten Kunststoff, z. B. PEEK), durch das ein Lichtwellenleiter 28 verläuft. Am vordem (distalen) Ende des Druckmesskatheters 26 befindet sich ein Sensorkopf 30, der an der Druckmessstelle positioniert wird. Der Sensorkopf 30 ist von der Art, die unter dem Begriff „Fabri Perot" bekannt ist, jedoch weiter verkleinert. Er weist ein Kopfgehäuse 31 auf, das eine dünne Glasmembran 32 enthält, welche eine Kavität 33 abschließt. In das Kopfgehäuse 31 ist das Ende 34 des Lichtwellenleiters 28 eingefügt. Die druckempfindliche Glasmembran 32 verformt sich in Abhängigkeit von der Größe des auf den Sensorkopf 30 einwirkenden Druckes. Durch die Rejektion an der Membran wird das aus dem Lichtwellenleiter 28 austretende Licht modulierend reflektiert und wieder in den Lichtwellenleiter eingespeist. Am proximalen Ende des Lichtwellenleiters befindet sich eine Auswerteeinheit mit integrierter CCD-Kamera, die das erhaltene Licht in Form eines Interferenzmusters auswertet. In Abhängigkeit hiervon wird ein druckabhängiges elektrisches Signal erzeugt.
Der Sensorkopf 30 hat einen maximalen Durchmesser von 0,4 mm. Der Außendurchmesser des Metallrohrs 27 beträgt typischerweise 0,6 mm.
Das Metallrohr 27 dient dazu, den Druckmesskatheter 26 durch den Katheterschlauch 20 hindurch vorzuschieben. Wenn der Sensorkopf 30 die vorgesehene Messstelle erreicht hat, wird das Metallrohr 27 zurückgezogen. Alternativ kann es auch in dem Druckmesslumen 24 des Katheters 20 verbleiben, oder ist fester Bestandteil des Drucklumenkatheters.
Die Auswertung des von der Kamera gelieferten optischen Bildes bzw. optischen Musters und die Berechnung des Druckes erfolgen durch einen an die Kamera angeschlossenen Rechner. Dieser steuert auch die Pulsation der Luftzufuhr zu der IABP 21 in Abhängigkeit der erfolgten Auswertung des Drucksignals.
Figur 5 zeigt ein ähnliches Ausführungsbeispiel wie Figur 1, jedoch mit einem modifizierten Druckmesskatheter 26. Der Druckmesskatheter wird weit über das distale Ende 35 des Katheterschlauchs 20 hinaus vorgeschoben, so dass er den Aortenbogen 14 und die Aortenklappe 15 passiert und in den linken Ventrikel 16 hineinragt. Dort befindet sich der Sensorkopf 30, der nunmehr den Ventrikeldruck misst. Distal von dem Sensorkopf 30 ist eine weichflexible Katheterspitze 36 in Form eines Schweineschwänzchens oder in J-Form vorgesehen, die das Einführen des Druckmesskatheters erleichtert und ein Verletzungsrisiko der Klappe oder der Gefäß- und Herzstrukturen minimiert. Der Sensorkopf 30 misst den Ventrikeldruck und ermittelt somit den systolischen und diastolischen Druck. Diese stellen ein signifikantes Signal dar, das dazu benutzt wird, das Triggersignal für die pulsierende Steuerung der IABP zu erzeugen. Daher ist eine zusätzliche EKG-Ableitung nicht erforderlich .
Zusätzlich zu dem Sensor 30 kann weiterhin ein Sensor 30c in der Nähe der Spitze des Ballons platziert sein und zeitgleich den Aortendruck aufzeichnen. Auf diese Art kann zudem die diastolische Aortendruckaugmentation erfasst werden.
Die Figuren 6 und 7 zeigen ein Ausführungsbeispiel, bei dem ein Bypasssystem vorgesehen ist, das zwei mit dem Herzen 13 und dem angrenzenden Gefäßsystem verbindbare Kanülen 40, 41 aufweist. Die Kanüle 40 ist mit dem Einlass und die Kanüle 41 ist mit dem Auslass einer parakorporalen Pumpe 42 verbunden. Die Kanüle 40 ist an den Ventrikel 16 angeschlossen und die Kanüle 41 ist an den Aortenbogen angeschlossen. Der Anschluss erfolgt durch Herstellen eines Loches in der jeweiligen Herzwand bzw. Aortenwand und durch Annähen der jeweiligen Kanüle. Das Bypasssystem mit der Pumpe 42 und den Kanülen 40, 41 dient der Unterstützung eines insuffizienten Herzens.
Die Kanüle 40 enthält einen Druckmesskatheter 26a der beschriebenen Art mit einem Sensorkopf 30a, wobei der Druckmesskatheter innerhalb der Kanüle 40 in Längsrichtung verschiebbar ist.
Auch die Kanüle 41 enthält einen Druckmesskatheter 26b der beschriebenen Art mit einem Sensorkopf 30b, der innerhalb der Kanüle 41 in Längsrichtung verschiebbar ist.
In der jeweiligen Kanüle kann der Sensorkopf soweit zurückgezogen werden, dass er nicht aus der Kanüle heraus vorsteht. In diesem Fall wird der Druck im Innern der Kanüle gemessen. Dadurch ist eine Kontrolle von Ansaugzuständen möglich, bei denen Gewebe der Herzwand in die Kanüle eingesaugt wird. Ein weiterer Vorteil besteht in der Möglichkeit der Synchronisation der Pumpe mit der Herzaktivität. Durch Druckmessung im Innern des Herzens ist auch eine Kontrolle der Herzerholung möglich, wobei der Anstieg des Druckes dP/dt währen der Systole gemessen wird. Je größer dieser Gradient ist, umso mehr ist das Herz wieder erstarkt.
Durch Druckmessung an der Auslassseite der Pumpe ist eine Kontrolle der Anastomose (Einschnürung) möglich .
Figur 7 zeigt einen Querschnitt durch die Kanüle 40, die ein Blutlumen 44 aufweist. In der das Blutlumen 44 umgebenden Kanülenwand befindet sich ein kleineres Lumen 45, das den Druckmesskatheter 26a aufnimmt, so dass dieser in dem Lumen in Längsrichtung der Kanüle verschiebbar ist.
In Figur 8 ist ein ähnlicher Aufbau wie in Fig. 6 dargestellt. Allerdings handelt es sich hier um eine 1-kanülige Verdrängungspumpe, die extrakorporal oder implantiert angeordnet sein kann.
Die Pumpe 42 arbeitet in Kopulsation zum Herzen. Das bedeutet, dass die Kanüle 40 sich während der Diastole mit Blut füllt und dieses während der Systole wieder in den Ventrikel entlässt. Auch hier dient der integrierte Druckmesskatheter 26 zur Synchronisation, Erfassung von Ansaugereignissen und zur Ermittlung der Herzerholung.
In Figur 9 ist ein Herzkatheter dargestellt, der an dem distalen Ende des Katheterschlauchs 20 eine motorbetriebene rotatorische Blutpumpe 50 aufweist, die einen Motorteil 51 und einen in axialem Abstand hiervon angeordneten Pumpenteil 52 aufweist. Der Pumpenteil 52 besteht aus einem Pumpengehäuse und einem darin rotierenden Flügelrad, welches das eintretende Blut in axialer Richtung beschleunigt. Die Pumpe ist eine intrakardiale Pumpe, die vollständig innerhalb des Herzens platziert wird. Von dem Ansaugende des Pumpenteils 52 steht in distaler Richtung eine Kanüle 53 ab, an deren Ende sich ein Saugeiniass 54 befindet. Distal von dem Saugeiniass 54 ist eine weichflexible Spitze 55 vorgesehen.
Durch den Katheterschlauch 20 verlaufen die elektrischen Leitungen für die Pumpe 50 und außerdem der Druckmesskatheter 26, der relativ zu dem Katheterschlauch 20 verschiebbar ist. An einer Austrittsstelle 57, proximal von der Blutpumpe 50, tritt der Druckmesskatheter 26 seitlich aus dem Katheterschlauch 20 aus. Er verläuft dann an der Pumpe 50 und der Kanüle 53 vorbei. An dem distalen Ende des Druckmesskatheters 26 befindet sich der Sensorkopf 30, an weichem die Druckmessung erfolgt. Der Sensorkopf wird durch die eichflexible Katheterspitze 36 überragt.
Der Katheterschlauch 20 wird durch die Aorta 12 hindurch verlegt, wobei die Pumpe 50 an dem Einlassende der Aorta platziert wird, so dass sie sich noch in der Aorta befindet, die Kanüle 53 aber in den Ventrikel 16 ragt. An der Pumpe 50 befindet sich ein weiterer Drucksensor 60, der den Aortendruck misst. Durch Messung sowohl des Aortendrucks als auch des Ventrikeldrucks ist eine Kontraktibilitätsmessung, bei der die Erholung des Herzens gemessen wird, sowie die Ermittlung des Differenzdrucks, der zur Flussberechnung der Pumpe hinzugezogen werden kann, möglich.
Auch bei diesem Ausführungsbeispiel kann die Position des Sensorkopfes 30 durch Verschieben des Druckmesskatheters 26 relativ zu dem Katheterschlauch 20 verändert werden.

Claims

Patentansprüche
1. Herzunterstützungssystem mit einem Katheterschiauch (20), der mindestens ein durchgehendes Druckmesslumen (24) aufweist, und einem durch das Druckmesslumen einführbaren Drucksensor zur Messung des Druckes distal von dem Katheterschlauch, d a d u r c h g e k e n n z e i c h n e t, dass der Drucksensor ein optischer Druckmesskatheter (26) mit einem Lichtwellenleiter (28) und einem Sensorkopf (30) mit einer druckabhängig bewegbaren Membran (32) ist, und dass der Druckmesskatheter (26) relativ zu dem Katheterschlauch (20) in Längsrichtung verschiebbar ist.
2. Herzunterstützungssystem nach Anspruch 1, dadurch gekennzeichnet, dass der Katheterschlauch (20) Bestandteil einer intraarteriellen Ballonpumpe ist, die einen inflatierbaren Ballon (22) aufweist.
3. Herzunterstützungssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Rohr (27) vorgesehen ist, dass den Druckmesskatheter (26) einschließlich einer Strecke des Lichtwellenleiters (28) aufnimmt und nach Positionierung des Druckmesskatheters in proximaler Richtung entfernbar ist.
4. Herzunterstützungssystem nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass der Druckmesskatheter (26) einschließlich des Sensorkopfes (30) einen maximalen Durchmesser von nicht mehr als 600 pm hat.
5. Herzunterstützungssystem nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass der Druckmesskatheter (26) eine größere Länge hat als der Katheterschlauch (20), derart, dass der Sensorkopf (30) aus dem Katheterschlauch (20) heraus um eine Länge von mindestens 10 cm vorstehen kann.
6. Herzunterstützungssystem nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass der Druckmesskatheter (26) eine flexible Katheterspitze (36) distal von dem Sensorkopf (30) aufweist.
7. Herzunterstützungssystem nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass der Katheterschlauch (20) an seinem distalen Ende eine motorbetriebene rotatorische Blutpumpe (50) mit einem axial fördernden Flügelrad aufweist und dass proximal von der Blutpumpe (50) eine Austrittsöffnung (57) für den Druckmesskatheter (26) vorgesehen ist.
8. Herzunterstützungssystem nach Anspruch 7, dadurch gekennzeichnet, dass an der Blutpumpe (50) ein weiterer Drucksensor (60) vorgesehen ist.
9. Herzunterstützungssystem nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Blutpumpe (50) an ihrer Saugseite eine langgestreckte Kanüle (53) aufweist, an der sich der Saugeinlass (54) befindet.
10. Herzunterstützungssystem mit einer parakorporaien Pumpe (42), die in einem Bypasssystem enthalten ist, das zwei mit dem Herzen verbindbare Kanülen (40, 41) aufweist, von denen eine (40) mit dem Einlass und die andere (41) mit dem Auslass der Pumpe (42) verbunden ist, wobei mindestens eine Kanüle einen darin längs verschiebbaren Druckmesskatheter (26a, 26b) in einem separaten Druckmesslumen enthält.
PCT/EP2010/063989 2009-09-30 2010-09-22 Herzunterstützungssystem WO2011039091A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009047845.0 2009-09-30
DE102009047845A DE102009047845A1 (de) 2009-09-30 2009-09-30 Herzunterstützungssystem

Publications (1)

Publication Number Publication Date
WO2011039091A1 true WO2011039091A1 (de) 2011-04-07

Family

ID=43033142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063989 WO2011039091A1 (de) 2009-09-30 2010-09-22 Herzunterstützungssystem

Country Status (2)

Country Link
DE (1) DE102009047845A1 (de)
WO (1) WO2011039091A1 (de)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207053A1 (de) 2012-04-27 2013-10-31 Abiomed Europe Gmbh Intravasale rotationsblutpumpe
WO2013160407A1 (de) 2012-04-27 2013-10-31 Abiomed Europe Gmbh Intravasale rotationsblutpumpe
WO2013160405A1 (de) 2012-04-27 2013-10-31 Abiomed Europe Gmbh Kathetersystem und intravasale blutpumpe mit diesem kathetersystem
EP2730301A1 (de) 2012-11-09 2014-05-14 Robert von Wattenwyl Herzkreislauf-Implantat, Vorrichtung für ein eine pulsierende Quelle aufweisendes Fluid-Kreislaufsystem und Fluid-Kreislaufsystem
CN103857326A (zh) * 2011-06-10 2014-06-11 纯净之心有限公司 补偿或支持心脏功能的泵的采血套管针
WO2015054296A1 (en) * 2013-10-07 2015-04-16 Cedars-Sinai Medical Center Transcatheter aortic valve implantation pressure wires and uses thereof
WO2015160979A1 (en) * 2014-04-15 2015-10-22 Thoratec Corporation Catheter pump with access ports
EP2944338A1 (de) 2014-05-13 2015-11-18 Robert von Wattenwyl Autonomes Herzkreislauf-Implantat mit einem Rückschlagventil
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
US9327067B2 (en) 2012-05-14 2016-05-03 Thoratec Corporation Impeller for catheter pump
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
US9364592B2 (en) 2004-09-17 2016-06-14 The Penn State Research Foundation Heart assist device with expandable impeller pump
US9381288B2 (en) 2013-03-13 2016-07-05 Thoratec Corporation Fluid handling system
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
US9675739B2 (en) 2015-01-22 2017-06-13 Tc1 Llc Motor assembly with heat exchanger for catheter pump
US9675738B2 (en) 2015-01-22 2017-06-13 Tc1 Llc Attachment mechanisms for motor of catheter pump
US9675740B2 (en) 2012-05-14 2017-06-13 Tc1 Llc Impeller for catheter pump
EP3205359A1 (de) * 2016-02-11 2017-08-16 Abiomed Europe GmbH Blutpumpensystem
US9770543B2 (en) 2015-01-22 2017-09-26 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
US9907890B2 (en) 2015-04-16 2018-03-06 Tc1 Llc Catheter pump with positioning brace
US9962475B2 (en) 2011-01-06 2018-05-08 Tc1 Llc Percutaneous heart pump
US10029037B2 (en) 2014-04-15 2018-07-24 Tc1 Llc Sensors for catheter pumps
US10105475B2 (en) 2014-04-15 2018-10-23 Tc1 Llc Catheter pump introducer systems and methods
US10215187B2 (en) 2004-09-17 2019-02-26 Tc1 Llc Expandable impeller pump
US10226333B2 (en) 2013-10-15 2019-03-12 Cedars-Sinai Medical Center Anatomically-orientated and self-positioning transcatheter mitral valve
US10342906B2 (en) 2016-06-06 2019-07-09 Abiomed, Inc. Blood pump assembly having a sensor and a sensor shield
US10449279B2 (en) 2014-08-18 2019-10-22 Tc1 Llc Guide features for percutaneous catheter pump
US10507301B2 (en) 2014-01-31 2019-12-17 Cedars-Sinai Medical Center Pigtail for optimal aortic valvular complex imaging and alignment
US10525178B2 (en) 2013-03-15 2020-01-07 Tc1 Llc Catheter pump assembly including a stator
US10543078B2 (en) 2013-10-16 2020-01-28 Cedars-Sinai Medical Center Modular dis-assembly of transcatheter valve replacement devices and uses thereof
US10576193B2 (en) 2012-07-03 2020-03-03 Tc1 Llc Motor assembly for catheter pump
US10583232B2 (en) 2014-04-15 2020-03-10 Tc1 Llc Catheter pump with off-set motor position
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US10820989B2 (en) 2013-12-11 2020-11-03 Cedars-Sinai Medical Center Methods, devices and systems for transcatheter mitral valve replacement in a double-orifice mitral valve
US10869756B2 (en) 2015-03-12 2020-12-22 Cedars-Sinai Medical Center Devices, systems, and methods to optimize annular orientation of transcatheter valves
US10869681B2 (en) 2013-10-17 2020-12-22 Cedars-Sinai Medical Center Device to percutaneously treat heart valve embolization
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
US11160970B2 (en) 2016-07-21 2021-11-02 Tc1 Llc Fluid seals for catheter pump motor assembly
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11219756B2 (en) 2012-07-03 2022-01-11 Tc1 Llc Motor assembly for catheter pump
US11229786B2 (en) 2012-05-14 2022-01-25 Tc1 Llc Impeller for catheter pump
US11491322B2 (en) 2016-07-21 2022-11-08 Tc1 Llc Gas-filled chamber for catheter pump motor assembly
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11744987B2 (en) * 2017-05-04 2023-09-05 Abiomed Europe Gmbh Blood pump with reinforced catheter
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2557407B1 (de) * 2011-08-12 2020-02-12 Fenwal, Inc. Ein Blutverarbeitungssystem und Verfahren

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112598A (en) * 1995-06-22 2000-09-05 Radi Medical Systems Ab Pressure sensor and guide wire assembly for biological pressure measurements
US6398738B1 (en) * 2000-09-25 2002-06-04 Millar Instruments, Inc. Method and apparatus for reconstructing a high fidelity pressure waveform with a balloon catheter
US20030187322A1 (en) * 2000-08-18 2003-10-02 Thorsten Siess Intracardiac blood pump
US20040022640A1 (en) * 2000-12-05 2004-02-05 Thorsten Siess Method for calibrating a pressure sensor or a flow sensor at a rotary pump
US20040039243A1 (en) * 2002-08-21 2004-02-26 Gill Bearnson Rotary blood pump diagnostics and cardiac output controller
EP1911484A2 (de) * 2000-12-12 2008-04-16 Datascope Investment Corp. Intraaortaler Ballonkatheter mit Glasfasersensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1034808A1 (de) * 1999-03-09 2000-09-13 Paul Frederik Gründeman Vorrichtung zur transventrikularen, mechanischen Herzunterstützung
DE10059714C1 (de) * 2000-12-01 2002-05-08 Impella Cardiotech Ag Intravasale Pumpe
DE102007012817A1 (de) * 2007-03-16 2008-09-18 Mwf Consult Ltd. Vorrichtung zur Unterstützung des Herzens und des Kreislaufs
DE102007035847A1 (de) * 2007-07-31 2009-02-05 Iprm Intellectual Property Rights Management Ag Kathetersystem mit optischer Sonde und Verfahren zur Applikation einer optischen Sonde in ein Kathetersystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6112598A (en) * 1995-06-22 2000-09-05 Radi Medical Systems Ab Pressure sensor and guide wire assembly for biological pressure measurements
US20030187322A1 (en) * 2000-08-18 2003-10-02 Thorsten Siess Intracardiac blood pump
US6398738B1 (en) * 2000-09-25 2002-06-04 Millar Instruments, Inc. Method and apparatus for reconstructing a high fidelity pressure waveform with a balloon catheter
US20040022640A1 (en) * 2000-12-05 2004-02-05 Thorsten Siess Method for calibrating a pressure sensor or a flow sensor at a rotary pump
EP1911484A2 (de) * 2000-12-12 2008-04-16 Datascope Investment Corp. Intraaortaler Ballonkatheter mit Glasfasersensor
US20040039243A1 (en) * 2002-08-21 2004-02-26 Gill Bearnson Rotary blood pump diagnostics and cardiac output controller

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10215187B2 (en) 2004-09-17 2019-02-26 Tc1 Llc Expandable impeller pump
US11434921B2 (en) 2004-09-17 2022-09-06 Tc1 Llc Expandable impeller pump
US11428236B2 (en) 2004-09-17 2022-08-30 Tc1 Llc Expandable impeller pump
US9717833B2 (en) 2004-09-17 2017-08-01 The Penn State Research Foundation Heart assist device with expandable impeller pump
US9364593B2 (en) 2004-09-17 2016-06-14 The Penn State Research Foundation Heart assist device with expandable impeller pump
US9364592B2 (en) 2004-09-17 2016-06-14 The Penn State Research Foundation Heart assist device with expandable impeller pump
US10864309B2 (en) 2006-03-23 2020-12-15 The Penn State Research Foundation Heart assist device with expandable impeller pump
US10149932B2 (en) 2006-03-23 2018-12-11 The Penn State Research Foundation Heart assist device with expandable impeller pump
US11708833B2 (en) 2006-03-23 2023-07-25 The Penn State Research Foundation Heart assist device with expandable impeller pump
US10960116B2 (en) 2011-01-06 2021-03-30 Tci Llc Percutaneous heart pump
US9962475B2 (en) 2011-01-06 2018-05-08 Tc1 Llc Percutaneous heart pump
CN103857326A (zh) * 2011-06-10 2014-06-11 纯净之心有限公司 补偿或支持心脏功能的泵的采血套管针
DE102012207049A1 (de) 2012-04-27 2015-08-13 Abiomed Europe Gmbh Intravasale rotationsblutpumpe
US9669144B2 (en) 2012-04-27 2017-06-06 Abiomed Europe Gmbh Catheter system and intravascular blood pump comprising said catheter system
KR101930376B1 (ko) 2012-04-27 2018-12-18 아비오메드 유럽 게엠베하 카테터 시스템 및 그 카테터 시스템을 포함하는 혈관내 혈액 펌프
WO2013160407A1 (de) 2012-04-27 2013-10-31 Abiomed Europe Gmbh Intravasale rotationsblutpumpe
US11147960B2 (en) 2012-04-27 2021-10-19 Abiomed Europe Gmbh Catheter system and intravascular blood pump having said catheter system
KR20180135988A (ko) * 2012-04-27 2018-12-21 아비오메드 유럽 게엠베하 카테터 시스템 및 그 카테터 시스템을 포함하는 혈관내 혈액 펌프
JP2015515348A (ja) * 2012-04-27 2015-05-28 アビオメド オイローパ ゲーエムベーハー カテーテルシステムおよびカテーテルシステムを備える血管内血液ポンプ
DE102012207056B4 (de) 2012-04-27 2021-11-11 Abiomed Europe Gmbh Kathethersystem und intravasale blutpumpe mit diesem kathetersystem
WO2013160405A1 (de) 2012-04-27 2013-10-31 Abiomed Europe Gmbh Kathetersystem und intravasale blutpumpe mit diesem kathetersystem
US9474840B2 (en) 2012-04-27 2016-10-25 Abiomed Europe Gmbh Intravascular rotary blood pump
US9669142B2 (en) 2012-04-27 2017-06-06 Abiomed Europe Gmbh Intravascular rotary blood pump
JP2015514531A (ja) * 2012-04-27 2015-05-21 アビオメド オイローパ ゲーエムベーハー 血管内回転式血液ポンプ
DE102012207056A1 (de) 2012-04-27 2013-10-31 Abiomed Europe Gmbh Kathethersystem und intravasale blutpumpe mit diesem kathetersystem
KR102114904B1 (ko) 2012-04-27 2020-05-25 아비오메드 유럽 게엠베하 카테터 시스템 및 그 카테터 시스템을 포함하는 혈관내 혈액 펌프
WO2013160443A1 (de) 2012-04-27 2013-10-31 Abiomed Europe Gmbh Intravasale rotationsblutpumpe
JP2015514529A (ja) * 2012-04-27 2015-05-21 アビオメド オイローパ ゲーエムベーハー 血管内ロータリ血液ポンプ
US9999714B2 (en) 2012-04-27 2018-06-19 Abiomed Europe Gmbh Catheter system and intravascular blood pump having said catheter system
KR20210096321A (ko) * 2012-04-27 2021-08-04 아비오메드 유럽 게엠베하 카테터 시스템 및 그 카테터 시스템을 포함하는 혈관내 혈액 펌프
KR102399271B1 (ko) 2012-04-27 2022-05-19 아비오메드 유럽 게엠베하 카테터 시스템 및 그 카테터 시스템을 포함하는 혈관내 혈액 펌프
DE102012207053A1 (de) 2012-04-27 2013-10-31 Abiomed Europe Gmbh Intravasale rotationsblutpumpe
USRE48649E1 (en) 2012-04-27 2021-07-20 Abiomed Europe Gmbh Intravascular rotary blood pump
US11311712B2 (en) 2012-05-14 2022-04-26 Tc1 Llc Impeller for catheter pump
US9872947B2 (en) 2012-05-14 2018-01-23 Tc1 Llc Sheath system for catheter pump
US11045638B2 (en) 2012-05-14 2021-06-29 Tc1 Llc Sheath system for catheter pump
US11260213B2 (en) 2012-05-14 2022-03-01 Tc1 Llc Impeller for catheter pump
US11357967B2 (en) 2012-05-14 2022-06-14 Tc1 Llc Impeller for catheter pump
US10039872B2 (en) 2012-05-14 2018-08-07 Tc1 Llc Impeller for catheter pump
US9675740B2 (en) 2012-05-14 2017-06-13 Tc1 Llc Impeller for catheter pump
US11229786B2 (en) 2012-05-14 2022-01-25 Tc1 Llc Impeller for catheter pump
US9446179B2 (en) 2012-05-14 2016-09-20 Thoratec Corporation Distal bearing support
US10117980B2 (en) 2012-05-14 2018-11-06 Tc1 Llc Distal bearing support
US9327067B2 (en) 2012-05-14 2016-05-03 Thoratec Corporation Impeller for catheter pump
US10765789B2 (en) 2012-05-14 2020-09-08 Tc1 Llc Impeller for catheter pump
US11660441B2 (en) 2012-07-03 2023-05-30 Tc1 Llc Catheter pump
US11944802B2 (en) 2012-07-03 2024-04-02 Tc1 Llc Motor assembly for catheter pump
US11058865B2 (en) 2012-07-03 2021-07-13 Tc1 Llc Catheter pump
US10086121B2 (en) 2012-07-03 2018-10-02 Tc1 Llc Catheter pump
US9358329B2 (en) 2012-07-03 2016-06-07 Thoratec Corporation Catheter pump
US11654276B2 (en) 2012-07-03 2023-05-23 Tc1 Llc Catheter pump
US11219756B2 (en) 2012-07-03 2022-01-11 Tc1 Llc Motor assembly for catheter pump
US11833342B2 (en) 2012-07-03 2023-12-05 Tc1 Llc Motor assembly for catheter pump
US11944801B2 (en) 2012-07-03 2024-04-02 Tc1 Llc Motor assembly for catheter pump
US11925796B2 (en) 2012-07-03 2024-03-12 Tc1 Llc Motor assembly for catheter pump
US11925797B2 (en) 2012-07-03 2024-03-12 Tc1 Llc Motor assembly for catheter pump
US10576193B2 (en) 2012-07-03 2020-03-03 Tc1 Llc Motor assembly for catheter pump
EP2730301A1 (de) 2012-11-09 2014-05-14 Robert von Wattenwyl Herzkreislauf-Implantat, Vorrichtung für ein eine pulsierende Quelle aufweisendes Fluid-Kreislaufsystem und Fluid-Kreislaufsystem
US11850414B2 (en) 2013-03-13 2023-12-26 Tc1 Llc Fluid handling system
US10632241B2 (en) 2013-03-13 2020-04-28 Tc1 Llc Fluid handling system
US11033728B2 (en) 2013-03-13 2021-06-15 Tc1 Llc Fluid handling system
US11077294B2 (en) 2013-03-13 2021-08-03 Tc1 Llc Sheath assembly for catheter pump
US9381288B2 (en) 2013-03-13 2016-07-05 Thoratec Corporation Fluid handling system
US11964119B2 (en) 2013-03-13 2024-04-23 Tc1 Llc Sheath assembly for catheter pump
US11547845B2 (en) 2013-03-13 2023-01-10 Tc1 Llc Fluid handling system
US10786610B2 (en) 2013-03-15 2020-09-29 Tc1 Llc Catheter pump assembly including a stator
US9308302B2 (en) 2013-03-15 2016-04-12 Thoratec Corporation Catheter pump assembly including a stator
US10071192B2 (en) 2013-03-15 2018-09-11 Tc1 Llp Catheter pump assembly including a stator
US10525178B2 (en) 2013-03-15 2020-01-07 Tc1 Llc Catheter pump assembly including a stator
WO2015054296A1 (en) * 2013-10-07 2015-04-16 Cedars-Sinai Medical Center Transcatheter aortic valve implantation pressure wires and uses thereof
US10226333B2 (en) 2013-10-15 2019-03-12 Cedars-Sinai Medical Center Anatomically-orientated and self-positioning transcatheter mitral valve
US10543078B2 (en) 2013-10-16 2020-01-28 Cedars-Sinai Medical Center Modular dis-assembly of transcatheter valve replacement devices and uses thereof
US10869681B2 (en) 2013-10-17 2020-12-22 Cedars-Sinai Medical Center Device to percutaneously treat heart valve embolization
US10820989B2 (en) 2013-12-11 2020-11-03 Cedars-Sinai Medical Center Methods, devices and systems for transcatheter mitral valve replacement in a double-orifice mitral valve
US10507301B2 (en) 2014-01-31 2019-12-17 Cedars-Sinai Medical Center Pigtail for optimal aortic valvular complex imaging and alignment
US9827356B2 (en) 2014-04-15 2017-11-28 Tc1 Llc Catheter pump with access ports
US10583232B2 (en) 2014-04-15 2020-03-10 Tc1 Llc Catheter pump with off-set motor position
WO2015160979A1 (en) * 2014-04-15 2015-10-22 Thoratec Corporation Catheter pump with access ports
US10105475B2 (en) 2014-04-15 2018-10-23 Tc1 Llc Catheter pump introducer systems and methods
US10864308B2 (en) 2014-04-15 2020-12-15 Tc1 Llc Sensors for catheter pumps
US10029037B2 (en) 2014-04-15 2018-07-24 Tc1 Llc Sensors for catheter pumps
US11786720B2 (en) 2014-04-15 2023-10-17 Tc1 Llc Catheter pump with off-set motor position
US11173297B2 (en) 2014-04-15 2021-11-16 Tc1 Llc Catheter pump with off-set motor position
US11331470B2 (en) 2014-04-15 2022-05-17 Tc1 Llc Catheter pump with access ports
US10576192B2 (en) 2014-04-15 2020-03-03 Tc1 Llc Catheter pump with access ports
US10709829B2 (en) 2014-04-15 2020-07-14 Tc1 Llc Catheter pump introducer systems and methods
EP2944338A1 (de) 2014-05-13 2015-11-18 Robert von Wattenwyl Autonomes Herzkreislauf-Implantat mit einem Rückschlagventil
US10449279B2 (en) 2014-08-18 2019-10-22 Tc1 Llc Guide features for percutaneous catheter pump
US9770543B2 (en) 2015-01-22 2017-09-26 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
US11633586B2 (en) 2015-01-22 2023-04-25 Tc1 Llc Motor assembly with heat exchanger for catheter pump
US10709830B2 (en) 2015-01-22 2020-07-14 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
US11911579B2 (en) 2015-01-22 2024-02-27 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
US9675738B2 (en) 2015-01-22 2017-06-13 Tc1 Llc Attachment mechanisms for motor of catheter pump
US9675739B2 (en) 2015-01-22 2017-06-13 Tc1 Llc Motor assembly with heat exchanger for catheter pump
US11759612B2 (en) 2015-01-22 2023-09-19 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
US9987404B2 (en) 2015-01-22 2018-06-05 Tc1 Llc Motor assembly with heat exchanger for catheter pump
US11497896B2 (en) 2015-01-22 2022-11-15 Tc1 Llc Reduced rotational mass motor assembly for catheter pump
US10737005B2 (en) 2015-01-22 2020-08-11 Tc1 Llc Motor assembly with heat exchanger for catheter pump
US10869756B2 (en) 2015-03-12 2020-12-22 Cedars-Sinai Medical Center Devices, systems, and methods to optimize annular orientation of transcatheter valves
US9907890B2 (en) 2015-04-16 2018-03-06 Tc1 Llc Catheter pump with positioning brace
JP7219794B2 (ja) 2016-02-11 2023-02-08 アビオメド オイローパ ゲーエムベーハー 血液ポンプシステム
CN110624143A (zh) * 2016-02-11 2019-12-31 阿比奥梅德欧洲股份有限公司 血泵系统
EP3756701A1 (de) * 2016-02-11 2020-12-30 Abiomed Europe GmbH Blutpumpensystem
JP2021166867A (ja) * 2016-02-11 2021-10-21 アビオメド オイローパ ゲーエムベーハー 血液ポンプシステム
EP3205359A1 (de) * 2016-02-11 2017-08-16 Abiomed Europe GmbH Blutpumpensystem
JP2019508128A (ja) * 2016-02-11 2019-03-28 アビオメド オイローパ ゲーエムベーハー 血液ポンプシステム
US11724091B2 (en) 2016-02-11 2023-08-15 Abiomed Europe Gmbh Blood pump system
WO2017137578A1 (en) * 2016-02-11 2017-08-17 Abiomed Europe Gmbh Blood pump system
US11027114B2 (en) 2016-06-06 2021-06-08 Abiomed, Inc. Blood pump assembly having a sensor and a sensor shield
US11844940B2 (en) 2016-06-06 2023-12-19 Abiomed, Inc. Blood pump assembly having a sensor and a sensor shield
US10342906B2 (en) 2016-06-06 2019-07-09 Abiomed, Inc. Blood pump assembly having a sensor and a sensor shield
US11918800B2 (en) 2016-07-21 2024-03-05 Tc1 Llc Gas-filled chamber for catheter pump motor assembly
US11925795B2 (en) 2016-07-21 2024-03-12 Tc1 Llc Fluid seals for catheter pump motor assembly
US11491322B2 (en) 2016-07-21 2022-11-08 Tc1 Llc Gas-filled chamber for catheter pump motor assembly
US11160970B2 (en) 2016-07-21 2021-11-02 Tc1 Llc Fluid seals for catheter pump motor assembly
US11744987B2 (en) * 2017-05-04 2023-09-05 Abiomed Europe Gmbh Blood pump with reinforced catheter
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11717670B2 (en) 2017-06-07 2023-08-08 Shifamed Holdings, LLP Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11229784B2 (en) 2018-02-01 2022-01-25 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof

Also Published As

Publication number Publication date
DE102009047845A1 (de) 2011-03-31

Similar Documents

Publication Publication Date Title
WO2011039091A1 (de) Herzunterstützungssystem
DE60133136T2 (de) Intraaortaler ballonkatheter mit einer druckmessanordnung mit zwei sensoren
DE10336902C5 (de) Intrakardiale Pumpvorrichtung
EP0996472B1 (de) Intrakardiale blutpumpe
DE69938002T2 (de) Vorrichtung zum intravaskularen anbringen einer kanüle sowie anwendungsverfahren
DE60307599T2 (de) Multilumenkatheter zur minimierung der gliedischämie
DE19535781C2 (de) Vorrichtung zur aktiven Strömungsunterstützung von Körperflüssigkeiten
DE102005007574B3 (de) Kathetereinrichtung
DE4001760C2 (de)
DE60212048T2 (de) Katheter mit verbesserter distaler Schubfähigkeit
DE19734220C2 (de) Kathetersystem mit einem Einführungsdraht
DE69918816T2 (de) Bei geschlossenem thorax angebrachte, auf einem intraaortalen ballon basierende herzunterstützungsvorrichtung
DE69818299T2 (de) Kathetersystem mit einem spezifischem toten raum für die zufuhr eines geringen flüssigkeitsmengenbolus
DE10155011B4 (de) Intra-aortale Pumpe
DE602004008425T2 (de) System für den Zugang zum Koronarsinus zur Erleichterung der Einführung von Schrittmacherleitungen
DE69930871T2 (de) Einführhülse
DE69631430T2 (de) Intraaortaler Ballonkatheter
DE2707951A1 (de) Vorrichtung zur versorgung eines patienten mit einem pulsierenden blutfluss
DE10261575A1 (de) Vorrichtung zur Kanülierung eines Blut führenden Gefäßes und deren Verwendung zur Kanülierung von Blut führenden Gefäßen
EP3746167A1 (de) Punktionssystem
DE112020002925T5 (de) System und verfahren zur vorbereitung eines katheters
WO1999015213A1 (de) Einrichtung zur unterstützung der leistung eines herzens
DE102008059547B4 (de) Vorrichtung zum Entfernen von Konkrementen in Körpergefäßen
DE60015367T2 (de) Intraaortaler ballonkatheter mit einem konisch zulaufenden, y-verbindungsstück
EP2829226B1 (de) Perfusionskanüle mit integrierter Sensorik

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10759616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10759616

Country of ref document: EP

Kind code of ref document: A1