WO2011036965A1 - 通信システム、中継装置、通信端末および基地局 - Google Patents

通信システム、中継装置、通信端末および基地局 Download PDF

Info

Publication number
WO2011036965A1
WO2011036965A1 PCT/JP2010/063808 JP2010063808W WO2011036965A1 WO 2011036965 A1 WO2011036965 A1 WO 2011036965A1 JP 2010063808 W JP2010063808 W JP 2010063808W WO 2011036965 A1 WO2011036965 A1 WO 2011036965A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication terminal
base station
relay
relay device
Prior art date
Application number
PCT/JP2010/063808
Other languages
English (en)
French (fr)
Inventor
亮 澤井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US13/496,499 priority Critical patent/US8976725B2/en
Priority to EP18193131.2A priority patent/EP3468065A1/en
Priority to BR112012006061A priority patent/BR112012006061A2/pt
Priority to EP10818641.2A priority patent/EP2472983B1/en
Priority to CN201080041237.4A priority patent/CN102511194B/zh
Priority to RU2012110184/07A priority patent/RU2549199C2/ru
Publication of WO2011036965A1 publication Critical patent/WO2011036965A1/ja
Priority to IN2290DEN2012 priority patent/IN2012DN02290A/en
Priority to US14/612,052 priority patent/US9402222B2/en
Priority to US15/202,285 priority patent/US10063279B2/en
Priority to US16/059,579 priority patent/US10965341B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/36Repeater circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15535Control of relay amplifier gain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a communication system, a relay device, a communication terminal, and a base station.
  • relay technology In IEEE (Institut of Electric and Electronics Engineers) 802.16j, the relay technology is standardized. Also, in 3GPP (Third Generation Partnership Project) and LTE-A (Long Term Evolution Advanced), technology to use relay devices (relay stations) is actively studied to improve the throughput of communication terminals located at the cell edge. Has been.
  • This relay apparatus receives and amplifies the signal transmitted from the base station in the downlink, and transmits the amplified signal to the communication terminal.
  • the relay device can increase the signal-to-noise ratio as compared with the case where the signal is directly transmitted from the base station to the communication terminal.
  • the relay apparatus can keep the signal-to-noise ratio high by relaying the signal transmitted from the communication terminal to the base station even in the uplink.
  • Such a relay device is described in Non-Patent Documents 1 to 3, for example.
  • an object of the present invention is to provide a new and improved communication system, relay apparatus, and the like that can select a communication terminal to be relayed. It is to provide a communication terminal and a base station.
  • a plurality of base stations a plurality of communication terminals communicating with any of the plurality of base stations, and received from each of the plurality of communication terminals
  • a selection unit that selects a communication terminal to be relayed from among the plurality of communication terminals based on communication quality information, and a relay unit that relays communication between the communication terminal selected by the selection unit and a corresponding base station ,
  • a communication system comprising a relay device.
  • the relay device sets the transmission power of the relay signal to the communication terminal to be relayed to a value at which a difference between the propagation loss of the relay signal between another communication terminal and the relay device is lower than a predetermined value.
  • a setting unit may be further provided.
  • the relay device further includes a distance estimation unit that estimates a distance between the relay device and the other communication terminal based on a propagation loss of a reference signal whose transmission power received from the other communication terminal is known,
  • the power setting unit may estimate a propagation loss of the relay signal between the other communication terminal and the relay device based on the distance estimated by the distance estimation unit.
  • the selection unit may preferentially select a communication terminal having poor communication quality from the plurality of communication terminals.
  • the relay unit may transmit a relay signal to the relay target communication terminal by beam forming.
  • the difference between the transmission power of the relay signal to the base station corresponding to the communication terminal to be relayed and the propagation loss of the relay signal between the other base station and the relay device is lower than a predetermined value.
  • the relay device further includes a distance estimation unit that estimates a distance between the relay device and the other base station based on a propagation loss of a reference signal whose transmission power received from the other base station is known,
  • the power setting unit may estimate a propagation loss of the relay signal between the other base station and the relay device based on the distance estimated by the distance estimation unit.
  • the plurality of communication terminals based on communication quality information received from each of a plurality of communication terminals communicating with any of the plurality of base stations.
  • a relay device is provided that includes a selection unit that selects a communication terminal to be relayed, a communication terminal selected by the selection unit, and a relay unit that relays communication with a corresponding base station.
  • a communication terminal is received from each of a plurality of communication terminals including the communication terminal communicating with any one of a plurality of base stations.
  • the communication terminal is selected as the relay target communication terminal by the relay apparatus that selects the relay target communication terminal from among the plurality of communication terminals based on the communication quality information, the base station via the relay apparatus A communication terminal is provided for communicating with.
  • a base station is received from each of a plurality of communication terminals that communicate with any one of a plurality of base stations including the base station.
  • a communication terminal that communicates with the base station is selected as a relay target communication terminal by a relay apparatus that selects a relay target communication terminal from among the plurality of communication terminals based on communication quality information
  • the relay apparatus A base station is provided that communicates with the communication terminal via a network.
  • a communication terminal to be relayed can be appropriately selected.
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral.
  • a plurality of configurations having substantially the same functional configuration are distinguished as communication terminals 20A, 20B, and 20C as necessary.
  • only the same reference numerals are given.
  • the communication terminal 20 when it is not necessary to distinguish between the communication terminals 20A, 20B, and 20C, they are simply referred to as the communication terminal 20.
  • FIG. 1 is an explanatory diagram showing a configuration of a communication system 1 according to an embodiment of the present invention.
  • the communication system 1 according to the embodiment of the present invention includes base stations 10A and 10B, a backbone network 12, communication terminals 20A, 20B, and 20X, and relay devices 30A and 30B. .
  • the base station 10 manages communication with the relay device 30 and the communication terminal 20 existing in the cell formed by the base station 10. For example, the base station 10A manages scheduling information for communicating with the communication terminal 20X existing in the cell, and communicates with the communication terminal 20X according to the scheduling information. Further, the base station 10A manages scheduling information for communicating with the relay device 30A existing in the cell, and scheduling information for communicating with the relay device 30A and the communication terminal 20A.
  • scheduling information is managed by the relay device 30 regardless of whether the base station 10 and the relay device 30 cooperate or the base station 10, the relay device 30, and the communication terminal 20 cooperate. May be.
  • the relay device 30 relays communication between the base station 10 and the communication terminal 20 according to scheduling information managed by the base station 10. Specifically, the relay device 30 receives the signal transmitted from the base station 10 in the downlink, and transmits the amplified signal to the communication terminal 20 using the frequency-time according to the scheduling information. . By performing such relaying, the relay device 30 can increase the signal-to-noise ratio compared to the case where the signal is directly transmitted from the base station 10 to the communication terminal 20 near the cell edge.
  • the relay device 30 can maintain a high signal-to-noise ratio in the uplink by relaying the signal transmitted from the communication terminal 20 to the base station 10 according to the scheduling information managed by the base station 10. .
  • FIG. 1 shows an example in which only the relay device 30A exists in the cell formed by the base station 10A, a plurality of relay devices 30 may exist in the cell formed by the base station 10A.
  • Type 1 and Type 2 have been proposed as types of such a relay device 30.
  • Type 1 relay device 30 has an individual cell ID and is allowed to operate its own cell. Therefore, the relay device 30 of Type 1 operates so as to be recognized as the base station 10 by the communication terminal 20. However, the relay device 30 of Type 1 does not operate completely autonomously, and the relay device 30 performs relay communication within the range of resources allocated from the base station 10.
  • the relay device 30 of Type 2 is different from Type 1 and does not have an individual cell ID.
  • the direct communication between the base station 10 and the communication terminal 20 is assisted.
  • a relay transmission technique using Cooperative relay and Network coding is being studied. Table 1 below shows the characteristics of Type 1 and Type 2 under investigation.
  • the communication terminal 20 communicates with the base station 10 directly or via the relay device 30 according to the scheduling information managed by the base station 10.
  • the data transmitted and received by the communication terminal 20 includes audio data, music data such as music, lectures, and radio programs, still image data such as photographs, documents, pictures, and charts, movies, television programs, and video programs. And moving image data such as game images.
  • the communication terminal 20 may be an information processing apparatus having a wireless communication function such as a mobile phone and a PC (Personal computer).
  • the management server 16 is connected to each base station 10 via the backbone network 12.
  • the management server 16 has a function as an MME (Mobile Management Entity).
  • the management server 16 may have a function as a leading gateway.
  • the management server 16 receives management information indicating the state of the cell formed by each base station 10 from each base station 10, and controls communication in the cell formed by each base station 10 based on this management information. Note that the functions of the management server 16 may be distributed and implemented in a plurality of physically separated configurations.
  • a communication path between the base station 10 and the relay device 30 is referred to as a relay link
  • a communication path between the relay device 30 and the communication terminal 20 is referred to as an access link
  • the communication between the base station 10 and the communication terminal 20 is performed.
  • the direct communication path is referred to as a direct link.
  • a communication path toward the base station 10 is referred to as UL (uplink)
  • a communication path toward the communication terminal 20 is referred to as DL (downlink).
  • Communication in each link is performed based on OFDMA.
  • the relay device 30 separates the relay link and the access link by frequency or time in order to prevent interference between the relay link and the access link.
  • the relay device 30 may separate the relay link and the access link in the same direction by TDD (Time Division Duplexing) using a common frequency.
  • TDD Time Division Duplexing
  • FIG. 2 is an explanatory diagram showing an example of resource allocation when the same frequency is used for UL and DL.
  • one radio frame is composed of subframes 0 to 9.
  • the relay device 30 recognizes the subframes 8 and 9 as resources for the DL of the access link according to the instruction from the base station 10, and determines the signal transmitted from the base station 10. Relay to communication terminal 20 in subframes 8 and 9.
  • PSC Primary Synchronization Channel
  • SSC Secondary Synchronization Channel
  • PBCH Physical Broadcast Channel
  • FIG. 3 is an explanatory diagram showing an example of resource allocation when different frequencies are used for UL and DL.
  • frequency f0 is used for DL
  • frequency f1 is used for UL.
  • the relay device 30 recognizes the subframe 6-8 having the frequency f0 as a resource for the DL of the access link in accordance with an instruction from the base station 10, and is transmitted from the base station 10. The received signal is relayed to the communication terminal 20 using the subframe 6-8 having the frequency f0.
  • PSC and SSC which are downlink synchronization signals, are assigned to subframe 0 and subframe 5 of frequency f0 (for DL), and paging channels are assigned to subframe 4 and subframe 9.
  • FIG. 4 is an explanatory diagram showing a format example of a DL radio frame.
  • the DL radio frame is composed of subframes 0 to 9, each subframe is composed of two 0.5 ms slots, and each 0.5 ms slot is composed of 7 OFDM (Orthogonal Frequency Division Multiplexing) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the first 1 to 3 OFDM symbols of each subframe include PCFICH (Physical Control Format Channel), PHICH (Physical Hybrid ARQ Indicator Channel), and PDCCH (Physical Control).
  • PCFICH Physical Control Format Channel
  • PHICH Physical Hybrid ARQ Indicator Channel
  • PDCCH Physical Control
  • each said channel contains the information shown below as an example.
  • PCFICH Number of PDCCH symbols for layer 1 and layer 2
  • PHICH ACK / NACK for PUSCH
  • PDCCH Downlink control information.
  • PDSCH / PUSCH scheduling information (modulation method, coding rate, etc. format)
  • one resource block (1RB) which is the minimum unit for resource allocation, is composed of 6 or 7 OFDM symbols and 12 subcarriers.
  • a demodulation reference (reference signal) is arranged in a part of the resource block.
  • SSC, PBCH, and PSC are arranged in subframes 0 and 5.
  • wireless frame shown in FIG. 4 is utilized as PDSCH (Physical Downlink Shared Channel).
  • FIG. 5 is an explanatory diagram showing a format example of a UL radio frame. Similar to the DL radio frame, the UL radio frame is composed of subframes 0 to 9, each subframe is composed of two 0.5 ms slots, and each 0.5 ms slot is composed of 7 OFDM symbols.
  • a demodulation reference (reference signal) is arranged in each 0.5 ms slot, and CQI measurement references are arranged in a distributed manner.
  • the receiving-side base station 10 or the relay device 30 performs channel estimation using the demodulation reference, and demodulates the received signal according to the channel estimation result. Further, the receiving-side base station 10 or the relay device 30 acquires the CQI between the transmitting-side relay device 30 and the communication terminal 20 by measuring the CQI measurement reference.
  • the empty part in the radio frame shown in FIG. 5 is used as a PUSCH (Pysical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • FIG. 6 is an explanatory diagram showing a connection processing sequence.
  • the relay device 30 or the communication terminal 20 transmits a RACH (Random Access Channel) preamble to the base station 10 (S62).
  • the base station 10 acquires TA (Timing Advance) information, and transmits the TA information together with the assigned resource information to the relay device 30 or the communication terminal 20 (S64).
  • the base station 10 may acquire the difference between the transmission timing and the reception timing of the RACH preamble as TA information.
  • the relay device 30 or the communication terminal 20 transmits an RRC connection request (RRC connection request) to the base station 10 using the resource indicated by the allocated resource information (S66).
  • RRC connection request the RRC connection request
  • the base station 10 transmits an RRC connection resolution indicating the transmission source of the RRC connection request (S68).
  • the relay apparatus 30 or the communication terminal 20 can confirm whether the base station 10 received the RRC connection request.
  • the base station 10 transmits a connection request indicating that the relay device 30 or the communication terminal 20 is requesting a service to the management server 16 having a function as an MME (S70).
  • the management server 16 transmits information for setting the relay device 30 or the communication terminal 20 using the connection setup (S72).
  • the base station 10 transmits the RRC connection setup to the relay device 30 or the communication terminal 20 based on the connection setup from the management server 16 (S74), and the relay device 30 or the communication terminal 20 performs connection setting. Thereafter, the relay device 30 or the communication terminal 20 transmits an RRC connection complete indicating that the connection setting is completed to the base station 10 (S76).
  • connection processing sequence is merely an example, and the relay device 30 or the communication terminal 20 and the base station 10 may be connected by another sequence.
  • MBSFN Multi-Media Broadcasting Single Frequency Network
  • MBSFN is a mode in which a plurality of base stations 10 simultaneously broadcast data at the same frequency. Therefore, according to MBSFN, the relay device 30 of Type 1 that virtually operates as a base station transmits a DL control channel and the like using the same frequency as the base station 10.
  • the relay device 30 of Type 1 that virtually operates as a base station transmits a DL control channel and the like using the same frequency as the base station 10.
  • FIG. 7 is an explanatory diagram showing a specific example of MBSFN transmission / reception processing.
  • the base station 10 and the relay device 30 simultaneously transmit the PDCCH.
  • the base station 10 transmits an R-PDCCH for controlling relay in addition to the PDSCH for the communication terminal 20 after the PDCCH.
  • R-PDCCH After this R-PDCCH, PDSCH (data to be relayed) to relay device 30 is transmitted.
  • a non-transmission section is provided after PDSCH for relay device 30.
  • the relay device 30 After transmitting the PDCCH, the relay device 30 receives the PDSCH (relay target data) from the base station 10 through the switching section to the reception process. Then, the relay device 30 switches the reception process to the transmission process in the non-transmission section provided after the PDSCH (data to be relayed) from the base station 10. Further, in the next step, the relay device 30 adds the PDCCH to the decoded PDSCH (data to be relayed) and relays it to the communication terminal 20.
  • the PDSCH display target data
  • the relay device 30 switches the reception process to the transmission process in the non-transmission section provided after the PDSCH (data to be relayed) from the base station 10. Further, in the next step, the relay device 30 adds the PDCCH to the decoded PDSCH (data to be relayed) and relays it to the communication terminal 20.
  • FIG. 8 is an explanatory diagram showing an example of frequency allocation in each cell.
  • frequency interference at the cell boundary can be suppressed by assigning frequencies f1 to f3 to each sector as shown in FIG.
  • Such allocation is particularly effective in densely populated areas with high traffic.
  • LTE-A various new technologies such as Spectrum aggregation, network MIMO, Uplink multi-user MIMO, and relay technology are being studied in order to achieve high throughput with End to End. For this reason, with the advent of new high-throughput mobile applications, depletion of frequency resources may become a problem even in the suburbs. Moreover, when LTE-A is introduced, there is a high possibility that introduction of the relay device 30 will be activated for the purpose of realizing infrastructure deployment at a low cost.
  • FIG. 9 is an explanatory diagram showing a DL interference model of interest in the present embodiment.
  • the relay device 30 ⁇ / b> A exists at a position where PDCCH can be received from a plurality of base stations 10 (base stations 10 ⁇ / b> A and 10 ⁇ / b> B) and belongs to each of the plurality of base stations 10.
  • the terminal 20 communication terminals 20A and 20B
  • the terminal 20 exists at a position where signals can be received.
  • the relay device 30A can relay both the communication between the base station 10A and the communication terminal 20A and the communication between the base station 10B and the communication terminal 20B.
  • the relay device 30A relays the signal transmitted from the base station 10A to the communication terminal 20A without any special contrivance, the signal transmitted by the relay, the signal transmitted from the base station 10B, May interfere with the communication terminal 20B.
  • FIG. 10 is an explanatory diagram showing a UL interference model of interest in the present embodiment.
  • the relay device 30 ⁇ / b> A exists at a position where PDCCH can be received from a plurality of base stations 10 (base stations 10 ⁇ / b> A and 10 ⁇ / b> B), and the communication terminals 20 belonging to each of the plurality of base stations 10. It exists in a position where signals can be received from (communication terminals 20A and 20B).
  • the relay device 30A can relay both the communication between the base station 10A and the communication terminal 20A and the communication between the base station 10B and the communication terminal 20B.
  • the relay device 30A relays the signal transmitted from the communication terminal 20A to the base station 10A without any special contrivance, the signal transmitted by the relay and the signal transmitted from the communication terminal 20B are obtained. There is a concern that interference may occur in the base station 10B.
  • the relay device 30 according to the present embodiment has been made paying attention to the above-described background, and according to the relay device 30, the communication to be relayed is appropriately selected, and the occurrence of interference due to the relay is suppressed. be able to.
  • the configuration of the relay device 30 according to the present embodiment will be described together with the configuration of the communication terminal 20.
  • FIG. 11 is a functional block diagram showing the configuration of the communication terminal 20.
  • the communication terminal 20 includes a plurality of antennas 220a to 220n, an analog processing unit 224, an AD / DA conversion unit 228, and a digital processing unit 230.
  • Each of the plurality of antennas 220a to 220n receives a radio signal from the base station 10 or the relay device 30, acquires an electrical high-frequency signal, and supplies the high-frequency signal to the analog processing unit 224. Further, each of the plurality of antennas 220a to 220n transmits a radio signal to the base station 10 or the relay device 30 based on the high frequency signal supplied from the analog processing unit 224. Since the communication terminal 20 includes the plurality of antennas 220a to 220n as described above, it can perform MIMO (Multiple Input Multiple Output) communication or diversity communication.
  • MIMO Multiple Input Multiple Output
  • the analog processing unit 224 converts the high-frequency signals supplied from the plurality of antennas 220a to 220n into baseband signals by performing analog processing such as amplification, filtering, and down-conversion.
  • the analog processing unit 224 converts the baseband signal supplied from the AD / DA conversion unit 228 into a high frequency signal.
  • the AD / DA conversion unit 228 converts the analog baseband signal supplied from the analog processing unit 224 into a digital format and supplies the digital format to the digital processing unit 230.
  • the AD / DA conversion unit 228 converts the digital baseband signal supplied from the digital processing unit 230 into an analog format and supplies the analog baseband signal to the analog processing unit 224.
  • the digital processing unit 230 includes a synchronization unit 232, a decoder 234, an encoder 240, and a control unit 242.
  • the synchronization unit 232, the decoder 234, the encoder 240, and the like, together with the plurality of antennas 220a to 220n, the analog processing unit 224, and the AD / DA conversion unit 228, communicate with the base station 10 and the relay device 30. It functions as a part.
  • the synchronization unit 232 is supplied with synchronization signals such as PSC and SSC transmitted from the base station 10 and the relay device 30 from the AD / DA conversion unit 228, and performs synchronization processing of radio frames based on the synchronization signals. Specifically, the synchronization unit 232 calculates the correlation between the synchronization signal and a known sequence pattern, and synchronizes the radio frames by detecting the peak position of the correlation.
  • synchronization signals such as PSC and SSC transmitted from the base station 10 and the relay device 30 from the AD / DA conversion unit 228, and performs synchronization processing of radio frames based on the synchronization signals. Specifically, the synchronization unit 232 calculates the correlation between the synchronization signal and a known sequence pattern, and synchronizes the radio frames by detecting the peak position of the correlation.
  • the decoder 234 decodes the baseband signal supplied from the AD / DA converter 228 to obtain received data.
  • the decoding may include, for example, MIMO reception processing and OFDM demodulation processing.
  • Encoder 240 encodes transmission data such as PUSCH and supplies the encoded data to AD / DA converter 228.
  • the encoding may include, for example, a MIMO transmission process and an OFDM modulation process.
  • the control unit 242 controls overall operations in the communication terminal 20 such as transmission processing, reception processing, and connection processing with the relay device 30 and the base station 10.
  • the communication terminal 20 performs transmission processing and reception processing using resource blocks allocated by the base station 10 based on control by the control unit 242.
  • the control unit 242 controls the transmission process according to the transmission parameter specified from the base station 10 or the relay device 30.
  • the control unit 242 controls transmission processing according to the TPC parameter designated by the base station 10.
  • the digital processing unit 230 uses the demodulation reference transmitted from the base station 10 or the relay device 30 to perform channel quality. (For example, received power) is measured.
  • the control unit 242 generates a CQI report based on the measurement result, and supplies the generated CQI report to the encoder 240. As a result, the CQI report is transmitted to the base station 10 or the relay device 30 using PUSCH.
  • FIG. 12 is a functional block diagram showing the configuration of the relay device 30.
  • the relay device 30 includes a plurality of antennas 320a to 320n, an analog processing unit 324, an AD / DA conversion unit 328, and a digital processing unit 330.
  • Each of the plurality of antennas 320a to 320n receives a radio signal from the base station 10 or the communication terminal 20, acquires an electrical high-frequency signal, and supplies the high-frequency signal to the analog processing unit 324.
  • Each of the plurality of antennas 320a to 320n transmits a radio signal to the base station 10 or the communication terminal 20 based on the high frequency signal supplied from the analog processing unit 324. Since the relay device 30 includes the plurality of antennas 320a to 320n as described above, it is possible to perform MIMO communication and diversity communication.
  • the analog processing unit 324 converts high-frequency signals supplied from the plurality of antennas 320a to 320n into baseband signals by performing analog processing such as amplification, filtering, and down-conversion.
  • the analog processing unit 324 converts the baseband signal supplied from the AD / DA conversion unit 328 into a high frequency signal.
  • the AD / DA conversion unit 328 converts the analog baseband signal supplied from the analog processing unit 324 into a digital format and supplies the digital format to the digital processing unit 330.
  • the AD / DA conversion unit 328 converts the digital baseband signal supplied from the digital processing unit 330 into an analog format and supplies the analog baseband signal to the analog processing unit 324.
  • the digital processing unit 330 includes a synchronization unit 332, a decoder 334, a buffer 338, an encoder 340, a control unit 342, a relay selection unit 344, a distance estimation unit 346, and a power setting unit 348.
  • the synchronization unit 332, the decoder 334, the encoder 340, etc. together with the plurality of antennas 320a to 320n, the analog processing unit 324, and the AD / DA conversion unit 328, receive for communication with the base station 10 and the communication terminal 20. Functions as a transmission unit, a transmission unit, and a relay unit.
  • the synchronization unit 332 is supplied with the synchronization signal transmitted from the base station 10 from the AD / DA conversion unit 328, and performs synchronization processing of the radio frame based on the synchronization signal. Specifically, the synchronization unit 332 calculates the correlation between the synchronization signal and the known sequence pattern, and synchronizes the radio frames by detecting the correlation peak position.
  • the decoder 334 decodes the baseband signal supplied from the AD / DA converter 328 to obtain relay data addressed to the base station 10 or the communication terminal 20.
  • Decoding may include, for example, MIMO reception processing, OFDM demodulation processing, error correction processing, and the like.
  • the buffer 338 temporarily holds the relay data addressed to the base station 10 or the communication terminal 20 obtained by the decoder 334. Under the control of the control unit 342, relay data addressed to the communication terminal 20 is read from the buffer 338 to the encoder 340 in the DL resource block of the access link. Similarly, under the control of the control unit 342, relay data addressed to the base station 10 is read from the buffer 338 to the encoder 340 in the UL resource block of the relay link.
  • Encoder 340 encodes relay data supplied from buffer 338 and supplies the encoded data to AD / DA converter 328.
  • the encoding may include, for example, a MIMO transmission process and an OFDM modulation process.
  • the relay selection unit 344 selects one or all of the communications as relay target communications. For example, the relay selection unit 344 of the relay device 30A illustrated in FIG. 9 selects which of the communication between the base station 10A and the communication terminal 20A or the communication between the base station 10B and the communication terminal 20B is to be relayed.
  • the selection criteria by the relay selection unit 344 will be specifically described.
  • relay selection unit 344 acquires UL scheduling information directed to each base station 10 from PDCCH.
  • relay device 30A can receive PUSCH from both communication terminals 20A and 20B, relay selection unit 344 acquires a CQI report from PUSCH. Note that the relay selection unit 344 can determine from which communication terminal 20 each PUSCH is transmitted based on the UL scheduling information.
  • the relay selection part 344 selects the communication to relay based on the acquired CQI report (communication quality information).
  • the relay selection unit 344 may preferentially select direct link communication with poor communication quality in each of UL and DL.
  • the relay selection unit 344 DL communication from 10A to communication terminal 20A may be selected. That is, when “CQI_level_communication terminal 20A ⁇ CQI_level_communication terminal 20B”, relay selection unit 344 may select DL communication from base station 10A to communication terminal 20A as a relay target.
  • the relay selection unit 344 performs communication.
  • UL communication from the terminal 20A to the base station 10A may be selected. That is, when “CQI_level_communication terminal 20A ⁇ CQI_level_communication terminal 20B”, relay selection unit 344 may select UL communication from communication terminal 20A to base station 10A as a relay target.
  • the relay selection part 344 judges communication with bad communication quality based on a CQI report was demonstrated above, this embodiment is not limited to this example.
  • the TPC parameter specified by the base station 10 to the communication terminal 20 varies depending on the state of the direct link between the base station 10 and the communication terminal 20, it can be regarded as an index indicating the direct link communication quality. Therefore, based on the TPC parameter specified by the base station 10 to the communication terminal 20 by the PDCCH, the relay selection unit 344 selects, as a relay target, more preferentially for communication performed with a high output signal. May be.
  • the distance estimation unit 346 estimates the distance to each base station 10 existing within the communicable range and the distance to each communication terminal 20. For example, the distance estimation unit 346 of the relay device 30A illustrated in FIG. 9 estimates the distance to the base station 10A, the distance to the base station 10B, the distance to the communication terminal 20A, and the distance to the communication terminal 20B.
  • the distance estimation unit 346 performs distance estimation based on the propagation loss of the reference signal transmitted by each base station 10 and each communication terminal 20 and having known transmission power and phase. For example, the distance estimation unit 346 may calculate the propagation loss of the reference signal (demodulation reference) transmitted from the communication terminal 20A, and estimate the distance to the communication terminal 20A based on the calculated propagation loss. Similarly, the distance estimation unit 346 may calculate the propagation loss of the reference signal transmitted from the base station 10B, and estimate the distance from the base station 10B based on the calculated propagation loss.
  • the reference signal demodulation reference
  • the power setting unit 348 sets transmission power for performing the relay selected by the relay selection unit 344.
  • transmission power set by the power setting unit 348 when the relay target is DL communication and UL communication will be described.
  • the relay selection unit 344 selects DL communication from the base station 10A to the communication terminal 20A as a relay target
  • the signal transmitted by the relay device 30A to the communication terminal 20A for relaying is: It is received as a noise component in communication terminal 20B. Further, if this noise component exceeds the allowable interference level of the communication terminal 20B, interference may occur. For this reason, the power setting unit 348 sets the transmission power of the signal to the communication terminal 20A so that no interference occurs in the communication terminal 20B. Specifically, the power setting unit 348 may set the transmission power so that the QoS expected by the base station 10A / communication terminal 20A is satisfied and the following Equation 1 is satisfied.
  • the interference tolerance level of the communication terminal 20B may be a required SINR at the minimum rate of the communication terminal 20B indicated by the device authentication authority.
  • the power setting unit 348 can estimate the propagation loss between the relay device 30A and the communication terminal 20B based on the distance between the relay device 30A and the communication terminal 20B estimated by the distance estimation unit 346. Note that the power setting unit 348 may set the lowest transmission power within the range satisfying the QoS expected by the base station 10A / communication terminal 20A and satisfying the above formula 1, from the viewpoint of reducing power consumption. .
  • the relay device 30 may not perform relaying.
  • the relay apparatus 30 may reallocate resource blocks so that interference does not occur.
  • a signal that the relay device 30A transmits to the base station 10A for relaying is: It is received as a noise component in the base station 10B. Further, if this noise component exceeds the interference allowable level of the base station 10B, interference may occur. For this reason, the power setting unit 348 sets the transmission power of the signal to the base station 10A so that no interference occurs in the base station 10B. Specifically, the power setting unit 348 may set the transmission power so as to satisfy QoS expected by the base station 10A / communication terminal 20A and satisfy the following formula 2.
  • the allowable interference level of the base station 10B may be a required SINR at the minimum rate of the base station 10B indicated by the device authentication authority.
  • the power setting unit 348 can estimate the propagation loss between the relay device 30A and the base station 10B based on the distance between the relay device 30A and the base station 10B estimated by the distance estimation unit 346. Note that the power setting unit 348 may set the lowest transmission power within a range satisfying the QoS expected by the base station 10A / communication terminal 20A and satisfying the above formula 2 from the viewpoint of power consumption reduction. .
  • the relay device 30 may not perform relaying.
  • the relay apparatus 30 may reallocate resource blocks so that interference does not occur.
  • the control unit 342 controls transmission processing so that a signal for relaying is transmitted to the base station 10 or the communication terminal 20 selected by the relay selection unit 344 with the transmission power set by the power setting unit 348. Further, the control unit 342 may control transmission parameters such as an AMC (Advanced Modulation and Coding) parameter and a HARQ (Hybrid Automatic Repeat Request) parameter as follows when controlling the transmission process. In addition, the following control may be performed independently or may be performed in combination.
  • AMC Advanced Modulation and Coding
  • HARQ Hybrid Automatic Repeat Request
  • the relay destination communication terminal 20 and the relay device 30 have a positional relationship in which the signal reception level from the relay device 30 may be sufficiently higher than the reception level from the direct link in the communication terminal 20.
  • the control unit 342 may overlay transmit the relay signal with a Modulation-Coding parameter having a higher rate than that of the direct link.
  • the signal transmitted through the direct link is buried when received by the communication terminal 20, but the relay signal from the relay device 30 is expected to be decoded by the communication terminal 20.
  • the relay device 30 may transmit a relay signal using a modulation-coding parameter having a higher rate than that of the direct link by using an empty time slot.
  • the control unit 342 may overlay transmit the relay signal with the same parameter as the retransmission packet.
  • the relay device 30 may transmit a relay signal as a HARQ packet at a higher rate than the direct link by using an empty time slot.
  • the control unit 342 may transmit the relay signal by beam forming when the relative direction of the relay destination communication terminal 20 can be estimated.
  • the power setting unit 348 may set the transmission power based on the transmission power and propagation loss of the null beam communication terminal 20 that is not the relay destination. According to this beam forming, it is possible to select a plurality of communication terminals 20 as relay destinations and transmit relay signals to the plurality of communication terminals 20 simultaneously.
  • the relay destination base station 10 and the relay device 30 have a positional relationship in which the signal reception level from the relay device 30 may be sufficiently higher than the reception level from the direct link in the base station 10.
  • the control unit 342 may overlay transmit the relay signal with a Modulation-Coding parameter having a higher rate than that of the direct link.
  • the signal transmitted through the direct link is buried when received by the base station 10, but it is expected that the relay signal from the relay device 30 is decoded by the base station 10.
  • the relay device 30 may transmit a relay signal using a modulation-coding parameter having a higher rate than that of the direct link by using an empty time slot.
  • the control unit 342 may overlay transmit the relay signal with the same parameter as the retransmission packet.
  • the relay device 30 may transmit a relay signal as a HARQ packet at a higher rate than the direct link by using an empty time slot.
  • the control unit 342 may transmit the relay signal by beamforming.
  • the power setting unit 348 may set the transmission power based on the transmission power and propagation loss of the Null beam to the base station 10 that is not the relay destination. According to this beam forming, it becomes possible to select a plurality of base stations 10 as relay destinations and transmit relay signals to the plurality of base stations 10 simultaneously.
  • the relay device 30 uses the direct link and completes the procedure up to the RRC connection complete in the same procedure as that of the communication terminal 20, and determines the subcell ID, reference pattern allocation, and the like.
  • the base station 10 and the subordinate relay device 30 are synchronized.
  • Grouping information indicating the relay device 30 and the communication terminal 20 belonging to the relay device 30 is given in advance by the base station 10 (the base station 10 determines the necessity of relay from the CQI report and TA information and Allocate resources for relay).
  • Ptx_DL >> Ptx_RL and Ptx_DL >> Ptx_AL (Ptx: maximum transmission power)
  • DL direct link (direct link between the base station 10 and the communication terminal 20)
  • AL access link
  • RL relay link / direct link
  • Measures against interference in particular, measures against interference on the direct link of a communication device (LTE UE) that does not assume the presence of the relay device 30 are important issues.
  • FIG. 13 is a sequence diagram illustrating a flow in which the relay device 30 relays DL communication. As illustrated in FIG. 13, the relay device 30 receives PDCCH from the base station 10A (S404), and receives PDCCH from the base station 10B (S408), and acquires scheduling information from each PDCCH (S412).
  • the relay device 30 receives the demodulation reference from the communication terminal 20A (S416), and receives the demodulation reference from the communication terminal 20B (S420). Based on the propagation loss of each demodulation reference, the communication terminal 20A And the distance to the communication terminal 20B are estimated (S424). Note that it is possible to determine from which communication terminal 20 each demodulation reference is transmitted based on the scheduling information acquired in S412.
  • the relay selection unit 344 When the CQI report is received from the communication terminal 20A (S428) and the CQI report is received from the communication terminal 20B (S432), the relay selection unit 344 performs communication with the communication terminal 20A or communication with the communication terminal 20B. Which one is to be relayed is selected based on the communication quality indicated by the CQI report (S436). For example, the relay selection unit 344 may preferentially select communication with poor communication quality.
  • the power setting unit 348 sets the transmission power of the signal to the communication terminal 20 selected in S436 such that the reception level at the other communication terminal 20 is equal to or lower than the allowable interference level of the other communication terminal 20 ( S440).
  • the relay device 30 receives the PDSCH from the base station 10A (S444)
  • the relay device 30 transmits the received PDSCH to the communication terminal 20A with the transmission power set by the power setting unit 348. Transmit (S448).
  • the relay device 30 may appropriately control parameters such as AMC and HARQ and transmit the PDSCH to the communication terminal 20A.
  • FIG. 14 is a sequence diagram illustrating a flow in which the relay device 30 relays UL communication.
  • the relay device 30 receives the PDCCH from the base station 10A (S454), and receives the PDCCH from the base station 10B (S458), acquires scheduling information from each PDCCH (S462).
  • the relay device 30 receives the reference signal from the base station 10A (S466), and receives the reference signal from the base station 10B (S470), the distance from the base station 10A based on the propagation loss of each reference signal. And the distance to the base station 10B are estimated (S474).
  • the relay selection unit 344 When the CQI report is received from the communication terminal 20A (S478) and the CQI report is received from the communication terminal 20B (S482), the relay selection unit 344 performs communication with the base station 10A or communication with the base station 10B. Which one to relay is selected based on the communication quality indicated by the CQI report (S486). For example, the relay selection unit 344 may preferentially select communication with poor communication quality.
  • the power setting unit 348 sets the transmission power of the signal to the base station 10 selected in S486 so that the reception level at the other base station 10 is equal to or lower than the allowable interference level of the other base station 10 ( S490).
  • the relay device 30 receives the PUSCH from the communication terminal 20A (S494), and sends the received PUSCH to the base station 10A with the transmission power set by the power setting unit 348. Transmit (S498).
  • the relay device 30 may appropriately control parameters such as AMC and HARQ and transmit the PDSCH to the communication terminal 20A.
  • the relay device 30 according to the present embodiment can appropriately select communication to be relayed when there are a plurality of base stations 10 and communication terminals 20 in the communicable range. Furthermore, the relay device 30 according to the present embodiment can transmit the relay signal with transmission power that does not cause interference in the base station 10 or the communication terminal 20 that is not the relay destination.
  • each step in the processing of the communication system 1 of the present specification does not necessarily have to be processed in time series in the order described as a sequence diagram.
  • Each step in the processing of the communication system 1 may be processed in an order different from the order described as the sequence diagram or may be processed in parallel.
  • S404 and S408 in FIG. 13 may be simultaneously received by the relay device 30, or one of them may be first.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

 複数の基地局と、前記複数の基地局のいずれかと通信する複数の通信端末と、前記複数の通信端末の各々から受信される通信品質情報に基づき、前記複数の通信端末のうちから中継対象の通信端末を選択する選択部、および、前記選択部により選択された通信端末と、対応する基地局との通信を中継する中継部、を有する中継装置と、を備える通信システムを構成する。

Description

通信システム、中継装置、通信端末および基地局
 本発明は、通信システム、中継装置、通信端末および基地局に関する。
 IEEE(Institute of Electrical and Electronics Engineers)802.16jでは、リレー技術が規格化されている。また、3GPP(Third Generation Partnership Project) LTE-A(Long Term Evolution Advanced)においても、セルエッジに位置する通信端末のスループット向上を実現するために、中継装置(リレーステーション)を利用する技術が盛んに検討されている。
 この中継装置は、ダウンリンクにおいて、基地局から送信された信号を受信して、増幅してから、増幅した信号を通信端末に対して送信する。中継装置は、このような中継を行うことにより、基地局から通信端末に対して信号を直接送信する場合よりも信号対雑音比を高くすることが可能である。同様に、中継装置は、アップリンクにおいても、通信端末から送信された信号を基地局へ中継することにより、信号対雑音比を高く保つことができる。このような中継装置については、例えば非特許文献1~3に記載されている。
R1-090015, "Consideration on Relay.ppt", China Potevio, CATT, Jan 2009 R1-090065, "Joint analog network coding and Relay", Alcatel-Lucent, Jan 2009 R1-091803, "Understanding on Type 1 and Type 2 Relay", Huawei, May 2009
 しかし、中継装置の中継可能範囲に複数の通信端末が存在する場合に、いずれの通信端末による通信の中継をどのように行うか、という点については報告されていない。このため、中継の必要性の高い通信端末の通信が中継されず、中継の必要性の低い通信端末の通信が中継されてしまう場合が想定された。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、中継対象の通信端末を選択することが可能な、新規かつ改良された通信システム、中継装置、通信端末および基地局を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、複数の基地局と、前記複数の基地局のいずれかと通信する複数の通信端末と、前記複数の通信端末の各々から受信される通信品質情報に基づき、前記複数の通信端末のうちから中継対象の通信端末を選択する選択部、および、前記選択部により選択された通信端末と、対応する基地局との通信を中継する中継部、を有する中継装置と、を備える通信システムが提供される。
 前記中継装置は、前記中継対象の通信端末への中継信号の送信電力を、他の通信端末および前記中継装置間での前記中継信号の伝搬損失との差分が所定値を下回る値に設定する電力設定部をさらに備えてもよい。
 前記中継装置は、前記他の通信端末から受信される送信電力が既知であるリファレンス信号の伝搬損失に基づいて前記中継装置および前記他の通信端末間の距離を推定する距離推定部をさらに備え、前記電力設定部は、前記距離推定部により推定された距離に基づき、前記他の通信端末および前記中継装置間での前記中継信号の伝搬損失を推定してもよい。
 前記選択部は、前記複数の通信端末のうちから、通信品質が悪い通信端末を優先的に選択してもよい。
 前記中継部は、前記中継対象の通信端末への中継信号を、ビームフォーミングにより送信してもよい。
 前記中継装置は、前記中継対象の通信端末に対応する基地局への中継信号の送信電力を、他の基地局および前記中継装置間での前記中継信号の伝搬損失との差分が所定値を下回る値に設定する電力設定部をさらに備えてもよい。
 前記中継装置は、前記他の基地局から受信される送信電力が既知であるリファレンス信号の伝搬損失に基づいて前記中継装置および前記他の基地局間の距離を推定する距離推定部をさらに備え、前記電力設定部は、前記距離推定部により推定された距離に基づき、前記他の基地局および前記中継装置間での前記中継信号の伝搬損失を推定してもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、複数の基地局のいずれかと通信する複数の通信端末の各々から受信される通信品質情報に基づき、前記複数の通信端末のうちから中継対象の通信端末を選択する選択部と、前記選択部により選択された通信端末と、対応する基地局との通信を中継する中継部と、を備える中継装置が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、通信端末であって、複数の基地局のいずれかと通信する前記通信端末を含む複数の通信端末の各々から受信される通信品質情報に基づいて前記複数の通信端末のうちから中継対象の通信端末を選択する中継装置により、前記中継対象の通信端末として前記通信端末が選択された場合、前記中継装置を介して基地局と通信する、通信端末が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、基地局であって、前記基地局を含む複数の基地局のいずれかと通信する複数の通信端末の各々から受信される通信品質情報に基づいて前記複数の通信端末のうちから中継対象の通信端末を選択する中継装置により、前記基地局と通信する通信端末が前記中継対象の通信端末として選択された場合、前記中継装置を介して前記通信端末と通信する、基地局が提供される。
 以上説明したように本発明によれば、中継対象の通信端末を適切に選択することができる。
本発明の一実施形態による通信システムの構成を示した説明図である。 ULとDLとで同一の周波数を利用する場合のリソース割当て例を示した説明図である。 ULとDLとで異なる周波数を利用する場合のリソース割当て例を示した説明図である。 DL無線フレームのフォーマット例を示した説明図である。 UL無線フレームのフォーマット例を示した説明図である。 接続処理シーケンスを示した説明図である。 MBSFN送受信処理の具体例を示した説明図である。 各セルにおける周波数の割り当て例を示した説明図である。 本実施形態において着目するDLの干渉モデルを示した説明図である。 本実施形態において着目するULの干渉モデルを示した説明図である。 通信端末の構成を示した機能ブロック図である。 中継装置の構成を示した機能ブロック図である。 中継装置がDL通信を中継する流れを示したシーケンス図である。 中継装置がUL通信を中継する流れを示したシーケンス図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じて通信端末20A、20Bおよび20Cのように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、通信端末20A、20Bおよび20Cを特に区別する必要が無い場合には、単に通信端末20と称する。
 また、以下に示す項目順序に従って当該「発明を実施するための形態」を説明する。
  1.通信システムの基本構成
   (各リンクへのリソース割当て例)
   (無線フレームのフォーマット例)
   (接続処理シーケンス)
   (MBSFN)
   (各セルにおける周波数割当て例)
  2.通信システムの具体的構成
   (着目する干渉モデル)
   (通信端末の構成)
   (中継装置の構成)
  3.通信システムの動作
  4.まとめ
  <1.通信システムの基本構成>
 まず、図1~図8を参照し、本発明の一実施形態による通信システム1の基本構成を説明する。図1は、本発明の一実施形態による通信システム1の構成を示した説明図である。図1に示したように、本発明の実施形態による通信システム1は、基地局10Aおよび10Bと、バックボーンネットワーク12と、通信端末20A、20B、および20Xと、中継装置30Aおよび30Bと、を備える。
 基地局10は、基地局10が形成するセル内に存在する中継装置30および通信端末20との通信を管理する。例えば、基地局10Aは、セル内に存在する通信端末20Xと通信するためのスケジューリング情報を管理し、このスケジューリング情報に従って通信端末20Xと通信する。また、基地局10Aは、セル内に存在する中継装置30Aと通信するためのスケジューリング情報、および中継装置30Aと通信端末20Aが通信するためのスケジューリング情報を管理する。
 なお、スケジューリング情報の管理は、基地局10と中継装置30が協働して行っても、基地局10と中継装置30と通信端末20とが協働して行っても、中継装置30が行ってもよい。
 中継装置30は、基地局10と通信端末20との通信を、基地局10が管理するスケジューリング情報に従って中継する。具体的には、中継装置30は、ダウンリンクにおいて、基地局10から送信された信号を受信して、増幅した信号を、スケジューリング情報に従った周波数―時間を利用して通信端末20に送信する。中継装置30は、このような中継を行うことにより、基地局10からセルエッジ付近の通信端末20に対して信号を直接送信する場合よりも、信号対雑音比を高くすることが可能である。
 同様に、中継装置30は、アップリンクにおいても、通信端末20から送信された信号を基地局10が管理するスケジューリング情報に従って基地局10へ中継することにより、信号対雑音比を高く保つことができる。なお、図1においては、基地局10Aが形成するセルに中継装置30Aのみが存在する例を示しているが、基地局10Aが形成するセルに複数の中継装置30が存在してもよい。
 このような中継装置30の種類として、Type1およびType2が提案されている。Type1の中継装置30は、個別のセルIDを有し、独自のセルを運用することが認められる。したがって、Type1の中継装置30は、通信端末20からは基地局10であると認識されるように動作することになる。しかし、Type1の中継装置30は完全に自律的に動作するわけでなく、中継装置30は、基地局10から割り当てられるリソースの範囲内でリレー通信を行う。
 一方、Type2の中継装置30は、Type1と異なり、個別のセルIDを有さず、
基地局10と通信端末20間の直接通信を補助する。例えば、Cooperative relayやNetwork codingを用いたリレー伝送技術が検討されている。以下、表1に、検討中のType1とType2の特性を示す。
Figure JPOXMLDOC01-appb-T000001
 通信端末20は、上述したように、基地局10と直接、または中継装置30を介して、基地局10により管理されるスケジューリング情報に従って通信する。なお、通信端末20が送受信するデータとしては、音声データや、音楽、講演およびラジオ番組などの音楽データや、写真、文書、絵画、図表などの静止画データや、映画、テレビジョン番組、ビデオプログラム、ゲーム画像などの動画データなどが挙げられる。また、通信端末20は、携帯電話、およびPC(Personal computer)などの無線通信機能を備えた情報処理装置であってもよい。
 管理サーバ16は、バックボーンネットワーク12を介して各基地局10と接続されている。この管理サーバ16は、MME(Mobile Management Entity)としての機能を有する。また、管理サーバ16は、Seving Gatewayとしての機能を有してもよい。また、管理サーバ16は、各基地局10が形成するセルの状態を示す管理情報を各基地局10から受信し、この管理情報に基づいて各基地局10が形成するセルにおける通信を制御する。なお、管理サーバ16の機能は、複数の物理的に分離された構成に分散して実装されてもよい。
   (各リンクへのリソース割当て例)
 ここで、各リンクへのリソース割当てについて説明する。なお、以下では、基地局10と中継装置30の間の通信経路をリレーリンクと称し、中継装置30と通信端末20の間の通信経路をアクセスリンクと称し、基地局10と通信端末20の間の直接的な通信経路をダイレクトリンクと称する。また、基地局10へ向かう通信経路をUL(アップリンク)と称し、通信端末20へ向かう通信経路をDL(ダウンリンク)と称する。なお、各リンクにおける通信は、OFDMAに基づいて行われる。
 中継装置30は、リレーリンクおよびアクセスリンク間の干渉を防止するために、リレーリンクおよびアクセスリンクを周波数または時間で分離する。例えば、中継装置30は、同一方向のリレーリンクおよびアクセスリンクを、共通の周波数を用いてTDD(Time Division Duplexing)により分離してもよい。
 図2は、ULとDLとで同一の周波数を利用する場合のリソース割当て例を示した説明図である。図2に示したように、1の無線フレームは、サブフレーム0~サブフレーム9により構成される。また、図2に示した例では、中継装置30は、基地局10からの指示に従い、サブフレーム8および9をアクセスリンクのDLのためのリソースとして認識し、基地局10から送信された信号をサブフレーム8および9において通信端末20に中継する。
 なお、サブフレーム0とサブフレーム5には、ダウンリンクの同期用信号であるPSC(Primary Synchronization Channel)およびSSC(Secondary Synchronization Channel)や、PBCH(Physical Broadcast CHannel)が割り当てられる。また、サブフレーム1および6にはページングチャネルが割り当てられる。
 図3は、ULとDLとで異なる周波数を利用する場合のリソース割当て例を示した説明図である。図3に示したように、周波数f0がDLのために利用され、周波数f1がULのために利用される。また、図3に示した例では、中継装置30は、基地局10からの指示に従い、周波数f0のサブフレーム6-8をアクセスリンクのDLのためのリソースとして認識し、基地局10から送信された信号を周波数f0のサブフレーム6-8を利用して通信端末20に中継する。
 なお、周波数f0(DL用)のサブフレーム0とサブフレーム5には、ダウンリンクの同期用信号であるPSCおよびSSCが割り当てられ、サブフレーム4とサブフレーム9にはページングチャネルが割り当てられる。
   (無線フレームのフォーマット例)
 次に、図4および図5を参照し、DL無線フレームおよびUL無線フレームの詳細なフレームフォーマット例を説明する。
 図4は、DL無線フレームのフォーマット例を示した説明図である。DL無線フレームは、サブフレーム0~9で構成され、各サブフレームは2の0.5msスロットで構成され、各0.5msスロットは7OFDM(Orthogonal Frequency Division Multiplexing)シンボルで構成される。
 図4に示したように、各サブフレームの先頭の1~3OFDMシンボルには、PCFICH(Physical Control Format Indicator CHannel)、PHICH(Physical Hybrid ARQ Indicator CHannel)、およびPDCCH(Physical Control CHannel)などの制御用チャネルが配置される。
 なお、上記の各チャネルは、一例として以下に示す情報を含む。
  PCFICH:レイヤ1、レイヤ2に関するPDCCHのシンボル数
  PHICH :PUSCHに対するACK/NACK
  PDCCH :下りリンク制御情報。PDSCH/PUSCHのスケジューリング
         情報(変調法、符号化率などのフォーマット)
 また、リソース割り当ての最小単位である1リソースブロック(1RB)は、図4に示したように、6または7OFDMシンボル、および12サブキャリアにより構成される。このリソースブロックの一部に復調用リファレンス(リファレンス信号)が配置される。
 また、サブフレーム0および5にはSSC、PBCHおよびPSCが配置される。また、図4に示した無線フレームにおける空き部分がPDSCH(Pysical Downlink Shared CHannel)として利用される。
 図5は、UL無線フレームのフォーマット例を示した説明図である。UL無線フレームは、DL無線フレームと同様に、サブフレーム0~9で構成され、各サブフレームは2の0.5msスロットで構成され、各0.5msスロットは7OFDMシンボルで構成される。
 図5に示したように、0.5msスロットの各々には復調用リファレンス(リファレンス信号)が配置され、CQI測定リファレンスが分散して配置される。受信側の基地局10または中継装置30は、復調用リファレンスを用いてチャネル推定を行い、チャネル推定結果に従って受信信号を復調する。また、受信側の基地局10または中継装置30は、CQI測定リファレンスを測定することにより、送信側の中継装置30または通信端末20との間のCQIを取得する。
 また、図5に示した無線フレームにおける空き部分がPUSCH(Pysical Uplink Shared CHannel)として利用される。なお、CQIレポートを要求されると、通信端末20または中継装置30は、PUSCHを利用してCQIレポートを送信する。
   (接続処理シーケンス)
 続いて、図6を参照し、中継装置30または通信端末20と、基地局10との間の接続処理シーケンスを説明する。
 図6は、接続処理シーケンスを示した説明図である。図6に示したように、まず、中継装置30または通信端末20が基地局10にRACH(Random Access CHannel) preambleを送信する(S62)。基地局10は、RACH preambleを受信すると、TA(Timing Advance)情報を取得し、TA情報を割当てリソース情報と共に中継装置30または通信端末20へ送信する(S64)。例えば、基地局10は、RACH preambleの送信タイミングを把握できる場合、送信タイミングと、RACH preambleの受信タイミングの差分をTA情報として取得してもよい。
 その後、中継装置30または通信端末20は、割当てリソース情報の示すリソースを利用して基地局10にRRC接続要求(RRC connection request)を送信する(S66)。基地局10は、RRC接続要求を受信した場合、RRC接続要求の送信元を示すRRC connection resolutionを送信する(S68)。これにより、中継装置30または通信端末20は、基地局10がRRC接続要求を受信したか否かを確認することができる。
 続いて、基地局10は、MMEとしての機能を有する管理サーバ16に、中継装置30または通信端末20がサービス要求していることを示すConnection requestを送信する(S70)。管理サーバ16は、Connection requestを受信すると、中継装置30または通信端末20に設定するための情報をConnection setupにより送信する(S72)。
 そして、基地局10が、管理サーバ16からのConnection setupに基づいてRRC connection setupを中継装置30または通信端末20に送信し(S74)、中継装置30または通信端末20が接続設定を行う。その後、中継装置30または通信端末20が、接続設定が完了したことを示すRRC connection completeを基地局10に送信する(S76)。
 これにより、中継装置30または通信端末20と、基地局10との間の接続が完了し、通信可能な状態となる。なお、上記の接続処理シーケンスは一例に過ぎず、中継装置30または通信端末20と基地局10とは、他のシーケンスにより接続されてもよい。
   (MBSFN)
 次に、基地局10が行うMBSFN(Multi-media Broadcasting Single Frequency Network)送信、およびMBSFN送信に対する中継装置30の動作例を説明する。
 MBSFNは、複数の基地局10が、同じ周波数で、データを同時にBroadcast送信するモードである。したがって、MBSFNによれば、仮想的に基地局として動作するType1の中継装置30は、基地局10と同じ周波数を用いてDL用の制御チャネルなどを送信する。以下、図7を参照し、具体的なMBSFN送受信処理の流れを説明する。
 図7は、MBSFN送受信処理の具体例を示した説明図である。まず、図7に示したように、基地局10と中継装置30が同時にPDCCHを送信する。ここで、基地局10は、PDCCHの後に、通信端末20に対するPDSCHに加え、中継を制御するためのR-PDCCHを送信する。このR-PDCCHの後に、中継装置30に対するPDSCH(中継対象のデータ)が送信される。なお、中継装置30に対するPDSCHの後には無送信区間が設けられる。
 中継装置30は、PDCCHを送信した後、受信処理への切り替え区間を経て、基地局10からのPDSCH(中継対象のデータ)を受信する。中継装置30は、その後、基地局10からのPDSCH(中継対象のデータ)の後に設けられた無送信区間において受信処理を送信処理へ切り替える。さらに、中継装置30は、次のステップで、デコードしたPDSCH(中継対象のデータ)に、PDCCHを付加し、通信端末20に中継送信する。
 これにより、中継装置30の存在を前提としない既存の通信端末も、混乱することなく中継装置30による中継を享受することができる。
   (各セルにおける周波数割当て例)
 続いて、複数のセルが隣接する場合の各セルにおける周波数の割り当て例を説明する。
 図8は、各セルにおける周波数の割り当て例を示した説明図である。各セルが3セクタで構成される場合、周波数f1~f3を各セクタに図8に示したように割当てることにより、セル境界における周波数の干渉を抑制することができる。このような割り当ては、トラフィックの高い人口密集エリアにおいて特に有効である。
 なお、LTE-Aにおいては、End to Endでの高スループットを実現するために、Spectrum aggregation、ネットワークMIMO、UplinkマルチユーザMIMO、およびリレー技術など様々な新規技術の検討がされている。このため、高スループットの新規モバイルアプリケーションの出現により、郊外部でも周波数リソースの枯渇が問題となる可能性もある。また、LTE-Aの導入に際し、インフラ配備を低コストに実現する目的で、中継装置30の導入が活発化する可能性も高い。
  <2.通信システムの具体的構成>
 以上、図1~図8を参照し、本実施形態による通信システム1の基本構成を説明した。続いて、図9~図12を参照し、本実施形態による通信システム1の具体的構成を説明する。
   (着目する干渉モデル)
 図9は、本実施形態において着目するDLの干渉モデルを示した説明図である。本実施形態では、図9に示したように、中継装置30Aが、複数の基地局10(基地局10Aおよび10B)からPDCCHを受信できる位置に存在し、複数の基地局10の各々に属する通信端末20(通信端末20Aおよび20B)から信号を受信できる位置に存在する場合を考える。
 この場合、中継装置30Aは、基地局10Aおよび通信端末20A間の通信、および基地局10Bおよび通信端末20B間の通信の双方を中継することができる。ここで、中継装置30Aが、仮に基地局10Aから送信された信号を特段の工夫をせずに通信端末20Aに中継すると、当該中継により送信された信号と、基地局10Bから送信された信号とが通信端末20Bにおいて干渉してしまうことが懸念される。
 図10は、本実施形態において着目するULの干渉モデルを示した説明図である。図10においても、図9と同様に、中継装置30Aが、複数の基地局10(基地局10Aおよび10B)からPDCCHを受信できる位置に存在し、複数の基地局10の各々に属する通信端末20(通信端末20Aおよび20B)から信号を受信できる位置に存在する。
 この場合、中継装置30Aは、基地局10Aおよび通信端末20A間の通信、および基地局10Bおよび通信端末20B間の通信の双方を中継することができる。ここで、中継装置30Aが、通信端末20Aから送信された信号を特段の工夫をせずに基地局10Aに中継すると、当該中継により送信された信号と、通信端末20Bから送信された信号とが基地局10Bにおいて干渉してしまうことが懸念される。
 さらに、中継装置の中継可能範囲に複数の通信端末が存在する場合に、いずれの通信端末による通信の中継をどのように行うか、という点は未解決の問題である。このため、中継の必要性の高い通信端末の通信が中継されず、中継の必要性の低い通信端末の通信が中継されてしまう場合が想定される。
 本実施形態による中継装置30は、上述した背景に着目してなされたものであり、中継装置30によれば、中継する通信を適切に選択し、かつ、中継に起因する干渉の発生を抑制することができる。以下、このような本実施形態による中継装置30の構成について、通信端末20の構成と併せて説明する。
   (通信端末の構成)
 図11は、通信端末20の構成を示した機能ブロック図である。図11に示したように、通信端末20は、複数のアンテナ220a~220nと、アナログ処理部224と、AD・DA変換部228と、デジタル処理部230と、を備える。
 複数のアンテナ220a~220nの各々は、基地局10または中継装置30から無線信号を受信して電気的な高周波信号を取得し、高周波信号をアナログ処理部224へ供給する。また、複数のアンテナ220a~220nの各々は、アナログ処理部224から供給される高周波信号に基づいて基地局10または中継装置30に無線信号を送信する。通信端末20は、このように複数のアンテナ220a~220nを備えるため、MIMO(Multiple Input Multiple Output)通信やダイバーシティ通信を行うことが可能である。
 アナログ処理部224は、増幅、フィルタリング、およびダウンコンバージョンなどのアナログ処理を行うことにより、複数のアンテナ220a~220nから供給される高周波信号をベースバンド信号に変換する。また、アナログ処理部224は、AD・DA変換部228から供給されるベースバンド信号を高周波信号に変換する。
 AD・DA変換部228は、アナログ処理部224から供給されるアナログ形式のベースバンド信号をデジタル形式に変換し、デジタル処理部230に供給する。また、AD・DA変換部228は、デジタル処理部230から供給されるデジタル形式のベースバンド信号をアナログ形式に変換し、アナログ処理部224に供給する。
 デジタル処理部230は、同期部232と、デコーダ234と、エンコーダ240と、制御部242と、を備える。このうち、同期部232、デコーダ234、およびエンコーダ240などは、複数のアンテナ220a~220n、アナログ処理部224、およびAD・DA変換部228と共に、基地局10や中継装置30と通信するための通信部として機能する。
 同期部232は、基地局10や中継装置30から送信されたPSCやSSCなどの同期用信号がAD・DA変換部228から供給され、この同期用信号に基づいて無線フレームの同期処理を行う。具体的には、同期部232は、同期用信号と既知のシーケンスパターンとの相関を演算し、相関のピーク位置を検出することにより無線フレームの同期をとる。
 デコーダ234は、AD・DA変換部228から供給されるベースバンド信号をデコードして受信データを得る。なお、上記デコードは、例えばMIMO受信処理およびOFDM復調処理を含んでもよい。
 エンコーダ240は、PUSCHなどの送信データをエンコードし、AD・DA変換部228に供給する。なお、エンコードは、例えばMIMO送信処理およびOFDM変調処理を含んでもよい。
 制御部242は、送信処理、受信処理、および中継装置30や基地局10との接続処理など、通信端末20における動作全般を制御する。例えば、通信端末20は、制御部242による制御に基づき、基地局10により割り当てられたリソースブロックを利用して送信処理および受信処理を行う。なお、制御部242は、基地局10または中継装置30から指定された送信パラメータに従って送信処理を制御する。例えば、基地局10がPDCCHにより通信端末20のTPC(Transmit Power Control)パラメータを指定した場合、制御部242は、基地局10により指定されたTPCパラメータに従って送信処理を制御する。
 また、基地局10または中継装置30がPDCCHにより通信端末20に対してCQIレポートを要求した場合、デジタル処理部230は、基地局10または中継装置30から送信される復調用リファレンスを用いてチャネル品質(例えば、受信電力)を測定する。制御部242は、上記測定結果に基づいてCQIレポートを生成し、生成したCQIレポートをエンコーダ240に供給する。その結果、CQIレポートが基地局10または中継装置30へPUSCHを利用して送信される。
   (中継装置の構成)
 次に、図12を参照し、中継装置30の構成を説明する。
 図12は、中継装置30の構成を示した機能ブロック図である。図12に示したように、中継装置30は、複数のアンテナ320a~320nと、アナログ処理部324と、AD・DA変換部328と、デジタル処理部330と、を備える。
 複数のアンテナ320a~320nの各々は、基地局10または通信端末20から無線信号を受信して電気的な高周波信号を取得し、高周波信号をアナログ処理部324へ供給する。また、複数のアンテナ320a~320nの各々は、アナログ処理部324から供給される高周波信号に基づいて基地局10または通信端末20に無線信号を送信する。中継装置30は、このように複数のアンテナ320a~320nを備えるため、MIMO通信やダイバーシティ通信を行うことが可能である。
 アナログ処理部324は、増幅、フィルタリング、およびダウンコンバージョンなどのアナログ処理を行うことにより、複数のアンテナ320a~320nから供給される高周波信号をベースバンド信号に変換する。また、アナログ処理部324は、AD・DA変換部328から供給されるベースバンド信号を高周波信号に変換する。
 AD・DA変換部328は、アナログ処理部324から供給されるアナログ形式のベースバンド信号をデジタル形式に変換し、デジタル処理部330に供給する。また、AD・DA変換部328は、デジタル処理部330から供給されるデジタル形式のベースバンド信号をアナログ形式に変換し、アナログ処理部324に供給する。
 デジタル処理部330は、同期部332と、デコーダ334と、バッファ338と、エンコーダ340と、制御部342と、中継選択部344と、距離推定部346と、電力設定部348と、を備える。このうち、同期部332、デコーダ334、およびエンコーダ340などは、複数のアンテナ320a~320n、アナログ処理部324、およびAD・DA変換部328と共に、基地局10や通信端末20と通信するための受信部、送信部、および中継部として機能する。
 同期部332は、基地局10から送信された同期用信号がAD・DA変換部328から供給され、この同期用信号に基づいて無線フレームの同期処理を行う。具体的には、同期部332は、同期用信号と既知のシーケンスパターンとの相関を演算し、相関のピーク位置を検出することにより無線フレームの同期をとる。
 デコーダ334は、AD・DA変換部328から供給されるベースバンド信号をデコードして基地局10宛または通信端末20宛の中継データを得る。なお、デコードは、例えばMIMO受信処理、OFDM復調処理および誤り訂正処理などを含んでもよい。
 バッファ338は、デコーダ334により得られた基地局10宛または通信端末20宛の中継データを一時的に保持する。そして、制御部342の制御により、アクセスリンクのDL用のリソースブロックにおいてバッファ338からエンコーダ340へ通信端末20宛の中継データが読み出される。同様に、制御部342の制御により、リレーリンクのUL用のリソースブロックにおいてバッファ338からエンコーダ340へ基地局10宛の中継データが読み出される。
 エンコーダ340は、バッファ338から供給される中継データをエンコードし、AD・DA変換部328に供給する。なお、エンコードは、例えばMIMO送信処理およびOFDM変調処理を含んでもよい。
  (中継選択)
 中継選択部344は、中継装置30が複数の通信を中継可能な位置に存在する場合、中継対象の通信として、いずれかの通信または全ての通信を選択する。例えば、図9に示した中継装置30Aの中継選択部344は、基地局10Aおよび通信端末20A間の通信、または基地局10Bおよび通信端末20B間の通信のいずれを中継するかを選択する。以下、中継選択部344による選択基準を具体的に説明する。
 中継装置30Aは、基地局10Aおよび10Bの双方からPDCCHを受信できるので、中継選択部344は、PDCCHから、各基地局10へ向かうULのスケジューリング情報を取得する。また、中継装置30Aは、通信端末20Aおよび20Bの双方からPUSCHを受信できるので、中継選択部344は、PUSCHからCQIレポートを取得する。なお、中継選択部344は、ULのスケジューリング情報に基づき、各PUSCHがいずれの通信端末20から送信されたかを判断することができる。
 そして、中継選択部344は、取得したCQIレポート(通信品質情報)に基づき、中継する通信を選択する。ここで、基地局10および通信端末20間のダイレクトリンクの通信品質が悪いほど、基地局10および通信端末20間の通信を中継する意義があると考えられる。このため、中継選択部344は、ULおよびDLの各々において、通信品質が悪いダイレクトリンクの通信を優先的に選択してもよい。
  (DL通信の場合)
 例えば、図9に示した例において、通信端末20Aが送信するCQIレポートの示す通信品質の方が、通信端末20Bが送信するCQIレポートの示す通信品質より悪い場合、中継選択部344は、基地局10Aから通信端末20AへのDL通信を選択してもよい。すなわち、「CQI_level_通信端末20A<CQI_level_通信端末20B」である場合、中継選択部344は、基地局10Aから通信端末20AへのDL通信を中継対象として選択してもよい。
  (UL通信の場合)
 同様に、図10に示した例において、通信端末20Aが送信するCQIレポートの示す通信品質の方が、通信端末20Bが送信するCQIレポートの示す通信品質より悪い場合、中継選択部344は、通信端末20Aから基地局10AへのUL通信を選択してもよい。すなわち、「CQI_level_通信端末20A<CQI_level_通信端末20B」である場合、中継選択部344は、通信端末20Aから基地局10AへのUL通信を中継対象として選択してもよい。
 なお、上記では、中継選択部344が通信品質の悪い通信をCQIレポートに基づいて判断する例を説明したが、本実施形態はかかる例に限定されない。例えば、基地局10が通信端末20に指定するTPCパラメータは、基地局10および通信端末20間のダイレクトリンクの状態によって変化するので、ダイレクトリンクの通信品質を示す指標とも捉えられる。そこで、中継選択部344は、基地局10が通信端末20にPDCCHにより指定するTPCパラメータに基づいて、具体的には、高出力の信号で行われている通信ほど優先的に中継対象として選択してもよい。
  (距離推定)
 距離推定部346は、通信可能な範囲内に存在する各基地局10との距離、および、各通信端末20との距離を推定する。例えば、図9に示した中継装置30Aの距離推定部346は、基地局10Aとの距離、基地局10Bとの距離、通信端末20Aとの距離、および通信端末20Bとの距離を推定する。
 具体的には、距離推定部346は、各基地局10および各通信端末20が送信する、送信電力および位相が既知であるリファレンス信号の伝搬損失に基づいて距離推定を行う。例えば、距離推定部346は、通信端末20Aから送信されたリファレンス信号(復調用レファレンス)の伝搬損失を算出し、算出した伝搬損失に基づいて通信端末20Aとの距離を推定してもよい。同様に、距離推定部346は、基地局10Bから送信されるリファレンス信号の伝搬損失を算出し、算出した伝搬損失に基づいて基地局10Bとの距離を推定してもよい。
  (送信電力設定)
 電力設定部348は、中継選択部344により選択された中継を行うための送信電力を設定する。以下、中継対象がDL通信である場合、およびUL通信である場合の各々において電力設定部348が設定する送信電力について説明する。
  (DL通信の場合)
 図9に示した例において、中継選択部344が、基地局10Aから通信端末20AへのDL通信を中継対象として選択した場合、中継装置30Aが通信端末20Aへ中継のために送信する信号は、通信端末20Bにおいて雑音成分として受信される。また、この雑音成分が、通信端末20Bの干渉許容レベルを上回ってしまうと、干渉が発生してしまう恐れがある。このため、電力設定部348は、通信端末20Bにおいて干渉が発生しないように通信端末20Aへの信号の送信電力を設定する。具体的には、電力設定部348は、基地局10A/通信端末20Aが期待するQosを満たし、かつ、以下の数式1を満たすように送信電力を設定してもよい。
Figure JPOXMLDOC01-appb-M000002
 上記数式1において、通信端末20Bの干渉許容レベルは、機器認証機関が示す通信端末20Bの最低レートでの所要SINRであってもよい。また、電力設定部348は、中継装置30Aと通信端末20B間の伝搬損失を、距離推定部346により推定された中継装置30Aと通信端末20Bの距離に基づいて推定することができる。なお、電力設定部348は、消費電力削減の観点から、基地局10A/通信端末20Aが期待するQosを満たし、かつ、上記の数式1を満たす範囲内で最低の送信電力を設定してもよい。
 また、上記数式1を満たす送信電力が存在しない場合、中継装置30は中継を行わなくてもよい。または、中継装置30は、リソースのスケジューリング権限を有する場合には、リソースブロックを干渉が発生しないように再割当てしてもよい。
  (UL通信の場合)
 図10に示した例において、中継選択部344が、通信端末20Aから基地局10AへのUL通信を中継対象として選択した場合、中継装置30Aが基地局10Aへ中継のために送信する信号は、基地局10Bにおいて雑音成分として受信される。また、この雑音成分が、基地局10Bの干渉許容レベルを上回ってしまうと、干渉が発生してしまう恐れがある。このため、電力設定部348は、基地局10Bにおいて干渉が発生しないように基地局10Aへの信号の送信電力を設定する。具体的には、電力設定部348は、基地局10A/通信端末20Aが期待するQosを満たし、かつ、以下の数式2を満たすように送信電力を設定してもよい。
Figure JPOXMLDOC01-appb-M000003
 上記数式2において、基地局10Bの干渉許容レベルは、機器認証機関が示す基地局10Bの最低レートでの所要SINRであってもよい。また、電力設定部348は、中継装置30Aと基地局10B間の伝搬損失を、距離推定部346により推定された中継装置30Aと基地局10Bの距離に基づいて推定することができる。なお、電力設定部348は、消費電力削減の観点から、基地局10A/通信端末20Aが期待するQosを満たし、かつ、上記の数式2を満たす範囲内で最低の送信電力を設定してもよい。
 また、上記数式2を満たす送信電力が存在しない場合、中継装置30は中継を行わなくてもよい。または、中継装置30は、リソースのスケジューリング権限を有する場合には、リソースブロックを干渉が発生しないように再割当てしてもよい。
  (制御部)
 制御部342は、中継選択部344により選択された基地局10または通信端末20に、電力設定部348により設定された送信電力で中継のための信号が送信されるように送信処理を制御する。また、制御部342は、送信処理の制御に際し、AMC(Advanced Modulation and Coding)パラメータや、HARQ(Hybrid Automatic Repeat Request)パラメータなどの送信パラメータを以下のように制御してもよい。なお、下記の制御は単独で行われても、組み合せて行われてもよい。
  (DL通信の場合)
 ・AMC
 中継先の通信端末20と中継装置30とが、通信端末20におけるダイレクトリンクからの受信レベルに対し、中継装置30からの信号の受信レベルの方が十分に高い可能性がある位置関係を有し、かつ、ダイレクトリンクで再送パケットが繰り返し送信されている場合、制御部342は、ダイレクトリンクよりも高いレートのModulation-Codingパラメータで中継信号をオーバレイ送信してもよい。この場合、ダイレクトリンクで送信された信号は通信端末20による受信の際に埋もれてしまうが、中継装置30からの中継信号が通信端末20により復号されることが期待される。なお、中継装置30は、空きの時間スロットを利用し、ダイレクトリンクよりも高いレートのModulation-Codingパラメータで中継信号を送信してもよい。
 ・HARQ
 基地局10と通信端末20の間のダイレクトリンクで再送パケットが繰り返し送信されている場合、制御部342は、再送パケットと同じパラメータで中継信号をオーバレイ送信してもよい。なお、中継装置30は、空きの時間スロットを利用し、ダイレクトリンクよりも高いレートで中継信号をHARQパケットとして送信してもよい。
 ・ビームフォーミング
 制御部342は、中継先の通信端末20の相対的な方向を推定できる場合、中継信号をビームフォーミングにより送信してもよい。この場合、電力設定部348は、中継先でないNullビームの通信端末20への送信電力および伝搬損失に基づいて送信電力を設定してもよい。このビームフォーミングによれば、複数の通信端末20を中継先として選択し、複数の通信端末20に同時に中継信号を送信することが可能となる。
  (UL通信の場合)
 ・AMC
 中継先の基地局10と中継装置30とが、基地局10におけるダイレクトリンクからの受信レベルに対し、中継装置30からの信号の受信レベルの方が十分に高い可能性がある位置関係を有し、かつ、ダイレクトリンクで再送パケットが繰り返し送信されている場合、制御部342は、ダイレクトリンクよりも高いレートのModulation-Codingパラメータで中継信号をオーバレイ送信してもよい。この場合、ダイレクトリンクで送信された信号は基地局10による受信の際に埋もれてしまうが、中継装置30からの中継信号が基地局10により復号されることが期待される。なお、中継装置30は、空きの時間スロットを利用し、ダイレクトリンクよりも高いレートのModulation-Codingパラメータで中継信号を送信してもよい。
 ・HARQ
 基地局10と通信端末20の間のダイレクトリンクで再送パケットが繰り返し送信されている場合、制御部342は、再送パケットと同じパラメータで中継信号をオーバレイ送信してもよい。なお、中継装置30は、空きの時間スロットを利用し、ダイレクトリンクよりも高いレートで中継信号をHARQパケットとして送信してもよい。
 ・ビームフォーミング
 制御部342は、中継先の基地局10の相対的な方向を推定できる場合、中継信号をビームフォーミングにより送信してもよい。この場合、電力設定部348は、中継先でない基地局10へのNullビームの送信電力および伝搬損失に基づいて送信電力を設定してもよい。このビームフォーミングによれば、複数の基地局10を中継先として選択し、複数の基地局10に同時に中継信号を送信することが可能となる。
  <3.通信システムの動作>
 以上、図9~図12を参照して本実施形態による通信システム1の具体的構成を説明した。続いて、図13および図14を参照し、本実施形態による通信システム1の動作を説明する。なお、本実施形態においては、以下の点を前提とする。
・中継装置30は、ダイレクトリンクを利用し、通信端末20と同様の手順でRRC connection completeまでの手順を終了しており、サブセルID、レファレンスパターン割当てなども決定している。
・基地局10と、配下の中継装置30は、同期がとれている。
・中継装置30と、中継装置30に属する通信端末20を示すグルーピング情報が基地局10により事前に与えられている(基地局10がCQIレポートやTA情報から中継の必要性を判断し、必要な場合には中継のためのリソースを割り当てる)。
・Ptx_DL>>Ptx_RLかつPtx_DL>>Ptx_AL(Ptx:最大送信電力)、DL:ダイレクトリンク(基地局10と通信端末20間の直接リンク)、AL:アクセスリンク、RL:リレーリンク
・ダイレクトリンクへの干渉対策、特に中継装置30の存在を前提としない通信装置(LTE UE)のダイレクトリンクへの干渉対策を重要課題とする。
  (DL通信の場合)
 図13は、中継装置30がDL通信を中継する流れを示したシーケンス図である。図13に示したように、中継装置30は、基地局10AからPDCCHを受信し(S404)、基地局10BからPDCCHを受信すると(S408)、各PDCCHからスケジューリング情報を取得する(S412)。
 続いて、中継装置30は、通信端末20Aから復調用レファレンスを受信し(S416)、通信端末20Bから復調用レファレンスを受信すると(S420)、各々の復調用レファレンスの伝搬損失に基づき、通信端末20Aとの距離、および通信端末20Bとの距離を推定する(S424)。なお、S412において取得されたスケジューリング情報に基づいて各復調用レファレンスがどの通信端末20から送信されたかを判断することができる。
 また、通信端末20AからCQIレポートが受信され(S428)、通信端末20BからCQIレポートが受信されると(S432)、中継選択部344は、通信端末20Aへの通信または通信端末20Bへの通信のいずれを中継するかを、CQIレポートの示す通信品質に基づいて選択する(S436)。例えば、中継選択部344は、通信品質が悪い通信を優先的に選択してもよい。
 その後、電力設定部348は、S436において選択された通信端末20への信号の送信電力を、他の通信端末20における受信レベルが他の通信端末20の干渉許容レベル以下になるように設定する(S440)。そして、S436において通信端末20Aが選択された場合、中継装置30は、基地局10AからPDSCHを受信すると(S444)、受信したPDSCHを、電力設定部348により設定された送信電力で通信端末20Aへ送信する(S448)。なお、中継装置30は、AMCやHARQなどのパラメータを適宜制御してPDSCHを通信端末20Aへ送信してもよい。
  (UL通信の場合)
 図14は、中継装置30がUL通信を中継する流れを示したシーケンス図である。図14に示したように、中継装置30は、基地局10AからPDCCHを受信し(S454)、基地局10BからPDCCHを受信すると(S458)、各PDCCHからスケジューリング情報を取得する(S462)。
 続いて、中継装置30は、基地局10Aからレファレンス信号を受信し(S466)、基地局10Bからレファレンス信号を受信すると(S470)、各々のレファレンス信号の伝搬損失に基づき、基地局10Aとの距離、および基地局10Bとの距離を推定する(S474)。
 また、通信端末20AからCQIレポートが受信され(S478)、通信端末20BからCQIレポートが受信されると(S482)、中継選択部344は、基地局10Aへの通信または基地局10Bへの通信のいずれを中継するかを、CQIレポートの示す通信品質に基づいて選択する(S486)。例えば、中継選択部344は、通信品質が悪い通信を優先的に選択してもよい。
 その後、電力設定部348は、S486において選択された基地局10への信号の送信電力を、他の基地局10における受信レベルが他の基地局10の干渉許容レベル以下になるように設定する(S490)。そして、S486において基地局10Aが選択された場合、中継装置30は、通信端末20AからPUSCHを受信すると(S494)、受信したPUSCHを、電力設定部348により設定された送信電力で基地局10Aへ送信する(S498)。なお、中継装置30は、AMCやHARQなどのパラメータを適宜制御してPDSCHを通信端末20Aへ送信してもよい。
  <4.まとめ>
 以上説明したように、本実施形態による中継装置30は、通信可能範囲に複数の基地局10および通信端末20が存在する場合、中継する通信を適切に選択することができる。さらに、本実施形態による中継装置30は、中継信号を、中継先でない基地局10または通信端末20で干渉が起こさない送信電力で送信することが可能である。
 なお、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 例えば、本明細書の通信システム1の処理における各ステップは、必ずしもシーケンス図として記載された順序に沿って時系列に処理する必要はない。通信システム1の処理における各ステップは、シーケンス図として記載した順序と異なる順序で処理されても、並列的に処理されてもよい。例えば、図13のS404とS408は同時に中継装置30で受信されてもよいし、どちらかが先でも構わない。S416とS420、S428とS432も同様である。また、例えば、図14のS454とS458、S466とS470、S478とS482も同様である。
 また、中継装置30に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した中継装置30の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供される。
 

Claims (10)

  1.  複数の基地局と;
     前記複数の基地局のいずれかと通信する複数の通信端末と;
      前記複数の通信端末の各々から受信される通信品質情報に基づき、前記複数の通信端末のうちから中継対象の通信端末を選択する選択部、および、
      前記選択部により選択された通信端末と、対応する基地局との通信を中継する中継部、
     を有する中継装置と;
    を備える、通信システム。
  2.  前記中継装置は、前記中継対象の通信端末への中継信号の送信電力を、他の通信端末および前記中継装置間での前記中継信号の伝搬損失との差分が所定値を下回る値に設定する電力設定部をさらに備える、請求項1に記載の通信システム。
  3.  前記中継装置は、前記他の通信端末から受信される送信電力が既知であるリファレンス信号の伝搬損失に基づいて前記中継装置および前記他の通信端末間の距離を推定する距離推定部をさらに備え、
     前記電力設定部は、前記距離推定部により推定された距離に基づき、前記他の通信端末および前記中継装置間での前記中継信号の伝搬損失を推定する、請求項2に記載の通信システム。
  4.  前記選択部は、前記複数の通信端末のうちから、通信品質が悪い通信端末を優先的に選択する、請求項3に記載の通信システム。
  5.  前記中継部は、前記中継対象の通信端末への中継信号を、ビームフォーミングにより送信する、請求項4に記載の通信システム。
  6.  前記中継装置は、前記中継対象の通信端末に対応する基地局への中継信号の送信電力を、他の基地局および前記中継装置間での前記中継信号の伝搬損失との差分が所定値を下回る値に設定する電力設定部をさらに備える、請求項1に記載の通信システム。
  7.  前記中継装置は、前記他の基地局から受信される送信電力が既知であるリファレンス信号の伝搬損失に基づいて前記中継装置および前記他の基地局間の距離を推定する距離推定部をさらに備え、
     前記電力設定部は、前記距離推定部により推定された距離に基づき、前記他の基地局および前記中継装置間での前記中継信号の伝搬損失を推定する、請求項6に記載の通信システム。
  8.  複数の基地局のいずれかと通信する複数の通信端末の各々から受信される通信品質情報に基づき、前記複数の通信端末のうちから中継対象の通信端末を選択する選択部と;
     前記選択部により選択された通信端末と、対応する基地局との通信を中継する中継部と;
    を備える、中継装置。
  9.  通信端末であって、
     複数の基地局のいずれかと通信する前記通信端末を含む複数の通信端末の各々から受信される通信品質情報に基づいて前記複数の通信端末のうちから中継対象の通信端末を選択する中継装置により、前記中継対象の通信端末として前記通信端末が選択された場合、前記中継装置を介して基地局と通信する、通信端末。
  10.  基地局であって、
     前記基地局を含む複数の基地局のいずれかと通信する複数の通信端末の各々から受信される通信品質情報に基づいて前記複数の通信端末のうちから中継対象の通信端末を選択する中継装置により、前記基地局と通信する通信端末が前記中継対象の通信端末として選択された場合、前記中継装置を介して前記通信端末と通信する、基地局。
     
PCT/JP2010/063808 2009-09-25 2010-08-16 通信システム、中継装置、通信端末および基地局 WO2011036965A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US13/496,499 US8976725B2 (en) 2009-09-25 2010-08-16 Communication system, relay device, communication terminal, and base station
EP18193131.2A EP3468065A1 (en) 2009-09-25 2010-08-16 Relay device and method
BR112012006061A BR112012006061A2 (pt) 2009-09-25 2010-08-16 sistema de comunicação, dispositivo de retransmissão, terminal de comunicação, e, estação base
EP10818641.2A EP2472983B1 (en) 2009-09-25 2010-08-16 Communication system, relay device, communication terminal, and base station
CN201080041237.4A CN102511194B (zh) 2009-09-25 2010-08-16 通信系统、中继装置、通信终端和基站
RU2012110184/07A RU2549199C2 (ru) 2009-09-25 2010-08-16 Система связи, ретранслирующее устройство, терминал связи и базовая станция
IN2290DEN2012 IN2012DN02290A (ja) 2009-09-25 2012-03-16
US14/612,052 US9402222B2 (en) 2009-09-25 2015-02-02 Communication system, relay device, communication terminal, and base station
US15/202,285 US10063279B2 (en) 2009-09-25 2016-07-05 Communication system, relay device, communication terminal, and base station
US16/059,579 US10965341B2 (en) 2009-09-25 2018-08-09 Communication system, relay device, communication terminal, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009220483A JP5515558B2 (ja) 2009-09-25 2009-09-25 通信システム、中継装置および通信装置
JP2009-220483 2009-09-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/496,499 A-371-Of-International US8976725B2 (en) 2009-09-25 2010-08-16 Communication system, relay device, communication terminal, and base station
US14/612,052 Division US9402222B2 (en) 2009-09-25 2015-02-02 Communication system, relay device, communication terminal, and base station

Publications (1)

Publication Number Publication Date
WO2011036965A1 true WO2011036965A1 (ja) 2011-03-31

Family

ID=43795724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063808 WO2011036965A1 (ja) 2009-09-25 2010-08-16 通信システム、中継装置、通信端末および基地局

Country Status (8)

Country Link
US (4) US8976725B2 (ja)
EP (2) EP2472983B1 (ja)
JP (1) JP5515558B2 (ja)
CN (1) CN102511194B (ja)
BR (1) BR112012006061A2 (ja)
IN (1) IN2012DN02290A (ja)
RU (1) RU2549199C2 (ja)
WO (1) WO2011036965A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438250A (zh) * 2011-11-10 2012-05-02 北京邮电大学 采用协作模拟网络编码技术抑制小区间干扰的方法
WO2013181968A1 (zh) * 2012-06-04 2013-12-12 中兴通讯股份有限公司 一种为用户终端选取译码转发式中继节点的方法及装置
US20150146677A1 (en) * 2012-08-24 2015-05-28 Fujitsu Limited Radio communication method, radio communication system, radio base station, and radio terminal

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6807405B1 (en) 1999-04-28 2004-10-19 Isco International, Inc. Method and a device for maintaining the performance quality of a code-division multiple access system in the presence of narrow band interference
US8385483B2 (en) 2008-11-11 2013-02-26 Isco International, Llc Self-adaptive digital RF bandpass and bandstop filter architecture
JP5515558B2 (ja) * 2009-09-25 2014-06-11 ソニー株式会社 通信システム、中継装置および通信装置
CN102273118B (zh) * 2011-04-18 2016-06-22 华为终端有限公司 数据重传的方法、装置及系统
CN102368866B (zh) * 2011-09-15 2013-04-17 上海交通大学 基于网络编码的多接入中继信道中的单中继选择方法
US9319916B2 (en) 2013-03-15 2016-04-19 Isco International, Llc Method and appartus for signal interference processing
CN105230070B (zh) * 2013-06-03 2019-05-03 华为技术有限公司 一种无线资源分配方法以及无线资源分配装置
CN104254114A (zh) * 2013-06-27 2014-12-31 华为终端有限公司 一种网络接入方法、设备及系统
US9794888B2 (en) 2014-05-05 2017-10-17 Isco International, Llc Method and apparatus for increasing performance of a communication link of a communication node
JP6519590B2 (ja) * 2014-06-20 2019-05-29 ソニー株式会社 装置及び方法
US10064239B2 (en) * 2014-10-17 2018-08-28 Sony Corporation Apparatus to establish wireless backhaul connection
FI3651386T3 (fi) 2015-05-04 2023-11-15 Isco Int Llc Menetelmä ja laitteisto viestintäpolkujen suorituskyvyn lisäämiseksi viestintäsolmuille
EP3160194B1 (en) 2015-10-21 2018-08-08 Alcatel Lucent Apparatuses, methods and computer programs for determining transmission control information
WO2017160506A1 (en) * 2016-03-18 2017-09-21 Kyocera Corporation Providing user equipment feedback via signal forwarding device
CA3024175C (en) 2016-06-01 2024-06-11 Isco International, Llc Method and apparatus for performing signal conditioning to mitigate interference detected in a communication system
KR102493536B1 (ko) 2016-06-08 2023-01-31 삼성전자주식회사 통신 단말의 릴레이 통신 방법 및 그 통신 단말
US10298279B2 (en) 2017-04-05 2019-05-21 Isco International, Llc Method and apparatus for increasing performance of communication paths for communication nodes
US10812121B2 (en) 2017-08-09 2020-10-20 Isco International, Llc Method and apparatus for detecting and analyzing passive intermodulation interference in a communication system
US10284313B2 (en) 2017-08-09 2019-05-07 Isco International, Llc Method and apparatus for monitoring, detecting, testing, diagnosing and/or mitigating interference in a communication system
CN107682907A (zh) * 2017-10-23 2018-02-09 蒋丁贵 一种中继装置及信息转发方法
US20210037574A1 (en) * 2019-08-01 2021-02-04 Qualcomm Incorporated Power saving of smart repeaters
US11924753B2 (en) 2019-08-01 2024-03-05 Qualcomm Incorporated Power saving of smart repeaters based on a triggering signal
US11758465B2 (en) * 2019-12-17 2023-09-12 Qualcomm Incorporated Repeater beacon signal for enabling inter-cell interference coordination
US20220330250A1 (en) * 2021-04-12 2022-10-13 Qualcomm Incorporated Measurement and power control in integrated access fronthaul networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028566A (ja) * 1999-07-12 2001-01-30 Ntt Docomo Inc 無線回線中継方法及びその装置
WO2009096187A1 (ja) * 2008-02-01 2009-08-06 Panasonic Corporation 無線中継装置および無線送受信装置、無線中継方法および無線送受信方法、リレーノードおよび基地局

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0965203B1 (en) * 1997-03-03 2008-07-02 Iwics Inc. Cellular communication system with mobile stations acting as relay stations
KR100791135B1 (ko) * 2002-06-06 2008-01-03 가부시키가이샤 엔.티.티.도코모 패킷 통신 시스템, 패킷 통신 방법, 기지국, 이동국, 및패킷 통신 프로그램을 기록한 컴퓨터로 판독 가능한 기록매체
US8593932B2 (en) * 2003-05-16 2013-11-26 Qualcomm Incorporated Efficient signal transmission methods and apparatus using a shared transmission resource
US8908609B1 (en) * 2003-06-06 2014-12-09 Rockstar Consortium Us Lp Multi-hop wireless communications system and method
US7542453B2 (en) * 2004-01-08 2009-06-02 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
US7548517B2 (en) * 2005-04-25 2009-06-16 Motorola, Inc. Method and apparatus for determining the location of a node in a wireless system
CN100555930C (zh) * 2005-07-04 2009-10-28 上海原动力通信科技有限公司 多载波hsdpa的信道建立方法和多载波下行分组数据传输方法
CN1893342B (zh) * 2005-07-05 2010-06-09 上海原动力通信科技有限公司 多载波hsdpa的业务传输信道编码方法和编码装置
CN1953406B (zh) * 2005-10-19 2011-06-01 株式会社Ntt都科摩 接入混合网的方法和网关设备、无线终端以及通信系统
KR20070045385A (ko) * 2005-10-27 2007-05-02 삼성전자주식회사 다중 홉 릴레이 방식의 광대역 무선 통신 시스템에서전파지연 및 처리지연 측정을 통한 송수신 전력을 제어하기위한 장치 및 방법
CA2632191A1 (en) * 2005-11-29 2007-06-07 Telefonaktiebolaget L M Ericsson (Publ) Scheduling in a wireless multi-hop relay network
JP4938687B2 (ja) * 2005-12-09 2012-05-23 パナソニック株式会社 ネットワークシステムおよび中継装置
EP1801995A1 (en) * 2005-12-21 2007-06-27 Fujitsu Limited Signalling in multi-hop communication systems
US20070177545A1 (en) * 2006-01-30 2007-08-02 Natarajan Kadathur S System and method for allocating sub-channels in a network
KR100756985B1 (ko) * 2006-08-30 2007-09-07 삼성전자주식회사 광대역 무선통신 시스템에서 중계국을 선택하기 위한 장치및 방법
US7978667B2 (en) * 2006-11-30 2011-07-12 Kyocera Corporation Management of WLAN and WWAN communication services to a multi-mode wireless communication device
US8103285B2 (en) * 2007-04-19 2012-01-24 Kyocera Corporation Apparatus, system and method for determining a geographical location of a portable communication device
WO2008142837A1 (ja) * 2007-05-11 2008-11-27 Panasonic Corporation 無線通信方法および無線通信装置
US8477700B2 (en) * 2007-05-30 2013-07-02 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for resource allocation
KR101474585B1 (ko) * 2007-07-06 2014-12-18 지티이 (유에스에이) 인크. 무선 멀티홉 중계 네트워크에서의 자원 할당 방법 및 시스템
EP2245760B1 (en) * 2007-08-24 2017-10-04 BlackBerry Limited Power control at a relay station in a wireless network
WO2009072191A1 (ja) * 2007-12-05 2009-06-11 Fujitsu Limited パラメータ収集方法、無線基地局、及び、中継局
CN101494899B (zh) 2008-01-25 2010-12-08 中兴通讯股份有限公司 一种具有中继站的无线通信网络中小区间干扰协调方法
US20100326124A1 (en) 2008-01-29 2010-12-30 Panasonic Corporation Expander-integrated compressor and refrigeration cycle apparatus using the same
CN101272173B (zh) * 2008-05-09 2012-10-10 中兴通讯股份有限公司 路损补偿因子设置方法
US9236933B2 (en) * 2008-05-23 2016-01-12 Electronics And Telecommunications Research Institute Apparatus and method for transmitting and receiving data using multi-path in wireless communication system of distributed MAC
CN101325549B (zh) * 2008-06-06 2011-05-04 北京邮电大学 在无线中继网络中采用网络编码通信的方法
US9078270B2 (en) * 2008-07-03 2015-07-07 Qualcomm Incorporated Opportunistic relay scheduling in wireless communications
EP2327272B1 (en) * 2008-07-17 2013-06-05 Nokia Siemens Networks OY Device-to-device communications in cellular system
US8289894B2 (en) * 2008-09-15 2012-10-16 Sharp Laboratories Of America, Inc. Systems and methods for inter relay interference coordination
US9030972B2 (en) * 2008-09-26 2015-05-12 Nokia Solutions And Networks Oy Control signaling in system supporting relayed connections
JP2010087828A (ja) * 2008-09-30 2010-04-15 Fujitsu Ltd 近距離mimoリピータ装置、近距離mimo携帯端末装置、近距離mimo無線通信方法
KR101571564B1 (ko) * 2008-11-12 2015-11-25 엘지전자 주식회사 데이터 전송 방법
US8886113B2 (en) * 2008-12-30 2014-11-11 Qualcomm Incorporated Centralized control of relay operation
KR101639240B1 (ko) * 2009-03-03 2016-07-13 삼성전자주식회사 랜덤 빔포밍 기술을 이용하여 간섭 제어를 수행하는 통신 시스템 및 통신 방법
KR101512688B1 (ko) * 2009-04-13 2015-04-17 삼성전자주식회사 통신 장치 및 중계 장치
KR101645490B1 (ko) * 2009-05-07 2016-08-05 엘지전자 주식회사 무선 통신 시스템에서 소정의 cp길이를 가지는 프레임을 이용하여 신호를 전송하는 방법
JP5359613B2 (ja) * 2009-06-30 2013-12-04 富士通株式会社 無線通信ネットワーク及び方法
KR101754617B1 (ko) * 2009-07-13 2017-07-06 엘지전자 주식회사 백홀 링크 전송을 위한 전송 모드 구성 방법 및 장치
JP5540592B2 (ja) * 2009-07-23 2014-07-02 ソニー株式会社 通信システム、通信制御方法、移動端末、および中継装置
JP5418042B2 (ja) * 2009-07-27 2014-02-19 富士通株式会社 通信制御装置、移動端末装置および無線通信方法
EP2461508B1 (en) * 2009-07-28 2016-12-28 Panasonic Intellectual Property Corporation of America Wireless relay device and wireless relay method
JP5515558B2 (ja) * 2009-09-25 2014-06-11 ソニー株式会社 通信システム、中継装置および通信装置
JP5521638B2 (ja) 2009-09-25 2014-06-18 ソニー株式会社 通信システム、中継装置、管理サーバ、および通信端末
JP5440117B2 (ja) * 2009-11-20 2014-03-12 富士通株式会社 無線通信システム、移動中継局、移動局及び無線通信方法
JP5485819B2 (ja) * 2010-07-01 2014-05-07 京セラ株式会社 無線中継装置及び制御方法
CN102340784B (zh) * 2010-07-16 2014-11-05 上海贝尔股份有限公司 选择用户终端以增强上下行互逆误差校准的方法和装置
JP5374743B2 (ja) * 2010-12-15 2013-12-25 株式会社日立製作所 無線ネットワークシステム、及び、無線通信装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028566A (ja) * 1999-07-12 2001-01-30 Ntt Docomo Inc 無線回線中継方法及びその装置
WO2009096187A1 (ja) * 2008-02-01 2009-08-06 Panasonic Corporation 無線中継装置および無線送受信装置、無線中継方法および無線送受信方法、リレーノードおよび基地局

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Consideration on Relay.ppt", January 2009, CATT
"Joint analog network coding and Relay", January 2009, ALCATEL-LUCENT
See also references of EP2472983A4 *
UNDERSTANDING ON TYPE 1 AND TYPE 2 RELAY, May 2009 (2009-05-01)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102438250A (zh) * 2011-11-10 2012-05-02 北京邮电大学 采用协作模拟网络编码技术抑制小区间干扰的方法
WO2013181968A1 (zh) * 2012-06-04 2013-12-12 中兴通讯股份有限公司 一种为用户终端选取译码转发式中继节点的方法及装置
CN103458426A (zh) * 2012-06-04 2013-12-18 中兴通讯股份有限公司 一种为用户终端选取译码转发式中继节点的方法及装置
CN103458426B (zh) * 2012-06-04 2016-02-10 中兴通讯股份有限公司 一种为用户终端选取译码转发式中继节点的方法及装置
US20150146677A1 (en) * 2012-08-24 2015-05-28 Fujitsu Limited Radio communication method, radio communication system, radio base station, and radio terminal

Also Published As

Publication number Publication date
CN102511194B (zh) 2015-12-02
JP2011071705A (ja) 2011-04-07
EP2472983A1 (en) 2012-07-04
US20120182930A1 (en) 2012-07-19
US10965341B2 (en) 2021-03-30
US8976725B2 (en) 2015-03-10
IN2012DN02290A (ja) 2015-08-21
RU2549199C2 (ru) 2015-04-20
EP2472983A4 (en) 2015-10-28
EP2472983B1 (en) 2018-10-17
US20150156700A1 (en) 2015-06-04
US20160315658A1 (en) 2016-10-27
CN102511194A (zh) 2012-06-20
JP5515558B2 (ja) 2014-06-11
BR112012006061A2 (pt) 2016-03-29
US20180351602A1 (en) 2018-12-06
RU2012110184A (ru) 2013-09-27
US10063279B2 (en) 2018-08-28
US9402222B2 (en) 2016-07-26
EP3468065A1 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP5515558B2 (ja) 通信システム、中継装置および通信装置
US9026037B2 (en) Communication system, relay node, user equipment and base station
JP5172885B2 (ja) 無線中継局装置、無線基地局装置及びリレー周波数割り当て方法
CN102687424B (zh) 用于中继转变时间的装置和方法
WO2012023498A1 (ja) 無線基地局装置及びリソース割り当て方法
JP5971329B2 (ja) 無線通信システム、無線基地局、無線端末および無線通信方法
US8811261B2 (en) Radio base station apparatus, radio relay station apparatus, and resource allocation method
JP6586762B2 (ja) 受信装置、送信装置、受信方法、送信方法及びプログラム
US20100103869A1 (en) Transferring data in a mobile telephony network
CN114731730A (zh) 无线设备全双工协作方案
WO2011020217A1 (zh) 分配下行传输功率的方法及相应的装置
JP5249999B2 (ja) リレー伝送方法、リレー局及び無線基地局
CN115955262A (zh) 信道状态信息获取方法、计算机可读介质和装置
CN117354094A (zh) 无线通信方法、用户设备和存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080041237.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818641

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010818641

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012110184

Country of ref document: RU

Ref document number: 13496499

Country of ref document: US

Ref document number: 2290/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012006061

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012006061

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120316