WO2011035711A1 - 基于随机相长干涉原理的立体显示装置 - Google Patents
基于随机相长干涉原理的立体显示装置 Download PDFInfo
- Publication number
- WO2011035711A1 WO2011035711A1 PCT/CN2010/077182 CN2010077182W WO2011035711A1 WO 2011035711 A1 WO2011035711 A1 WO 2011035711A1 CN 2010077182 W CN2010077182 W CN 2010077182W WO 2011035711 A1 WO2011035711 A1 WO 2011035711A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- sub
- light
- array
- light source
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/32—Holograms used as optical elements
Definitions
- the present invention relates to the field of three-dimensional imaging technology, and more particularly to a stereoscopic display device based on the principle of random constructive interference, which is particularly suitable for computer and television display screens, intelligent human-machine exchange, robot vision, etc., and can be widely used in teaching, Research, entertainment, advertising and other fields. Background technique
- liquid crystal display technology has developed rapidly, from a few inches of projection liquid crystal display panels to tens of inches of flat panel liquid crystal displays have been commercialized.
- the existing liquid crystal display is mainly used for two-dimensional flat display.
- the pixel size is on the order of ten micrometers, and the resolution is very low compared with the visible light wavelength, and it is not possible to replace the hologram with them.
- Invention patent "three-dimensional display method and device based on random constructive interference" proposes a new method for three-dimensional stereoscopic display using a low-resolution liquid crystal display, the core idea of which is to treat each pixel of the liquid crystal display It is transformed into independent sub-light sources. A series of discrete stereoscopic image points are formed in three-dimensional space by the constructive interference of these sub-light sources. In order to suppress multiple images generated by high-order diffraction, the positions of the sub-light sources are randomly distributed.
- the above invention gives a series of design examples, and focuses on how to realize stereoscopic imaging based on the principle of random constructive interference using an existing commercial two-dimensional planar liquid crystal display.
- liquid crystal display is designed specifically for the characteristics of stereo imaging based on the principle of random constructive interference, better results will be obtained.
- the present invention provides some new structure and component design, and on the other hand, enhances the principle based on random constructive interference.
- the performance of various aspects of the three-dimensional imaging device simplifies the structure, reduces processing difficulty and production cost. Summary of the invention
- the stereoscopic imaging device based on random constructive interference for achieving the above object of the present invention includes:
- each amplitude phase adjuster respectively adjusting an amplitude phase of the wide beam three-element coherent laser emitted by the illumination optical system to generate mutually independent sub-beam arrays;
- An array of coherent sub-light source generators each of which is respectively aligned with a respective amplitude phase adjuster of the amplitude phase adjuster array such that the mutually independent sub-beams are incident on the coherent elements in a one-to-one correspondence
- Each of the coherent sub-light source generators in the array of light source generators converges to generate an array of coherent sub-light sources with randomly distributed positions, and causes the light cones emitted by each of the coherent sub-light sources to overlap with the three-dimensional interval in which the three-dimensional stereo images are located.
- the coherent sub-light source generator array is a transmissive holographic optical element array, and the interference fringes disposed on each of the transmissive holographic optical elements are such that the positions of the sub-light sources formed by the convergence after transmission are randomly distributed;
- the coherent sub-light source generator array is an array of reflective holographic optical elements, and the interference fringes disposed on each of the reflective holographic optical elements cause the positions of the sub-light sources formed by the reflection to be randomly distributed.
- the interference fringes disposed on each of the transmissive holographic optical elements are superpositions of three interference fringes of the monochromatic transmissive holographic optical elements for the three elementary colors respectively;
- the interference fringes on each of the reflective holographic optical elements are a superposition of three interference fringes of a monochromatic reflective holographic optical element for each of the three elementary colors.
- the array of coherent sub-light source generators is an array of binary optical elements, each of which is an element having a combined function of microlenses and microprisms, the microstructure of the surface of each of the binary optical elements is such that the aggregates are formed The position of the light source is randomly distributed.
- the coherent sub-light source generator array is a reflective microlens array having a plurality of reflective microlenses, and the position of the sub-light source formed by the convergence of each of the reflective microlenses is randomly distributed;
- the coherent sub-light source generator array is a transmissive microlens array having a plurality of transmissive microlenses. By deflecting the optical axis direction of each of the reflective microlenses, the positions of the sub-light sources formed after the convergence are randomly distributed.
- the amplitude phase adjuster array comprises a transmissive pure phase-adjusting liquid crystal panel, and the orientations of the liquid crystal molecules on the two sides of the liquid crystal layer of the transmissive pure phase-adjusting liquid crystal panel are parallel to each other, so that the twist angle of the liquid crystal molecules is zero.
- the thickness of the liquid crystal layer and the birefringence difference of the liquid crystal material make the phase adjustment range of the transmissive pure phase adjustment liquid crystal panel reach 0 ⁇ 2 ⁇ ; or
- the amplitude phase adjuster array comprises a reflective pure phase-adjusting liquid crystal panel, and the orientations of the liquid crystal molecules on the two sides of the liquid crystal layer of the reflective pure phase-adjusting liquid crystal panel are parallel to each other, so that the twist angle of the liquid crystal molecules is zero, and the liquid crystal
- the thickness of the layer and the birefringence difference of the liquid crystal material make the phase adjustment range of the reflective pure phase adjustment liquid crystal panel reach 0 ⁇ 2 ⁇ .
- the amplitude phase adjuster array comprises a rear panel integrally formed as a whole, a first liquid crystal layer, an intermediate panel, a second liquid crystal layer, a front panel and a polarizing plate closely attached to the front panel; a rear panel, a first liquid crystal layer Forming a first grayscale liquid crystal panel with the middle panel, the middle panel, the second liquid crystal layer, the front panel and the polarizing plate constitute a second liquid crystal panel, the first grayscale liquid crystal panel and the pixels on the second grayscale liquid crystal panel Having the same two-dimensional periodic distribution and one-to-one alignment;
- the first gray-scale liquid crystal panel is a transmissive pure phase-adjusting liquid crystal panel, and at the same time, the orientation of the liquid crystal molecular alignment film belonging to the middle panel and the front panel of the second gray-scale liquid crystal panel and the polarization direction of the polarizing plate are changed, so that The two grayscale liquid crystal panels operate in the amplitude adjustment mode.
- the illumination optical system for receiving the three elementary color thin beam lasers emitted by the coherent laser source and expanding the same comprises two sets of parallel plate beam splitter arrays placed perpendicularly to each other;
- each parallel plate beam splitter in the first set of parallel plate beam splitters has the same size and shape, and is equally spaced along the same axis, adjusting each parallel plate in the first set of parallel plate beam splitter arrays.
- the spacing of the beam splitters enhances the reflectivity of each parallel plate beam splitter in the direction of light propagation, so that the parallel beamlets emitted by the polarization coherent light source are reflected by the first set of parallel plate beam splitters and converted into uniform intensity and Continuously distributed parallel line beams;
- each parallel plate beam splitter in the second set of parallel plate beam splitter arrays has the same size and shape, and is equally spaced along the same axis in parallel, adjusting each parallel of the second set of parallel plate beam splitter arrays The spacing of the plate beam splitters, while increasing the reflectivity of each parallel plate beam splitter in the direction of light propagation, such that the parallel line beams emitted by the first set of parallel plate beam splitter arrays pass through the second set of parallel plate beam splitter arrays After reflection, converted into a parallel beam with uniform intensity and continuous distribution;
- each of the two sets of parallel plate beam splitter arrays is vapor-deposited integrally or sub-regionally to reflect a broadband reflection film of three primary colors or a narrow-band reflection film reflecting only a certain element color, so that Two sets of parallel plate beam splitter arrays
- the parallel plane beams are periodically distributed along the line or along the column or both in the row and column directions.
- the entrance and exit ports of the two sets of parallel plate beam splitter arrays are optically polished and vapor-deposited. Broadband antireflection coating.
- the amplitude phase adjuster is composed of three sub-amplitude phase adjusters, a cubic beam splitting prism having a light exiting surface and three light incident surfaces, and an optical lens; the optical lens is placed in front of the light of the cubic beam splitting prism, and the light of the optical lens
- the axis coincides with the central axis of the light-emitting surface of the cube beam splitting prism; the three sub-amplitude phase adjusters are respectively placed in front of the three entrance lights of the cubic beam splitting prism, and the central axes of the three sub-amplitude phase adjusters are respectively three of the cubic beam splitting prisms
- the central axis of the smooth surface coincides; the cubic splitting prism is formed by bonding four identical right-angle prisms at right angles, and the right-angled faces of the right-angle prism are respectively vapor-deposited with a narrow-band reflection film for a certain primitive color, so that respectively The three elementary color laser light incident from the three light incident faces of the cube beam splitting prism can be reflected or transmitted
- the three-element color partition illumination method is used to increase the energy utilization rate by three times.
- the holographic optical element or the binary optical element is used to simplify the structure and increase the stability of the system.
- the gray-scale liquid crystal panel is adopted. The pure phase adjustment liquid crystal panel with zero distortion angle and integrated as a whole amplitude adjuster and phase adjuster further simplify the structure, increase system stability, and reduce production cost and assembly difficulty.
- FIG. 1 is a schematic view showing the structure of an integrated amplitude phase adjuster and a transmissive holographic optical element according to the present invention.
- Fig. 2a and Fig. 2b are schematic diagrams showing the arrangement and distribution of the primitive colors when the three-element color division illumination is used.
- Figure 3 is a schematic view showing the structure of the illumination optical system when two sets of parallel plate beam splitter arrays placed perpendicularly to each other are used.
- 4 is a schematic view showing the arrangement structure of liquid crystal molecules in an integrated amplitude phase adjuster.
- FIG. 5 is a schematic view showing the arrangement structure of liquid crystal molecules in a reflective pure phase-adjusting liquid crystal panel.
- Figure 6 is a schematic diagram showing the coordinate system of the holographic optical element fabrication and concentrating principle.
- Figures 7a to 7d are schematic diagrams of the fabrication and concentrating principles of transmissive and reflective holographic optical components, respectively.
- Figure 8 is a schematic view of the surface microstructure of a binary optical element.
- Figures 9a and 9b are schematic views showing the structure of a coherent sub-light source generator using a tilted reflective and transmissive microlens array, respectively.
- FIG. 10 is a schematic diagram showing the principle of spatial illumination characteristics adjustment of a coherent sub-light source array.
- Figure 11 is a schematic view showing the structure of a projection type color three-dimensional display using a transmissive pure phase adjustment liquid crystal panel and a binary optical element.
- Figure 12 is a schematic view showing the structure of a projection type color three-dimensional display using a reflective pure phase adjustment liquid crystal panel and a reflective tilt microlens array according to the present invention.
- Figure 13 is a schematic view showing the structure of a projection type color three-dimensional display using a liquid crystal grating pure phase adjuster and a transmissive tilt microlens array according to the present invention.
- FIG. 14 is a schematic view showing the structure of a projection type color three-dimensional display using an integrated amplitude phase adjuster and a reflective holographic optical element according to the present invention. detailed description
- the amplitude phase adjuster array adjusts the amplitude and phase of the incident light point by point, similar to a spatial light modulator.
- a spatial light modulator can generally only adjust the phase or amplitude. Therefore, the amplitude phase adjuster array of the present invention is equivalent to a combination of two spatial light adjusters, and the pixels of the two spatial light adjusters are aligned with each other.
- One of the spatial light adjusters is mainly used to adjust the phase, and the other spatial light adjuster is mainly used to adjust the amplitude.
- One amplitude phase adjuster in the amplitude phase adjuster array is equivalent to a pair of mutually coupled two spatial light adjusters. Pixel.
- the liquid crystal panel refers to a liquid crystal spatial light modulator with many pixels. Its structure is similar to that of a normal nematic liquid crystal display, but it is mainly used for amplitude or phase adjustment.
- the position of the sub-light source is randomly distributed, which means that the position of the sub-light source can be located at any position on a certain space or plane, or the probability of being located at any position is equal, of course, it needs to be within a certain range; On the grid of rules.
- the present invention is an improvement or continuation of the invention patent application with the application number 200810046861.8 entitled "Three-dimensional display method and apparatus based on random constructive interference".
- the principle of three-dimensional imaging based on random constructive interference is mainly based on two points. First, according to the principle of optical interference, the constructive interference of many coherent sub-light sources can form bright spots at any specified position in space, and form discrete three-dimensional through many such bright points. Stereo image; Second, if the positions of all the coherent sub-light sources are randomly distributed, the multiple images produced by the high-order diffraction can be eliminated, and a single high-quality stereo image can be obtained.
- the three-dimensional display device based on the above principle of random constructive interference proposed by the present invention can be divided into four functional modules in terms of structure, and the four functional modules are described one by one below:
- the laser light source The three-dimensional display device based on the principle of random constructive interference is a coherent imaging system, so a laser light source with good coherence must be used, and in order to realize color imaging, the laser light source is required to emit three kinds of elementary color lasers.
- the three-primary color laser can be emitted by a single laser or three independent three-primary color lasers, which are not distinguished by the present invention and are collectively referred to as "coherent light sources emitting three-primary color coherent lasers".
- the illumination optical system for laser beam expansion, that is, converting the thin beam three-primary color laser light emitted by the above-mentioned coherent light source into a uniform, three-primary color separation wide beam three-primary color laser.
- Ordinary non-coherent two-dimensional display devices such as liquid crystal displays currently on the market, often use a wide-spectrum light source, and because there is no need to control the phase of the light wave, in order to increase the viewing angle, a divergent white light source is often used for illumination.
- one pixel is actually composed of three adjacent sub-pixels, each of which is vapor-deposited with a different color filter film, allowing only one elementary color to pass, while white illumination light is simultaneously illuminated.
- the entire LCD display so two-thirds of the light can be blocked by the filter.
- the illumination mode and illumination optical system employed in the above non-coherent two-dimensional display device are not suitable for use in the coherent display device proposed by the present invention.
- the phase of the light wave must be strictly controlled. Therefore, we use a parallel wide beam three-element color laser for illumination, and in order to improve the utilization efficiency of the light energy, a partition mode using three-primary color separation is adopted.
- Lighting that is, all the pixels in one area are uniformly illuminated by the same element color laser, and different areas are alternately illuminated by three different element color lasers, which saves the filter, simplifies the structure, and Light energy utilization has increased threefold.
- the partition illumination method using this elementary color separation is mainly based on two reasons. First, although different regions on the screen are presented as different primitive colors, which are no longer suitable for ordinary two-dimensional color display, in the present invention, since the three-dimensional stereo image is away from the screen, one voxel is superimposed by many sub-light sources from different regions of the screen. Formed so that a voxel can still represent any color.
- the three primitive colors are divided into rows or columns or simultaneously by row and column periods. Many different regions, so that for a certain primitive color, the coherent sub-light source can only be distributed in a specified area, but not in other areas. Strictly speaking, the condition of random constructive interference is broken. But we should also pay attention to the fact that diffraction is inversely proportional to the period size. Since each region contains many sub-light sources, even if the positions of the sub-light sources in different regions are the same random distribution, the repetition period between regions is very large. The resulting high-order diffraction is negligible, and the positions of the sub-light sources in different regions are randomly distributed.
- the present invention provides an illumination optical system composed of two mutually perpendicular beam splitter arrays.
- different beam splitters are vapor-deposited with narrow bands for different primitive colors.
- the reflective film further enhances the illumination intensity of the entire area, and the reflectance of the reflective film evaporated by the beam splitter in the rear is increased as the light energy is continuously weakened in the direction in which the light wave travels.
- the amplitude phase adjuster array According to the random constructive interference principle described above, in order to achieve constructive interference, it is necessary to construct a large-scale coherent sub-light source array, and accurately adjust the amplitude and phase of each coherent sub-light source at any time.
- a coherent sub-source requires an amplitude phase adjuster, and thousands of amplitude phase adjusters form a two-dimensional amplitude phase regulator array.
- One pixel of a liquid crystal display is equivalent to an amplitude phase adjuster.
- the amplitude and phase of an ordinary liquid crystal display are related to each other.
- the polarizing plates on both sides must be adjusted to operate in the phase-adjusting or amplitude-adjusting mode, while the two pixels are strictly aligned one by one.
- the methods of multiplication or addition are combined to achieve independent adjustment of amplitude and phase.
- the invention is specifically designed for the three-dimensional imaging feature based on the principle of random constructive interference, and combines the above three elementary color partition illumination methods to design a special liquid crystal panel, which is characterized in that the filter film in the color liquid crystal display is removed, and the color liquid crystal is changed.
- the display is a gray-scale liquid crystal panel, and the orientations of the alignment molecules of the liquid crystal molecules on the two sides of the liquid crystal layer are parallel to each other, so that the twist angle of the liquid crystal molecules is zero, and the polarization direction of the incident polarized light does not change when passing through the liquid crystal panel. Therefore, the beam intensity does not change, only the phase changes, and the liquid crystal panel operates in an ideal pure phase adjustment mode.
- the difference between the thickness of the liquid crystal layer and the birefringence of the liquid crystal material should be selected so that the phase adjustment range reaches the range of 0 to 2 ⁇ .
- Such a pure phase-adjusting liquid crystal panel can be integrated with a liquid crystal panel which is mainly used for amplitude adjustment, so that the middle polarizing plate and the panel can be omitted, the structure is simplified, and the stability is greatly increased, and the latter is reduced.
- the difficulty in assembly because the pixels of the two liquid crystal panels have been strictly aligned one by one during the etching process.
- the coherent sub-light source generator array Since the illumination light is a parallel laser beam, they generate mutually independent sub-beam arrays after passing through the amplitude phase adjuster array, but these sub-beams are still parallel light and cannot be large Intersects in the spatial range to achieve coherent superposition, and because the sub-beams are arranged periodically, many high-order diffractions are produced.
- the function of the coherent sub-light source generator array includes two aspects, wherein a mutually independent sub-beam converges into a point-like sub-light source, such that the light emitted from each sub-light source forms a divergent cone of light while changing the sub-source generated by the convergence.
- the position can adjust the direction of the divergent cone and the size of the cone angle, so that the divergent cones of all the sub-light sources point to the same spatial area and meet each other.
- the generated sub-light source positions are randomly distributed in space, eliminating multiple images generated by high-order diffraction.
- a coherent sub-light source generator is equivalent to a combination of a microlens and a microprism whose optical axis is parallel to the sub-beam or a microlens that is inclined by an optical axis, wherein the microlens acts as a beam converging action,
- the size of the aperture is the same as the size of the sub-beams to ensure that each sub-beam is fully focused, and the micro-lens is aligned with the amplitude phase adjuster, that is, aligned with each pixel of the liquid crystal panel, thus the microlens and the liquid crystal panel
- the optical axis of the microlens is parallel to the sub-beam, the sub-light source generated after the convergence is arranged in the same two-dimensional period as the pixels of the liquid crystal panel.
- a microprism is needed to perform the beam. Deflection, the position of the sub-light source generated by the convergence of the microlens is shifted, and the angles of the different microprisms are different, and the deflection angles of the beams are different, thereby ensuring that the positions of the sub-light sources are randomly distributed; if the optical axes of the microlenses are not parallel to Child light The beam, and the different tilt angles of the different microlenses, can ensure that the positions of the sub-light sources generated by the convergence are randomly distributed.
- the three-dimensional display device based on the principle of random constructive interference as described above belongs to a coherent imaging system and only contains three different elementary color lasers.
- the present invention uses a holographic optical element or a binary optical element to construct a coherent sub-light source.
- Both holographic optical components and binary optical components are well-established technologies that combine the functions of several conventional optical components.
- the above-mentioned microlenses and microprisms can be integrated, and can be hot pressed, filled, Large-scale production of technologies such as rolling and copying can reduce production costs while simplifying the structure and improving system stability.
- Figure 1 is a schematic diagram showing the principle structure of an integrated amplitude phase modulator array and a transmissive holographic optical element for three-dimensional display of the present invention.
- the device is composed of a polarization coherent light source 1, an illumination optical system 2, an amplitude phase adjuster array 3 and a coherent sub-light source generator array 4.
- the above four functional modules are described in detail below.
- the coherent light source 1 can emit three-element color lasers having wavelengths of ⁇ 2 and ⁇ 3 , respectively, to realize color stereoscopic display. Because the liquid crystal panel is used for amplitude and phase modulation, the coherent light source 1 directly uses linearly polarized light, so that all the light energy is utilized. If the three-primary color laser light emitted by the coherent light source 1 is not linearly polarized light, a polarizer is added. Turn them into linearly polarized light, but lose about half of the light energy.
- the illumination optical system 2 expands the beamlet laser beam emitted from the coherent light source 1 into a wide beam parallel laser beam with uniform intensity distribution, and at the same time, in order to improve the utilization of light energy, a three-element color separation partition illumination is used. the way.
- the effect of the partition illumination is shown in Figure 2, where each square represents an illumination sub-area, and the three-element color lasers with wavelengths of 2 and 3 , respectively, are in rows or columns (Fig. 2b) or simultaneously in rows and columns. (Fig. 2a) Periodically illuminate the entire area. In order to achieve the partition illumination effect of the three-primary color separation shown in FIG.
- each parallel plate splitter array in the first set of parallel plate beam splitter arrays 17 has the same size and shape, is square, is equally spaced along the same horizontal axis, and is at an angle of incidence of 45 degrees.
- the incident parallel beamlets are reflected by the first set of parallel plate beam splitter arrays 17 and converted into parallel line beams of uniform intensity and continuous distribution.
- the reflectivity of a parallel plate beam splitter is equal to the reflectivity of the previous parallel plate beam splitter except the transmittance of the previous parallel plate beam splitter, so that each block is parallel
- the light energy reflected by the plate beam splitter is equal.
- each parallel plate beam splitter in the second set of parallel plate beam splitter arrays 18 has the same size and shape, is rectangular, and is equally spaced along the same vertical axis, parallel to each other, and at an angle of incidence of, for example, 45 degrees (also It may be other angles) to receive parallel line beams from the first set of parallel plate beam splitter arrays 17.
- each parallel plate beam splitter in the second set of parallel plate beam splitter arrays 18 is adjusted while the reflectivity of each parallel plate beam splitter is sequentially increased in the direction of light propagation such that the first set of parallel plate segments
- the parallel line beams emitted by the beam array 17 are reflected by the second set of parallel plate beam splitter arrays 18 and converted into parallel and uniformly distributed parallel surface beams.
- each of the two sets of parallel plate beam splitter arrays 17, 18 is vapor-deposited as a whole or sub-region, and reflects three primary colores.
- nine parallel plate beam splitters in the first set of parallel plate beam splitter arrays 17 can be alternately vapor-deposited red, green, and blue narrow-band reflective films, and a second set of parallel plate beam splitter arrays 18 middle
- the three parallel plate beam splitters are all vapor-deposited while reflecting the broadband reflection film of red, green and blue elementary colors, as shown in Fig. 2b, and finally formed by the second set of parallel plate beam splitter arrays 18
- the continuously distributed parallel plane beams are divided into nine columns, each of which exhibits a primitive color in turn.
- nine parallel plate beam splitters in the first set of parallel plate beam splitter arrays 17 can be vapor-deposited while reflecting red, green and blue three-element color broadband reflection films, and the second group is parallel.
- the three parallel plate beam splitters in the plate beam splitter array 18 are equally divided into three rows and nine columns and a total of 27 small squares, and each small square is sequentially vapor-deposited to reflect only one elementary color narrow-band reflection.
- the film, as shown in Fig. 2a, is finally formed by the second set of parallel plate beam splitter arrays 18, and the parallel-surface beams of uniform intensity and continuous distribution are divided into nine rows and nine columns, a total of 81 small squares, each The small squares alternately present a primitive color in both the row and column directions.
- each small square will illuminate many pixels on the LCD panel, for example 100 X 100 pixels, even if all the coherent sub-sources generated by the coherent sub-source generator array in the small square are exactly the same random distribution, due to the small square
- the arrangement period of the lattice is large, and the resulting high-order diffraction is negligible.
- the coherent sub-sources in all the small squares can be completely differently distributed, which further suppresses high-order diffraction.
- the two sets of parallel plate beam splitter arrays 17 and 18 may employ a sheet type beam splitter, but the interval between the sheets may not be reduced, or may be made of plexiglass, thereby ensuring sufficient mechanical weight while reducing the weight. strength.
- the light entrance DCFE and the light exit port ABCD of the beam array 18 are optically polished and vapor-deposited to reduce the loss of light energy.
- accessories such as a spatial filter and a right-angle prism can be added to further improve the optical and mechanical structure of the illumination optical system 2.
- a telescope system consisting of optical lenses 13, 14 is used to pre-expand the beamlets emitted by the coherent source to the size of the aperture of the parallel plate beam splitter array 17 of Fig. 3.
- a small hole can be placed in the common focus of the optical lenses 13 and 14 in Fig. 1 for spatial filtering to block the higher order modes emitted by the laser.
- the amplitude phase adjuster array 1 employs an integrated liquid crystal panel which is integrally formed as a unitary rear panel 7, a first liquid crystal layer 8, an intermediate panel 9, a second liquid crystal layer 10, a front panel 11 and It consists of a polarizing plate 12 that is in close contact with the front panel.
- the rear panel 7, the first liquid crystal layer 8 and the intermediate panel 9 constitute a first grayscale liquid crystal panel 5, and the intermediate panel 9, the second liquid crystal layer 10, the front panel 11 and the polarizing film 12 constitute a second liquid crystal panel 6, first
- the pixels on the block grayscale liquid crystal panel 5 and the second grayscale liquid crystal panel 6 have the same two-dimensional periodic distribution and are aligned one by one.
- the first grayscale liquid crystal panel 5 is used for phase adjustment
- the second grayscale liquid crystal panel 6 is used for amplitude adjustment.
- the orientation of the liquid crystal alignment film on each panel is indicated by arrows at the lower left of the rear panel 7, the intermediate panel 9, and the front panel 11, respectively.
- the alignment of the liquid crystal molecules on the rear panel 7 of the first grayscale liquid crystal panel 5 is parallel to the alignment of the liquid crystal molecules on the intermediate panel 9, that is, the twist angle of the liquid crystal molecules is zero, and the liquid crystal panel can work either transmissive or reflective.
- the specific principle is explained as follows.
- nematic liquid crystal molecules are generally employed.
- the entire liquid crystal layer can be subdivided into a plurality of thin layers.
- the alignment of the nematic liquid crystal molecules is uniform, and in the thin layer close to the alignment film, the liquid crystal The orientation of the molecules is aligned with the orientation of the oriented film.
- the first gradation liquid crystal panel 5 since the alignment orientation of the liquid crystal molecules on the rear panel 7 and the intermediate panel 9 is parallel, the alignment directions of the liquid crystal molecules in all the thin layers are aligned with the orientation of the alignment film.
- the illumination parallel laser beam is incident from below the rear panel 7
- the illumination laser beam is linearly polarized, and the polarization direction is parallel to the orientation of the alignment molecules of the liquid crystal molecules on the rear panel 7 and the intermediate panel 9
- the illumination laser beam passes through
- the first gradation of the liquid crystal panel 5 does not change its polarization direction, so its intensity does not change any more, only the phase changes.
- a voltage is applied between the rear panel 7 and the intermediate panel 9, liquid crystal molecules The arrangement tends to be consistent with the applied electric field.
- the first gray scale liquid crystal panel 5 is an ideal pure phase adjuster. Assuming that the spacing between the panels is d, the normal refractive index and the abnormal refractive index of the liquid crystal material are respectively «. And, the wavelength of the incident light is ⁇ , and the maximum phase adjustment amount that the transmissive liquid crystal panel can achieve is:
- a reflective liquid crystal panel such as LCOS (Liquid Cristal On Silicon) or a liquid crystal grating, as shown in FIG. 5, the orientation of the liquid crystal molecules of the panels on both sides of the liquid crystal layer may be oriented in parallel, so that the liquid crystal molecules are distorted.
- the angle is zero, and the linearly polarized incident light whose polarization direction is parallel to the orientation of the liquid crystal molecules is not changed in the polarization direction after reflection, so that the reflective liquid crystal panel operates in the pure phase adjustment mode, but since the light passes through the liquid crystal layer twice,
- the maximum phase adjustment that can be achieved is twice the formula (1).
- the phase of each sub-light source needs to be arbitrarily changed between 0 and 2 ⁇ , so for the first grayscale liquid crystal panel 5, the rear panel 7 and the intermediate panel 9 should be selected.
- the interval d, and the birefringence difference n of the liquid crystal material of the first liquid crystal layer 8 are such that the phase adjustment range of the first gradation liquid crystal panel 5 reaches 0 to 2 ⁇ .
- the orientation of the liquid crystal molecular alignment film on the intermediate panel 9 and the front panel 11 of the second gradation liquid crystal panel 6 and the polarization direction of the polarizing film 12 should be appropriately selected.
- the second grayscale liquid crystal panel is operated in the amplitude adjustment main mode.
- the orientation of the alignment molecules of the liquid crystal molecules on the intermediate panel 9 and the front panel 11 should be made perpendicular to each other.
- the alignment direction of the liquid crystal molecules coincides with the orientation of the alignment film, and as the front panel 11 approaches, the orientation of the liquid crystal molecules in each of the thin layers gradually rotates, adjacent to the front panel 11
- the orientation of the liquid crystal molecules in the thin layer is parallel to the orientation of the alignment film of the liquid crystal molecules on the front panel 11.
- the alignment direction of the liquid crystal molecules is rotated by 90 degrees, that is, the twist angle of the liquid crystal molecules is 90 degrees. Accordingly, the linearly polarized light incident on the second gray-scale liquid crystal panel 6 is also rotated by 90 degrees under the guidance of the liquid crystal molecules.
- the coherent sub-light source generator array 4 is composed of an array of transmissive holographic optical elements, each of which is actually a hologram which can be fabricated by recording interference fringes of two point sources (parallel beams) It can be seen as a special case when the point source is at infinity.) We can refer to these two point sources as reference point source R and object point source 0, respectively.
- the holographic optical element After the holographic optical element is fabricated, it can be used for imaging like a normal optical lens to focus an object point into a certain image point.
- the holographic master is located on the pupil plane, and the coordinate origin 0 coincides with the center of the holographic master, respectively, for the above four points to the origin line and the projection of these lines in the pupil plane, remember these four
- the distance from the point to the origin is Ro, RR RC, and the angle between these lines and their respective projections is ⁇ &, , and c &, respectively, and the angle between these projections and the XY plane is ⁇ , ⁇ , ⁇ ⁇ ⁇ , where the subscripts 0, R, C, and I represent, in order, the object point 0 when the holographic optical element is produced, the reference point R, and the reproduced object C point and the reproduced image point I when the holographic optical element is used.
- the reproducer point C can be determined by the following formula The direction in which the emitted light passes through the holographic optical element and the position of the reproduced image point I,
- ⁇ / represents the ratio of the wavelength used in the reproduction of the image and the wavelength used in the recording, and m is the scale factor at which the interference fringe interval changes before and after the chemical treatment.
- the sign on the right side of the formula (2-4) takes a positive sign when analyzing the virtual image and a negative sign when analyzing the real image.
- the right side of formula (2) is fixed after the holographic optical element is fabricated, so the focal length of the holographic optical element is
- FIG. 7 shows two examples of making and using holographic optical components.
- Holographic optical elements can be classified into transmission holographic optical elements and reflective holographic optical elements. The difference between the two is the relative position of the object light and the reference light during the recording process. If the object light and the reference light are located on the same side of the holographic substrate H, as shown in Fig. 7a, the transmission holographic optical element is recorded, and the transmission holographic optical element is The interference fringes are parallel to the surface of the holographic master; if the object light and the reference light are respectively located on both sides of the holographic dry plate H, as shown in Fig.
- the recording is a reflective holographic optical element, and the interference fringes in the reflective holographic optical element are perpendicular to the holographic master .
- reflective holographic optical elements behave as thick holograms.
- the thick hologram shows only one diffraction image, and the diffraction efficiency can reach 100%.
- the light wave diffracted by the thin hologram has multiple diffraction orders, and the diffraction efficiency of each diffraction order is relatively low. Therefore, in order to achieve high energy utilization, a thick hologram should be preferred in the practice of the present invention.
- the thick hologram means that the thickness of the recording medium is larger than the interval of the interference fringes.
- Figures 7b and 7d are imaging processes in which the holographic optical element converges the reproducer point C into a reproduced image point I during use. Comparing Figs. 7a and 7b and Figs. 7c and 7d, it can be found that if the object point 0 used in the recording process coincides with the reproducer point C during use, the position of the reproduced image point I during use and the recording process are The position of the reference point R used is the same. Therefore, in the present invention, in order to make the point light source generated by focusing of the holographic optical element, i.e., the position of the reproduced image point I, be randomly distributed, the position of the reference point R should be randomly selected in the production of each holographic optical element.
- a light-blocking plate with a plurality of micro-holes is formed on the light-emitting surface of the hologram optical element array 4 for shielding the high-order diffraction spot which may be generated by the holographic optical element to reduce the stereo image background noise.
- the coherent sub-light source generator array may also employ a binary optical element or an optical axis tilted microlens as shown in Figs. 8 and 9, respectively.
- Figure 8 is a schematic representation of the formation of a surface microstructure of a binary optical element. If a binary optical element 21 having a function equivalent to one microlens 19 and one microprism 20 is to be produced, it can be divided into two steps in design. The first step is to reduce the thickness of the system: after an optical wavefront passes through a microlens 19 and a microprism 20, its phase changes with the optical path difference experienced by the optical wavefront, due to the microlenses 19 and The thickness of the microprisms 20 is different, so that the shape of the optical wavefront changes, resulting in focusing and deflection effects. However, any phase change of an integer multiple of 2 ⁇ is negligible.
- the thickness of the microlens 19 and the microprism 20 can be reduced to a phase change of only 2 ⁇ .
- the apex angle of the microprism can be randomly selected, so that the fabricated binary optical element array can generate a coherent sub-light source with a randomly distributed position.
- Figure 9 is a schematic illustration of the principle of fabricating a coherent sub-source generator array directly using an optical axis tilted microlens array.
- the optical axis of each of the reflective microlenses 23 is randomly deflected as indicated by the alternate long and short dash line in the figure.
- the optical axis of each of the transmissive microlenses 25 is as shown in the figure. As indicated by the scribe lines, they are randomly deflected such that the positions of the sub-light sources generated by the convergence of the reflective microlens array 22 or the transmissive microlens array 24 are randomly distributed.
- the structural parameters of each coherent sub-light source generator need to be randomly selected to ensure that the positions of the sub-light sources generated by the convergence are randomly distributed.
- the coherent sub-light source generator array is completed, its internal structure does not change, and the position of the sub-light source generated by the convergence does not change any more. Therefore, in this specification, in most cases, the word "random" Represents a random distribution in space, rather than arbitrarily changing over time.
- each sub-light source generators 27 in the coherent sub-light source generator array 4 can adjust the position of each of the coherent sub-light source generators 27 in the coherent sub-light source generator array 4 to adjust the position of the sub-light source arrays 26 which they converge, thereby improving the sub-light source of each sub-light source.
- the spatial luminescence characteristics are such that the cones of light they emit point to the same imaging area, during which the position of each of the coherent sub-source generators 27 in the coherent sub-source generator array 4 is fixed because they must be phased with amplitude
- Each amplitude phase adjuster in the regulator array 3 is aligned one by one.
- the light cone emitted by the light source is QPW and the vertex is P.
- the sub-light source P If the sub-light source P is shifted up and down, the light cone emitted by the sub-light source P also moves up and down; if the vertical distance dz of the P to the coherent sub-light source generator array 4 is changed, the larger the dz, the cone cone angle QPW emitted by the sub-light source The smaller the light energy, the more concentrated it is, but it is not conducive to the formation of large-sized three-dimensional stereoscopic images. In short, by adjusting the position of the sub-light source P, it can control its spatial illuminating characteristics, so that the light cone emitted by it is directed as much as possible to the area where the three-dimensional stereo image is located.
- the position of each sub-light source is individually adjusted one by one to destroy their overall random distribution characteristics, the position of the entire sub-light source array 26 can only be adjusted as a whole as much as possible. It is assumed that the initial positions of the coherent sub-light source array 26 generated by the convergence of the coherent sub-light source generator array 4 have been randomly distributed in the initial stage of design, and are located in a plane parallel to the amplitude phase adjuster array 3, while assuming amplitude phase adjustment The center of the sub-light source array 26 generated by the array 3 and the coherent sub-light source generator array 4 is respectively ⁇ 0 2 , and the stereo image needs to be displayed in a three-dimensional space having a center of 0 3 .
- the initial position of the sub-light source array 26 is first shifted overall so that the line connecting the center 0 2 and the center of the amplitude phase adjuster array 3 points to the center 0 3 of the three-dimensional interval in which the three-dimensional stereo image is located ;
- Parallel to the two-dimensional periodic arrangement direction of the amplitude phase adjuster array 3, the overall linear compression or integral linear stretching of the initial position of the sub-light source array 26 is such that the light cones they emit overlap with the three-dimensional interval in which the three-dimensional stereo image is located; further along the amplitude phase
- the normal direction of the plane of the regulator array 3 moves the sub-light source array 26 as a whole, that is, the size of the dz is changed, so that the cone angle of the light cone emitted by most of the sub-light sources is appropriate, covering exactly the three-dimensional interval in which the entire three-dimensional stereo image is located;
- the sub-light source which is not ideal for spatial luminescence, can be moved along the normal direction of the plane of the amplitude
- each sub-light source in the sub-light source array 26 is in the amplitude position.
- the vertical projections on the plane of the phase adjuster array 3 are always randomly distributed, and the purpose of suppressing the high-order diffraction images has been achieved, and the positions of some of the sub-light sources are moved along the normal direction of the plane of the amplitude phase adjuster array 3 without damaging.
- the characteristics are randomly distributed so that multiple high-order diffraction images are not generated.
- each sub-light source When the spatial luminescence characteristics of each sub-light source are properly designed, the light cones emitted by the sub-light sources intersect each other in a specified space, and interference occurs. If a part of the sub-light sources are randomly selected and their phases are adjusted by the amplitude phase adjuster so that the light waves emitted by them reach an integer multiple of 2 ⁇ in phase at a certain point in space, the light waves emitted by these sub-light sources are constructive at that point. Interference, forming a bright spot, the more sub-light sources that participate in the interference, the higher the brightness of the bright spot.
- the cross-sectional size of the displayed stereo image is 400 X 400 mm 2
- the cone of light emitted by each sub-light source should cover the entire S 400 X 400mm 2 area
- the light wave emitted by a unit intensity pixel on the liquid crystal panel is only s ⁇ s ⁇ i/ieoooo falls within a certain voxel range.
- the light intensity is equal to the square of the amplitude of the light field.
- the light waves emitted by the 4,472 unit-intensity pixels undergo constructive interference.
- the total amplitude adjustment required for each pixel on the liquid crystal panel is also It is greatly increased, but it does not exceed 256, because the phase adjustment made by each pixel on the liquid crystal panel for generating each of the voxels does not all have the same phase or an integer multiple of 2 ⁇ .
- the above estimation shows that a liquid crystal panel with 1980 x 1024 pixels using an 8-bit 256-level gray scale can display at least 453 X 256 solid pixels with a relative intensity of 125. If the power of the illumination laser is increased, the pixels of the liquid crystal panel required to produce one voxel can be reduced, and accordingly the total number of stereoscopic pixels generated can be increased.
- the above three elementary color partition illumination system, pure phase adjustment liquid crystal panel, integrated amplitude phase adjuster and coherent sub-light source generator made of holographic optical element, binary optical element and tilt microlens can not only be made into large size flat type
- the stereoscopic display device can also be fabricated as a rear projection or front projection type color stereoscopic display device, and four embodiment examples are shown in Figs.
- Fig. 11 is a structural schematic view showing a projection type color three-dimensional display using a transmissive pure phase adjustment liquid crystal panel and a binary optical element. It consists of a polarization coherent light source 1, an illumination optics system 2, an amplitude phase modulator array 3 and a coherent sub-light source generator array 4. Wherein the coherent light source 1 can emit a three-primary color laser having wavelengths of ⁇ 2 and ⁇ 3 respectively to realize color Stereoscopic display.
- Illumination optics 4 consists of two sets of vertically placed parallel plate beam splitter arrays. For ease of illustration, only one set of parallel plate beam splitter arrays 28 is shown in FIG. In Fig.
- the amplitude phase adjuster array 3 is composed of two transmissive pure phase adjustment liquid crystal panels 33, 34, two half mirrors 29, 30, two mirrors 31, 32, and a projection lens 35.
- Two half mirrors 29, 30 and two mirrors 31, 32 are placed in a Michelson interferometer, and the pure phase adjustment liquid crystal panels 33, 34 are respectively placed on the arms of the Michelson interferometer,
- a pure phase adjustment liquid crystal panel 33 forms an angle of 45 degrees with the semi-transparent surface A1-A2 of the second half mirror 30, and the second pure phase adjustment liquid crystal panel 34 and the first pure phase adjustment liquid crystal panel 33 is placed in mirror symmetry with respect to the semi-transparent surfaces A1-A2 of the second half mirror 30, and they are located between one focal length and two focal lengths of the projection lens 35.
- the three-element line-polarized fine laser beam emitted from the coherent light source 1 is expanded by the illumination optical system 2 to form a wide beam of three-primary color separation, and then split into two beams by the first half mirror 29, After the beam is reflected by the two mirrors 31, 32, respectively, the two pure phase-adjusting liquid crystal panels 33, 34 are vertically illuminated respectively (wherein the polarization direction of the illumination linearly polarized laser is parallel to the liquid crystal orientation of the pure phase-adjusting liquid crystal panels 33, 34) The orientation of the film), the phase-adjusted light beam passes through the second half mirror 30, and finally is imaged by the projection optical lens 35.
- each pixel on the pure phase adjustment liquid crystal panels 33, 34 has been aligned with each other and is located between one focal length and two focal lengths of the projection lens 35, they are enlarged to be real image projected onto the coherent sub-light source generator array 4, Moreover, one by one overlaps each other, and by complex vector superposition, an array of coherent sub-light sources whose amplitude and phase can be adjusted are periodically distributed.
- the coherent sub-light source generator array 4 of Fig. 11 is composed of an array of binary optical elements.
- each of the binary optical elements 36 has a different surface microstructure, their outer dimensions are the same and are periodically distributed, and each of the binary optical elements 36 and The projections are formed by aligning each of the sub-light sources in the periodically distributed coherent sub-light source array and converge them into a coherent sub-light source with a randomly distributed position, and the positions are randomly distributed by the coherent sub-light source.
- the discrete stereoscopic images are displayed by constructive interference.
- Fig. 12 is a structural schematic view showing a projection type color three-dimensional display using a reflective pure phase adjustment liquid crystal panel and a reflective tilt microlens array.
- the laser light source 1 and the illumination system 2 in Fig. 12 are the same as those in Fig. 11, but the amplitude phase adjuster array 3 is composed of a half mirror 35, two reflective LCOS pure phase adjustment liquid crystal panels 38, 39 and a projection lens. 35 composition.
- the alignment of the liquid crystal molecules on both sides of the liquid crystal layer is parallel, and the polarization direction of the incident polarized light is parallel to the orientation of the alignment film of the liquid crystal molecules, so that they work in pure Phase adjustment mode.
- Two reflective LCOS pure phase adjustment liquid crystal panels 38, 39 and a half mirror 37 are placed in a Michelson interferometer, and two reflective LCOS pure phase adjustment liquid crystal panels 38, 39 are respectively used as Michelson interferometers. A mirror in both arms.
- the first reflective LCOS pure phase adjustment liquid crystal panel 38 forms an angle of 45 degrees with the transflective surface A1-A2 of the transflective mirror 37.
- the two reflective LCOS pure phase adjustment liquid crystal panels 38, 39 are relatively semi-transparent.
- the semi-transparent surfaces A1-A2 of the half mirror 37 are placed in mirror symmetry with each other.
- the three-primary color line-polarized fine laser beam emitted from the coherent light source 1 is expanded by the illumination optical system 2 to form a wide beam of three-primary color separation, and then split into two beams by the half mirror 37, respectively.
- the two reflective LCOS pure phase-adjusting liquid crystal layers on the front surface of the liquid crystal panels 38, 39 are vertically illuminated, reflected and merged by the same half mirror 37, and finally imaged by the projection lens 35. Since each of the two reflective LCOS pure phase adjustment liquid crystal panels 38, 39 has been aligned with each other and is located between one focal length and two focal lengths of the projection lens 35, they are magnified into real image projections to the coherent sub-light source.
- a coherent sub-light source array whose amplitude and phase can be adjusted in a periodic distribution is formed. Further, a coherent sub-light source array having a randomly distributed position is formed by the coherent sub-light source generator array 4 composed of the reflective tilt microlenses 23.
- Figure 13 is a projection color of a liquid crystal grating pure phase adjuster and a transmissive tilt microlens array according to the present invention Schematic diagram of the structure in 3D display.
- the device shown in Fig. 13 is basically the same as that of Fig. 12 except that the liquid crystal grating pure phase adjuster is used instead of the LCOS pure phase adjustment liquid crystal panel of Fig. 12, and the transmissive tilt microlens array is used instead of the reflective tilt micro in Fig. 12.
- Lens array Since there are no address electrodes in the liquid crystal grating, two sets of digital micro-mirror optical projection systems 43 composed of a light source 44, a digital micro-mirror (DMD) 45 and an optical lens 46 are added in FIG.
- DMD digital micro-mirror
- the optical images are respectively projected onto the back surfaces of the two liquid crystal grating pure phase adjusters 41, 42 respectively, and correspondingly different regions of the liquid crystal layer on the front surface of the two liquid crystal grating pure phase adjusters 41, 42 are subjected to different voltages, which is equivalent to two
- the block liquid crystal grating pure phase adjusters 41, 42 are divided into a plurality of dummy pixels.
- the liquid crystal molecules in the two liquid crystal grating pure phase adjusters 41, 42 are twisted to zero, and the liquid crystal molecules are aligned with the polarization direction of the incident illumination linearly polarized light, and thus operate in the pure phase mode.
- Figure 11-13 since the same reflective or transmissive liquid crystal panel is used for color stereo display, the discrete stereoscopic pixels that can be displayed are reduced by three times compared with the monochrome display.
- Figure 14 uses Three integrated amplitude phase adjusters, each for stereo imaging of a primitive color.
- FIG. 14 is a schematic view showing the structure of a projection type color three-dimensional display using an integrated amplitude phase adjuster and a reflective holographic optical element according to the present invention.
- the amplitude phase adjuster 3 is composed of three sub-amplitude phase adjusters 50, 51, 52, a cube beam splitting prism 53, and an optical lens 35.
- the optical lens 35 is placed before the light-emitting surface B1-B4 of the cube beam splitting prism 53, and the optical axis of the optical lens 35 coincides with the central axis of the light-emitting surface B1-B4 of the cube beam splitting prism 53.
- Three sub-amplitude phase adjusters 50, 51, 52 are placed in front of the other three light-incident faces Bl-B2, B2-B3 and B3-B4 of the cubic beam splitting prism 53, respectively, of the three sub-amplitude phase adjusters 50, 51, 52
- the central axis coincides with the central axes of the three light-incident faces B1-B2, B2-B3, and B3-B4 of the cube dichroic prism 53, respectively.
- the cube beam splitting prism 53 is formed by bonding four identical right-angle prisms 54, 55, 56, 57 in a right-angled manner, and the right-angled faces of the right-angle prisms 54, 55, 56, 57 are respectively vapor-deposited for a certain primitive.
- the color narrow-band reflection film for example, the surface evaporation along the diagonal line B2-B4 of the cube dichroic prism 53 is colored for the first element! Narrowband reflective film, along the diagonal of a cubic dichroic prism 53 is deposited on the surface B1-B3 of the narrow band reflection film 3 for a third primary color, the first such group from entering into the light receiving surface B1-B2 Yuan color ⁇ !
- the three sub-amplitude phase adjusters 50, 51, 52 employ an integrated amplitude phase adjuster of the same construction (but much smaller in size) as shown in Figure 1, with their pixels aligned one-to-one with each other such that projections are projected through the optical lens 35.
- the surfaces of the reflective holographic optical element array 4 are superposed one upon another, and a sub-light source array whose positions are periodically distributed is formed by vector superposition. Further, the sub-light source arrays whose positions are periodically distributed are condensed by the holographic optical element array 4 to form a sub-light source array in which the positions are randomly distributed.
- holographic optical element array 4 is comprised of a plurality of reflective holographic optical elements 58 that are simultaneously imaged to reflective holographic optics as pixels of sub-amplitude phase adjusters 50, 51, 52 illuminated by three different elementary colors
- the surface of the element array 4 is aligned with the periodically arranged holographic optical elements 58.
- Each holographic optical element 58 simultaneously receives three elementary colors, so the interference fringes of each reflective holographic optical element 58 must be directed to three A primitive color is produced, and finally the total interference fringes correspond to the superposition of interference fringes of the three monochromatic holographic optical elements.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Holo Graphy (AREA)
Description
基于随机相长干涉原理的立体显示装置 技术领域
本发明涉及三维成像技术领域, 更具体地涉及一种基于随机相长干涉原理的立体显示装 置, 特别适用于做计算机与电视显示屏, 智能人机交换, 机器人视觉等, 可广泛应用于教学、 科研、 娱乐、 广告等领域。 背景技术
近一、 二十年来, 液晶显示技术得到了飞速发展, 从零点几英寸的投影液晶显示板到几 十英寸的平板液晶显示器都已经商品化。 但现有液晶显示器主要用于二维平面显示, 即使小 尺寸投影机液晶板, 其像素尺寸也在十微米量级, 与可见光波长相比, 其分辨率还非常低, 还不能用它们代替全息胶片, 进行大视场、 高质量的三维全息立体显示。 发明专利 "基于随 机相长干涉的三维显示方法及装置"(申请号: 200810046861.8 ) 提出了一种采用低分辨率液 晶显示器进行三维立体显示的新方法, 其核心思想是把液晶显示器的每个像素转化为一个个 独立的子光源, 通过这些子光源的相长干涉在三维空间形成一系列离散立体像点, 为了抑制 高阶衍射产生的多重像, 子光源的位置呈随机分布。 上述发明给出了一系列设计示例, 而且 重点讨论了如何利用现有商品化的二维平面液晶显示器, 实现基于随机相长干涉原理的立体 成像。 如果专门针对基于随机相长干涉原理的立体成像的特点来设计液晶显示器, 将会得到 更好的效果, 本发明给出了一些新的结构与部件设计, 一方面提升基于随机相长干涉原理的 三维立体成像装置的各方面性能, 一方面简化结构, 降低加工难度和生产成本。 发明内容
本发明的目的在于提供一种基于随机相长干涉原理的立体显示装置,同时达到更高的光能 利用率, 更好的像质, 更低的加工难度和生产成本。
本发明的实现上述目的的基于随机相长干涉的立体成像装置, 包括:
发射三基元色相干激光的相干光源;
将所述相干光源发出的细光束三基元色相干激光扩束转换成多束均匀的且三基元色分离 的宽光束三基元色相干激光的照明光学系统;
振幅位相调节器阵列,其每个振幅位相调节器分别对所述照明光学系统发出的宽光束三基 元色相干激光的振幅位相进行调节以生成相互独立的子光束阵列; 以及
相干子光源发生器阵列,其每个相干子光源发生器分别对准所述振幅位相调节器阵列的一 个相应的振幅位相调节器, 使得所述相互独立的子光束一一对应地入射到相干子光源发生器 阵列中的每个相干子光源发生器, 并汇聚产生位置呈随机分布的相干子光源阵列, 且使每个 相干子光源发出的光锥与三维立体像所在的三维区间重叠。
其中, 相干子光源发生器阵列是透射式全息光学元件阵列, 其每个透射式全息光学元件上 配置的干涉条纹使得透射后汇聚形成的子光源的位置呈随机分布; 或者
相干子光源发生器阵列是反射式全息光学元件阵列,其每个反射式全息光学元件上配置的 干涉条纹使得反射后汇聚形成的子光源的位置呈随机分布。
其中,所述每个透射式全息光学元件上配置的干涉条纹为三块分别针对三种基元色的单色 透射式全息光学元件的干涉条纹的叠加; 或者
所述每个反射式全息光学元件上的干涉条纹为三块分别针对三种基元色的单色反射式全 息光学元件的干涉条纹的叠加。
其中, 相干子光源发生器阵列是二元光学元件阵列, 其每个二元光学元件是具有微透镜和 微棱镜组合功能的元件, 其每个二元光学元件表面的微结构使得汇聚形成的子光源的位置呈 随机分布。
其中, 相干子光源发生器阵列是具有多个反射式微透镜的反射式微透镜阵列, 通过偏转每 个反射式微透镜的光轴方向, 使得其汇聚后形成的子光源的位置呈随机分布; 或者
相干子光源发生器阵列是具有多个透射式微透镜的透射式微透镜阵列,通过偏转每个反射 式微透镜的光轴方向, 使得其汇聚后形成的子光源的位置呈随机分布。
其中, 振幅位相调节器阵列包含透射式纯位相调节液晶板, 透射式纯位相调节液晶板的液 晶层两侧的面板上的液晶分子定向膜的取向互相平行, 使得液晶分子的扭曲角度为零, 同时 液晶层的厚度和液晶材料的双折射率差使得透射式纯位相调节液晶板的位相调节范围达到 0~2π; 或者
振幅位相调节器阵列包含反射式纯位相调节液晶板, 反射式纯位相调节液晶板的液晶层两 侧的面板上的液晶分子定向膜的取向互相平行, 使得液晶分子的扭曲角度为零, 同时液晶层 的厚度和液晶材料的双折射率差使得反射式纯位相调节液晶板的位相调节范围达到 0~2π。
其中, 振幅位相调节器阵列包括集成制作为一个整体的后面板、 第一液晶层、 中间面板、 第二液晶层、 前面板和紧贴在前面板上的偏振片; 后面板、 第一液晶层与中间面板构成第一 块灰度液晶板, 中间面板、 第二液晶层、 前面板和偏振片构成第二块液晶板, 第一块灰度液 晶板和第二块灰度液晶板上的像素呈相同的二维周期分布, 且一一互相对准;
其中第一块灰度液晶板为透射式纯位相调节液晶板, 同时改变属于第二块灰度液晶板的中 间面板和前面板上的液晶分子定向膜的取向以及偏振片的偏振方向, 使得第二块灰度液晶板 工作于振幅调节为主模式。
其中接收相干激光光源发出的三种基元色细光束激光, 并对其进行扩束的照明光学系统包 括两组相互垂直放置的平行平板分束器阵列;
其中第一组平行平板分束器阵列中的每块平行平板分束器尺寸形状相同,朝向相同相互平 行地沿同一轴线等间隔放置, 调整第一组平行平板分束器阵列中每块平行平板分束器的间隔, 同时沿光线传播方向依次增强每块平行平板分束器的反射率, 使得偏振相干光源发出的平行 细光束经第一组平行平板分束器阵列反射后转换成强度均匀且连续分布的平行线光束;
其中, 第二组平行平板分束器阵列中的每块平行平板分束器尺寸形状相同, 朝向相同相互 平行地沿同一轴线等间隔放置, 调整第二组平行平板分束器阵列中每块平行平板分束器的间 隔, 同时沿光线传播方向依次增强每块平行平板分束器的反射率, 使得第一组平行平板分束 器阵列发出的平行线光束经第二组平行平板分束器阵列反射后转换成强度均匀且连续分布的 平行面光束;
其中,两组平行平板分束器阵列中的每块分束器整体或分区域地分别蒸镀同时反射三基元 色的宽带反射膜或仅反射某一基元色的窄带反射膜, 使得第二组平行平板分束器阵列发出的
平行面光束在其横截面上沿行或沿列或同时沿行和列两个方向三基元色依次周期分布; 两组 平行平板分束器阵列的进光口与出光口光学抛光且蒸镀宽带增透膜。
其中, 振幅位相调节器由三个子振幅位相调节器、 一个具有一个出光面和三个进光面的立 方分光棱镜和一个光学镜头组成; 光学镜头放置在立方分光棱镜的出光面前, 光学镜头的光 轴与立方分光棱镜的出光面的中心轴重合; 三个子振幅位相调节器分别放置在立方分光棱镜 的三个进光面前, 三个子振幅位相调节器的中心轴分别与立方分光棱镜的三个进光面的中心 轴重合; 立方分光棱镜由四块相同的直角棱镜按直角棱相抵的方式粘合而成, 直角棱镜的直 角面分别蒸镀有针对某一基元色的窄带反射膜, 使得分别从立方分光棱镜的三个进光面入射 的三基元色激光能够反射或透射穿过立方分光棱镜, 并从立方分光棱镜的出光面出射, 立方 分光棱镜的所有进光面与出光面皆蒸镀有宽带增透膜; 三个子振幅位相调节器的像素互相一 一对准使得通过光学透镜投影成像后在像面一一互相重叠。
本发明与现有技术相比, 特别是与申请号为 200810046861.8的发明专利相比具有以下优 点和效果:
第一, 采取三基元色分区照明方式, 能量利用率提高三倍; 第二, 采用全息光学元件或 二元光学元件, 简化了结构, 增加了系统稳定性; 第三, 采用灰度液晶板和扭曲角度为零的 纯位相调节液晶板, 以及集成为一个整体的振幅调节器与位相调节器, 进一步简化了结构, 增加了系统稳定性, 同时降低了生产成本和组装难度。 附图说明
图 1为本发明在采用集成式振幅位相调节器和透射式全息光学元件时的结构示意图。 图 2a和图 2b分别为采用三基元色分区照明时各基元色的排列分布示意图。
图 3为照明光学系统在采用两组相互垂直放置的平行平板分束器阵列时的结构示意图。 图 4为集成式振幅位相调节器中液晶分子的排列结构示意图。
图 5为反射式纯位相调节液晶板中液晶分子的排列结构示意图。
图 6为阐述全息光学元件制作与聚光原理的座标系示意图。
图 7a〜图 7d分别为透射式和反射式全息光学元件制作与聚光原理示意图。
图 8为二元光学元件表面微结构示意图。
图 9a和图 9b分别为采用倾斜反射式与透射式微透镜阵列制作相干子光源发生器的结构 示意图。
图 10为相干子光源阵列的空间发光特性调节原理示意图。
图 11 为本发明在采用透射式纯位相调节液晶板和二元光学元件进行投影式彩色三维显 示时的结构示意图。
图 12为本发明在采用反射式纯位相调节液晶板和反射式倾斜微透镜阵列进行投影式彩 色三维显示时的结构示意图。
图 13 为本发明在采用液晶光栅纯位相调节器和透射式倾斜微透镜阵列进行投影式彩色 三维显示时的结构示意图。
图 14为本发明在采用集成式振幅位相调节器和反射式全息光学元件进行投影式彩色三 维显示时的结构示意图。
具体实施方式
下面对本发明使用的术语进行说明。
1、 振幅位相调节器阵列对入射光的振幅和位相进行逐点调节, 类似于空间光调节器。 但 一块空间光调节器一般只能调节位相或振幅, 因此本发明所述振幅位相调节器阵列相当于两 块空间光调节器的组合, 这两块空间光调节器的像素一一互相对准, 其中一块空间光调节器 主要用于调节位相, 另一块空间光调节器主要用于调节振幅, 振幅位相调节器阵列中的一个 振幅位相调节器相当于两块空间光调节器中相互耦合的一对像素。
2、 液晶板是指具有很多像素的液晶空间光调节器, 其结构类似普通向列液晶显示器, 但 主要用于振幅或位相调节。
3、 子光源位置呈随机分布是指子光源的位置可位于某一空间或平面上的任意位置, 或位 于任一位置的概率相等, 当然需在一定范围内; 相对应地周期分布只能位于规则的格点上。
本发明是对申请号为 200810046861.8, 名称为 "基于随机相长干涉的三维显示方法及装 置" 的发明专利申请的改进或继续。 基于随机相长干涉的三维立体成像原理主要依据两点, 第一, 根据光学干涉原理, 利用许多相干子光源的相长干涉可在空间任意指定位置形成亮点, 并通过许多这样的亮点构成离散三维立体像; 第二, 如果使得所有相干子光源的位置呈随机 分布, 可消除高阶衍射产生的多重像, 得到单一高质量立体像。
本发明提出的基于上述随机相长干涉原理的三维显示装置, 从结构上可分为四个功能模 块, 下面对这四个功能模块一一进行说明:
第一, 激光光源: 基于随机相长干涉原理的三维显示装置属于相干成像系统, 因此必须 采用相干性好的激光光源, 而且为了实现彩色成像, 需要激光光源能够发出三种基元色激光。 三基元色激光可由单一激光器发出, 或者采用三套独立的三基元色激光, 本发明对此不做区 别, 统称为 "发射三基元色相干激光的相干光源"。
第二, 照明光学系统: 用于激光扩束, 即将上述相干光源发出的细光束三基元色激光转 换成均匀的、 且三基元色分离的宽光束三基元色激光。 普通非相干二维显示装置, 例如目前 市面上流行的液晶显示器, 往往采用宽光谱光源, 同时因为不需要控制光波的位相, 为了增 加观察角度, 往往采用发散白光源进行照明。 另外在普通二维平板液晶显示器中, 一个像素 实际由三个相邻的子像素组成, 每个子像素蒸镀有不同的滤色膜, 只允许一种基元色通过, 而白色照明光同时照明整个液晶显示器, 这样三分之二的光能被滤色片挡住。 上述非相干二 维显示装置所采用的照明方式和照明光学系统不适合用于本发明提出的相干显示装置。 在本 发明中, 为了实现相长干涉成像, 必须严格控制光波的位相, 因此我们采用平行宽光束三基 元色激光进行照明, 并且为了提高光能利用效率, 采用三基元色分离的分区方式进行照明, 即一个区域内的所有像素统一用同一种基元色激光进行照明, 不同区域轮流采用三种不同基 元色激光进行照明, 这样既省掉了滤光片, 简化了结构, 又把光能利用率提高了三倍。 采用 这种基元色分离的分区照明方式主要基于二个理由。 其一, 尽管屏幕上不同区域呈现为不同 基元色, 不再适用于普通二维彩色显示, 但在本发明中由于三维立体像远离屏幕, 一个立体 像素由许多来自屏幕不同区域的子光源叠加形成,因此一个立体像素仍然可表现任意的彩色。 其二, 尽管采用分区照明, 而且为了方便, 三基元色按行或按列或同时按行和列周期分为许
多不同区域, 这样对某一基元色而言, 相干子光源只能分布在指定的区域, 而不能分布在其 他区域, 严格地说, 随机相长干涉的条件被破环。 但我们同时应注意到这样一个事实, 衍射 是与周期大小成反比的, 由于每个区域包含很多子光源, 即使不同区域内子光源的位置呈相 同的随机分布, 由于区域之间的重复周期非常大大, 由此引起的高阶衍射可以忽略不计, 况 且不同区域内子光源的位置呈不同的随机分布。 为了实现三基元色分区照明, 本发明给出了 由两个互相垂直的分束器阵列组成的照明光学系统, 为了实现基元色分离不同分束器蒸镀有 针对不同基元色的窄带反射膜, 进一步为了保证整个区域照明强度均匀一致, 沿光波前进方 向, 由于光能不断减弱, 排在后面的分束器所蒸镀的反射膜的反射率是递增的。
第三, 振幅位相调节器阵列: 根据上述随机相长干涉原理, 为了实现相长干涉, 需要构 造一个大型相干子光源阵列, 并随时准确调控各个相干子光源的振幅和位相。 一个相干子光 源需要一个振幅位相调节器,成千上万个振幅位相调节器构成一个二维振幅位相调节器阵列。 我们可以采用液晶显示器来进行振幅和位相调控, 液晶显示器的一个像素相当于一个振幅位 相调节器。 但是普通液晶显示器其振幅和位相是互相关联的, 必须调整其两侧的偏振片使其 工作在位相调节为主或振幅调节为主模式, 同时把两块像素严格一一对准的液晶显示器按照 相乘或相加的方式组合起来, 以实现振幅和位相的独立调节。 本发明专门针对基于随机相长 干涉原理的三维成像特点, 同时结合上述三基元色分区照明方式, 设计了专用的液晶板, 其 特点在于去掉了彩色液晶显示器中的滤光膜, 变彩色液晶显示器为灰度液晶板, 同时使得液 晶层两侧面板上液晶分子定向膜的指向互相平行, 这样液晶分子的扭曲角度为零, 入射线偏 振光在通过该液晶板时偏振方向不发生任何变化, 因此光束强度也不发生改变, 仅仅只是位 相发生改变, 液晶板工作于理想的纯位相调节模式。 当然应该选择液晶层的厚度与液晶材料 的双折射率差, 使得位相调节范围达到 0~2π范围。进一步, 可以把这样一块纯位相调节液晶 板与一块工作于振幅调节为主的液晶板集成制作成一个整体, 这样既可以省略中间一块偏振 片和面板, 简化结构, 同时大大增加稳定性, 减少后期组装时的难度, 因为在刻蚀制作时, 两块液晶板的像素已经严格一一对准。
第四, 相干子光源发生器阵列: 由于照明光为平行激光束, 它们在穿过振幅位相调节器 阵列后, 产生相互独立的子光束阵列, 但这些子光束仍然为平行光, 不能在一个大空间范围 内互相交汇, 实现相干叠加, 另外由于子光束呈周期排列, 会产生许多高阶衍射。 相干子光 源发生器阵列的作用包括两个方面, 其一把相互独立的子光束汇聚成点状子光源, 这样从每 个子光源发出的光形成一个发散光锥, 同时通过改变汇聚产生的子光源的位置可调整发散光 锥的方向和锥角大小, 使所有子光源发出的发散光锥指向同一空间区域, 相互交汇。 其二使 所产生的子光源位置在空间呈随机分布, 消除高阶衍射产生的多重像。 因此从功能上看, 一 个相干子光源发生器相当于一个光轴平行于子光束的微透镜和一个微棱镜的组合或者相当于 一个光轴倾斜的微透镜, 其中微透镜起光束汇聚作用, 其通光口径大小与子光束的大小相同, 以保证每个子光束全部被聚焦, 微透镜与振幅位相调节器对准, 即与液晶板的每个像素一一 对准, 因此微透镜与液晶板的像素一样呈二维周期排列; 如果微透镜的光轴平行于子光束, 则它汇聚后产生的子光源与液晶板的像素呈相同的二维周期排列, 此时需要一个微棱镜, 对 光束进行偏转, 使微透镜汇聚产生的子光源的位置发生偏移, 且不同微棱镜的棱角不同, 对 光束的偏转角度不同, 从而保证子光源的位置呈随机分布; 如果微透镜的光轴不平行于子光
束, 且不同微透镜的倾角不同, 则可保证所汇聚产生的子光源的位置呈随机分布。 如前所述 基于随机相长干涉原理的三维显示装置属于相干成像系统, 只包含三种不同基元色激光, 针 对这一特点本发明采用全息光学元件或二元光学元件来构造相干子光源发生器。 全息光学元 件和二元光学元件都是很成熟的技术, 它们可以把几个传统光学元件的功能综合在一起, 例 如可以把上述微透镜和微棱镜集成为一体, 而且可以采用热压、 灌注、 滚压、 复制等技术大 规模生产, 这样在简化结构, 提高系统稳定性的同时, 还可降低生产成本。
下面进一步结合附图对本发明原理和具体实施方法进行说明。
图 1 给出了本发明的一种采用一块集成式振幅位相调节器阵列和透射式全息光学元件进 行三维显示的原理结构示意图。 该装置由偏振相干光源 1、 照明光学系统 2、 振幅位相调节器 阵列 3和相干子光源发生器阵列 4组成, 下面对上述 4个功能模块一一进行详细介绍。
在图 1中, 相干光源 1可以发出波长分别为 λ 2和 λ 3的三基元色激光, 以实现彩色立 体显示。 因为采用液晶板进行振幅和位相调制, 相干光源 1 直接采用线偏振光, 这样光能全 部被利用, 如果相干光源 1 发出的三基元色激光不是线偏振光, 则需添加一个起偏器, 把它 们变为线偏振光, 但会损失大约一半光能。
在图 1中,照明光学系统 2把相干光源 1发出的细光束激光扩束变为光强均匀分布的宽光 束平行激光束, 同时为了提高光能利用率, 采用三基元色分离的分区照明方式。 分区照明的 效果如图 2所示, 其中每个方格代表一个照明子区域, 波长分别为 入2和入3的三基元色 激光按行或按列 (图 2b) 或同时按行和列 (图 2a) 周期性地照明整个区域。 为了达到图 2所 示的三基元色分离的分区照明效果, 照明光学系统 2采用了两组相互垂直放置的平行平板分 束器阵列, 详细结构如图 3所示。 在图 3中第一组平行平板分束器阵列 17中的每块平行平板 分束器尺寸形状相同, 都为正方形, 朝向相同相互平行地沿同一水平轴线等间隔放置, 并以 45度入射角接收偏振相干光源发出的平行细光束,调整第一组平行平板分束器阵列 17中每块 平行平板分束器的间隔, 同时沿光线传播方向依次增强每块平行平板分束器的反射率, 使得 入射平行细光束经第一组平行平板分束器阵列 17反射后转换成强度均匀且连续分布的平行线 光束。 具体地说, 在忽略材料吸收损耗条件下, 某一块平行平板分束器的反射率等于前一块 平行平板分束器的反射率除以前一块平行平板分束器的透射率, 这样被每块平行平板分束器 反射的光能相等。 另外如果平行平板分束器阵列 17中每块平行平板分束器的间隔过大, 则被 每块平行平板分束器反射的光束互不相连; 反之若间隔过小, 则被每块平行平板分束器反射 的光束互相重叠, 两种情况都造成光能分布不均匀。 同样第二组平行平板分束器阵列 18中的 每块平行平板分束器尺寸形状相同, 皆为长方形, 朝向相同相互平行地沿同一垂直轴线等间 隔放置, 并以例如 45度入射角 (也可以是其他角度) 接收第一组平行平板分束器阵列 17发 出的平行线光束。类似地,调整第二组平行平板分束器阵列 18中每块平行平板分束器的间隔, 同时沿光线传播方向依次增强每块平行平板分束器的反射率, 使得第一组平行平板分束器阵 列 17发出的平行线光束经第二组平行平板分束器阵列 18反射后转换成强度均匀且连续分布 的平行面光束。 进一步, 为了实现图 2所示三基元色分离的分区照明效果, 两组平行平板分 束器阵列 17、 18中的每块分束器整体或分区域地分别蒸镀同时反射三基元色的宽带反射膜或 仅反射某一基元色的窄带反射膜。例如在图 3中可把第一组平行平板分束器阵列 17中的九块 平行平板分束器依次轮流蒸镀红、 绿、 蓝窄带反射膜, 而第二组平行平板分束器阵列 18中的
三块平行平板分束器全部蒸镀同时反射红、 绿蓝三基元色的宽带反射膜, 则如图 2b所示, 最 后经第二组平行平板分束器阵列 18反射后形成的强度均匀且连续分布的平行面光束会分成九 列, 每列轮流呈现一种基元色。 再如在图 3中可把第一组平行平板分束器阵列 17中的九块平 行平板分束器全部蒸镀同时反射红、 绿蓝三基元色的宽带反射膜, 而第二组平行平板分束器 阵列 18中的三块平行平板分束器每块等分为三行九列共 27个小方格, 每个小方格依次轮流 蒸镀仅反射一种基元色的窄带反射膜, 则如图 2a所示, 最后经第二组平行平板分束器阵列 18 反射后形成的强度均匀且连续分布的平行面光束会分成九行九列, 共 81个小方格, 每个小方 格沿行和列两个方向周期轮流呈现一种基元色。 当然每个小方格会照明液晶板上的许多像素, 例如 100 X 100个像素, 即使所有小方格内由相干子光源发生器阵列产生的相干子光源呈完全 相同的随机分布, 由于小方格的排列周期很大, 由此引起的高阶衍射可忽略不计。 实际上所 有小方格内的相干子光源可呈完全不同的随机分布, 这样可进一步抑制高阶衍射。 为了减轻 重量, 两组平行平板分束器阵列 17和 18可采用薄片式分光器, 但片与片之间的间隔不能减 小, 或者采用有机玻璃制造, 这样在减轻重量的同时保证足够的机械强度。 另外两组平行平 板分束器阵列 17和 18的进光口与出光口, 如图 3中第一组平行平板分束器阵列 17的进光口 GHIJ和出光口 HKLI以及第二组平行平板分束器阵列 18的进光口 DCFE和出光口 ABCD, 皆需光学抛光且蒸镀宽带增透膜, 以减少光能损失。 另外还可添加空间滤波器、 直角棱镜等 配件, 进一步完善照明光学系统 2的光学与机械结构。 例如在图 1 中, 采用了一个由光学透 镜 13、 14组成的望远镜系统, 对相干光源发出的细光束进行预扩束, 使其与图 3中平行平板 分束器阵列 17的通光口大小一致, 另外可把一个小孔可放置在图 1中的光学透镜 13和 14的 公共焦点上进行空间滤波, 遮挡激光器发出的高阶模。
在图 1 中, 振幅位相调节器阵列 1采用一块集成式液晶板, 它由集成制作为一个整体的 后面板 7、 第一液晶层 8、 中间面板 9、 第二液晶层 10、 前面板 11和紧贴在前面板上的偏振 片 12组成。 后面板 7、 第一液晶层 8与中间面板 9构成第一块灰度液晶板 5, 中间面板 9、 第 二液晶层 10、 前面板 11和偏振片 12构成第二块液晶板 6, 第一块灰度液晶板 5和第二块灰 度液晶板 6上的像素呈相同的二维周期分布, 且一一互相对准。 第一块灰度液晶板 5用于进 行位相调节, 第二块灰度液晶板 6用于进行振幅调节。 参见图 4, 在两块灰度液晶板 5和 6 中, 各个面板上液晶定向膜的取向分别如后面板 7、 中间面板 9和前面板 11左下方的箭头所 示。 其中属于第一块灰度液晶板 5的后面板 7与中间面板 9上的液晶分子定向膜取向平行, 即液晶分子的扭曲角度为零, 此类液晶板无论是透射式还是反射式都可工作于纯位相调节模 式, 具体原理解释如下。
在液晶显示器或液晶空间光调制器中, 一般采用向列液晶分子。 在分析液晶分子对入射 光的作用时, 可以把整个液晶层细分成很多薄层, 在每一薄层内, 向列液晶分子的取向是一 致的, 而靠近定向膜的薄层内, 液晶分子的排列方向与定向膜的取向一致。 在第一块灰度液 晶板 5中, 由于后面板 7与中间面板 9上的液晶分子定向膜取向平行, 使得所有薄层内液晶 分子的排列方向都与定向膜的取向一致。 当照明平行激光束从后面板 7下方入射时, 如果照 明激光束为线偏振光, 且偏振方向平行于后面板 7与中间面板 9上的液晶分子定向膜的取向, 这时照明激光束穿过第一块灰度液晶板 5 时其偏振方向不发生任何改变, 因此其强度也不发 生任何改变, 仅仅是位相发生改变。 当在后面板 7与中间面板 9之间施加电压时, 液晶分子
的排列趋向于与外加电场一致, 随着所施加驱动电压从小变大, 液晶分子也逐步从平躺状态 向垂直站立状态过渡, 但棒状液晶分子在的后面板 7或中间面板 9上的投影仍然平行于定向 膜的取向, 此时液晶板 5对入射光的位相调节量逐步减小。 因此第一块灰度液晶板 5是一种 理想的纯位相调节器。假设面板之间的间距为 d, 液晶材料的正常折射率和异常折射率分别为 «。和 , 入射光的波长为 λ, 则透射式液晶板所能达到的最大位相调节量为:
η 2nd ( 1 )
P max = (He - Πο)
λ
而在反射式液晶板中, 如在 LCOS ( Liquid Cristal On Silicon) 或液晶光栅中, 如图 5所 示, 同样可使液晶层两侧的面板的液晶分子定向膜取向平行, 这样液晶分子的扭曲角度为零, 偏振方向平行于液晶分子定向膜取向的线偏振入射光在反射后偏振方向不发生任何改变, 使 得反射式液晶板工作在纯位相调节模式, 但由于光线两次通过液晶层, 所能达到的最大位相 调节量为公式 (1 ) 的两倍。
在基于随机相长干涉原理的三维显示中, 各个子光源的位相需要在 0~2π之间任意变化, 因此对第一块灰度液晶板 5, 应该选择后面板 7与中间面板 9之间的间隔 d, 以及第一液晶层 8的液晶材料的双折射率差 n 使得第一块灰度液晶板 5的位相调节范围达到 0~2π。
在图 1中, 对第二块灰度液晶板 6, 应该适当选择属于第二块灰度液晶板 6的中间面板 9 和前面板 11上的液晶分子定向膜的取向以及偏振片 12的偏振方向, 使得第二块灰度液晶板 工作于振幅调节为主模式。 一般来说, 应该使得中间面板 9和前面板 11上的液晶分子定向膜 的取向互相垂直。 在靠近中间面板 9 的定向膜的薄层内, 液晶分子的排列方向与定向膜的取 向一致, 随着向前面板 11 靠近, 各个薄层内的液晶分子的取向逐步转动, 在邻近前面板 11 的薄层内液晶分子的取向与前面板 11上的液晶分子定向膜的取向平行。 从中间面板 9到前面 板 11液晶分子的排列方向转动了 90度, 即液晶分子的扭曲角度为 90度。 相应地入射进入第 二块灰度液晶板 6的线偏振光其偏振方向也会在液晶分子的导引下转动 90度。 当在中间面板 9与前面板 11之间施加电压时, 随着所施加驱动电压从小变大, 液晶分子也逐步从平躺状态 向垂直站立状态过渡, 液晶分子对入射光的导引作用逐步减弱, 入射线偏振光的偏振方向的 转动达不到 90度, 这样部分光被偏振片 12挡住, 从而实现强度调制。
在图 1中相干子光源发生器阵列 4由一块透射式全息光学元件阵列组成, 每个全息光学 元件 15实际上就是一幅全息图, 可以通过记录两个点光源的干涉条纹来制作 (平行光束可以 看着是点光源位于无穷远处时的一个特例), 我们可以把这两个点光源分别称为参考点光源 R 与物点光源 0。 在全息光学元件制作完毕后, 它就可以象普通光学透镜一样用于成像, 把某 一物点聚焦成为某一像点。 注意这里提到的四个点, 前两个出现在制作全息光学元件的过程 中, 而后两个出现在全息光学元件的使用过程中, 所以它们是完全不同的四个点, 为了进一 步区别这四个点, 我们把后两个点分别称为再现物点 C和再现像点 I。 在图 6所示座标系中, 假设全息底版位于 ΥΖ平面, 坐标原点 0与全息底版中心重合, 分别作上述四个点到原点连 线以及这些连线在 ΧΖ平面的投影, 记这四个点到原点的距离分别为 Ro、 RR RC、 , 这些 连线与各自的投影之间的夹角分别为 ί&、 、 和 c &,,而这些投影与 XY平面的夹角为^、 βα、 βα ^ΐ βι , 这里下标 0、 R、 C、 I依次代表制作全息光学元件时的物点 0、 参考点 R、 以及使用该全息光学元件时的再现物 C点和再现像点 I。 通过如下公式可以确定再现物点 C
发出的光线通过全息光学元件后的方向以及再现像点 I的位置,
(2)
(3 )
sin i = sin β ^士 ~^"(sin ao - sin a )
m
cos U sin βι = cos sin ^ft:士 ~^"(cos<¾ sin ^o - cos ii? sin βκ) (4)
m
公式(2-4)中^ = / , 代表再现成像时所采用波长^和记录制作时所采用波长 之 比, m是干涉条纹间隔在化学处理前后变化的比例因子。 公式 (2-4) 右侧的正负号在分析虚 像时取正号, 在分析实像时取负号。公式(2)右侧在全息光学元件制作完成后是固定不变的, 因此全息光学元件的焦距为
( 5 )
通过公式 (2-4) 可以方便地确定给定再现物点 C的再现像点 I的空间位置。 图 7给出了 两个制作与使用全息光学元件的示例。 全息光学元件可分为透射全息光学元件和反射全息光 学元件。 两者的区别在于在记录过程中物光和参考光的相对位置, 如果物光和参考光位于全 息底板 H的同侧, 如图 7a, 记录制作的就是透射全息光学元件, 在透射全息光学元件中干涉 条纹平行于全息底版表面; 如果物光和参考光分别位于全息干板 H的两侧, 如图 7c, 则记录 制作的就是反射全息光学元件, 反射全息光学元件中干涉条纹垂直于全息底版。 一般来说, 反射全息光学元件表现为厚全息图。 厚全息图只出现一个衍射像, 衍射效率可达到 100%。 而 薄全息图衍射后的光波存在多个衍射级, 每一个衍射级的衍射效率都比较低。 因此为了获得 高能量利用率, 在实施本发明时应该优先选用厚全息图。 所谓厚全息图指记录介质的厚度大 于干涉条纹的间隔。图 7b和 7d为全息光学元件在使用过程中把再现物点 C汇聚为再现像点 I 的成像过程。 对比图 7a与 7b以及图 7c与 7d可以发现, 如果记录过程中所采用的物点 0与 使用过程中的再现物点 C一致, 则使用过程中的再现像点 I的位置与记录过程中所采用的参 考点 R的位置一致。 因此在本发明中, 为了使得被全息光学元件聚焦后产生的点光源, 即再 现像点 I的位置呈随机分布, 应该在制作每块全息光学元件时随机地选取参考点 R的位置。
在图 1中,在全息光学元件阵列 4的出光面还制作了一个带有许多微孔的挡光板用于遮挡 全息光学元件可能产生的高级衍射光斑, 以降低立体像背景噪音。
相干子光源发生器阵列除了可以采用全息光学元件,还可以采用二元光学元件或光轴倾斜 的微透镜, 分别如图 8和图 9所示。
图 8示意表示了一个二元光学元件表面微结构的形成过程。如果要制作一个功能等效于一 个微透镜 19和一个微棱镜 20的二元光学元件 21, 在设计时可分为两步。 第一步, 减薄系统 厚度: 一个光学波前在通过一个微透镜 19和一个微棱镜 20后, 其位相会随光学波前经历的 光程差发生变化, 由于在不同的地方微透镜 19和微棱镜 20的厚度不同, 因此光学波前的形 状发生改变, 产生聚焦和偏折效应。 但是任何 2π整数倍的位相变化都可以忽略不计, 根据这 一原理可把微透镜 19和微棱镜 20的厚度减薄至仅产生 2π以内的位相变化。第二步,二值化: 减薄以后的微透镜和微棱镜表现为分段式的光滑曲面, 如图 8右侧的虚线所示, 由于光滑曲
面难以制作, 可以把这些光滑曲面用二值化的台阶来近似, 例如可用 16级台阶来近似。 台阶 级数越多, 越逼近原始光滑曲线, 但加工难度越大。 这些台阶可以用大规模集成电路工艺通 过多步曝光刻蚀进行加工。 在采用二元光学元件制作相干子光源发生器阵列时, 可随机地选 取微棱镜的顶角大小, 这样所制作的二元光学元件阵列就可产生位置呈随机分布的相干子光 源。
图 9示意表示了直接采用光轴倾斜的微透镜阵列来制作相干子光源发生器阵列的原理。在 图 9a中, 每个反射式微透镜 23的光轴, 如图中点划线所示, 是随机地偏转的, 同样在图 9b 中, 每个透射式微透镜 25的光轴, 如图中点划线所示, 是随机地偏转的, 这样由反射式微透 镜阵列 22或透射式微透镜阵列 24汇聚产生的子光源的位置就呈随机分布。 值得指出的是在 相干子光源发生器阵列制作过程中, 每个相干子光源发生器的结构参数需要随机选取, 以保 证汇聚产生的子光源的位置呈随机分布。 但是一旦相干子光源发生器阵列制作完成, 其内部 结构不再发生变化, 所汇聚产生的子光源的位置也不再发生变化, 所以在本说明书中, 在大 多数情况下, "随机"一词表示空间上的随机分布, 而不是随时间随意变化。
一旦生成了位置呈随机分布的子光源,从理论上讲就可以通过这些子光源的相长干涉产生 唯一的立体像, 但在实际中还需仔细设计每个子光源空间发光特性, 使得每个子光源发出的 光锥尽可能指向同一区域, 如果它们发出的光锥互不重叠, 它们就没有机会发生相长干涉, 也就不可能形成立体像。 如图 10所示, 我们可以通过改变相干子光源发生器阵列 4中每个相 干子光源发生器 27的结构参数, 来调整它们所汇聚产生的子光源阵列 26的位置, 从而改善 每个子光源的空间发光特性, 使得它们发出的光锥指向同一成像区域, 在此过程中相干子光 源发生器阵列 4中的每个相干子光源发生器 27的位置是固定不变的, 因为它们必须与振幅位 相调节器阵列 3中的每个振幅位相调节器一一对准。 以图 10中某一个汇聚子光源 P为例, 它 发出的光锥为 QPW, 顶点为 P。 如果上下平移子光源 P, 则子光源 P发出的光锥也上下移动; 如果改变 P到相干子光源发生器阵列 4的垂直距离 dz, 则 dz越大, 该子光源发出的光锥锥角 QPW越小, 光能越集中, 但不利于形成大尺寸三维立体像。 总之通过调整子光源 P的位置可 以控制它的空间发光特性, 使它发出的光锥尽可能地指向三维立体像所在区域。 但是如果单 独一一调整每个子光源的位置可能破坏它们的整体随机分布特性, 因此只能尽量整体地同时 调整整个子光源阵列 26的位置。假设在设计初始阶段已经使得相干子光源发生器阵列 4所汇 聚产生的相干子光源阵列 26的初始位置呈随机分布, 且位于一个平行于振幅位相调节器阵列 3的平面内,同时假设振幅位相调节器阵列 3与相干子光源发生器阵列 4所产生的子光源阵列 26的中心分别为 Ο^Ρ 02, 而立体像需要显示在中心为 03的一个三维空间范围内。 在进一步 设计调整过程中, 首先整体平移子光源阵列 26的初始位置, 使其中心 02与振幅位相调节器 阵列 3的中心 的连线指向三维立体像所在的三维区间的中心 03 ;其次沿平行于振幅位相调 节器阵列 3的二维周期排列方向整体线性压缩或整体线性拉伸子光源阵列 26的初始位置, 使 得它们发出的光锥与三维立体像所在的三维区间重叠; 进一步沿振幅位相调节器阵列 3 所在 平面的法线方向整体移动子光源阵列 26, 即改变 dz的大小, 使得大多数子光源发出的光锥锥 角合适, 恰好覆盖整个三维立体像所在的三维区间; 最后对少数空间发光特性还不够理想的 子光源, 可沿振幅位相调节器阵列 3 所在平面的法线方向移动其位置, 使其发出的光锥指向 三维立体像所在的三维区间。在上述整个过程中因为子光源阵列 26中的每个子光源在振幅位
相调节器阵列 3 所在平面上的垂直投影始终呈随机分布, 已经达到抑制高阶衍射像的目的, 沿振幅位相调节器阵列 3 所在平面的法线方向移动某些子光源的位置, 不会破坏随机分布特 性, 从而不会产生多重高阶衍射像。 一旦确定了相干子光源发生器阵列 4所汇聚产生的每个 子光源的最终位置, 就可反推确定每个相干子光源发生器 27的结构参数。
当每个子光源的空间发光特性设计合理时, 这些子光源发出的光锥在指定的空间相互交 汇, 发生干涉。 如果随机选取一部分子光源, 并通过振幅位相调节器调整它们的位相, 使得 它们发出的光波到达空间某一点时同位相或相差 2π的整数倍, 则这些子光源发出的光波在该 点发生相长干涉, 形成一个亮点, 参与干涉的子光源越多, 该亮点的亮度越高。 用同样的办 法可以在空间不同位置实时产生很多明暗不同的亮点, 通过这些亮点就可实时显示一幅三维 离散立体像。 而每个子光源最终所做出的总的振幅位相调节量是它为产生每个亮点所进行的 振幅位相调节量的矢量叠加。 更详细的操作方法可以参见申请号为 200810046861.8的发明。 根据上述成像原理, 我们可以简单地估计总的三维离散像点的数目。 假设采用一个 8位 256 级灰度的具有 1980 X 1024 个像素的液晶板进行立体显示, 所显示立体图像的横截面尺寸为 400 X 400mm2, 则每个子光源发出的光锥应该覆盖整个 S 400 X 400mm2面积, 如果一个立体 像素的光斑大小为 S2=l X lmm2, 此时液晶板上一个单位强度的像素发出的光波只有 s^s^i/ieoooo落在某一个立体像素范围内, 因此需要选取液晶板上 400个单位强度的像素, 并调整它们的位相, 使得它们发出的光波在该像素位置发生相长干涉, 这时该立体像素的强 度可达到 C^ X ^/S^l个单位强度。 注意在上述推理中光强等于光场振幅的平方。 同理要产 生一个 256级强度的立体像素, 需要液晶板上 400 X 16=6400个单位强度的像素发出的光波发 生相长干涉, 而要产生一个 125级中等强度的立体像素, 只需要液晶板上 4472个单位强度的 像素发出的光波发生相长干涉。假设立体像的平均强度为 125, 则上述液晶板的像素可以分为 1980 X 1024/4472=453组, 也就是说当液晶板上的所有像素为单位强度时, 每组产生一个立体 像素, 总共可以产生 453个强度为 125的立体像素。 如果让每组像素产生 256个立体像素, 则总共可产生 453 X 256个相对强度为 125的立体像素, 此时通过矢量叠加, 液晶板上的每个 像素所需做出的总振幅调节量也大大增加,但不会超过 256, 因为液晶板上的每个像素为产生 每个立体像素所做出的位相调整不会全部同位相或相差 2π的整数倍。上述估算表明采用一个 8位 256级灰度的具有 1980 X 1024个像素的液晶板至少可以显示 453 X 256个相对强度为 125 的立体像素。 如果增加照明激光的功率, 可以减少产生一个立体像素所需液晶板的像素, 相 应地可增加所产生的总的立体像素的数目。 实际上, 与普通平板显示器相比, 通过直接采用 偏振激光器和三基元色分区照明, 基于随机相长干涉原理的立体显示装置的光能利用率已经 提高 2 X 3=6倍, 这非常有利于提高立体像的整体亮度或增加立体像的总的像素数目。
以上三基元色分区照明系统、 纯位相调节液晶板、 集成式振幅位相调节器和采用全息光 学元件、 二元光学元件和倾斜微透镜制作的相干子光源发生器不仅可以制作成大尺寸平板式 立体显示装置也可制作成背投或前投式彩色立体显示装置, 图 11至图 14给出了四个实施示 例。
图 11为采用透射式纯位相调节液晶板和二元光学元件进行投影式彩色三维显示时的结构 示意图。 它由偏振相干光源 1、 照明光学系统 2、 振幅位相调节器阵列 3和相干子光源发生器 阵列 4组成。 其中相干光源 1可以发出波长分别为 λ 2和 λ 3的三基元色激光, 以实现彩
色立体显示。 照明光学系统 4 由两组垂直放置的平行平板分束器阵列组成, 为了作图方便, 图 11中仅画出了其中一组平行平板分束器阵列 28。 在图 11中, 振幅位相调节器阵列 3由两 块透射式纯位相调节液晶板 33、 34, 两块半透半反镜 29、 30, 两块反射镜 31、 32, 和一个投 影镜头 35组成, 两块半透半反镜 29、 30和两块反射镜 31、 32以迈克耳逊干涉器方式放置, 纯位相调节液晶板 33、 34, 分别放置在迈克耳逊干涉器的两臂, 第一块纯位相调节液晶板 33 与第二块半透半反镜 30的半透半反面 A1-A2成 45度夹角,第二块纯位相调节液晶板 34与第 一块纯位相调节液晶板 33相对于第二块半透半反镜 30的半透半反面 A1-A2互成镜像对称放 置, 同时它们位于投影镜头 35的一倍焦距至两倍焦距之间。 从相干光源 1发出的三基元色线 偏振细激光束经照明光学系统 2扩束形成三基元色分离的宽光束, 然后被第一块半透半反镜 29分成两束光, 这两束光被两块反射镜 31、 32分别反射后, 再分别垂直照明两块纯位相调节 液晶板 33、 34 (其中照明线偏振激光的偏振方向平行于纯位相调节液晶板 33、 34的液晶定向 膜的取向), 经位相调节后的光束穿过第二块半透半反镜 30, 最后通过投影光学镜头 35进行 成像。 由于纯位相调节液晶板 33、 34上的每个像素已经互相对准, 且位于投影镜头 35的一 倍焦距至两倍焦距之间, 它们被放大成实像投影到相干子光源发生器阵列 4, 而且一一相互重 叠, 通过复矢量叠加, 形成振幅和位相可以调节的位置呈周期分布的相干子光源阵列。 图 11 中相干子光源发生器阵列 4由二元光学元件阵列组成, 尽管每个二元光学元件 36表面微结构 不同, 但它们的外形尺寸相同并呈周期分布, 每个二元光学元件 36与上述投影形成的位置呈 周期分布的相干子光源阵列中的每个子光源一一对准, 并把它们汇聚成位置呈随机分布的相 干子光源, 这些位置呈随机分布的相干子光源发出的光锥在立体像 16所在空间位置交汇, 通 过相长干涉显示离散立体像。
图 12为采用反射式纯位相调节液晶板和反射式倾斜微透镜阵列进行投影式彩色三维显示 时的结构示意图。 图 12中的激光光源 1与照明系统 2与图 11中相同, 但是振幅位相调节器 阵列 3由一块半透半反镜 37, 两块反射式 LCOS纯位相调节液晶板 38、 39和一个投影镜头 35组成。 在两块反射式 LCOS纯位相调节液晶板 38、 39中, 液晶层两侧的液晶分子定向膜 的取向平行, 入射线偏振光的偏振方向平行于液晶分子定向膜的取向, 使得它们工作在纯位 相调节模式。 两块反射式 LCOS纯位相调节液晶板 38、 39和半透半反镜 37以迈克耳逊干涉 器方式放置,两块反射式 LCOS纯位相调节液晶板 38、 39分别作为迈克耳逊干涉器的两个臂 中的反射镜。第一块反射式 LCOS纯位相调节液晶板 38与半透半反镜 37的半透半反面 A1-A2 成 45度夹角,两块反射式 LCOS纯位相调节液晶板 38、 39相对于半透半反镜 37的半透半反 面 A1-A2互成镜像对称放置。 从相干光源 1发出的三基元色线偏振细激光束经照明光学系统 2扩束形成三基元色分离的宽光束, 然后被半透半反镜 37分成两束光, 这两束光分别垂直照 明两块反射式 LCOS纯位相调节液晶板 38、 39正面的液晶层, 反射后经同一半透半反镜 37 合并, 最后通过投影镜头 35进行成像。 由于两块反射式 LCOS纯位相调节液晶板 38、 39上 的每个像素已经互相对准, 且位于投影镜头 35的一倍焦距至两倍焦距之间, 它们被放大成实 像投影到相干子光源发生器 4上, 而且一一相互重叠, 通过复矢量叠加, 形成振幅和位相可 以调节的位置呈周期分布的相干子光源阵列。进一步通过由反射式倾斜微透镜 23组成的相干 子光源发生器阵列 4汇聚形成位置呈随机分布的相干子光源阵列。
图 13 为本发明在采用液晶光栅纯位相调节器和透射式倾斜微透镜阵列进行投影式彩色
三维显示时的结构示意图。 图 13所示装置与图 12基本相同, 只是采用液晶光栅纯位相调节 器代替了图 12中的 LCOS纯位相调节液晶板, 同时用透射式倾斜微透镜阵列代替了图 12中 的反射式倾斜微透镜阵列。由于液晶光栅中没有寻址电极,因此图 13中增加了两套由光源 44、 数字微镜 (Digital Micro-mirrorDevce, DMD) 45和光学透镜 46组成数字微镜光学投影系统 43, 它们把两幅光学影像分别投影到两块液晶光栅纯位相调节器 41、 42的背面, 相应地使两 块液晶光栅纯位相调节器 41、 42前表面的液晶层的不同区域承受不同的电压, 相当于把两块 液晶光栅纯位相调节器 41、 42划分为许多虚拟像素。 两块液晶光栅纯位相调节器 41、 42中 的液晶分子扭曲为零, 且液晶分子取向与入射照明线偏振光的偏振方向一致, 因此工作在纯 位相模式。
在图 11-13中由于采用同一块反射式或透射式液晶板进行彩色立体显示, 所能显示的离 散立体像素比单色显示时降低三倍, 为了增加离散立体像素的数目, 图 14采用了三块集成式 振幅位相调节器, 每块用于一种基元色的立体成像。
图 14为本发明在采用集成式振幅位相调节器和反射式全息光学元件进行投影式彩色三 维显示时的结构示意图。在图 14中,振幅位相调节器 3由三个子振幅位相调节器 50、 51、 52, 一个立方分光棱镜 53和一个光学镜头 35组成。 光学镜头 35放置在立方分光棱镜 53的出光 面 B1-B4前, 光学镜头 35的光轴与立方分光棱镜 53的出光面 B1-B4的中心轴重合。 三个子 振幅位相调节器 50、 51、 52分别放置在立方分光棱镜 53 的其他三个进光面 Bl-B2、 B2-B3 和 B3-B4前, 三个子振幅位相调节器 50、 51、 52的中心轴分别与立方分光棱镜 53的三个进 光面 Bl-B2、 B2-B3和 B3-B4的中心轴重合。立方分光棱镜 53由四块相同的直角棱镜 54、 55、 56、 57按直角棱相抵的方式粘合而成, 直角棱镜 54、 55、 56、 57的直角面分别蒸镀有针对某 一基元色的窄带反射膜,例如沿立方分光棱镜 53的对角线 B2-B4的表面蒸镀针对第一种基元 色入!的窄带反射膜, 而沿立方分光棱镜 53的对角线 B1-B3的表面蒸镀针对第三种基元色入 3 的窄带反射膜,这样从进光面 B1-B2入射的第一种基元色 λ!沿对角线 Β2-Β4反射后从出光面 B1-B4出射,从进光面 Β3-Β4入射的第三种基元色 λ 3沿对角线 B1-B3反射后从出光面 B1-B4 出射,而从进光面 Β2-Β3入射的第二种基元色 λ 2直接穿过立方分光棱镜 53从其出光面 B1-B4 出射, 立方分光棱镜 53的所有进光面 Bl-B2、 Β2-Β3和 Β3-Β4与出光面 B1-B4皆蒸镀有宽带 增透膜。 三个子振幅位相调节器 50、 51、 52采用与图 1所示相同结构 (但尺寸小得多) 的集 成式振幅位相调节器, 它们的像素互相一一对准使得通过光学透镜 35投影成像到反射式全息 光学元件阵列 4 的表面后一一互相重叠, 通过矢量叠加形成位置呈周期分布的子光源阵列。 进一步这些位置呈周期分布的子光源阵列被全息光学元件阵列 4汇聚后形成位置呈随机分布 的子光源阵列。
在图 14中, 全息光学元件阵列 4由许多反射式全息光学元件 58组成, 由于被三种不同 基元色照明的子振幅位相调节器 50、 51、 52的像素被同时成像到反射式全息光学元件阵列 4 的表面, 并与周期排列的全息光学元件 58—一对准, 每个全息光学元件 58同时接收三种基 元色, 因此每个反射式全息光学元件 58的干涉条纹必须分别针对三种基元色进行制作, 最后 总的干涉条纹相当于三个单色全息光学元件的干涉条纹的叠加。
Claims
1、 一种基于随机相长干涉的立体成像装置, 包括:
发射三基元色相干激光的相干光源 (1 );
将所述相干光源 (1 ) 发出的细光束三基元色相干激光扩束转换成多束均匀的且三基元 色分离的宽光束三基元色相干激光的照明光学系统 (2);
振幅位相调节器阵列 (3 ), 其每个振幅位相调节器分别对所述照明光学系统 (2) 发出 的宽光束三基元色相干激光的振幅位相进行调节以生成相互独立的子光束阵列; 以及
相干子光源发生器阵列 (4), 其每个相干子光源发生器分别对准所述振幅位相调节器阵 列 (3 ) 的一个相应的振幅位相调节器, 使得所述相互独立的子光束一一对应地入射到相干子 光源发生器阵列 (4) 中的每个相干子光源发生器, 并汇聚产生位置呈随机分布的相干子光源 阵列, 且使每个相干子光源发出的光锥与三维立体像所在的三维区间重叠。
2、 根据权利要求 1所述的立体成像装置, 其中, 相干子光源发生器阵列 (4) 是透射式 全息光学元件阵列, 其每个透射式全息光学元件 (15 ) 上配置的干涉条纹使得透射后汇聚形 成的相干子光源的位置呈随机分布; 或者
相干子光源发生器阵列 (4) 是反射式全息光学元件阵列, 其每个反射式全息光学元件 ( 58) 上配置的干涉条纹使得反射后汇聚形成的相干子光源的位置呈随机分布。
3、根据权利要求 1或 2所述的立体成像装置,其中,所述每个透射式全息光学元件(15 ) 上配置的干涉条纹为三块分别针对三种基元色的单色透射式全息光学元件的干涉条纹的叠 加; 或者
所述每个反射式全息光学元件(58)上的干涉条纹为三块分别针对三种基元色的单色反 射式全息光学元件的干涉条纹的叠加。
4、 根据权利要求 1所述的立体成像装置, 其中, 相干子光源发生器阵列 (4) 是二元光 学元件阵列, 其每个二元光学元件 (21, 36) 是组合了微透镜和微棱镜功能的元件, 其每个 二元光学元件 (21, 36) 表面的微结构被配置成使得汇聚形成的子光源的位置呈随机分布。
5、 根据权利要求 1 所述的立体成像装置, 其中, 相干子光源发生器阵列 (4) 是具有多 个反射式微透镜 (23 ) 的反射式微透镜阵列 (22), 通过偏转每个反射式微透镜 (23 ) 的光轴 方向, 使得其汇聚后形成的子光源的位置呈随机分布; 或者
相干子光源发生器阵列 (4) 是具有多个透射式微透镜 (25 ) 的透射式微透镜阵列 (24), 通过偏转每个反射式微透镜 (25 ) 的光轴方向, 使得其汇聚后形成的子光源的位置呈随机分 布。
6、 根据权利要求 1 所述的立体成像装置, 其中, 振幅位相调节器阵列 (3 ) 包含透射式 纯位相调节液晶板 (5, 33 , 34), 透射式纯位相调节液晶板 (5, 33 , 34) 的液晶层两侧的面 板上的液晶分子定向膜的取向互相平行, 使得液晶分子的扭曲角度为零, 同时液晶层的厚度 和液晶材料的双折射率差使得透射式纯位相调节液晶板(5, 33, 34)的位相调节范围达到 0~2π; 或者
振幅位相调节器阵列 (3 ) 包含反射式纯位相调节液晶板 (38, 39, 41, 42), 反射式纯 位相调节液晶板 (38, 39, 41, 42) 的液晶层两侧的面板上的液晶分子定向膜的取向互相平 行, 使得液晶分子的扭曲角度为零, 同时液晶层的厚度和液晶材料的双折射率差使得反射式 纯位相调节液晶板 (38, 39, 41, 42) 的位相调节范围达到 0~2π。
7、 根据权利要求 1或 6所述的立体成像装置, 其中, 振幅位相调节器阵列 (3 ) 包括集 成制作为一个整体的后面板 (7)、 第一液晶层 (8)、 中间面板 (9)、 第二液晶层 (10)、 前面 板 (11 ) 和紧贴在前面板上的偏振片 (12); 后面板 (7)、 第一液晶层 (8) 与中间面板 (9) 构成第一块灰度液晶板(5 ), 中间面板(9)、 第二液晶层 (10)、 前面板(11 )和偏振片 (12) 构成第二块液晶板 (6), 第一块灰度液晶板 (5 ) 和第二块灰度液晶板 (6) 上的像素呈相同 的二维周期分布, 且一一互相对准;
其中第一块灰度液晶板 (5 ) 为透射式纯位相调节液晶板, 同时改变属于第二块灰度液晶 板 (6) 的中间面板 (9) 和前面板 (11 ) 上的液晶分子定向膜的取向以及偏振片 (12) 的偏 振方向, 使得第二块灰度液晶板 (6) 工作于振幅调节为主模式。
8、 根据权利要求 1 所述的立体成像装置, 其中接收相干激光光源 (1 ) 发出的三种基元 色细光束激光, 并对其进行扩束的照明光学系统 (2)包括两组相互垂直放置的平行平板分束 器阵列 (17、 18);
其中第一组平行平板分束器阵列 (17) 中的每块平行平板分束器尺寸形状相同, 朝向相 同相互平行地沿同一轴线等间隔放置, 调整第一组平行平板分束器阵列 (17) 中每块平行平 板分束器的间隔, 同时沿光线传播方向依次增强每块平行平板分束器的反射率, 使得偏振相 干光源 (1) 发出的平行细光束经第一组平行平板分束器阵列 (17) 反射后转换成强度均匀且 连续分布的平行线光束;
其中, 第二组平行平板分束器阵列 (18) 中的每块平行平板分束器尺寸形状相同, 朝向 相同相互平行地沿同一轴线等间隔放置, 调整第二组平行平板分束器阵列 (18) 中每块平行 平板分束器的间隔, 同时沿光线传播方向依次增强每块平行平板分束器的反射率, 使得第一 组平行平板分束器阵列 (17) 发出的平行线光束经第二组平行平板分束器阵列 (18) 反射后 转换成强度均匀且连续分布的平行面光束;
其中, 两组平行平板分束器阵列 (17、 18) 中的每块分束器整体或分区域地分别蒸镀同 时反射三基元色的宽带反射膜或仅反射某一基元色的窄带反射膜, 使得第二组平行平板分束 器阵列 (18) 发出的平行面光束在其横截面上沿行或沿列或同时沿行和列两个方向三基元色 依次周期分布; 两组平行平板分束器阵列 (17、 18) 的进光口与出光口光学抛光且蒸镀宽带 增透膜。
9、 根据权利要求 1 所述的立体成像装置, 其中振幅位相调节器 (3) 由三个子振幅位相 调节器 (50、 51、 52)、 一个具有一个出光面和三个进光面的立方分光棱镜 (53) 和一个光学 镜头 (35) 组成; 光学镜头 (35) 放置在立方分光棱镜 (53) 的出光面前, 光学镜头 (35) 的光轴与立方分光棱镜 (53) 的出光面的中心轴重合; 三个子振幅位相调节器 (50、 51、 52) 分别放置在立方分光棱镜 (53) 的三个进光面前, 三个子振幅位相调节器 (50、 51、 52) 的 中心轴分别与立方分光棱镜 (53) 的三个进光面的中心轴重合; 立方分光棱镜 (53) 由四块 相同的直角棱镜 (54、 55、 56、 57) 按直角棱相抵的方式粘合而成, 直角棱镜 (54、 55、 56、 57) 的直角面分别蒸镀有针对某一基元色的窄带反射膜, 使得分别从立方分光棱镜 (53) 的 三个进光面入射的三基元色激光能够反射或透射穿过立方分光棱镜 (53), 并从立方分光棱镜 (53) 的出光面出射, 立方分光棱镜 (53) 的所有进光面与出光面皆蒸镀有宽带增透膜; 三 个子振幅位相调节器 (50、 51、 52) 的像素互相一一对准使得通过光学透镜 (35) 投影成像 后在像面一一互相重叠。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10818405.2A EP2482117A4 (en) | 2009-09-25 | 2010-09-21 | THREE-DIMENSIONAL DISPLAY DEVICE BASED ON A RANDOM-CONSTRUCTED INTERFERENCE PRINCIPLE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910093002.9 | 2009-09-25 | ||
CN200910093002A CN102033413B (zh) | 2009-09-25 | 2009-09-25 | 基于随机相长干涉原理的立体显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011035711A1 true WO2011035711A1 (zh) | 2011-03-31 |
Family
ID=43795403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/077182 WO2011035711A1 (zh) | 2009-09-25 | 2010-09-21 | 基于随机相长干涉原理的立体显示装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2482117A4 (zh) |
CN (1) | CN102033413B (zh) |
WO (1) | WO2011035711A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114152194A (zh) * | 2021-11-16 | 2022-03-08 | 华中科技大学 | 一种基于反射光栅的微位移测量装置及方法 |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012062681A1 (de) * | 2010-11-08 | 2012-05-18 | Seereal Technologies S.A. | Anzeigegerät, insbesondere ein head-mounted display, basierend auf zeitlichen und räumlichen multiplexing von hologrammkacheln |
CN102353325B (zh) * | 2011-07-22 | 2013-08-14 | 中国科学院上海光学精密机械研究所 | 四轴4细分干涉仪 |
CN102288104B (zh) * | 2011-07-22 | 2014-02-12 | 中国科学院上海光学精密机械研究所 | 六轴4细分干涉仪 |
WO2013029219A1 (zh) * | 2011-08-26 | 2013-03-07 | Huang Juehua | 一种三维成像的方法和装置 |
JP2013101308A (ja) * | 2011-10-17 | 2013-05-23 | Panasonic Corp | 表示装置及びその制御方法 |
FR2993675B1 (fr) * | 2012-07-18 | 2015-05-22 | Valeo Etudes Electroniques | Dispositif et procede d'emission d'un faisceau lumineux destine a former une image, systeme de projection et afficheur utilisant ledit dispositif |
CN102768410B (zh) * | 2012-07-26 | 2015-09-02 | 李志扬 | 一种基于光学波前重建的相干三维立体显示装置 |
CN102854630B (zh) * | 2012-09-27 | 2015-07-15 | 李志扬 | 一种基于相长干涉的三维立体显示装置 |
CN103955063B (zh) * | 2014-04-21 | 2017-06-16 | 上海兆九光电技术有限公司 | 光束均匀化方法及光束均匀化装置 |
CN108604047B (zh) * | 2015-04-28 | 2021-08-24 | 吴翔 | 釆用投影运算和反投影方法的成像和成型方法 |
JP6523547B2 (ja) * | 2016-02-22 | 2019-06-05 | 株式会社日立ハイテクノロジーズ | ダイクロイックミラーアレイ |
CN106154797B (zh) * | 2016-09-09 | 2018-12-18 | 京东方科技集团股份有限公司 | 一种全息显示面板、全息显示装置及其显示方法 |
CN106227017B (zh) * | 2016-09-09 | 2018-12-25 | 京东方科技集团股份有限公司 | 一种反射式全息显示装置及其显示方法 |
CN106501952B (zh) * | 2016-11-25 | 2021-04-27 | 北京理工大学 | 大视场大尺寸仿生全息三维动态显示方法 |
CN112005161B (zh) | 2018-03-30 | 2021-12-10 | 华为技术有限公司 | 成像器件、显示装置和成像设备 |
CN110750005B (zh) * | 2018-07-23 | 2021-04-20 | 京东方科技集团股份有限公司 | 显示装置及其显示方法 |
GB2585211B (en) * | 2019-07-02 | 2021-12-08 | Dualitas Ltd | Spatial light modulation |
CN110967874B (zh) * | 2019-12-20 | 2024-06-21 | 合肥疆程技术有限公司 | 一种车载抬头显示系统 |
CN111045230B (zh) | 2019-12-30 | 2023-01-03 | 上海天马微电子有限公司 | 空间光调制器及其制作方法及全息3d显示设备 |
CN112764280A (zh) * | 2021-01-18 | 2021-05-07 | 中国科学院重庆绿色智能技术研究院 | 一种可同时实现振幅和相位调制的液晶全息显示屏 |
CN113370760A (zh) * | 2021-06-30 | 2021-09-10 | 恒大恒驰新能源汽车研究院(上海)有限公司 | 一种后挡风玻璃组件及汽车 |
CN115705006A (zh) * | 2021-08-12 | 2023-02-17 | 京东方科技集团股份有限公司 | 一种全息显示装置及其显示方法 |
CN114326354B (zh) * | 2022-01-13 | 2024-01-16 | 京东方科技集团股份有限公司 | 一种显示面板、显示装置及显示方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0968917A (ja) * | 1995-09-01 | 1997-03-11 | Olympus Optical Co Ltd | カラーホログラフィ装置 |
US6247816B1 (en) * | 1997-08-07 | 2001-06-19 | International Business Machines Corporation | Optical system for projection displays using spatial light modulators |
CN1392437A (zh) * | 2001-06-16 | 2003-01-22 | 亚特科研公司 | 立体三维显示器与二维显示器的投影装置与方法 |
JP2004252008A (ja) * | 2003-02-18 | 2004-09-09 | Nippon Hoso Kyokai <Nhk> | 立体画像表示装置 |
JP2006174258A (ja) * | 2004-12-17 | 2006-06-29 | Namco Bandai Games Inc | プログラム,立体視画像生成装置及び立体視画像表示装置 |
CN101226325A (zh) * | 2008-02-03 | 2008-07-23 | 李志扬 | 基于随机相长干涉的三维显示方法及装置 |
CN201199289Y (zh) * | 2008-02-03 | 2009-02-25 | 李志扬 | 基于随机相长干涉的三维显示装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1203348C (zh) * | 2003-06-24 | 2005-05-25 | 清华大学 | 反射式液晶立体投影光机 |
-
2009
- 2009-09-25 CN CN200910093002A patent/CN102033413B/zh not_active Expired - Fee Related
-
2010
- 2010-09-21 WO PCT/CN2010/077182 patent/WO2011035711A1/zh active Application Filing
- 2010-09-21 EP EP10818405.2A patent/EP2482117A4/en not_active Withdrawn
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0968917A (ja) * | 1995-09-01 | 1997-03-11 | Olympus Optical Co Ltd | カラーホログラフィ装置 |
US6247816B1 (en) * | 1997-08-07 | 2001-06-19 | International Business Machines Corporation | Optical system for projection displays using spatial light modulators |
CN1392437A (zh) * | 2001-06-16 | 2003-01-22 | 亚特科研公司 | 立体三维显示器与二维显示器的投影装置与方法 |
JP2004252008A (ja) * | 2003-02-18 | 2004-09-09 | Nippon Hoso Kyokai <Nhk> | 立体画像表示装置 |
JP2006174258A (ja) * | 2004-12-17 | 2006-06-29 | Namco Bandai Games Inc | プログラム,立体視画像生成装置及び立体視画像表示装置 |
CN101226325A (zh) * | 2008-02-03 | 2008-07-23 | 李志扬 | 基于随机相长干涉的三维显示方法及装置 |
CN201199289Y (zh) * | 2008-02-03 | 2009-02-25 | 李志扬 | 基于随机相长干涉的三维显示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2482117A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114152194A (zh) * | 2021-11-16 | 2022-03-08 | 华中科技大学 | 一种基于反射光栅的微位移测量装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2482117A4 (en) | 2014-04-02 |
EP2482117A1 (en) | 2012-08-01 |
CN102033413A (zh) | 2011-04-27 |
CN102033413B (zh) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011035711A1 (zh) | 基于随机相长干涉原理的立体显示装置 | |
CN101226325B (zh) | 基于随机相长干涉的三维显示方法及装置 | |
CN108780296B (zh) | 照明装置 | |
WO2017107313A1 (zh) | 一种裸眼3d激光显示装置 | |
KR100384570B1 (ko) | 고해상도감색투사시스템 | |
JP5191730B2 (ja) | 二次元画像形成装置 | |
CN201199289Y (zh) | 基于随机相长干涉的三维显示装置 | |
CN105116678B (zh) | 投射装置和投射控制装置 | |
US8331006B2 (en) | Display device and a method for illuminating a light modulator array of a display device | |
US8231224B2 (en) | Apparent speckle reduction via beam offset diversity in pupil space | |
CN102854630B (zh) | 一种基于相长干涉的三维立体显示装置 | |
TWI579596B (zh) | 用於lcos顯示器之空間交錯的偏振轉換器及用於將具有複數線性偏振狀態的輸入光束轉換到具有單一共同極化狀態的輸出光束之方法 | |
US11022799B2 (en) | Projector-combiner display with beam replication | |
EP1089115A1 (en) | Optical device and projection display | |
CN107577112A (zh) | 照明装置、投射型影像显示装置及光学装置 | |
EP2174176A1 (en) | Coherent imaging method of laser projection and apparatus thereof | |
KR20070092330A (ko) | 2d/3d 데이터 프로젝터 | |
TW201641990A (zh) | 顯示裝置,尤其是頭戴式顯示器或護目鏡 | |
KR101560617B1 (ko) | 광 발생 장치 및 그 제어 방법 | |
US6115151A (en) | Method for producing a multi-layer holographic device | |
JPH11502040A (ja) | 2つのマイクロレンズアレイを有する画像表示装置 | |
TWI403815B (zh) | 可控式光調變器 | |
WO2007065003A2 (en) | Laser projection display system | |
TW202416016A (zh) | 用於反射式空間光調製器顯示器的光束擴展裝置 | |
TWI281042B (en) | An image transmission system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10818405 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010818405 Country of ref document: EP |