WO2011035478A1 - 发光玻璃、其制造方法及发光装置 - Google Patents

发光玻璃、其制造方法及发光装置 Download PDF

Info

Publication number
WO2011035478A1
WO2011035478A1 PCT/CN2009/074237 CN2009074237W WO2011035478A1 WO 2011035478 A1 WO2011035478 A1 WO 2011035478A1 CN 2009074237 W CN2009074237 W CN 2009074237W WO 2011035478 A1 WO2011035478 A1 WO 2011035478A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
phosphor
luminescent
plate
glass plate
Prior art date
Application number
PCT/CN2009/074237
Other languages
English (en)
French (fr)
Inventor
周明杰
马文波
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to CN2009801614544A priority Critical patent/CN102510803A/zh
Priority to US13/497,815 priority patent/US20120177866A1/en
Priority to PCT/CN2009/074237 priority patent/WO2011035478A1/zh
Priority to JP2012530078A priority patent/JP2013505853A/ja
Priority to EP09849666.4A priority patent/EP2481573B1/en
Publication of WO2011035478A1 publication Critical patent/WO2011035478A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/20Uniting glass pieces by fusing without substantial reshaping
    • C03B23/203Uniting glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing

Definitions

  • the present invention belongs to the technical field of light-emitting devices, and in particular relates to a light-emitting glass using glass as a base material of a light-emitting material, a method for manufacturing the same, and a light-emitting device.
  • Illuminated glass can be applied to various light emitting devices such as LED light sources, liquid crystal displays, flat panel displays, plasma displays, and the like.
  • LED Light Emitting Diode
  • LCD liquid crystal displays
  • a glass-ceramic phosphor for white LEDs has been developed, which has excellent stability performance. After the material is used for LED packaging, white LEDs are arranged in the long space. The color coordinate shift does not occur under working conditions, and the phenomenon of luminous efficiency and service life is greatly alleviated.
  • the preparation process of the glass ceramics is complicated, in particular, the annealing process parameters of the glass crystallization are compared. Difficult to master, so the glass-ceramic phosphor used for white LED is very
  • the glass block is fired at a high temperature of °C or higher, and the phosphor is directly intruded into the glass.
  • the phosphor reacts with the glass melt to seriously deteriorate the fluorescence characteristics of the phosphor. Disclosure of invention
  • the present invention provides a light-emitting glass having high reliability and stability of light-emitting performance and a long service life, and a light-emitting device having the same.
  • the present invention also provides a method of manufacturing a luminescent glass which has a low manufacturing temperature and can improve the reliability and stability of luminescent properties.
  • a luminescent glass comprising a glass substrate having a glass portion and a glass-phosphor composite portion, the glass-phosphor composite portion being embedded in the glass portion, the glass-fluorescent
  • the powder composite portion includes a glass material and a phosphor dispersed in the glass material, and the phosphor is a silicate series phosphor.
  • a method for manufacturing a luminescent glass comprising the steps of:
  • a light-emitting device comprising the above-described light-emitting glass and a package body encapsulating the light-emitting glass
  • the glass portion can well protect the external environment of the phosphor such as moisture, and the glass is better.
  • the gas impermeability and chemical stability thereby improving the reliability and stability of the luminescent performance of the luminescent glass and the illuminating device, preventing the deterioration of the luminescent properties of the phosphor, and increasing the illuminating glass and the illuminating device. Service life.
  • the phosphor is dispersed in a partial region of the glass plate, so that the temperature for heating the crucible needs to be controlled only at the softening temperature of the glass, and high-temperature melting is not required.
  • the phosphor will penetrate into the softened glass and combine into one, the whole process will not damage the phosphor, and improve the reliability and stability of the luminescent performance of the finally produced luminescent glass, avoiding the traditional point.
  • the problem of aging of the fluorescent glue after high temperature or light after the glue is applied.
  • complicated equipment and process parameter adjustment are not required, so that the entire manufacturing process is easy to operate and high in production efficiency.
  • FIG. 1 is a schematic flow chart of a method for manufacturing a luminescent glass according to a first embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a process for manufacturing a luminescent glass according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a process for manufacturing a luminescent glass according to a second embodiment of the present invention.
  • Figure 4 is a schematic view showing the structure of a light-emitting device having the light-emitting glass manufactured in Figure 1.
  • a flow chart of a method for manufacturing a luminescent glass according to a first embodiment of the present invention includes the following steps:
  • the steps S02-S03 can use the steps as shown in the figure, as follows:
  • phosphor layer formation a phosphor is formed on the surface of the first glass plate 1, forming a phosphor layer 2, the phosphor is a silicate series phosphor;
  • Interlayer placing a second glass plate 3 on the phosphor layer 2 such that the phosphor layer 2 is sandwiched between two layers of glass plates 1 and 3;
  • Heat softening molding Each of the glass sheets 1 and 3 is heated and softened so that the phosphor is dispersed in each of the glass sheets 1 and 3, and is solidified to form an integrated luminescent glass 10.
  • the thickness of the first glass plate may be between 0.3 and 3 mm, preferably between 0.5 and 1 mm, and the first glass plate may be used in various types.
  • Suitable low melting point glasses such as, but not limited to, borate glasses, such as Na 2 O-ZnO-B 2 O 3 -Si0 2 .
  • a glass softening temperature of a suitable material is in the range of from 20 ° C to 800 ° C, preferably a softening temperature of from 200 ° C to 600 ° C.
  • the phosphor layer has a thickness of 5 to 80 ⁇ m, preferably 10 to 40 ⁇ m, and the phosphor material is a yellow phosphor, and a silicate series yellow phosphor which is excited by light suitable for a wavelength of 420 nm to 480 nm is used. This material can be directly used with commercially available commercial phosphors.
  • the phosphor layer may be formed by coating or deposition, spraying, or the like, for example, by a screen printing technique on the surface of the first glass layer 1.
  • a screen printing technique on the surface of the first glass layer 1.
  • the first glass sheet 1 can also be pretreated, for example, after being cut into a desired shape, being polished and polished.
  • the thickness of the first glass sheet is controlled to be 0.5 mm, and the glass sheet 1 having a uniform shape is formed.
  • Phosphor Layer 2 is sandwiched between two glass plates 1 and 3.
  • the second glass plate 3 may be made of the same or different glass material as the first glass plate 1 , depending on actual needs.
  • the structure, size and material of the second glass sheet 3 and the first glass sheet 1 are substantially the same, and the steps are also pretreated.
  • the first glass plate 1 and the second glass plate 3 may have different sizes, structures, or different colors of specific chemical materials (such as rare earth elements) to suit different needs. Therefore, by the manufacturing method of the present embodiment, it is possible to prepare at least two layers of luminescent glass having different materials, different sizes, or different compositions, which is difficult to achieve by the current technology.
  • the heating temperature is 200 °C -800 °C, and the heating and holding time is 0.5-5 min.
  • the overall thickness of each of the glass sheets is further adjusted to adjust the thickness of the produced luminescent glass.
  • the glass sheets can also be pressurized by the same layer so that the phosphors are dispersed in the respective glass sheets.
  • a certain weight of the compact 6 can be pressed on the second glass plate 3 to add the first and second glass plates 1 and 3 together. Pressure.
  • the pressure block 6 may be a flat glass or a flat metal plate.
  • a weight such as a weight may be added to the plate.
  • the first glass sheet 1 is placed on a platform such as a flat metal plate 4.
  • An adjustable height barrier 5 is placed around or on both sides of the first and second glass sheets 1 and 3. The function of the barrier 5 is to control the glass sheets 1 and 3 to soften under heat and under the pressure of the compact 6.
  • the final thickness of the integrated luminescent glass 10 is formed.
  • the whole structure shown in Fig. 2(c) is placed in an electric furnace, heated to 530 ° C, and kept for 90 minutes to soften the glass plates 1 and 3 and the two glass plates 1 under the pressure of the compact 6 3 combined, the phosphor is miscellaneous.
  • the first and second glass sheets 1 and 3 form a glass substrate 8, thereby producing an integrated structure of the luminescent glass 10 containing the phosphor inside, as shown in Fig. 2(d).
  • the glass substrate 8 includes two glass portions la, 3a corresponding to the first and second glass plates 1 and 3, and the phosphor layer 2 is embedded in the first 1.
  • a glass-phosphor composite portion 2a is thus formed, and the glass-phosphor composite portion 2a is embedded in the two glass portions la. 3a and is located substantially in the intermediate portion.
  • the glass-phosphor composite portion 2a comprises a glass material and a phosphor dispersed in the glass material, and the glass materials are respectively materials of the second glass sheets 1 and 3, which may be the same or different materials.
  • the first glass plate 1 can be used, the phosphor layer 2 is formed thereon, and the other metal plate or mold is used to cover the phosphor layer 2, or a phosphor powder is formed.
  • the first glass plate 1 of the layer 2 is inverted on the metal plate 4, and the phosphor layer 2 is placed against the metal plate 4, and then a subsequent step is performed to form a luminescent glass made of a glass plate, and the luminescent glass formed by the enamel Correspondingly, it also includes a glass portion and a glass-phosphor composite portion embedded in the glass portion.
  • FIG. 3 a flow chart of a method for manufacturing a luminescent glass according to a second embodiment of the present invention, showing the structure in each step.
  • the method also includes the respective steps in the first embodiment (shown in FIG. 2), except that the phosphor layer is further formed on the glass plate after the first interlayer and the next time
  • the step of sandwiching that is, as shown in FIG. 3(B), forming a structure in which a plurality of phosphors of glass plate are stacked, wherein as shown, each of the glass plates 1 and 3 and the phosphor layer 2 are alternately arranged, and only examples are shown in the drawing. Five layers of phosphor layer 2 are produced.
  • the repeated glass plates may be selected from the first glass plate 1 or the second glass plate 3, and are specifically selected according to actual needs.
  • each of the glass sheets 1 and 3 can be made of the same or different sizes, materials or miscellaneous
  • the phosphor layer 2 can also have different thickness sizes, materials or other components, thereby making the glass
  • this step is similar to the step in the first embodiment except that the heated and pressurized object is replaced with a multi-layered glass composite. Said. After cooling and solidification, each of the glass sheets forms an integrated glass substrate, whereby a luminescent glass 20 having dispersed multilayer phosphors is obtained.
  • the structure of the illuminating glass 20 obtained by the present embodiment is substantially similar to that of the illuminating glass 20, except that the number of layers is different.
  • the same elements in FIGS. 3 and 2 are denoted by the same reference numerals and will not be described again.
  • the glass substrate 8 includes a plurality of glass portions la, 3a corresponding to the plurality of first and second glass plates 1 and 3, and the multilayer phosphor layer 2 is embedded in In the corresponding first and second glass sheets 1 and 3, a plurality of glass-phosphor composite portions 2a are thus formed, and the multilayer glass-phosphor composite portions 2a are respectively embedded and bonded in the multilayer glass portions la, 3a.
  • the glass-phosphor composite portion 2a includes a glass material and a phosphor dispersed in the glass material.
  • the luminescent glasses 10 and 20 obtained by the present embodiment are as shown in FIGS. 3(d) and 3(D), and as described above, each of the glass sheets is softened and cured to form a glass substrate, in one embodiment.
  • the glass substrate is an integrated structure.
  • the glass substrate is a glass body, and when different materials are used, the glass body is made of different materials.
  • the phosphor is substantially dispersed in the intermediate position of the glass substrate, i.e., in the vicinity of the combination of the respective glass sheets.
  • the luminescent glasses 10 and 20 can be applied to illuminating devices such as various LED light sources, liquid crystal displays, flat panel displays, plasma displays, and the like.
  • a light-emitting device 30 includes a light-emitting glass 10 and a package 18 (such as silicone or epoxy) encapsulating the light-emitting glass 10.
  • the package 18 further encapsulates an LED chip 9 therein, and the package 18 is mounted.
  • a reflector cup 12 When the blue light emitted from the LED chip enters the illuminating glass 10 ⁇ , the phosphor inside the illuminating light is excited and emitted by the package 18.
  • the glass plates 1 and 3 can have a relatively free selection space, the glass material selected can be selected to have high light transmittance, strong workability, and the glass is also airtight. Sexual and chemical stability, it can well protect the phosphor dispersed in it without being affected by moisture in the air, preventing it Deterioration of luminescent properties. Since the softening point of the glass is low, the heat resistance of the phosphor is sufficient to withstand the temperature at which the glass is integrated by heat softening, so that the deterioration of the phosphor performance is not caused in the heating and softening process.
  • the glass portions la, 3a can well protect the phosphor external environment such as moisture. Interference, and the glass has better gas impermeability and chemical stability, thereby improving the reliability and stability of the luminescent performance of the luminescent glass and the illuminating device, preventing the deterioration of the luminescent properties of the phosphor, and increasing the use of the illuminating glass and the illuminating device. life.
  • the phosphor is dispersed in a portion of the glass plate, so that the temperature of the heated crucible needs to be controlled only at the softening temperature of the glass, and high-temperature melting is not required.
  • the phosphor will penetrate into the softened glass and combine into one, the whole process will not damage the phosphor, and improve the reliability and stability of the luminescent performance of the finally produced luminescent glass, avoiding the traditional point.
  • the problem of aging of the fluorescent glue after high temperature or light after the glue is applied.
  • complicated equipment and process parameter adjustment are not required, which makes the entire manufacturing process easy to operate and high in production efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)
  • Led Device Packages (AREA)

Description

说明书 发光玻璃、 其制造方法及发光装置
技术领域
技术领域
[1] 本发明属于发光器件技术领域, 具体涉及一种玻璃作为发光材料基体的发光玻 璃、 其制造方法及发光装置。
背景技术
背景技术
[2] 传统的作为发光基体的材料包括荧光粉、 纳米晶体及玻璃等, 相对于晶体和荧 光粉而言, 玻璃具有透明、 坚硬及良好化学稳定性和光学性质; 而且玻璃更容 易被加工成各种大小形状的产品, 如各种形状或尺寸的显示器件或照明光源, 因而获得广泛关注和应用。
[3] 发光玻璃可以应用在各种发光器件上, 例如 LED光源、 液晶显示器、 平板显示 器、 等离子体显示器等。 LED (发光二极管) 因其使用寿命长、 高效节能、 绿色 环保等优点, 在固态照明方面显示出了巨大的市场潜力和应用前景。 它将成为 继白炽灯、 荧光灯、 气体放电灯之后的第四代照明光源。 然而, 当前用于液晶 显示屏 (LCD) 的白光 LED, 其性能不能满足普通照明的要求。 因为一个 LED 芯片的光通量太小, 以至于需要数百个白光 LED才能满足普通照明对光通量的 要求。 解决这个问题最主要的方法就是增加 LED
的输出功率。 这种方法使单个 LED芯片光通量的增加成为可能, 但同吋也会使 蓝色 LED芯片的温度升高, 这将会使涂覆在蓝色 LED芯片上的荧光粉的树脂老 化, 从而导致发光效率及使用寿命下降。 而且, 釆用传统的荧光粉树脂封装方 法荧光粉涂覆不均匀, 容易造成发光不均匀, 发光效果差。
[4] 为了解决上述问题, 有人开发了一种用于白光 LED的微晶玻璃荧光体, 该微晶 玻璃具有优异的稳定性能, 将该材料用于 LED封装后, 使白光 LED在长吋间工作 条件下不会发生色坐标偏移, 且发光效率及使用寿命下降这一现象得到大大缓 解。 然而, 该微晶玻璃的制备过程复杂, 特别是使玻璃析晶的退火工艺参数较 难掌握, 所以用于白光 LED的微晶玻璃荧光体很
[5] 难实现产业化。 于是, 又有人提出将荧光粉与低熔点玻璃粉进行混合, 在 1000
°C以上的高温熔融下烧制玻璃块, 直接将荧光粉惨入到玻璃中, 但是, 在此制备 过程中, 荧光粉会与玻璃熔体发生反应, 使荧光粉的荧光特性发生严重劣化。 对发明的公开
技术问题
[6] 有鉴于此, 本发明提供一种发光性能可靠性和稳定性高, 使用寿命长的发光玻 璃以及具有所述发光玻璃的发光装置。
[7] 本发明还提供一种制造温度较低、 能提高发光性能可靠性和稳定性的发光玻璃 制造方法。
技术解决方案
[8] —种发光玻璃, 其包括玻璃基质, 所述玻璃基质中具有玻璃部分和玻璃 -荧光 粉复合部分, 所述玻璃-荧光粉复合部分嵌入结合于所述玻璃部分, 所述玻璃-荧 光粉复合部分包括玻璃材料和分散在所述玻璃材料中的荧光粉, 所述荧光粉为 硅酸盐系列荧光粉。
[9] 一种发光玻璃制造方法, 其包括如下步骤:
[10] 提供玻璃板;
[11] 将荧光粉形成于所述玻璃板表面, 所述荧光粉为硅酸盐系列荧光粉; 及
[12] 加热软化所述玻璃板, 使得所述荧光粉分散在所述玻璃板中的部分区域, 形成 玻璃部分和嵌入结合于所述玻璃部分的玻璃 -荧光粉复合部分, 固化后形成一体 化的发光玻璃。
[13] 以及, 一种发光装置, 其包括上述的发光玻璃以及封装所述发光玻璃的封装体 有益效果
[14] 在发光玻璃及发光装置中, 由于玻璃 -荧光粉复合部分嵌入结合于玻璃部分, 该玻璃部分可以很好保护其内的荧光粉外界环境如湿气等的干扰, 而且玻璃具 有较好的不透气性和化学稳定性, 从而提高发光玻璃及发光装置的发光性能可 靠性和稳定性, 还能防止荧光粉发光特性的劣化, 增加发光玻璃及发光装置的 使用寿命。 在其制造方法中, 通过将荧光粉与玻璃板一起加热软化, 使得荧光 粉分散在玻璃板中的部分区域, 这样加热吋的温度只需要控制在玻璃的软化温 度上, 不需要高温熔融。 在加热过程中, 荧光粉会渗入软化的玻璃中, 结合成 为一体, 整个过程不会对荧光粉造成破坏, 提高了最后制得的发光玻璃的发光 性能可靠性和稳定性, 避免了传统的点胶后进行高温或光照易使荧光胶老化的 问题。 而且在整个制造过程中, 不需要繁杂的设备和工艺参数调节等方面, 使 得整个制造工艺操作简便, 生产效率高。
附图说明
[15] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[16] 图 1是本发明第一实施例的发光玻璃制造方法的流程示意图;
[17] 图 2是本发明第一实施例的发光玻璃制造方法的流程结构示意图;
[18] 图 3是本发明第二实施例的发光玻璃制造方法的流程结构示意图;
[19] 图 4是具有图 1中制造的发光玻璃的发光装置结构示意图。
本发明的实施方式
[20] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[21] 请参阅图 1, 为本发明第一实施例的发光玻璃制造方法流程, 该方法包括如下 步骤:
[22] S01 : 提供玻璃板;
[23] S02: 将荧光粉形成于所述玻璃板表面, 所述荧光粉为硅酸盐系列荧光粉; 及 [24] S03: 加热软化所述玻璃板, 使得所述荧光粉分散在所述玻璃板中的部分区域
, 形成玻璃部分和嵌入结合于所述玻璃部分的玻璃 -荧光粉复合部分, 固化后形 成一体化的发光玻璃。
[25] 如图 2所示, 本实施例提供第一玻璃板 1和第二玻璃板 3; 此吋步骤 S02-S03可釆 用如图所示的步骤, 具体如下:
[26] 荧光粉层形成: 将荧光粉形成于第一玻璃板 1表面, 形成荧光粉层 2, 所述荧光 粉为硅酸盐系列荧光粉; 夹层: 在所述荧光粉层 2上放置第二玻璃板 3, 使得所述荧光粉层 2夹在两层玻 璃板 1和 3之间; 及
加热软化成型: 加热软化各玻璃板 1和 3, 使得所述荧光粉分散在各玻璃板 1和 3 内, 固化后形成一体化的发光玻璃 10。
在荧光粉层形成步骤中, 请参阅图 2 (a) , 第一玻璃板的厚度可以是在 0.3-3毫 米之间, 优选为 0.5-1毫米之间, 第一玻璃板可釆用各种合适的低熔点玻璃, 例 如但不限于硼酸盐玻璃, 如 Na20-ZnO-B203-Si02。 合适材质的玻璃软化温度在 20 0°C -800°C之内, 优选软化温度为 200°C -600°C。 荧光粉层的厚度为 5-80微米, 优选为 10-40微米之间, 荧光粉材质为黄色荧光粉, 此处釆用适合波长为 420nm~ 480nm的光激发的硅酸盐系列黄色荧光粉, 该材料可直接釆用市售的商业荧光粉
(如由大连路明发光科技股份有限公司提供的 LMS-560型号产品) 。
[30] 荧光粉层可釆用涂覆或沉积、 喷涂等方式形成, 例如通过丝网印刷技术涂覆于 第一玻璃层 1表面。 当釆用这种成熟的丝网印刷技术, 可实现发光玻璃的工业化 大批量生产, 而且大大提高生产效率。
[31] 此外, 第一玻璃板 1还可经过预处理, 例如先切割成所需形状后, 打磨、 抛光
, 在一个具体实施例中, 第一玻璃板厚度控制在 0.5mm, 再制成形状统一的玻璃 板 1。
[32] 在夹层步骤中, 请参阅图 2 (b) , 荧光粉层 2夹在两层玻璃板 1和 3之间。 其中 第二玻璃板 3可以和第一玻璃板 1釆用相同或不同的玻璃材质, 根据实际需要而 定。 本实施例中, 第二玻璃板 3和第一玻璃板 1的结构、 尺寸和材质都基本相同 , 同样也经过预处理等步骤。 当釆用不同材质吋, 第一玻璃板 1和第二玻璃板 3 可以具有不同的尺寸、 结构, 或者某一个惨杂有特定化学材料 (如稀土元素) 不同的颜色, 以适应不同的需求。 因此, 通过本实施例的制造方法, 可以制备 出至少上下两层材质不同、 尺寸不同或惨杂成分不同的发光玻璃, 这是目前的 技术很难做到的。
[33] 在加热软化过程中, 加热温度为 200°C -800°C, 加热保温吋间为 0.5-5小吋。 优 选地, 进一步对各玻璃板的整体厚度进行调节, 以调控所制得的发光玻璃的厚 度。 同吋还可对各玻璃板加压, 使得荧光粉分散在各玻璃板内。 在一个具体的 实施例中, 如图 2 (c) 所示, 在加热软化吋, 可将一定重量的压块 6压在第二玻 璃板 3上, 以对第一、 第二玻璃板 1和 3同吋加压。 其中, 压块 6可以是一个平板 玻璃或平面金属板, 为方便调节其加压压力, 可以在板上增加重量可计的重物 , 如砝码等。 第一玻璃板 1放置于一平台如平面金属板 4上。 在第一、 第二玻璃 板 1和 3的四周或两侧放置可调节高度的阻隔体 5, 阻隔体 5的作用在于控制各玻 璃板 1和 3在加热软化并在压块 6的压力下, 形成的一体化发光玻璃 10的最终厚度 。 然后将图 2 (c) 所示的整体结构一起放入到电炉中, 加热到 530°C, 保温 90分 钟, 使玻璃板 1和 3软化并在压块 6的压力作用下两玻璃板 1和 3结合在一起, 荧光 粉惨杂其间。 最后冷却固化后, 第一、 第二玻璃板 1和 3形成玻璃基质 8, 由此制 得内部含有荧光粉的一体化结构的发光玻璃 10, 如图 2 (d) 所示。
[34] 如图 2 (d) 所示, 在发光玻璃 10中, 玻璃基质 8包括对应于第一、 第二玻璃板 1 和 3的两层玻璃部分 la、 3a, 荧光粉层 2嵌入于第一、 第二玻璃板 1和 3内, 由此形 成玻璃-荧光粉复合部分 2a, 该玻璃-荧光粉复合部分 2a嵌入结合于两层玻璃部分 la. 3a中, 并大致位于中间区域。 其中, 玻璃-荧光粉复合部分 2a包括玻璃材料 和分散在所述玻璃材料中的荧光粉, 玻璃材料分别为、 第二玻璃板 1和 3的材料 , 可以是相同或不同的材料。
[35] 另外, 可以理解的是, 也可只使用第一玻璃板 1, 在其上形成荧光粉层 2, 再用 其它金属板或模具罩在荧光粉层 2上, 或将形成有荧光粉层 2的第一玻璃板 1倒扣 在金属板 4上, 让荧光粉层 2贴着金属板 4, 然后再进行后续步骤, 形成由一块玻 璃板制成的发光玻璃, 此吋形成的发光玻璃也相应包括一个玻璃部分和嵌入结 合于该玻璃部分的玻璃 -荧光粉复合部分。
[36] 请参阅图 3, 为本发明第二实施例的发光玻璃制造方法流程, 示出各步骤中的 结构。 在本实施例中, 该方法也包括第一实施例 (如图 2所示) 中的各个步骤, 不同之处在于, 在第一次夹层后进一步重复在玻璃板上形成荧光粉层和下一次 夹层的步骤, 即如图 3 (B) 所示, 形成多层具有玻璃板夹荧光粉的结构, 其中 如图所示, 各玻璃板 1和 3与荧光粉层 2交替相间, 图中仅示例出五层的荧光粉层 2。 另外, 重复的玻璃板可以是选择第一玻璃板 1或第二玻璃板 3, 具体根据实际 需要选择。 此吋, 各玻璃板 1和 3可釆用相同或不同的尺寸、 材质或惨杂不同成 分, 各荧光粉层 2也可以具有不同厚度尺寸、 材质或其它成分, 从而使得发光玻
[37] 如图 3 (C) 和 (D) 所示, 该步骤与第一实施例中步骤类似, 只是被加热和加 压的对象换成多层结构的玻璃复合体, 在此不再赞述。 冷却固化后, 各玻璃板 形成一体化的玻璃基质, 由此即制得具有分散的多层荧光粉的发光玻璃 20。
[38] 根据上述方法, 可以通过控制荧光粉的涂覆厚度和层叠的玻璃板的数量, 以达 到最终发光玻璃的荧光粉惨杂率、 厚度和透光率的可控。
[39] 通过本实施例制得的发光玻璃 20结构基本类似于发光玻璃 20, 不同在于层数不 同, 图 3和图 2中相同的元件釆用相同的标号, 在此不再赞述。 如图 3 (D) 所示 , 在发光玻璃 20中, 玻璃基质 8包括对应于多个第一、 第二玻璃板 1和 3的多层玻 璃部分 la、 3a, 多层荧光粉层 2嵌入于对应的第一、 第二玻璃板 1和 3内, 由此形 成多层玻璃-荧光粉复合部分 2a, 该多层玻璃-荧光粉复合部分 2a分别嵌入结合于 多层玻璃部分 la、 3a中。 其中, 玻璃-荧光粉复合部分 2a包括玻璃材料和分散在 所述玻璃材料中的荧光粉。
[40] 通过本实施例制得的发光玻璃 10和 20如图 3 (d) 和 3 (D) 所示, 如上所述, 各 玻璃板加热软化并固化后形成玻璃基质, 在一个实施例中, 该玻璃基质是一体 化结构, 当各玻璃板釆用同种材质吋, 玻璃基质即为一块玻璃体, 当釆用不同 材质吋, 则为由不同材质构成的玻璃体。 由上述方法可知, 荧光粉基本上分散 在玻璃基质的中间位置, 即在各玻璃板相结合的附近区域。 该发光玻璃 10和 20 可应用在各种 LED光源、 液晶显示器、 平板显示器、 等离子体显示器等发光装置 中。 这些发光装置都包括上述的发光玻璃 10或 20以及封装该发光玻璃 10或 20的 封装体。 如图 4所示, 一发光装置 30包括发光玻璃 10和封装发光玻璃 10的封装体 18 (如硅胶或环氧树脂) , 封装体 18进一步封装一个 LED芯片 9在其中, 封装体 1 8装设在一反射杯 12内。 当 LED芯片发出的蓝光进入发光玻璃 10吋, 激发其内的 荧光粉发光, 并由封装体 18发射出。
[41] 在上述制造方法中, 由于玻璃板 1和 3可以有较自由的选择空间, 可选择所选用 的玻璃材质具有很高的透光率、 很强的可加工性, 玻璃还具有不透气性和化学 稳定性, 可以很好保护分散在其中的荧光粉不受到空气中湿气的影响, 防止其 发光特性的劣化。 由于所述玻璃的软化点较低, 荧光粉的耐热性足以经得住通 过加热软化使玻璃一体化吋的温度, 使得在加热软化过程中不会导致荧光粉性 能的劣化。
[42] 在发光玻璃及发光装置中, 由于玻璃-荧光粉复合部分 2a嵌入结合于玻璃部分 la 、 3a, 该玻璃部分 la、 3a可以很好保护其内的荧光粉外界环境如湿气等的干扰, 而且玻璃具有较好的不透气性和化学稳定性, 从而提高发光玻璃及发光装置的 发光性能可靠性和稳定性, 还能防止荧光粉发光特性的劣化, 增加发光玻璃及 发光装置的使用寿命。 在其制造方法中, 通过将荧光粉与玻璃板一起加热软化 , 使得荧光粉分散在玻璃板中的部分区域, 这样加热吋的温度只需要控制在玻 璃的软化温度上, 不需要高温熔融。 在加热过程中, 荧光粉会渗入软化的玻璃 中, 结合成为一体, 整个过程不会对荧光粉造成破坏, 提高了最后制得的发光 玻璃的发光性能可靠性和稳定性, 避免了传统的点胶后进行高温或光照易使荧 光胶老化的问题。 而且在整个制造过程中, 不需要繁杂的设备和工艺参数调节 等方面, 使得整个制造工艺操作简便, 生产效率高。
[43] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
一种发光玻璃, 其包括玻璃基质, 其特征在于, 所述玻璃基质中 具有玻璃部分和玻璃-荧光粉复合部分, 所述玻璃-荧光粉复合部分 嵌入结合于所述玻璃部分, 所述玻璃-荧光粉复合部分包括玻璃材 料和分散在所述玻璃材料中的荧光粉, 所述荧光粉为硅酸盐系列 荧光粉。
如权利要求 1所述的发光玻璃, 其特征在于, 所述玻璃部分包括至 少两层玻璃部分, 所述玻璃 -荧光粉复合部分包括至少一层玻璃-荧 光粉复合部分, 所述至少一层玻璃-荧光粉复合部分嵌于各层玻璃 部分之间。
如权利要求 2所述的发光玻璃, 其特征在于, 所述至少两层玻璃部 分的材质相同或不同。
一种发光玻璃制造方法, 其包括如下步骤:
提供玻璃板;
将荧光粉形成于所述玻璃板表面, 所述荧光粉为硅酸盐系列荧光 粉; 及
加热软化所述玻璃板, 使得所述荧光粉分散在所述玻璃板中的部 分区域, 形成玻璃部分和嵌入结合于所述玻璃部分的玻璃-荧光粉 复合部分, 固化后形成一体化的发光玻璃。
如权利要求 4所述的发光玻璃制造方法, 其特征在于, 所述提供玻 璃板的步骤包括提供第一玻璃板和第二玻璃板; 再将荧光粉形成 于第一玻璃板表面, 形成荧光粉层; 在所述荧光粉层上放置第二 玻璃板, 使得所述荧光粉层夹在两块玻璃板之间; 然后加热软化 各玻璃板, 使得所述荧光粉分散在各玻璃板内。
如权利要求 5所述的发光玻璃制造方法, 其特征在于, 在所述荧光 粉层夹在两块玻璃板间之后进一步重复进行荧光粉层的形成步骤 和用玻璃板夹荧光粉层的步骤, 形成多层具有玻璃板夹荧光粉的 结构, 再将所述多层结构加热软化, 以形成多层玻璃 -荧光粉复合 部分分别嵌入于多层玻璃部分之间的发光玻璃。
[Claim 7] 如权利要求 5所述的发光玻璃制造方法, 其特征在于, 所述个玻璃 板的厚度为 0.3-3毫米, 所述荧光粉层的厚度为 5-80微米。
[Claim 8] 如权利要求 4所述的发光玻璃制造方法, 其特征在于, 所述荧光粉 通过丝网印刷、 沉积或喷涂的方法形成于所述第一玻璃板表面。
[Claim 9] 如权利要求 4所述的发光玻璃制造方法, 其特征在于, 在加热软化 吋进一步对所有玻璃板的整体厚度进行调节, 以调控所制得的发 光玻璃的厚度。
[Claim 10] 如权利要求 4所述的发光玻璃制造方法, 其特征在于, 在加热软化 吋进一步对所有玻璃板加压, 使得所述荧光粉嵌入于各玻璃板内
[Claim 11] 如权利要求 4所述的发光玻璃制造方法, 其特征在于, 所述加热过 程中的温度为 200°C -800°C, 加热吋间为 0.5~5小吋。
[Claim 12] 一种发光装置, 其特征在于, 包括如权利要求 1所述的发光玻璃以 及封装所述发光玻璃的封装体。
PCT/CN2009/074237 2009-09-23 2009-09-25 发光玻璃、其制造方法及发光装置 WO2011035478A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2009801614544A CN102510803A (zh) 2009-09-25 2009-09-25 发光玻璃、其制造方法及发光装置
US13/497,815 US20120177866A1 (en) 2009-09-23 2009-09-25 Luminescent glass, producing method thereof and luminescent device
PCT/CN2009/074237 WO2011035478A1 (zh) 2009-09-25 2009-09-25 发光玻璃、其制造方法及发光装置
JP2012530078A JP2013505853A (ja) 2009-09-25 2009-09-25 発光ガラス及びその製造方法、並びに発光装置
EP09849666.4A EP2481573B1 (en) 2009-09-25 2009-09-25 Luminescent glass, producing method thereof and luminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/074237 WO2011035478A1 (zh) 2009-09-25 2009-09-25 发光玻璃、其制造方法及发光装置

Publications (1)

Publication Number Publication Date
WO2011035478A1 true WO2011035478A1 (zh) 2011-03-31

Family

ID=43795287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074237 WO2011035478A1 (zh) 2009-09-23 2009-09-25 发光玻璃、其制造方法及发光装置

Country Status (5)

Country Link
US (1) US20120177866A1 (zh)
EP (1) EP2481573B1 (zh)
JP (1) JP2013505853A (zh)
CN (1) CN102510803A (zh)
WO (1) WO2011035478A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1603265A (zh) * 2003-10-04 2005-04-06 大连路明发光科技股份有限公司 新型长余辉发光玻璃及其制造方法
US20050274967A1 (en) * 2004-06-09 2005-12-15 Lumileds Lighting U.S., Llc Semiconductor light emitting device with pre-fabricated wavelength converting element
CN101186436A (zh) * 2006-11-15 2008-05-28 王国忠 蓄光玻璃工艺制品及生产方法
CN101468878A (zh) * 2007-12-29 2009-07-01 一品光学工业股份有限公司 模造荧光玻璃镜片及其制造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027191A (en) * 1970-12-16 1977-05-31 Schaufele Robert F Phosphor geometry for color displays from a multiple gaseous discharge display/memory panel
JPH03141138A (ja) * 1989-10-26 1991-06-17 Pioneer Electron Corp 自動車窓用遮光ガラス
JP2746192B2 (ja) * 1995-05-09 1998-04-28 双葉電子工業株式会社 低速電子線用蛍光体
JP2004158695A (ja) * 2002-11-07 2004-06-03 Okaya Electric Ind Co Ltd ランプ構造
JP4259198B2 (ja) * 2003-06-18 2009-04-30 豊田合成株式会社 発光装置用波長変換部の製造方法及び発光装置の製造方法
CN100511732C (zh) * 2003-06-18 2009-07-08 丰田合成株式会社 发光器件
DE102005023134A1 (de) * 2005-05-19 2006-11-23 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Lumineszenzkonversions-LED
JP5219331B2 (ja) * 2005-09-13 2013-06-26 株式会社住田光学ガラス 固体素子デバイスの製造方法
JP4979299B2 (ja) * 2006-08-03 2012-07-18 豊田合成株式会社 光学装置及びその製造方法
JP2008115223A (ja) * 2006-11-01 2008-05-22 Nec Lighting Ltd 蛍光体含有ガラスシート、その製造方法及び発光装置
US20090189514A1 (en) * 2008-01-29 2009-07-30 Kabushiki Kaisha Toshiba Luminescent material
JP5459968B2 (ja) * 2008-03-04 2014-04-02 ベック株式会社 積層体
WO2010140417A1 (ja) * 2009-06-05 2010-12-09 コニカミノルタオプト株式会社 波長変換用ガラス部材の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1603265A (zh) * 2003-10-04 2005-04-06 大连路明发光科技股份有限公司 新型长余辉发光玻璃及其制造方法
US20050274967A1 (en) * 2004-06-09 2005-12-15 Lumileds Lighting U.S., Llc Semiconductor light emitting device with pre-fabricated wavelength converting element
CN101186436A (zh) * 2006-11-15 2008-05-28 王国忠 蓄光玻璃工艺制品及生产方法
CN101468878A (zh) * 2007-12-29 2009-07-01 一品光学工业股份有限公司 模造荧光玻璃镜片及其制造方法

Also Published As

Publication number Publication date
EP2481573A1 (en) 2012-08-01
EP2481573A4 (en) 2013-04-03
JP2013505853A (ja) 2013-02-21
CN102510803A (zh) 2012-06-20
US20120177866A1 (en) 2012-07-12
EP2481573B1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
WO2011035475A1 (zh) 发光玻璃、其制造方法及发光装置
WO2011035483A1 (zh) 半导体发光器件及其封装方法
JP5854367B2 (ja) 蛍光体複合部材の製造方法
WO2011035474A1 (zh) 发光玻璃、其制造方法及发光装置
WO2011035482A1 (zh) 发光玻璃、其制造方法及发光装置
CN101707232A (zh) Led产品及其制造方法
WO2011035477A1 (zh) 发光玻璃、其制造方法及发光装置
WO2012009853A1 (zh) 一种发射白光的玻璃陶瓷及其制备方法
WO2011035478A1 (zh) 发光玻璃、其制造方法及发光装置
WO2011035479A1 (zh) 发光玻璃、其制造方法及发光装置
WO2011035480A1 (zh) 发光玻璃、其制造方法及发光装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161454.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13497815

Country of ref document: US

Ref document number: 2012530078

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009849666

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009849666

Country of ref document: EP