WO2011032466A1 - 数据传送、接收的方法及装置 - Google Patents

数据传送、接收的方法及装置 Download PDF

Info

Publication number
WO2011032466A1
WO2011032466A1 PCT/CN2010/076663 CN2010076663W WO2011032466A1 WO 2011032466 A1 WO2011032466 A1 WO 2011032466A1 CN 2010076663 W CN2010076663 W CN 2010076663W WO 2011032466 A1 WO2011032466 A1 WO 2011032466A1
Authority
WO
WIPO (PCT)
Prior art keywords
0fdma
subcarrier
unit
data
scheduling
Prior art date
Application number
PCT/CN2010/076663
Other languages
English (en)
French (fr)
Inventor
邹世敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP10816670A priority Critical patent/EP2479947A4/en
Publication of WO2011032466A1 publication Critical patent/WO2011032466A1/zh
Priority to US13/421,464 priority patent/US8891352B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/265Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and an apparatus for data transmission and reception. Background technique
  • OFDM Orthogonal Fre-quency Division Multiplexing
  • the subcarriers have overlapping portions. Usually, overlapping adjacent channels interfere with each other.
  • subcarriers are exactly orthogonal to each other, and the power maximum point of each subcarrier directly corresponds to the minimum point of adjacent channel power, and these subcarriers It is possible to partially overlap without interfering with each other. Therefore, the 0FDM system can maximize the efficiency of the spectrum without causing interference between adjacent channels. Since the transmission rate of the channel increases as the channel bandwidth increases, the 0FDM system allows higher data throughput and more efficient use of frequency than the conventional F-leg system.
  • the 0FDM system uses digital signal processing technology.
  • the generation and reception of each subcarrier are performed by digital signal processing algorithms, including IFFT (Inverse Fast Fourier Transform) and FFT (Fast Fourier Transform).
  • IFFT Inverse Fast Fourier Transform
  • FFT Fast Fourier Transform
  • the OFDM demodulation process is the FFT/DFT (Inverse Discrete Fourier Transform) process:
  • OFDM is the core technology of wireless 4G LTE (Long Term Evolution). It is also one of the hotspots in the optical network. It is initially applied to high-rate transmission systems to improve the anti-dispersion capability of the system. .
  • OFDM technology is also the latest technology hotspot.
  • An OFDMA Orthogonal Fre-quency Division
  • Orthogonal Frequency Division Multiple Access OFDM
  • R0ADM Reconfigurable Optical Add-drop Multiplexer
  • each network node allocates a loop bandwidth according to the number of OF ⁇ carriers, and each node transmits wavelengths that are different G.692 wavelengths, all nodes share the same 0FDMA frame, and Superimposed at different wavelengths;
  • the optical receiver in the node is a multi-wavelength receiver that receives all wavelengths simultaneously, and its tributary board has the digital signal processing (IFFT/FFT), AD (modulo) required for 0FDMA ) /DA (Digital to Analog) conversion, M-QAM (M-Quadature Amplitude Modulation) encoding/decoding, port data flow monitoring and other functions.
  • IFFT/FFT digital signal processing
  • AD modulo
  • 0FDMA Digital to Analog
  • M-QAM M-Quadature Amplitude Modulation
  • the SPLITTER reaches the second optical switch, reaches the AD converter in the 0NU, converts to digital signal, and then goes through digital down conversion and FFT processing and M. - QAM decoding process, recovering the data signal.
  • the downlink processing of 0 requires the authorization of 0LT to DROP DW0N (landing or separating) the assigned 0FDMA subcarrier; the upstream of 0NU monitors the data traffic in the buffer, sends a bandwidth request to 0LT, and 0LT receives all 0 volumes. After the bandwidth request, the bandwidth allocation algorithm calculates the allocation result, and then sends a bandwidth grant signal to each 0.
  • the frame structure on the ring network is TDD (Time Division Duplex) mode, that is, the uplink and downlink form the same large frame, which is divided into uplink subframe and downlink subframe in time, and the uplink subframe is adopted.
  • TDD Time Division Duplex
  • 0FDMA and TDMA Time Division Multiple Access
  • two-dimensional frame structure mode dividing time slots in units of 125 US; loading burst packets in each time slot, formatted with GPON (Gigabit-Capable)
  • the uplink burst packet format in the Passive Optical Network is similar.
  • 0TN technology Optical Transport Networks
  • ITU-T International Telecommunications Union-Telecommunications Standardization Section
  • the main task of 0TN is based on digital encapsulation and transmission of customer signals above 1G rate.
  • the cross-scheduling granularity is at least 1G level, and the commonly used cross-scheduling granularity is 1G/2.5G 0G level.
  • Embodiments of the present invention provide a data transmission method for implementing a connection between any nodes by using 0FDMA subcarrier scheduling, and the method includes:
  • the embodiment of the present invention further provides a data receiving method, which is used to implement connection between any nodes by using 0FDMA subcarrier scheduling, and the method includes:
  • the 0FDMA subcarrier is demapped, and the original data stream is recovered and sent to the user network.
  • the embodiment of the present invention further provides a data transmission apparatus, configured to implement connection between any nodes by using 0FDMA subcarrier scheduling, and the apparatus includes:
  • a cross unit for scheduling the 0FDMA subcarrier from the tributary unit to the line unit; a line unit, configured to perform multiplexing processing on the 0FDMA subcarrier to generate an 0FDMA frame; and transmit the 0FDMA frame.
  • the embodiment of the present invention further provides a data receiving apparatus, configured to implement connection between any nodes by using 0FDMA subcarrier scheduling, and the apparatus includes:
  • a line unit configured to receive an OFDM frame; perform digital filtering on the OFDM frame, Obtaining an OFDMA subcarrier;
  • the data stream to be transmitted is mapped to the OFDM subcarrier; the OFDMA subcarrier is scheduled; the OFDM subframe is multiplexed to generate an OFDMA frame; and the OFDMA frame is transmitted; Multi-wavelength superimposes OFDMA frames in the optical domain, but processes the 0FDMA frames based on the electrical layer, and performs sub-carrier or channel multiplexing on the electrical layer, thereby implementing the cross-connection capability based on the 0FDMA sub-carriers, and not only supporting all the slave nodes to the master node.
  • the convergence service also supports dedicated line connections between nodes.
  • the 0FDMA frame is received; the OFDMA frame is digitally filtered to obtain an OFDM subcarrier; the 0FDMA subcarrier is scheduled; the OFDMA subcarrier is demapped, and the original data stream is recovered and sent to the user network;
  • the OFDMA frame is superimposed in the optical domain based on multiple wavelengths, and the 0FDMA frame is processed based on the electrical layer, and the subcarrier or channel is demultiplexed on the electrical layer, thereby implementing the cross-connect capability based on the 0FDMA subcarrier. It not only supports all the aggregation services from the node to the master node, but also supports the dedicated line connection between the slave nodes.
  • FIG. 1 is a flowchart of processing of a data transmission method according to an embodiment of the present invention
  • mapping and multiplexing 0FDMA subcarriers according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an OFDMA-ODUI format in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an OFDM frame in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a specific example of a data transmission method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of processing of a data receiving method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a digitally filtered 0FDMA frame according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of an OF picture A frame flowing through a node according to an embodiment of the present invention
  • FIG. 9 is a data transmission device according to an embodiment of the present invention. Schematic diagram of the structure
  • FIG. 10 is a schematic diagram of a specific implementation of a data transmission apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a data receiving apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a specific implementation of a data receiving apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a data transmission network element according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make the objects, technical solutions and advantages of the embodiments of the present invention more clearly, the embodiments of the present invention will be further described in detail below.
  • the illustrative embodiments of the present invention and the description thereof are intended to be illustrative of the invention, but are not intended to limit the invention.
  • the processing flow of the data transmission method may include: Step 101: Map a data stream to be transmitted to an 0FDMA subcarrier;
  • Step 102 Schedule the 0FDMA subcarrier.
  • Step 103 Multiplexing the 0FD A subcarrier to generate an 0FDMA frame.
  • Step 104 Transmit the 0FDMA frame.
  • the data stream to be transmitted is mapped to an OFDM subcarrier; the OFDMA subcarrier is scheduled; the OFDM subcarrier is multiplexed to generate an OFDM frame; OFDMA frame; different from the prior art, based on multi-wavelength superposition of 0FDMA frames in the optical domain, but processing of 0FDMA frames based on electrical layers, multiplexing of subcarriers or channels on the electrical layer, thereby implementing cross-connection based on 0FDMA subcarriers Capability, not only supports all the aggregation services from the node to the master node, but also supports the dedicated line connection between the two nodes.
  • the method may further include: initiating a DBA (Dynami c Bandwi dth Al loca t ion) request; Receiving bandwidth allocation information calculated according to the DBA request, the service priority, and the bandwidth resource; and subsequently mapping the data stream to be transmitted to the 0FDMA subcarrier according to the bandwidth allocation information.
  • DBA Dynamic c Bandwi dth Al loca t ion
  • the implementation is based on the following: If the maximum peak rate transmission of FE (Fas t Ethernet) is satisfied, the allocation of subcarriers is fixed, but in fact, the data traffic in the FE port is dynamically changed, if only considered The maximum traffic is allocated to the subcarriers, and the line bandwidth cannot be effectively utilized. Therefore, in order to effectively utilize the line bandwidth, multiple FE ports need to be statistically multiplexed.
  • the implementation of the statistical multiplexing process in this embodiment can be completed by the master node.
  • the slave node detects the traffic of the data stream to be transmitted from the user network through the statistics of the traffic of each branch port, and generates a DBA request corresponding to each port according to the detected traffic, inserts into the overhead subcarrier, and transmits to the primary node.
  • the primary node uses the DBA algorithm to perform fair bandwidth allocation according to the DBA request, service priority, and bandwidth resources, and obtains branches of each slave node network element.
  • the bandwidth allocation information required by the interface, or bandwidth map, including the number and number of subcarriers, is sent to each slave node; the slave node performs mapping processing according to the allocated bandwidth map, and the branch traffic is to be transmitted.
  • the data stream is mapped to the allocated OFDM subcarriers, and is transmitted to the destination node after subcarrier scheduling and multiplexing.
  • the DBA algorithm does not have the ability to converge on the high-priority service, and performs the statistical multiplexing on the low-priority service according to the application of the L2 switch in the aggregation network.
  • the ratio is usually 1:10.
  • the convergence ratio of the DBA algorithm of this embodiment takes into account the service priority.
  • the convergence ratio of the low priority service can be set to 1:6 to 1:8, assuming that half of the services are high priority.
  • the service level on the average can reach a convergence ratio of 1:3 to 1:4, which means that the transmission network of this embodiment can actually access 60 to 80 FE ports, that is, 60 to 80 LTE base stations.
  • the embodiment of the present invention can achieve high bandwidth utilization efficiency, and the LGGABIT ETHERNET (Gigabit Ethernet) low-cost optical transmitting and receiving device can achieve a transmission rate of more than 2G.
  • Increased sampling rate and large capacity of the A/D converter With the advancement of high-speed DSP (Dig i ta ls igna l Proces s ing, digital signal processing) technology, bandwidth utilization can be further improved.
  • the sampling rate of the A/D converter that can provide the highest sampling rate in the industry is 56GBIT/S and the resolution is 6 bits, so the 10GBIT/S data stream is transmitted on the optical channel of 1.5GBIT/S, or at 10GBIT. It is completely feasible to transmit a 40GBIT/S data stream on the /S optical channel.
  • the bandwidth of the subcarrier channel is variable, it is suitable for the transmission of subrate services at any rate, from 2MBIT/S data stream of 2G radio base station to several 2MBIT/S data streams of 3G and then to 50MBIT/S of 4G. Both the data stream and the downlink 100 MBIT/S data stream, or 1G GIGABIT ETHERNET, can be delivered using the subcarriers in the embodiments of the present invention.
  • the convergence ability of the DBA can bring high flexibility to the transmission bandwidth.
  • the line rate from 2GBIT/S is initially 20 LTE base stations, and the DBA 3-4 times convergence ratio can be increased to 60 - Expansion of 80 LTE base stations.
  • the convergence of the DBA avoids the problem that the modulation bandwidth or subcarrier spacing grows according to the access bandwidth line type, thereby avoiding the problem of linear expansion of the backbone network.
  • Convergence bandwidth also ensures Q0S of different priority services to avoid blocking. This is DBA.
  • An embodiment of improving the utilization of subcarrier bandwidth It also shows that this flexibility can adapt well to the bandwidth changes of wireless access and fixed-line broadband access from 2G to 3G to 4G, and is a good technical choice for access and aggregation environments.
  • the method may include: adapting the rate of the data stream to match the bearer rate of the OF leg A subcarrier.
  • the data stream to be transmitted from the user network is adapted to a data stream that is consistent with the bearer rate of the allocated OFDM subcarriers, for example, when the bearer rate of each subcarrier is 4 MBIT/S.
  • the transmitted client signal rate is 10MBIT/S
  • a total of three 0FDMA subcarriers are required, and the data stream of 10MBIT/S needs to be adapted to 12MBIT/S.
  • the rate adjustment can be implemented in a positive manner to adjust the rate to the allocated subcarriers.
  • GFP can be used.
  • the /GEM adaptation protocol is adapted to the assigned subcarrier rate.
  • mapping the data stream to be transmitted to the OFDM subcarrier may include: Encoding the data stream; performing IFFT processing on the encoded data stream, and modulating to the 0FDMA subcarrier.
  • the encoding process performed on the data stream may be an encoding process such as M-QAM or QPSK.
  • mapping the data stream to be transmitted to the 0FDMA subcarrier in a specific implementation may also include: mapping the data stream to be transmitted to the 0FDMA subcarrier payload unit, and mapping the 0FDMA subcarrier payload unit to 0FDMA subcarrier data unit.
  • the data stream to be transmitted may be mapped to OFDMA- 0PU1 (Opt ica l channel Payload Uni t), which is a single subcarrier payload unit; or the rate is sub-rate (sub-rate)
  • the rate i times the data stream to be transmitted is adapted to be mapped to OFDMA-OPUi, where i is an integer, and OFDMA-OPUi indicates that the payload area capacity is i times 0FDMA-0DU1, that is, at least i subcarriers.
  • the data stream to be transmitted may be subjected to the foregoing rate adaptation to form a sub-rate data stream, and then mapped.
  • the OFDMA-OPUi payload subcarrier plus the overhead subcarrier forms the OFDMA-ODUi (Optical Channel Data Unit) format, that is, the subcarrier data unit, as shown in FIG.
  • OFDMA-ODUi Optical Channel Data Unit
  • multiple subrate services can be bundled together to share one subcarrier. Wave; or in the case of a single subrate service transmission, the overhead is inserted in the coding layer for management.
  • the overhead subcarriers can be set as needed.
  • the scheduling entity may be OFDMA-ODDUi, and the scheduling granularity may be a single subcarrier, that is, 0FDMA-0DU1. Scheduling with a single OFDM subcarrier as a granularity may be performed in various manners.
  • an OFDMA subcarrier whose input frequency is a first frequency may be scheduled to an OFDM subcarrier whose output frequency is the first frequency; or After the frequency of the 0FDMA subcarrier whose input frequency is the first frequency is converted into the second frequency (for example, f2), it is scheduled to the 0FDMA subcarrier whose output frequency is the second frequency.
  • the 0FDMA subcarrier data unit whose input frequency band is the first frequency band (for example, B1) can be scheduled to the 0FDMA whose output frequency band is the first frequency band.
  • the frequency band of the 0FDMA subcarrier data unit whose input frequency band is the first frequency band may be converted into the second frequency band (for example, B2), and then scheduled to the OF-A subcarrier whose output frequency band is the second frequency band Data unit.
  • the second frequency band for example, B2
  • a single subcarrier or channel is multiplexed into a complete OFDMA frame by multiplexing of subcarriers; for example, as shown in FIG. 1, multiple OFDM subcarrier data units including one payload subcarrier may be multiplexed And forming an OFDM subcarrier data unit that includes multiple payload subcarriers, for example, multiplexing i OFDMA-OFDM1 into OFDMA-ODUI, and further multiplexing the multiplexed OFDM subcarriers including multiple payload subcarriers
  • the data unit is superposed by subcarriers and multiplexed into an OFDM channel group.
  • the OFDMA-ODDUi, OFDMA-0DUj, and OFDMA-ODUk are multiplexed into OFDMA-CG (the channel group formed by the OFDMA subcarrier or the channel), that is, as shown in the figure. 4
  • OFDMA-ODUi is a channel containing at least i payload subcarriers. 1 ⁇ i+j+k ⁇ N, N is the total number of subcarriers in the OFDMA frame, that is, the number of N points in the IFFT operation.
  • the line frame format includes several OFDM subcarriers, some of which can be allocated for transmission overhead, and most of the subcarriers are used for transmitting data; the number of subcarriers can depend on subcarrier spacing and modulation.
  • Bandwidth for example, when the sampling frequency of the A/D converter is 2 GHz, the modulation bandwidth is half of the sampling frequency, that is, 1 GHz; ⁇ Assuming that the subcarrier spacing is 1 MHz, a total of 1000 subcarriers are required.
  • M-QAM coding can improve bandwidth utilization, for example, 16QAM can achieve 4BIT/HZ bandwidth utilization.
  • a sub-carrier of 1 circle can actually carry a digital rate of 4MBIT/S, that is, 1GHZ.
  • the modulation bandwidth can actually deliver data rates up to 4GBIT/S.
  • the method further includes: inserting a cyclic prefix or a frame interval in the OFDM frame; performing digital to analog conversion deal with.
  • transmitting the 0FDMA frame may include: adapting the 0FDMA frame Transfer to the optical channel or Ti wave channel.
  • the 0FDMA frame is adapted to the OCH (Optical Channel).
  • the OFDM-CG is adapted to 0CH, that is, the wavelength, and then the 0CC (Optical Channel Carrier) is formed. (Optical Carrier Groups, optical carrier groups) are transmitted. Therefore, the embodiment of the present invention can also implement further expansion by extending the 0CH.
  • the embodiment of the present invention is compatible with the mapping path of G.709, and the mapping path of 0FDMA subcarriers is added to the mapping path of G.709.
  • the 0TUK to 0CH adaptation uses direct modulation.
  • the 0TUK (fully standardized optical channel transmission unit) rate reaches 40GBIT/S or more, direct modulation will bring a large waste of optical domain bandwidth, for example.
  • the wavelength interval in the current TOM network mostly uses 50Ghz interval.
  • the 0TUK rate is lOOGbitZs, the direct modulation will make the bandwidth of the optical domain exceed one wavelength interval, and cannot be applied in the 50 GHz interval TOM network.
  • the embodiment of the present invention is compatible with the 0TN system at the 0CH layer, and can be used as a supplement and improvement of the existing 0TN system, improving the existing 0TN modulation mode, and improving spectrum utilization efficiency.
  • the embodiment of the present invention can be used as an NG (Next Generation) 0TN (Optical Transport Network). A technical choice.
  • the 0FDMA subcarrier and the 0CH are substantially frequency domain signals, and the signal transparency of the data stream to be transmitted by the user is very good; here, the 0F MN subcarrier signal is equivalent to the intermediate frequency modulation signal, and Directly modulating to the optical field OCH (Optical Channel), or modulating to the microwave RF (Radio Frequency), for example, directly modulating the above-mentioned 500 MHz bandwidth 0FDMA baseband or intermediate frequency signal to E-BAND (E-band) Microwave, no other processing is required, which has outstanding advantages over other existing TDM (Time Division Multiplex) systems. Through such a system, the optical transmission (0CH) and wireless transmission are truly
  • 0FDMA and wave transmission (RF) are combined to form a unified technical system, in which 0FDMA subcarrier processing is the core, which has great benefits for simplifying the design of transmission products; Long integration is more suitable for future capacity expansion.
  • the method shown in the figure mainly includes: performing rate adaptation on services such as TDM services, data, and video, and adapting the rate of the data stream to be transmitted to the bearer of the 0FDMA subcarrier.
  • the rates are consistent, for example, the TOM adaptation protocol, GFP/GEM adaptation adapts the rate of the data stream to be transmitted to the allocated subcarrier rate;
  • mapping the data stream to be transmitted to the OFDMA subcarrier includes: performing coding layer processing on the data stream and OFDM subcarrier channel layer processing, where the 0FDMA subcarrier channel layer processing includes: processing the encoded Performing I FFT processing on the data stream, modulating to 0FDMA subcarriers; scheduling 0FDMA subcarriers; multiplexing the 0FDMA subcarriers to generate 0FDMA frames;
  • the generated 0FDMA frame is then transmitted, which may include: adapting the 0FDMA frame to 0CH via physical fiber transmission, or adapting to microwave transmission;
  • FIG. 5 also shows a process of allocating bandwidth by DBA request and DBA calculation, that is, initiating a DBA request before mapping the data stream to be transmitted to the OFDMA subcarrier; receiving according to the DBA request, service priority And the bandwidth allocation information calculated by the bandwidth resource, and mapping the data stream to be transmitted to the 0FDMA subcarrier according to the bandwidth allocation information.
  • the embodiment of the present invention further provides a data receiving method.
  • the processing flow may include:
  • Step 601 Receive an 0FDMA frame.
  • Step 602 Perform digital filtering processing on the 0FDMA frame to obtain an OF A subcarrier.
  • Step 603 Schedule the 0FDMA subcarrier.
  • Step 604 Demap the 0FDMA subcarrier, and restore the original data stream to the user network. It can be seen from the flow shown in FIG. 6 that, in the embodiment of the present invention, an OFDMA frame is received; digitally filtering the 0FDMA frame to obtain an OFDMA subcarrier; scheduling the OFDMA subcarrier; and demaping the 0FDMA subcarrier, Recovering the original data stream and sending it to the user network; different from the prior art, the 0FDMA frame is superimposed in the optical domain based on multiple wavelengths, and the 0FDMA frame is processed based on the electrical layer, and the subcarrier or channel is demultiplexed on the electrical layer, thereby Implement cross-connection based on 0FDMA subcarriers
  • the connection capability not only supports all the aggregation services from the node to the master node, but also supports the dedicated line connection between the slave nodes.
  • the 0FDMA frame transmitted by the optical channel or the oscillating channel may be received; and the received OF frame is converted into the OF frame to be received by the telecommunication before the digital filtering process is performed on the OFDM frame.
  • the method may further include: performing an analog-to-digital conversion process; and removing a cyclic prefix or a frame interval in the 0FDMA frame.
  • the demapping process may include: performing FFT processing on the 0FDMA subcarrier; and performing decoding processing on the FFT processed OFDM subcarrier.
  • the multiplexing process of the foregoing embodiment superimposes the subcarriers or channels sent from the node BYPASS (sending) and the subcarriers or channels of the branch ADD (superimposed), wherein the sub-carrier from the branch ADD
  • the format of the carrier or channel is the same or similar to the scheduled subcarrier or channel format.
  • Figure 8 and Figure 7 are superimposed to form a complete 0FDMA frame as shown in Figure 4.
  • the frame format at the time of the demapping process is a continuous equal length IFFT block; in the optical fiber in one direction, the transmission path of the subcarriers in the 0FDMA frame The same, so there is no delay difference between subcarriers; however, the 0FDMA frame in the fiber in different directions on the loop differs in the transmission path, so there is a delay difference. Therefore, the subcarrier or channel can pass the BUFFER (buffer 1 to find multiple inputs of OFDMA) before the crossover The frame is adjusted to the phase of the internal frame of the system, which is equivalent to the frame alignment process.
  • the cross scheduling establishment delay implemented in this embodiment is small. Specifically, since the integration period of the IFFT is not long, the minimum subcarrier period of 1000 subcarriers is 1 US according to the above lGhz bandwidth calculation; even if multiple IFFTs share one GAP to form an 0FDMA frame, the period is a few subtle levels, so that The cross processing delay is small, and the implementation is relatively simple.
  • scheduling the 0FDMA subcarrier may include:
  • Scheduling with a single 0FDMA subcarrier as a granularity scheduling OF A subcarrier data units; or scheduling between 0FDMA subcarrier data units consisting of the same number of 0FDMA subcarriers.
  • the scheduling of the 0FDMA subcarrier data unit by using the single 0FDMA subcarrier as the granularity may include:
  • Scheduling between 0FDMA subcarrier data units consisting of the same number of 0FDMA subcarriers may include:
  • the 0FDMA subcarrier data unit whose input frequency band is the first frequency band is scheduled to the 0FDMA subcarrier data unit whose output frequency band is the first frequency band;
  • the frequency band is scheduled to be the 0FDMA subcarrier data unit of the second frequency band.
  • the storage medium may include: ROM, RAM, magnetic disk, optical disk, and the like.
  • a data transfer device is also provided in the embodiment of the present invention, as described in the following embodiments. Since the principle of solving the problem of the device is similar to the data transmission method, the implementation of the device can See the implementation of the method, and the repetition will not be repeated.
  • the data transmission apparatus in the embodiment of the present invention may include:
  • the tributary unit 901 is configured to map the data stream to be transmitted to the 0FDMA subcarrier, and the cross unit 902 is configured to schedule the OF ⁇ A subcarrier from the tributary unit to the line unit;
  • a line unit 9 03 configured to perform multiplexing processing on the 0FDMA subcarrier to generate an 0FDMA frame; and transmit the 0FDMA frame.
  • Figure 10 is a specific implementation of the data transfer device shown in Figure 9. As shown in FIG. 9, in an embodiment, the data transmitting apparatus shown in FIG. 9 may further include:
  • the DBA requesting unit 904 is configured to: initiate a DBA request before the tributary unit maps the data stream to be transmitted to the OFDM subcarrier; and receive the bandwidth allocation calculated according to the DBA request, the service priority, and the bandwidth resource.
  • the tributary unit 901 is further configured to map the data stream to be transmitted to the OFDMA subcarrier according to the bandwidth allocation information.
  • the branch unit 901 can include:
  • the physical layer interface PHY9011 is configured to adapt the rate of the data stream to coincide with the bearing rate of the OFDMA subcarrier.
  • the branch unit 901 can include:
  • the modulating module 9013 is configured to perform IFFT processing on the encoded data stream and adjust to the OFDMA subcarrier.
  • the branch unit 901 can also be used to:
  • the OFDMA subcarrier payload unit is mapped to the OF leg A subcarrier data unit.
  • the cross unit 902 can also be used to:
  • the scheduling of the 0FDMA subcarrier data unit by using a single 0FDMA subcarrier as a granularity includes:
  • scheduling is performed between 0FDMA subcarrier data units consisting of the same number of 0FDMA subcarriers, including:
  • the 0FDMA subcarrier data sheep element whose input frequency band is the first frequency band is scheduled to the OFDMA subcarrier data unit whose output frequency band is the first frequency band;
  • scheduling is performed to the 0FDMA subcarrier data unit whose output frequency band is the second frequency band.
  • line unit 903 can also be used to:
  • the multiplexed 0FDMA subcarrier data units including the plurality of payload carriers are superimposed by subcarriers and multiplexed into 0FDMA channel groups.
  • the line unit 903 can include:
  • the inserting module 9031 is configured to insert a cyclic prefix or a frame interval in the 0FDMA frame after generating the 0FDMA frame;
  • the digital-to-analog conversion module 9032 is configured to perform digital-to-analog conversion processing on the 0FDMA frame after inserting the cyclic prefix or the frame interval before transmitting the OF A frame.
  • the line unit 903 can include:
  • the adaptation module 9033 is configured to adapt the 0FDMA frame to an optical channel or a microwave channel for transmission.
  • the embodiment of the invention further provides a data receiving device, the structure of which is shown in FIG. Includes:
  • a line unit 11 01 configured to receive an 0FDMA frame; perform digital filtering processing on the 0FDMA frame to obtain an 0FDMA subcarrier;
  • a cross unit 11 02 configured to schedule the 0FDMA subcarrier from the line unit to a tributary unit
  • the tributary unit 11 03 is configured to perform demapping processing on the 0F ⁇ A subcarrier, and recover the original data stream and send it to the user network.
  • Fig. 12 is a view showing the concrete implementation of the data receiving apparatus shown in Fig. 11.
  • the line unit 1101 may include:
  • the electrical signal conversion module 11011 is configured to convert the 0FDMA frame transmitted by the received optical channel or microwave channel into an electrical signal.
  • the line unit 1101 may further include:
  • the analog-to-digital conversion module 11012 is configured to perform an analog-to-digital conversion process after the electrical signal conversion module converts the received OFDMA frame into an electrical signal;
  • the removing module 11013 is configured to remove a cyclic prefix or a frame interval in the OFDMA frame after the analog-to-digital conversion process before performing digital filtering processing on the OFDMA frame.
  • the data receiving apparatus shown in FIG. 11 may further include:
  • the frame alignment unit 11 04 is configured to perform frame alignment processing on the OFDMA frame before scheduling the OFDMA subcarrier. Scheduling OFDMA subcarrier data units with a single OFDMA subcarrier as a granularity;
  • the scheduling the OFDMA subcarrier data unit by using a single OFDMA subcarrier as a granularity may include:
  • scheduling between 0FDMA subcarrier data units consisting of the same number of 0FDMA subcarriers may include:
  • the 0FDMA subcarrier data sheep element whose input frequency band is the first frequency band is scheduled to the 0FDMA subcarrier data unit whose output frequency band is the first frequency band;
  • scheduling is performed to the 0FDMA subcarrier data unit whose output frequency band is the second frequency band.
  • the branch unit 1103 can include:
  • a demodulation module 11 031 configured to perform FFT processing on the 0FDMA subcarrier
  • the decoding module 11032 is configured to perform decoding processing on the FFT-processed 0FDMA subcarrier.
  • the data transmission device shown in FIG. 9 and the data receiving device shown in FIG. 11 are implemented by a data transmission network element, and the data transmission network element is composed of a plurality of parts, including a line unit.
  • the tributary unit includes an externally connected physical layer interface PHY (implementing the function of the physical layer interface PHY901 K electrical signal conversion module 11011), and an M-QAM codec portion (implementing the functions of the encoding module 9012 and the decoding module 11032; And the IFFT/FFT part (implementing the function of the modulation module 9013, the demodulation module 11031), mainly for completing the mapping and demapping process of the client signal; including processing the FE/GE signal from the customer network through the PHY to reach M
  • the -QAM encoding portion performs encoding processing, and then is modulated by the IFFT portion onto the allocated subcarriers and sent to the intersecting unit, and the process is a mapping process; or the subcarrier signals sent from the intersecting unit are subjected to FFT processing and sent to M-
  • the QAM is further decoded, and the FE/GE signal is recovered and sent to the customer network through the PHY part.
  • the cross-unit mainly performs the scheduling function based on the 0FDMA sub-carrier, may be based on scheduling of a single OFDM subcarrier, or may be scheduling based on multiple subcarriers, and the smallest scheduling granule is a single OFDM subcarrier; the function of the cross unit is Scheduling the 0FDMA subcarrier signal from the branch to the corresponding line unit; or scheduling the OFDM subcarrier signal from the line unit to the corresponding tributary unit; or performing some intermediate scheduling processing, such as OFDM subcarrier of line unit 1 Dispatched to the line unit 2, the OFA signal of the branch unit 1 is dispatched to the branch unit 2.
  • Line unit including digital filtering/IFFT multiplexing part, GAP insertion (implementing the function of inserting module 9031) and de-inserting part (implementing the function of removing module 11013), D/A (implementing the function of digital-to-analog conversion module 9032) and A /D (function of the analog-to-digital conversion module 11012) part, and 0/E (function of the electrical signal conversion module 11011), E/0 (function of the implementation of the adaptation module 9033) optical interface part, the main completion will cross
  • the subcarriers sent by the unit are multiplexed into the 0FDMA line frame format by IFFT, as shown in FIG. 4; then transmitted to the destination network element node through D/A conversion and electro-optic conversion modulation; or converted optical signals from other network elements.
  • the electrical signal is sent to the cross unit via an A/D converter and digital filtering.
  • the data transfer network element shown in FIG. 13 may further include a DBA request unit (implementing the function of the DBA request unit 904) for collecting traffic data detected from the PHY portion of each tributary unit, and generating corresponding branches according to the traffic data.
  • the DBA request of the road interface is inserted into the overhead subcarrier and transmitted to the primary node network element for processing.
  • the structure further includes a DBA algorithm unit, configured to receive a DBA request sent by each slave node network element, and according to the DBA request and the service priority and bandwidth resources. Performing a fair bandwidth allocation, and obtaining bandwidth allocation information required by each branch interface of each slave node network element, or a bandwidth map, including information on the number and number of subcarriers, and transmitting the information to each slave node; then each slave node The traffic data stream is mapped onto the assigned OFDM subcarriers according to the assigned bandwidth map.
  • the sampling rate of the A/D converter used in the online card in this embodiment is 1024 MBIT/S, and the specific model is: ADC291.
  • a FE data stream requires a total of 50 net subcarriers, and considering the overhead, it is assumed that one subcarrier is allocated as an overhead subcarrier, that is, a 0FDMA loaded with 10QM FE -
  • the 64 QAM encoding on the branch can be implemented with a large-scale FPGA, and the IFFT/FFT can be implemented with the VIRTEX-4 IFFT CORE £ series.
  • the digital filtering portion of the line can also be implemented using FPGA or VIRTEX-4 IFFT CORE logic, while the 0/E and E/0 optical devices can be used with the inexpensive GIGABIT ETHERNET optical receive and optical transmit module.
  • the crossover unit is fully digital, so it requires a large-scale FPGA or VIRTEX-4 IFFT CORE.
  • the above considerations are for the case where FE maximum peak rate transmission is satisfied, and the allocation of subcarriers is also fixed. In fact, the data traffic in the FE port is dynamically changed. If only the maximum traffic is considered to allocate subcarriers, this is related to TDM. There is no substantial difference in the transmission mode of the service itself. Therefore, in order to effectively utilize the line bandwidth, it is necessary to statistically multiplex 20 FE ports.
  • the statistical multiplexing process in this embodiment is a fair allocation of bandwidth by the DBA algorithm module of the master node.
  • Another advantage of this embodiment is programmability, since IFFT/FFT is based on high speed. DSP processing, the sampling frequency of the A/D converter can also be changed, the number of subcarriers can also be changed, and the QID of the QAM can also be changed, so under a hardware condition, different parameters can be achieved by setting different parameters. Performance. For example, when the distance is long, the QAM code base can be reduced, or the number of subcarriers can be reduced to achieve better performance.
  • the data stream to be transmitted is mapped to the 0FDMA subcarrier; the 0FDMA subcarrier is scheduled; the 0FDMA subcarrier is multiplexed to generate the 0FDMA frame; and the 0FDMA frame is transmitted;
  • the 0FDMA frame is superimposed on the optical domain based on multiple wavelengths, and the 0FDMA frame is processed based on the electrical layer, and the subcarrier or channel is multiplexed on the electrical layer, thereby implementing the cross-connection capability based on the 0FDMA subcarrier, which not only supports all
  • the aggregation service from the node to the master node also supports the private line connection between the two nodes.
  • the 0FDMA frame is received; the 0FDMA frame is digitally filtered to obtain the 0FDMA subcarrier; the 0FDMA subcarrier is scheduled; the 0FDMA subcarrier is demapped, and the original data stream is recovered and sent to the user network;
  • the 0FDMA frame is superimposed in the optical domain based on multiple wavelengths, and the 0FDMA frame is processed based on the electrical layer, and the subcarrier or channel is demultiplexed on the electrical layer, thereby implementing the cross-connect capability based on the 0FDMA subcarrier. It not only supports all the aggregation services from the node to the master node, but also supports the dedicated line connection between the slave nodes.
  • the bandwidth of the subcarrier channel is variable, it is suitable for the transmission of the subrate service at an arbitrary rate.
  • the embodiment of the present invention improves from a transmission technology system, and does not limit the application of OFDM technology on the TOM ring network, but fully considers the relationship and integration problem with the existing transmission system; can be integrated with the optical layer and the microwave, It is used in microwave transmission, passive optical network, converged transmission network, metro transmission network and backbone transmission network.
  • the capacity of the 0FDMA frame different from the prior art has no relationship with the number of wavelengths, and does not reflect the capacity advantage of multiple wavelengths.
  • the multi-wavelength is only used to overcome the beat noise of the receiver, but in the embodiment of the present invention.
  • it shows high flexibility in the utilization of single wavelength; if the wavelength is increased by 0CH, it can be expanded by wavelength.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

数据传送、 接收的方法及装置 本申请要求于 2009 年 9 月 15 日提交中国专利局、 申请号为 200910172173.0, 发明名称为 "数据传送、 接收的方法及装置" 的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及数据传送、 接收的方法及装置。 背景技术
OFDM ( Orthogonal Fre-quency Division Multiplexing, 正交频分复 用)是?丽(Fre-quency Division Multiplexing, 频分复用)技术的一种。 在 OFDM系统中, 为了使频谱的效率达到最大, 子载波是有重叠部分的。 通 常有重叠的相邻信道会互相干扰, 但是, 在 0FDM系统中, 子载波彼此之间 精确正交, 每个子载波的功率最大值点直接对应于相邻信道功率的最小值 点, 这些子载波就能够部分重叠而不互相干扰。 因此, 0FDM系统可以在不 引起相邻信道间干扰的同时, 将频谱的效率最大化。 由于随着信道带宽的 增加, 信道的传送速率也随之增加, 所以与普通的 F腿系统相比, 0FDM系 统允许更高的数据吞吐量, 更有效地利用频镨。
0FDM系统采用数字信号处理技术, 各子载波的产生和接收由数字信号 处理算法完成, 包括 IFFT ( Inverse Fast Fourier Transform, 快速傅里 叶逆变换)、 FFT (Fast Fourier Transform, 快速傅里叶变换), 极大地简 化了系统的结构。 同时为了提高频谱利用率, 使各子载波上的频语相互重 叠, 并且这些频谱在整个符号周期内满足正交性, 从而保证接收端能够不 失真地复原信号。
定义基带信号 ), 如下表达式:
SB(t) = Re[u(t)] " . d„ = a„ + Jbn
在周期 T内实现 N个抽样, 得到:
Figure imgf000004_0001
u(k) = IFFT(dn) = IFFT(an + jbn)
这就是 OFDM调制过程,也就是 IFFT/IDFK Inverse Discrete Fourier
Transform 离散傅里叶逆变换)运算过程。
OFDM解调过程就是 FFT/DFT ( Inverse Discrete Fourier Transform离 散傅里叶逆变换)过程:
u{t) = sI{t) + jSQ{t) = Nfjdn-ei→ dn = FFT{u{k))
OFDM是无线 4G LTE (Long Term Evolution, 长期演进) 的核心技术, 将其应用于光网络领域也是业界的技术热点之一; 最初是将其应用于高速 率传送系统中, 改善系统的抗色散能力。 现在将 OFDM技术应用于光网络, 或 OFDM在环形网络中的应用等, 也是最新的技术热点。
现有技术中提供一种利用 OFDMA ( Orthogonal Fre-quency Division
Multiplexing ACESS, 正交频分复用多址)技术来实现的传送网络, 该传 送网络将 0FDMA 技术和 R0ADM ( Reconfigurable Optical Add-drop Multiplexer,可重构型光分插复用设备)技术相集成,在接入环境中应用, 以环形网络代替现有无源光网络的树形网络。 在一个环网中, 每个网络节 点按 OF匪子栽波的数量来分配环路带宽, 且每个节点的发送波长都是不相 同的 G.692波长, 所有节点共享同一个 0FDMA帧, 且以不同的波长相叠加; 节点中的光接收器是一个多波长的接收器, 将所有波长同时接收, 其支路 板卡具有 0FDMA所需要的数字信号处理(IFFT/FFT)、 AD (模数) /DA (数 模)转换、 M-QAM (M- Quadrature Amplitude Modulation ,Μ进制正交幅度 调制)编码 /解码,端口数据流量监视等功能。 从主节点 0LT ( Optical Line Terminal,光纤线路终端)经两个环路方向发送到目的 0NU( Optical Network Unit, 光纤网络单元) 的下行 OFDMA信号达到 ONU后, 经过 SPLITTER (分 流器) 到达二选一光开关, 到达 0NU中的 AD转换器, 转换为数字信号后 再经过数字下变频和 FFT处理和 M- QAM解码过程, 恢复出数据信号。 0而的 下行处理过程需要 0LT的授权, 才能 DROP DW0N (落地或分离)所分配到的 0FDMA子载波; 0NU的上行通过监视緩存中的数据流量, 向 0LT发出带宽请 求, 0LT接收所有 0冊的带宽请求后, 经过带宽分配算法计算分配结果, 然 后发送带宽授权信号给各 0而。
在环网上的帧结构为 TDD ( Time Division Duplex, 时分双工)方式, 也就是上行和下行组成同一个大帧, 在时间上分为上行子帧和下行子帧, 且上行子帧中采用了 0FDMA和 TDMA (Time Division Multiple Access, 时 分多址)的二维帧结构方式, 以 125US 为单位划分时隙; 在每个时隙中装 载的是上行突发包, 其格式与 GPON (Gigabit-Capable Passive Optical Network, 千兆无源光网络) 中的上行突发包格式相似。
现有技术中还提供另一种 0TN技术(Optical Transport Networks, 光 传 送 网 ), ITU-T ( International Telecommunications Union- Telecommunications Standardization section, 国际电信联盟电信标准 部)制订的 0TN系列建议 ITU-T G.709, G.798, G.87X已经成熟, 业界的 0TN产品已经在进行商用。 0TN的主要任务是基于对 1G速率以上的客户信 号进行数字包封和传送, 其交叉调度颗粒最小为 1G级别,常用的交叉调度 颗粒为 1G/2.5G 0G级别。
发明人在实现本发明的过程中, 发现现有技术中存在如下不足: 1、仅支持所有从节点到主节点的汇聚业务, 不支持从节点两两之间的 专线连接;
1、 通道颗粒较粗, 对 1GBIT/S以上的速率可实现调度, 对低于 1G的 子速率业务不能实现灵活的调度; 而在骨千网络上仍然存在基于流的调度 要求, 这些流是速率可变的, 且低于 1G速率, 例如 HDTV视频流, 或一个 155MBIT/S的数据流等; 3、 不是从一个传送技术体制上来进行改进, 仅局限 OFDM技术在 WDM 环网上的应用, 没有考虑到与现有传送体制的关系和融合问题;
4 , 由于多波长共享一个 0FDMA帧, 环路容量与波长数量没有关系, 体 现不出多波长网络的大容量能力。 发明内容 本发明实施例提供一种数据传送方法, 用以通过 0FDMA子载波调度实 现任意节点之间的连接, 该方法包括:
将待传送的数据流映射至正交频分复用多址 0FDMA子载波;
调度所述 0FDMA子载波;
复用所述 0FDMA子载波, 生成 0FDMA帧;
传送所述 0FDMA帧。
本发明实施例还提供一种数据接收方法, 用以通过 0FDMA子载波调度 实现任意节点之间的连接, 该方法包括:
接收 0FDMA帧;
对所述 0FDMA帧进行数字滤波处理, 获得 0FDMA子载波;
调度所述 0FDMA子载波;
解映射所述 0FDMA子载波, 恢复出原始数据流发往用户网络。
本发明实施例还提供一种数据传送装置, 用以通过 0FDMA子载波调度 实现任意节点之间的连接, 该装置包括:
支路单元, 用于将待传送的数据流映射至 OF丽 A子载波;
交叉单元,用于将来自支路单元的所述 0FDMA子载波调度至线路单元; 线路单元, 用于对所述 0FDMA子载波进行复用处理, 生成 0FDMA帧; 以及, 传送所述 0FDMA帧。
本发明实施例还提供一种数据接收装置, 用以通过 0FDMA子载波调度 实现任意节点之间的连接, 该装置包括:
线路单元, 用于接收 0FDMA帧; 对所述 0FDMA帧进行数字滤波处理, 获得 OFDMA子载波;
交叉单元,用于将来自线路单元的所述 0FDMA子载波调度至支路单元; 支路单元, 用于对所述 0FDMA子载波进行解映射处理, 恢复出原始数 据流发往用户网络。
本发明实施例中, 将待传送的数据流映射至 0FDMA子载波; 调度所述 OFDMA子载波;复用所述 0FDMA子载波,生成 OFDMA帧;传送所述 OFDMA帧; 不同于现有技术中基于多波长在光域叠加 OFDMA 帧, 而是基于电层处理 0FDMA帧, 在电层上进行子载波或通道的复用,从而实现基于 0FDMA子载波 的交叉连接能力, 不但支持所有从节点到主节点的汇聚业务, 还支持从节 点两两之间的专线连接。
本发明实施例中, 接收 0FDMA帧; 对所述 OFDMA帧进行数字滤波处理, 获得 0FDMA子载波; 调度所述 0FDMA子载波; 解映射所述 OFDMA子载波, 恢复出原始数据流发往用户网络; 不同于现有技术中基于多波长在光域叠 加 OFDMA帧, 而是基于电层处理 0FDMA帧, 在电层上进行子载波或通道的 解复用, 从而实现基于 0FDMA子载波的交叉连接能力, 不但支持所有从节 点到主节点的汇聚业务, 还支持从节点两两之间的专线连接。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。 在附图中:
图 1为本发明实施例中数据传送方法的处理流程图;
图 2为本发明实施例中 0FDMA子载波映射及复用示意图;
图 3为本发明实施例中 OFDMA- ODUi格式示意图;
图 4为本发明实施例中 0FDMA帧结构示意图; 图 5为本发明实施例中数据传送方法的具体实例示意图;
图 6为本发明实施例中数据接收方法的处理流程图;
图 7为本发明实施例中经数字滤波后的 0FDMA帧结构示意图; 图 8为本发明实施例中从本节点流经的 OF画 A帧结构示意图; 图 9为本发明实施例中数据传送装置的结构示意图;
图 10为本发明实施例中数据传送装置的具体实施示意图;
图 11为本发明实施例中数据接收装置的结构示意图;
图 12为本发明实施例中数据接收装置的具体实施示意图;
图 13为本发明实施例中数据传送网元的示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚明白, 下面结合 附图对本发明实施例做进一步详细说明。 在此, 本发明的示意性实施例及 其说明用于解释本发明, 但并不作为对本发明的限定。
如图 1所示, 本发明实施例中, 数据传送方法的处理流程可以包括: 步骤 101、 将待传送的数据流映射至 0FDMA子载波;
步骤 102、 调度所述 0FDMA子载波;
步骤 103、 复用所述 0FD A子载波, 生成 0FDMA帧;
步骤 104、 传送所述 0FDMA帧。
由图 1所示流程可以得知, 本发明实施例中, 将待传送的数据流映射 至 0FDMA子载波; 调度所述 OFDMA子载波; 复用所述 0FDMA子载波, 生成 0FDMA帧; 传送所述 OFDMA帧; 不同于现有技术中基于多波长在光域叠加 0FDMA帧,而是基于电层处理 0FDMA帧,在电层上进行子载波或通道的复用, 从而实现基于 0FDMA子载波的交叉连接能力, 不但支持所有从节点到主节 点的汇聚业务, 还支持从节点两两之间的专线连接。
一个实施例中, 在将待传送的数据流映射至 OFDMA子载波之前, 还可 以包括: 发起 DBA ( Dynami c Bandwi dth Al loca t ion , 动态带宽分酉己)请求; 接收根据所述 DBA请求、 业务优先级及带宽资源计算出的带宽分配信息; 后续可以根据所述带宽分配信息, 将待传送的数据流映射至 0FDMA子载波。 如此实施是考虑到: 若满足 FE ( Fas t Ethernet , 快速以太网)最大峰值速 率传递, 则子载波的分配是固定的, 但实际上, FE端口中的数据流量是动 态变化的, 如果仅考虑最大的流量来分配子载波, 无法有效利用线路带宽; 因此, 为了有效利用线路带宽, 需要对多个 FE端口进行统计复用。
本实施例中的统计复用过程具体实施时可以由主节点计算完成。 从节 点通过对各支路端口流量的统计, 检测出来自用户网络的待传送数据流的 流量, 4艮据检测的流量产生对应各端口的 DBA请求, 插入到开销子载波中, 传送到主节点进行处理; 主节点在接收到各网元送来的 DBA请求后, 利用 DBA算法, 根据所述 DBA请求、 业务优先级及带宽资源进行公平带宽分配, 得出各从节点网元的各支路接口所需要的带宽分配信息, 或者称为带宽地 图, 包括子载波的数量和编号等信息, 发送给各从节点; 从节点按照所分 配到的带宽地图进行映射处理, 将支路流量即待传送的数据流映射到所分 配到的 0FDMA子载波上, 经过子载波调度和复用后发送到目的节点。
假定有 20个 10QMBIT/S的 FE专线, 对应 20个 LTE基站, 传送数据共 需要的线路容量为 2GBIT/S ,且有 4个网元组成的环网,其中包括一主节点。 由于本实施例中 DBA算法是区分业务优先级实现的, 所以 DBA算法对高优 先级业务不具备收敛能力, 对低优先级业务进行统计复用, 按照 L2交换机 在汇聚网络的应用情况, 其收敛比通常为 1 : 10 , 本实施例的 DBA算法的收 敛比考虑到业务优先级情况, 可以对低优先级业务的收敛比通常设置为 1 : 6到 1: 8 , 假定有一半业务为高优先级业务, 则平均可以达到 1 : 3到 1 : 4 的收敛比,意味着本实施例的传送网络实际上可以接入 60到 80个 FE端口, 也就是 60 - 80个 LTE基站。
由此可见, 本发明实施例可以实现很高的带宽利用效率, 具体体现在, 利用 GIGABIT ETHERNET (千兆以太网)这种低成本的光发送和光接收器件 就能实现 2G以上的传送速率; 随着 A/D转换器的抽样速率提高和大容量、 高速率 DSP ( Dig i ta l s igna l Proces s ing, 数字信号处理)技术的进步, 带宽利用率还可以进一步提高。 目前业界所能提供最高抽样速率的 A/D转 换器的抽样速率为 56GBIT/S, 且分辨率为 6比特, 所以在 1. 5GBIT/S的光 通道上传送 10GBIT/S数据流, 或在 10GBIT/S的光通道上传送 40GBIT/S的 数据流是完全可行的。
由于子载波通道的带宽是可变的, 因而适合任意速率的子速率业务的 传送, 从 2G无线基站的 2MBIT/S数据流到 3G的数个 2MBIT/S数据流再到 4G 的上行 50MBIT/S 数据流和下行 100MBIT/S 数据流, 或 1G GIGABIT ETHERNET都可以利用本发明实施例中的子载波来传递。
再加上 DBA的收敛能力, 可为传送带宽带来很高的弹性, 以上实施例 从 2GBIT/S的线路速率在初始带 20个 LTE基站, DBA 3-4倍的收敛比可以 实现增加到 60 - 80个 LTE基站的扩容。 DBA的收敛能力避免了调制带宽或 子载波间隔按接入带宽线型增长的问题, 进而避免对骨干网线性扩容的问 题, 收敛带宽同时还保证不同优先级业务的 Q0S, 避免阻塞, 这是 DBA对提 高子载波带宽利用率的一种体现。 从而也说明这种弹性能很好的适应从 2G 到 3G到 4G的无线接入和固网宽带接入的带宽变化, 是应用于接入和汇聚 环境的很好的技术选择。
一个实施例中, 将待传送的数据流映射至 0FDMA子载波时, 可以包括: 将所述数据流的速率适配至与所述 OF腿 A子载波的承载速率相一致。
具体实施时, 将来自用户网络的待传送数据流经过适配协议, 适配成 与分配到的 0FDMA子载波的承载速率相一致的数据流, 例如, 当每个子载 波的承载速率为 4MBIT/S时, 传送的客户信号速率为 10MBIT/S时, 共需要 3个 0FDMA子载波, 需要将 10MBIT/S的数据流适配到 12MBIT/S。
对于要求比特透明传送的业务,可以经过正塞入的方式实现速率调整, 使其调整到所分配到的子载波的速率; 对于以太网 FE/GE、 HDTV, 或 TDM等 其他业务, 可以通过 GFP/GEM适配协议适配到所分配到的子载波速率。
—个实施例中, 将待传送的数据流映射至 0FDMA子载波, 可以包括: 对所述数据流进行编码处理;对经编码处理后的所述数据流进行 IFFT处理, 调制至 0FDMA 子载波。 其中, 对所述数据流进行的编码处理可以是 M-QAM 或 QPSK等编码处理。
如图 2所示, 具体实施时将待传送的数据流映射至 0FDMA子载波, 也 可以包括: 将待传送的数据流映射到 0FDMA子载波净荷单元, 再将 0FDMA 子载波净荷单元映射到 0FDMA 子载波数据单元。 实施时, 可以将待传送的 数据流映射到 OFDMA- 0PU1 ( Opt ica l channel Payload Uni t , 光通道净荷 单元), 这是单个子载波净荷单元; 或将速率为 sub-rate (子速率) 速率 i 倍的待传送数据流经适配后映射到 OFDMA- OPUi,其中 i为整数, OFDMA-OPUi 表示净荷区容量为 0FDMA-0DU1的 i倍, 也就是至少 i个子载波。 当然, 可 以将待传送的数据流先经过前述速率适配后形成 sub-rate数据流, 再进行 映射处理。
OFDMA-OPUi 净荷子载波加上开销子载波后就形成了 OFDMA-ODUi ( Opt ica l channel Data Uni t , 光通道数据单元)格式, 即子载波数据单 元, 如图 3所示。 当 i=l时, 单个的 0FDMA-0PU1净荷子载波如果再加上一 个开销子载波, 带宽利用率较低, 此时可以通过捆绑的方式将多个子速率 业务捆绑在一起来共用一个子栽波; 或在单个子速率业务传送时, 在编码 层中插入开销的方式进行管理。 总之, 开销子载波可根据需要设置。
在将待传送的数据流映射至 0FDMA子载波后, 调度所述 0FDMA子载波 后, 对所述 OFDMA子载波进行复用处理, 生成 0FDMA帧。 对所述 0FDMA子 载波进行调度时, 调度实体可以是 OFDMA- ODUi , 调度颗粒最小可以为单个 子载波, 也就是 0FDMA-0DU 1。 以单个 0FDMA子载波为粒度进行调度有多种 方式, 例如, 可以将输入频率为第一频率(例如 f l ) 的 OFDMA子载波调度 至输出频率为第一频率的 0FDMA子载波; 或者, 也可以将输入频率为第一 频率的 0FDMA子载波的频率变换为第二频率(例如 f2 )后, 调度至输出频 率为第二频率的 0FDMA子载波。
除以单个 0FDMA 子载波为粒度进行调度外, 还可以在由相同数量的 OFDMA 子载波组成的 OFDMA 子载波数据单元之间进行调度, 即调度 0FDMA-0DUL 例如, 可以将输入频带为第一频带(例如 B1 )的 0FDMA子载 波数据单元调度至输出频带为第一频带的 0FDMA子栽波数据单元; 或者, 也可以将输入频带为第一频带的 0FDMA子载波数据单元的频带变换为第二 频带(例如 B2 )后, 调度至输出频带为第二频带的 OF丽 A子载波数据单元。 当然, 实施时还可以有其它调度 0FDMA子载波的方式。
通过子载波的复用, 将单个的子载波或通道, 复用成完整的 OFDMA帧; 例如, 如图 1所示, 可以将多个包含 1个净荷子载波的 0FDMA子载波数据 单元复用成包含多个净荷子载波的 0FDMA子载波数据单元, 例如, 将 i个 OFDMA- 0DU1复用成 OFDMA- ODUi , 进一步, 将复用后的多个包含多个净荷子 载波的 0FDMA子载波数据单元通过子载波叠加, 复用成 0FDMA通道组, 例 如, 将 OFDMA- ODUi、 OFDMA- 0DUj、 OFDMA- ODUk复用成 OFDMA- CG (OFDMA子 载波或通道构成的通道组),也就是如图 4 所示的完整 OFDMA 帧结构; 其 中, OFDMA-ODUi为包含至少 i个净荷子载波的通道。 1 < i+j+k < N, N为 OFDMA 帧中子载波的总数, 也就是 IFFT运算的 N点数。
由图 4可以得知, 线路帧格式包含若干个 0FDMA子载波, 有些子栽波 可以分配用于传送开销, 多数子栽波用于传送数据; 子栽波的数量可以取 决于子载波间隔和调制带宽, 例如当 A/D转换器的抽样频率为 2GHz时, 调 制带宽为抽样频率的一半, 也就是 1GHz; ^假定子载波间隔为 1MHz,则共需 要 1000个子载波。 考虑到 M-QAM编码可以提高带宽利用率, 例如 16QAM可 以达到 4BIT/HZ的带宽利用率, 这样; 可以认为 1圆 z的子载波实际可以 7 载 4MBIT/S 的数字速率, 也就是说, 1GHZ 的调制带宽实际上可以传送达 4GBIT/S的数据速率。
一个实施例中, 在调度所述 0FDMA子载波进行复用处理, 生成 0FDMA 帧之后, 传送所述 0FDMA帧之前, 还可以包括: 在所述 0FDMA帧中插入循 环前缀或帧间隔; 进行数模转换处理。
一个实施例中, 传送所述 0FDMA帧, 可以包括: 将所述 0FDMA帧适配 至光通道或 Ti波通道进行传送。 例如, 将 0FDMA 帧适配到 OCH (Optical Channel, 光通道), 如图 2中就是将 OFDM- CG适配到 0CH, 也就是波长, 再 经 0CC( Optical Channel Carrier,光通道载波)、形成 0CG( Optical Carrier Groups, 光载波组)进行传送。 所以本发明实施例也可以通过 0CH 的扩展 来实现进一步的扩容。
结合图 2可以看出,本发明实施例兼容了 G.709的映射路径,在 G.709 的映射路径上增加了 0FDMA子载波的映射路径。 原来 G.709中 0TUK到 0CH 的适配都是使用直接调制, 当 0TUK (完全标准化的光通道传送单元)速率 达到 40GBIT/S以上时, 直接调制会带来光域带宽的较大浪费, 例如, 当前 的 TOM 网络中的波长间隔多数使用的是 50Ghz 间隔, 当 0TUK 速率为 lOOGbitZs时, 直接调制将会使光域的带宽超过一个波长间隔, 在 50GHz间 隔的 TOM网络中不能应用, 所以通过前述 M-QAM编码和 IFFT处理后, 提高 频率利用效率, 使得在 50Ghz间隔的 0CH系统中继续可以传送。 所以本发 明实施例与 0TN体制在 0CH层是兼容的, 可以作为 0TN现有体制的一种补 充和完善, 改进现有 0TN的调制方式, 提高频谱利用效率。 随着 A/D、 D/A 技术和高速 ASIC ( Application Specific Integrated Circuit, 专用集成 电路)的进步,本发明实施例可以作为 NG( Next Generation, 下一代) 0TN ( Optical Transport Network, 光传送网络) 的一种技术选择。
从图 2可以看出, 0FDMA子载波和 0CH实质上都是频域信号,对用户待 传送数据流的信号透明性非常好; 在这里, 0F丽 A子载波信号相当于中频调 制信号, 既可以直接再调制到光域 OCH (Optical Channel, 光通道), 也可 以再调制到微波 RF (Radio Frequency, 射频), 例如, 将上述 500MHZ带宽 的 0FDMA基带或中频信号直接调制到 E- BAND (E波段)微波, 不需要经过 其他处理, 这比现有的其他 TDM (Time Division Multiplex, 时分复用) 体制有突出的优势。 通过这样的体制, 真正把光传送(0CH)和无线传送
( 0FDMA)及 波传送( RF ) 融合起来, 形成一个统一的技术体制, 其中的 0FDMA子载波处理是核心,对简化传送产品设计有很大的好处; 与光层的波 长的融合, 更适合未来容量的扩展。
图 5为上述数据传送方法实施例的示意图; 图中所示方法主要包括: 将 TDM业务、 数据、 视频等业务进行速率适配, 即将待传送数据流的 速率适配至与 0FDMA 子载波的承载速率相一致, 例如经 TOM适配协议、 GFP/GEM适配使待传送数据流的速率适配到所分配到的子载波速率;
速率适配之后, 将待传送的数据流映射至 OFDMA子载波, 包括: 对数 据流进行编码层处理以及 0FDMA子载波通道层处理,其中, 0FDMA子载波通 道层处理包括:对经编码处理后的所述数据流进行 I FFT处理,调制至 0FDMA 子载波; 调度 0FDMA子载波; 对 0FDMA子载波进行复用处理, 生成 0FDMA 帧;
之后传送生成的 0FDMA帧, 其中可以包括: 将 0FDMA帧适配至 0CH经 物理光纤传送, 或适配至微波传送;
另外, 图 5中还示出了经 DBA请求、 DBA计算分配带宽的处理过程, 即 在将待传送的数据流映射至 OFDMA子载波之前, 发起 DBA请求; 接收根据 所述 DBA请求、 业务优先级及带宽资源计算出的带宽分配信息, 并根据所 述带宽分配信息, 将待传送的数据流映射至 0FDMA子载波。
本发明实施例还提供一种数据接收方法, 如图 6所示, 其处理流程可 以包括:
步骤 601、 接收 0FDMA帧;
步骤 602、 对所述 0FDMA帧进行数字滤波处理, 获得 OF丽 A子载波; 步骤 603、 调度所述 0FDMA子载波;
步骤 604、解映射所述 0FDMA子载波,恢复出原始数据流发往用户网络。 由图 6所示流程可以得知, 本发明实施例中, 接收 OFDMA帧; 对所述 0FDMA帧进行数字滤波处理, 获得 OFDMA子载波; 调度所述 OFDMA子载波; 解映射所述 0FDMA子载波, 恢复出原始数据流发往用户网络; 不同于现有 技术中基于多波长在光域叠加 0FDMA帧, 而是基于电层处理 0FDMA帧, 在 电层上进行子载波或通道的解复用, 从而实现基于 0FDMA子载波的交叉连 接能力, 不但支持所有从节点到主节点的汇聚业务, 还支持从节点两两之 间的专线连接。
具体实施时, 可以接收光通道或啟波通道传送的所述 0FDMA帧; 后续 在对所述 0FDMA帧进行数字滤波处理之前, 将接收的 OF匿 A帧转换为电信 在将接收的 OF匪 Α帧转换为电信号之后, 对所述 OF丽 A帧进行数字滤 波处理之前, 还可以包括: 进行模数转换处理; 去除所述 0FDMA 帧中的循 环前缀或帧间隔。
所述解映射处理可以包括: 对所述 0FDMA子载波进行 FFT处理; 对经 FFT处理后的所述 0FDMA子载波进行解码处理。
数字滤波处理就是将图 4 中的子载波分割成单个的子载波或分割成若 干个通道, 每个通道由多于一个以上的子载波构成。 这是由于有些业务的 带宽大于一个子载波所能承载的带宽。 例如 FE=100Mb i t/s时, 至少需要 25 个上述子载波来承载。 如图 7所示, 假定子载波 1 - 25组成的通道用来传 送一个 FE业务, 当这个通道调度进行解映射处理之前, 其信号格式如图 7 所示, 仅有所需要调度的子载波, 其他位置为直流。 该信号进行解映射处 理时, 进一步将其过滤成单个的子栽波, 然后经 QAM解码, 最后恢复成 FE 的 NATIVE格式的信号送给用户网络。
反之, 前述实施例的复用处理就是将送来的从本节点 BYPASS (流经) 的子载波或通道和支路 ADD (迭加)的子载波或通道相叠加, 其中从支路 ADD的子载波或通道的格式和调度的子载波或通道格式相同或相似,例如图 8和图 7相叠加就成了一个图 4所示的完整的 0FDMA帧。
由于在接收方向可以将 0FDMA帧之间的 GAP去除掉, 所以在解映射处 理时的帧格式是连续等长的 IFFT块; 在一个方向的光纤中, 0FDMA帧中的 子载波所经过的传送路径相同, 所以不存在子载波之间的时延差; 但在环 路上不同方向的光纤中的 0FDMA帧因传送路径的不同, 所以存在时延差。 所以子载波或通道在交叉之前,可以通过 BUFFER(緩存 1寻多个输入的 OFDMA 帧调整到系统内部帧的相位, 相当于帧对齐处理。 由于 0FDMA帧周期较短, 帧对齐所需的处理延时小, 所以本实施例实现的交叉调度成立延时很小。 具体的, 由于 IFFT的积分周期不长, 按照上述 lGhz带宽计算, 1000个子 载波的最小子载波的周期为 1US; 即使多个 IFFT共用一个 GAP组成 0FDMA 帧, 周期也是数个微妙级别, 所以说, 交叉处理延时很小, 实现较为筒单。
一个实施例中, 调度所述 0FDMA子载波, 可以包括:
以单个 0FDMA子载波为粒度进行调度, 调度 OF丽 A子载波数据单元; 或, 在由相同数量的 0FDMA子载波组成的 0FDMA子载波数据单元之间 进行调度。
其中, 所述以单个 0FDMA子栽波为粒度, 调度 0FDMA子载波数据单元, 可以包括:
将输入频率为第一频率的 0FDMA子载波调度至输出频率为第一频率的 0FDMA子载波;
或,将输入频率为第一频率的 0FDMA子载波的频率变换为第二频率后, 调度至输出频率为第二频率的 0FDMA子载波。
在由相同数量的 0FDMA子载波组成的 0FDMA子载波数据单元之间进行 调度, 可以包括:
将输入频带为第一频带的 0FDMA子载波数据单元调度至输出频带为第 一频带的 0FDMA子载波数据单元;
或, 将输入频带为第一频带的 0FDMA子载波数据单元的频带变换为第 二频带后, 调度至揄出频带为第二频带的 0FDMA子载波数据单元。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一计算 机可读取存储介盾中, 该程序在执行时, 可以包括上述实施例方法中的全 部或部分步驟, 所述的存储介质可以包括: ROM, RAM, 磁盘、 光盘等。
本发明实施例中还提供了一种数据传送装置, 如下面的实施例所述。 由于该装置解决问题的原理与数据传送方法相似, 因此该装置的实施可以 参见方法的实施, 重复之处不再赘述。
如图 9所示, 本发明实施例中的数据传送装置可以包括:
支路单元 901 , 用于将待传送的数据流映射至 0FDMA子载波; 交叉单元 902,用于将来自支路单元的所述 OF匪 A子载波调度至线路单 元;
线路单元 9 03 , 用于对所述 0FDMA子载波进行复用处理, 生成 0FDMA 帧; 以及, 传送所述 0FDMA帧。
图 10为图 9所示数据传送装置的具体实施。 如图 9所示, 一个实施例 中, 图 9所示的数据传送装置还可以包括:
DBA 请求单元 904 , 用于在所述支路单元将待传送的数据流映射至 0FDMA子载波之前, 发起 DBA请求; 以及, 接收根据所述 DBA请求、 业务优 先级及带宽资源计算出的带宽分配信息;
支路单元 901还可以用于根据所述带宽分配信息, 将待传送的数据流 映射至 OFDMA子载波。
一个实施例中, 支路单元 901可以包括:
物理层接口 PHY9011 , 用于将所述数据流的速率适配至与所述 OFDMA 子栽波的承栽速率相一致。
一个实施例中, 支路单元 901可以包括:
编码模块 9012 , 用于对所述数据流进行编码处理;
调制模块 9013,用于对经编码处理后的所述数据流进行 IFFT处理,调 制至 OFDMA子载波。
一个实施例中, 支路单元 901还可以用于:
将所述数据流映射到 OFDMA子载波净荷单元;
将 OFDMA子载波净荷单元映射到 OF腿 A子载波数据单元。
一个实施例中, 交叉单元 902还可以用于:
以单个 OFDMA子载波为粒度进行调度, 调度 OF丽 A子载波数据单元; 或, 在由相同数量的 OFDMA子载波组成的 0FDMA子载波数据单元之间 进行调度。
一个实施例中, 所述以单个 0FDMA子载波为粒度, 调度 0FDMA子载波 数据单元, 包括:
将输入频率为第一频率的 0FDMA子载波调度至输出频率为第一频率的 OFDMA子载波;
或,将输入频率为第一频率的 0FDMA子载波的频率变换为第二频率后, 调度至输出频率为第二频率的 0FDMA子载波。
一个实施例中, 在由相同数量的 0FDMA子载波组成的 0FDMA子载波数 据单元之间进行调度, 包括:
将输入频带为第一频带的 0FDMA子载波数据羊元调度至输出频带为第 一频带的 OFDMA子载波数据单元;
或, 将输入频带为第一频带的 0FDMA子载波数据单元的频带变换为第 二频带后, 调度至输出频带为第二频带的 0FDMA子载波数据单元。
—个实施例中, 线路单元 903还可以用于:
将多个包含 1个净荷子载波的 0FDMA子载波数据单元复用成包含多个 净荷子载波的 OF匪 A子载波数据单元;
将复用后的多个包含多个净荷子栽波的 0FDMA子栽波数据单元通过子 载波叠加, 复用成 0FDMA通道组。
一个实施例中, 线路单元 903可以包括:
插入模块 9031, 用于在生成 0FDMA帧之后 , 在所述 0FDMA帧中插入循 环前缀或帧间隔;
数模转换模块 9032 , 用于在传送所述 OF丽 A帧之前, 对插入循环前缀 或帧间隔后的所述 0FDMA帧进行数模转换处理。
一个实施例中, 线路单元 903可以包括:
适配模块 9033 , 用于将所述 0FDMA帧适配至光通道或微波通道进行传 送。
本发明实施例还提供一种数据接收装置, 其结构如图 11所示, 可以包 括:
线路单元 11 01 , 用于接收 0FDMA帧; 对所述 0FDMA帧进行数字滤波处 理, 获得 0FDMA子载波;
交叉单元 11 02, 用于将来自线路单元的所述 0FDMA子载波调度至支路 单元;
支路单元 11 03 , 用于对所述 0F匪 A子载波进行解映射处理 , 恢复出原 始数据流发往用户网络。
图 12为图 11所示数据接收装置的具体实施。 如图 11所示,一个实施 例中, 线路单元 1101可以包括:
电信号转换模块 11011, 用于将接收的光通道或微波通道传送的所述 0FDMA帧转换为电信号。
一个实施例中, 线路单元 1101还可以包括:
模数转换模块 11012,用于在所述电信号转换模块将接收的 OFDMA帧转 换为电信号之后, 进行模数转换处理;
去除模块 11013 ,用于在对所述 OFDMA帧进行数字滤波处理之前,去除 经所述模数转换处理后的所述 OFDMA帧中的循环前缀或帧间隔。
一个实施例中, 图 11所示数据接收装置还可以包括:
帧对齐单元 11 04 , 用于在调度所述 OFDMA子载波之前, 对所述 OFDMA 帧进行帧对齐处理。 以单个 OFDMA子载波为粒度, 调度 OFDMA子载波数据单元;
或, 在由相同数量的 OFDMA子载波组成的 OFDMA子载波数据单元之间 进行调度。
一个实施例中, 所述以单个 OFDMA子载波为粒度, 调度 OFDMA子载波 数据单元, 可以包括:
将输入频率为第一频率的 OFDMA子载波调度至输出频率为第一频率的 0FDMA子载波; 或,将输入频率为第一频率的 0FDMA子载波的频率变换为第二频率后, 调度至输出频率为第二频率的 0FDMA子载波。
一个实施例中, 在由相同数量的 0FDMA子栽波组成的 0FDMA子载波数 据单元之间进行调度, 可以包括:
将输入频带为第一频带的 0FDMA子载波数据羊元调度至输出频带为第 一频带的 0FDMA子载波数据单元;
或, 将输入频带为第一频带的 0FDMA子载波数据单元的频带变换为第 二频带后, 调度至输出频带为第二频带的 0FDMA子载波数据单元。
一个实施例中, 支路单元 1103可以包括:
解调模块 11 031 , 用于对所述 0FDMA子载波进行 FFT处理;
解码模块 11032,用于对经 FFT处理后的所述 0FDMA子载波进行解码处 理。
下面举一具体实施说明图 9所示数据传送装置、 图 11所示数据接收装 置的具体实施。 如图 13所示, 本例中以一数据传送网元实现图 9所示数据 传送装置、 图 11所示数据接收装置的功能, 该数据传送网元由几大部分组 成, 包括线路单元(实现线路单元 903、 1101的功能)、 交叉单元(实现交 叉单元 902、 1102的功能)、 支路单元(实现支路单元 901、 1101的功能)、 定时单元和控制单元。
本例中支路单元包括对外连接的物理层接口 PHY (实现物理层接口 PHY901 K 电信号转换模块 11011的功能)、 和 M-QAM编解码部分(实现编 码模块 9012、 解码模块 11032的功能;), 及 IFFT/FFT部分(实现调制模块 9013、 解调模块 11031的功能), 主要用于完成对客户信号的映射和解映射 过程; 包括对来自客户网络的 FE/GE信号经过 PHY的处理, 到达 M-QAM编 码部分进行编码处理, 然后经 IFFT部分调制到所分配的子载波上, 发送到 交叉单元, 这个过程为映射过程; 或将交叉单元送来的子载波信号经过 FFT 处理, 送给 M-QAM进一步解码, 恢复出 FE/GE信号经过 PHY部分发送到客 户网络, 这个过程为解映射过程。 交叉单元, 主要完成基于 0FDMA子载波的调度功能, 可以是基于单个 的 0FDMA子载波的调度, 也可以是基于多个子载波的调度, 最小的调度颗 粒为单个的 0FDMA子载波; 交叉单元的功能就是将来自支路的 0FDMA子载 波信号调度到相应的线路单元; 或将来自线路单元的 0FDMA子载波信号调 度到相应的支路单元; 或进行一些中间调度处理, 如将线路单元 1的 0FDMA 子载波调度到线路单元 2、 将支路单元 1的 OF丽 A信号调度到支路单元 2。
线路单元,包括数字滤波 /IFFT复用部分, GAP插入(实现插入模块 9031 的功能)和去插入部分(实现去除模块 11013 的功能), D/A (实现数模转 换模块 9032的功能)和 A/D (实现模数转换模块 11012的功能)部分, 及 0/E (实现电信号转换模块 11011的功能)、 E/0 (实现适配模块 9033的功 能)光接口部分組成, 主要完成将交叉单元送来的子载波经过 IFFT复用成 0FDMA线路帧格式, 如图 4所示; 然后经过 D/A转换和电光转换调制, 发送 到目的网元节点; 或将来自其他网元的光信号转换为电信号, 经过 A/D转 换器和数字滤波处理, 发送到交叉单元。
图 13所示的数据传送网元还可以包括 DBA请求单元(实现 DBA请求单 元 904的功能), 用于收集从各支路单元中 PHY部分检测到的流量数据, 并 根据流量数据产生对应各支路接口的 DBA请求, 插入到开销子栽波中, 传 送到主节点网元进行处理。
当图 13所示的数据传送网元为主节点网元时,其结构还包括 DBA算法 单元, 用于接收各从节点网元发送来的 DBA请求, 并根据 DBA请求和业务 优先级及带宽资源进行公平带宽分配 , 得出各从节点网元的各支路接口所 需要的带宽分配信息, 或者称为带宽地图, 包括子载波的数量和编号等信 息, 发送给各从节点; 然后各从节点按照所分配的带宽地图, 将业务数据 流映射到所分配的 0FDMA子载波上。
图 13所示数据传送网元中的定时单元和控制单元是作为一个设备所需 要的, 其中定时单元用于同步于外时钟, 同时产生设备各单元所需要的定 时信号, 包括产生 0FDMA帧定位信号, 或产生 IFFT/FFT运算中所需要的定 时信号。 其中控制单元负责对其他单元的初始配置管理和对外通信管理。 假定有 20个 100MBIT/S的 FE专线, 对应 20个 LTE基站, 需要通过由 图 13 所示的数据传送网元所组成的传送网络来传送, 共需要线路容量为 2GBIT/S, 且有 4个网元组成的环网,其中主节点网元配置有 DBA算法模块, 从节点网元配置有 DBA请求模块。
本实施例在线卡中采用的 A/D转换器的采样速率为 1024MBIT/S,具体 型号为: ADC291.这样调制带宽就是 512Mhz; 如果采用 N=l 024个子载波来 承载,那么每个子载波的带宽为 512/1024=500MHz;考虑到采用 64QAM编码, 频谱效率可以达到 6BIT/HZ;再考虑到纠错和其他开销, 实际的频谱效率可 以达到 4BIT/Hz, 则 500MHz的子栽波带宽可以传送 2000KBIT/S的数据流, 因此可以计算出, 一个 FE数据流共需要 50个净货子载波, 再考虑到开销 情况, 假定分配一个子载波为开销子载波, 也就是说, 一个装载 10QM FE 的 0FDMA- ODUi的容量为 50 + 1 = 51个子载波, 20路 FE共需要 1020个子载 波来传递, 剩下的子载波可为直流分量。
支路上的 64 QAM 编码可用大规模 FPGA 来实现, IFFT/FFT 可用 VIRTEX-4 IFFT CORE £辑来实现。
线路上的数字滤波部分也可以利用 FPGA或 VIRTEX- 4 IFFT CORE逻辑 来实现, 而 0/E和 E/0的光器件可以采用价格便宜的 GIGABIT ETHERNET光 接收和光发送模块。
交叉单元是全数字处理, 所以需要大规模的 FPGA 或 VIRTEX-4 IFFT CORE等 辑来实现。
以上考虑的是满足 FE最大峰值速率传递的情况,子载波的分配也是固 定的, 而实际上, FE端口中的数据流量是动态变化的, 如果仅考虑最大的 流量来分配子载波, 这与 TDM业务的传送方式本身没有实质区别, 所以为 了有效利用线路带宽, 需要对 20个 FE端口进行统计复用。 本实施例中的 统计复用过程是由主节点的 DBA算法模块公平分配带宽。
本实施例的另外一个优点就是可编程性, 由于 IFFT/FFT都是基于高速 DSP处理, A/D转换器的抽样频率也是可以改变的, 子载波的数量也是可以 改变的, QAM的编码进制也是可以改变的, 所以一种硬件条件下, 通过设置 不同的参数可以达到不同的性能。 例如在距离较长时, 可以降低 QAM编码 进制, 或减少子载波数量等来达到较好的性能。
综上所述, 本发明实施例中, 将待传送的数据流映射至 0FDMA子载波; 调度所述 0FDMA子载波; 复用所述 0FDMA子载波, 生成 0FDMA帧; 传送所 述 0FDMA帧; 不同于现有技术中基于多波长在光域叠加 0FDMA帧, 而是基 于电层处理 0FDMA帧, 在电层上进行子载波或通道的复用, 从而实现基于 0FDMA子载波的交叉连接能力, 不但支持所有从节点到主节点的汇聚业务, 还支持从节点两两之间的专线连接。
本发明实施例中, 接收 0FDMA帧; 对所述 0FDMA帧进行数字滤波处理, 获得 0FDMA子载波; 调度所述 0FDMA子载波; 解映射所述 0FDMA子载波, 恢复出原始数据流发往用户网络; 不同于现有技术中基于多波长在光域叠 加 0FDMA帧, 而是基于电层处理 0FDMA帧, 在电层上进行子载波或通道的 解复用, 从而实现基于 0FDMA子载波的交叉连接能力, 不但支持所有从节 点到主节点的汇聚业务, 还支持从节点两两之间的专线连接。
另外, 本发明实施例中, 由于子栽波通道的带宽是可变的, 因而适合 任意速率的子速率业务的传送。
本发明实施例从一个传送技术体制上来进行改进,并不局限 OFDM技术 在 TOM环网上的应用 , 而是充分考虑了与现有传送体制的关系和融合问题; 能够与光层和微波融合, 可应用于微波传送, 无源光网络领域, 汇聚传送 网络, 城域传送网络及骨干传送网络。
在弹性方面,不同于现有技术的 0FDMA帧的容量与波长数量没有关系, 体现不出多波长的容量优势, 其多波长仅仅时为了克服接收器的拍频噪声 , 而是在本发明实施例中, 结合了 DBA 的统计复用, 在单波长的利用率上体 现出很高的弹性; 如果通过增加波长 0CH , 则可按波长进行更大的扩容。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施例而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所 做的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种数据传送方法, 其特征在于, 该方法包括:
将待传送的数据流映射至正交频分复用多址 0FDMA子载波; 调度所述 0FDMA子载波;
复用所述 0FDMA子载波, 生成 0FDMA帧;
传送所述 0FDMA帧。
2、 如权利要求 1所述的方法, 其特征在于, 所述将待传送的数据流映 射至 0FDMA子载波之前, 还包括:
发起动态带宽分配 DBA请求;
接收根据所述 DBA请求、 业务优先级及带宽资源计算出的带宽分配信 息;
所述将待传送的数据流映射至 0FDMA子载波, 包括:
根据所述带宽分配信息, 将待传送的数据流映射至 0FDMA子载波。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述将待传送的数据 流映射至 0FDMA子载波, 包括:
对所述数据流进行编码处理;
对经编码处理后的所述数据流进行 IFFT处理, 调制至 0FDMA子载波。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述将待传送的数据 流映射至 0FDMA子载波, 包括:
将所述数据流映射到 0FDMA子载波净荷单元;
将 0FDMA子载波净荷单元映射到 0FDMA子载波数据单元。
5、 如权利要求 4所述的方法, 其特征在于, 调度所述 0FDMA子载波, 包括:
以单个 0FDMA子载波为粒度, 调度 0FDMA子载波数据单元; 或, 在由相同数量的 0FDMA子载波組成的 0FDMA子载波数据单元之间 进行调度。
6、 如权利要求 5所述的方法, 其特征在于, 所述以单个 0FDMA子载波 为粒度, 调度 OFDMA子载波数据单元, 包括:
将输入频率为第一频率的 0FDMA子载波调度至输出频率为第一频率的 0FDMA子载波;
或,将输入频率为第一频率的 0FDMA子载波的频率变换为第二频率后, 调度至输出频率为第二频率的 0FDMA子载波。
7、 如权利要求 5所述的方法, 其特征在于, 在由相同数量的 0FDMA子 载波组成的 0FDMA子载波数据单元之间进行调度, 包括:
将输入频带为第一频带的 0FDMA子载波数据单元调度至输出频带为第 一频带的 0FDMA子载波数据单元;
或, 将输入频带为第一频带的 0FDMA子栽波数据单元的频带变换为第 二频带后, 调度至输出频带为第二频带的 0FDMA子载波数据单元。
8、 如权利要求 4所述的方法, 其特征在于,复用所述 OFDMA子载波, 生成 0FDMA帧, 包括:
将多个包含 1个净荷子载波的 0FDMA子载波数据单元复用成包含多个 净荷子载波的 OF腿 A子载波数据单元;
将复用后的多个包含多个净荷子载波的 0FDMA子载波数据单元通过子 载波叠加, 复用成 0FDMA通道組。
9、如权利要求 1所述的方法,其特征在于,传送所述 0FDMA帧, 包括: 将所述 0FDMA帧适配至光通道或啟波通道进行传送。
1 0、 一种数据接收方法, 其特征在于, 该方法包括:
接收 0FDMA帧;
对所述 0FDMA帧进行数字滤波处理, 获得 0FDMA子载波;
调度所述 0FDMA子载波;
解映射所述 0FDMA子载波, 恢复出原始数据流发往用户网络。
1 1、 如权利要求 10所述的方法, 其特征在于, 所述调度所述 0FDMA子 载波之前, 还包括:
对所述 0FDMA帧进行帧对齐处理。
12、 如权利要求 10所述的方法, 其特征在于, 解映射所述 0FDMA子载 波, 包括:
对所述 0FDMA子载波进行 FFT处理;
对经 FFT处理后的所述 0FDMA子载波进行解码处理。
1 3、 一种数据传送装置, 其特征在于, 该装置包括:
支路单元, 用于将待传送的数据流映射至 0FDMA子载波;
交叉单元,用于将来自支路单元的所述 0FDMA子载波调度至线路单元; 线路单元, 用于对所述 0FDMA子载波进行复用处理, 生成 0FDMA帧; 以及, 传送所述 0FDMA帧。
14、 如权利要求 1 3所述的装置, 其特征在于, 所述装置还包括:
DBA请求单元, 用于在所述支路单元将待传送的数据流映射至 0FDMA 子载波之前, 发起 DBA请求; 以及, 接收根据所述 DBA请求、 业务优先级 及带宽资源计算出的带宽分配信息;
所述支路单元进一步用于根据所述带宽分配信息, 将待传送的数据流 映射至 0FDMA子载波。
15、 如权利要求 13或 14所述的装置, 其特征在于, 所述支路单元进 一步用于:
将所述数据流映射到 0FDMA子载波净荷单元;
将 0FDMA子载波净荷单元映射到 OF丽 A子载波数据单元。
16、 如权利要求 15所述的装置, 其特征在于, 所述交叉单元进一步用 于:
以单个 0FDMA子载波为粒度, 调度 0FDMA子载波数据单元;
或, 在由相同数量的 0FDMA子载波组成的 0FDMA子载波数据单元之间 进行调度。
17、 如权利要求 16所述的装置, 其特征在于, 所述以单个 0FDMA子载 波为粒度进行调度, 调度 0FDMA子载波数据单元, 包括:
将输入频率为第一频率的 0FDMA子载波调度至输出频率为第一频率的 OFDMA子载波;
或,将输入频率为第一频率的 0FDMA子载波的频率变换为第二频率后, 调度至输出频率为第二频率的 0FDMA子载波。
18、 如权利要求 16所述的装置, 其特征在于, 在由相同数量的 OFDMA 子载波组成的 OF匪 A子载波数据单元之间进行调度, 包括:
将输入频带为第一频带的 0FDMA子栽波数据单元调度至输出频带为第 一频带的 OFDMA子载波数据单元;
或, 将输入频带为第一频带的 0FDMA子载波数据单元的频带变换为第 二频带后, 调度至输出频带为第二频带的 0FDMA子载波数据单元。
19、 如权利要求 16所述的装置, 其特征在于, 所述线路单元进一步用 于:
将多个包含 1个净荷子载波的 0FDMA子载波数据单元复用成包含多个 净荷子载波的 OF丽 A子载波数据单元;
将复用后的多个包含多个净荷子载波的 OFDMA子载波数据单元通过子 载波叠加, 复用成 0FDMA通道组。
20、 如权利要求 1 3所述的装置, 其特征在于, 所述线路单元包括: 适配模块, 用于将所述 0FDMA帧适配至光通道或微波通道进行传送。
21、 一种数据接收装置, 其特征在于, 该装置包括:
线路单元, 用于接收 OF丽 A帧; 对所述 0FDMA帧进行数字滤波处理, 获得 OF画 A子载波;
交叉单元,用于将来自线路单元的所述 0FDMA子载波调度至支路单元; 支路单元, 用于对所述 0FDMA子载波进行解映射处理, 恢复出原始数 据流发往用户网络。
22、 如权利要求 21所述的装置, 其特征在于, 所述装置还包括: 帧对齐单元, 用于在调度所述 0FDMA子载波之前, 对所述 OF腿 A帧进 行帧对齐处理。
2 3、 如权利要求 21所述的装置, 其特征在于, 所述支路单元包括: 解调模块, 用于对所述 0FDMA子载波进行 FFT处理;
解码模块, 用于对经 FFT处理后的所述 0FDMA子载波进行解码处理。
PCT/CN2010/076663 2009-09-15 2010-09-07 数据传送、接收的方法及装置 WO2011032466A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10816670A EP2479947A4 (en) 2009-09-15 2010-09-07 METHOD AND DEVICE FOR SENDING OR RECEIVING DATA
US13/421,464 US8891352B2 (en) 2009-09-15 2012-03-15 Data transmission and receiving method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910172173.0 2009-09-15
CN200910172173.0A CN102025478B (zh) 2009-09-15 2009-09-15 数据传送、接收的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/421,464 Continuation US8891352B2 (en) 2009-09-15 2012-03-15 Data transmission and receiving method and apparatus

Publications (1)

Publication Number Publication Date
WO2011032466A1 true WO2011032466A1 (zh) 2011-03-24

Family

ID=43758093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076663 WO2011032466A1 (zh) 2009-09-15 2010-09-07 数据传送、接收的方法及装置

Country Status (4)

Country Link
US (1) US8891352B2 (zh)
EP (1) EP2479947A4 (zh)
CN (1) CN102025478B (zh)
WO (1) WO2011032466A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844425B2 (ja) * 2007-02-15 2011-12-28 ソニー株式会社 帯域要求システム、帯域要求装置、クライアント機器、帯域要求方法、コンテンツ再生方法およびプログラム
CN102237896B (zh) * 2011-06-15 2015-12-09 北京福星晓程电子科技股份有限公司 电力线载波通信方法及用于该方法的发送装置和媒体播放装置
CN102263726B (zh) * 2011-06-27 2018-05-01 中兴通讯股份有限公司 一种数据的传输方法、装置及系统
US9258086B2 (en) * 2011-08-03 2016-02-09 Qualcomm Incorporated Allocating physical hybrid ARQ indicator channel (PHICH) resources
AU2011370367A1 (en) * 2011-11-15 2014-02-20 Huawei Technologies Co., Ltd. Method, device and system for transmitting service data on optical transport network
EP2878088B1 (en) * 2012-07-26 2018-09-19 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for transporting a client signal over an optical network
CN103001724B (zh) * 2012-08-30 2015-07-15 电子科技大学 Oofdm信号中光子载波的光分插复用方法及光分插复用器
US9025621B2 (en) * 2012-11-30 2015-05-05 Cox Communications, Inc. Systems and methods for distributing content over multiple bandwidth mediums in a service provider network
EP2974186B1 (en) 2013-03-15 2023-06-28 Robert Bosch GmbH Method and system for robust real-time wireless industrial communication
EP2999170B1 (en) * 2013-06-24 2018-08-15 Huawei Technologies Co., Ltd. Increasing method and decreasing method for variable optical channel bandwidth and device
CN104427412B (zh) * 2013-08-20 2019-06-18 中兴通讯股份有限公司 一种带宽地图更新的方法及装置
CN104468406B (zh) * 2013-09-13 2019-10-22 中兴通讯股份有限公司 跨主节点业务处理方法和装置
US10715249B2 (en) * 2015-03-27 2020-07-14 Nec Corporation Optical network system, optical node device, and optical network control method
US9871613B2 (en) * 2016-03-15 2018-01-16 Alcatel-Lucent Usa Inc. Sub-wavelength granularity for transport of multicarrier optical signals
CN107257310B (zh) * 2017-07-05 2020-04-24 北京东土科技股份有限公司 基于工业互联网现场层宽带总线架构的实现系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047683A (zh) * 2006-05-16 2007-10-03 华为技术有限公司 一种无线信号发射/接收方法及发射/接收装置
CN101282188A (zh) * 2007-04-04 2008-10-08 株式会社Ntt都科摩 无线基站、移动站、无线通信系统以及无线通信方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1156297A1 (de) * 2000-05-15 2001-11-21 SM Schweizerische Munitionsunternehmung AG Kleinkaliber-Deformationsgeschoss und Verfahren zu dessen Herstellung
JP3396815B2 (ja) 2001-06-20 2003-04-14 富士通株式会社 データ伝送方法及びデータ伝送装置
CN1909536A (zh) * 2005-08-02 2007-02-07 松下电器产业株式会社 正交频分多址-时分多址通信方法及装置
CN101248619A (zh) * 2005-12-23 2008-08-20 香港应用科技研究院有限公司 一种具有动态带宽分配的分布式无线网络
CN101043493B (zh) * 2006-03-22 2010-04-14 华为技术有限公司 一种正交频分复用帧的物理信道映射方法及装置
GB2455056A (en) * 2007-10-04 2009-06-03 Fujitsu Ltd Signalling mechanism in an OFDMA wireless communication network
MX2010004141A (es) * 2007-10-17 2010-08-10 Zte Usa Inc Estructura de trama de ofdm/ofdma para sistemas de comunicacion.
EP2215756A2 (en) * 2007-11-09 2010-08-11 ZTE U.S.A., Inc. Flexible ofdm/ofdma frame structure for communication systems
PE20100769A1 (es) * 2009-04-02 2010-11-25 Sicpa Holding Sa Identificacion y autenticacion usando marcados de material de cristal liquido polimerico
CN102075478A (zh) * 2009-11-24 2011-05-25 华为技术有限公司 无源光纤网络的信号处理方法、设备和系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047683A (zh) * 2006-05-16 2007-10-03 华为技术有限公司 一种无线信号发射/接收方法及发射/接收装置
CN101282188A (zh) * 2007-04-04 2008-10-08 株式会社Ntt都科摩 无线基站、移动站、无线通信系统以及无线通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2479947A4 *

Also Published As

Publication number Publication date
CN102025478A (zh) 2011-04-20
EP2479947A4 (en) 2012-08-22
EP2479947A1 (en) 2012-07-25
US8891352B2 (en) 2014-11-18
US20120176990A1 (en) 2012-07-12
CN102025478B (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2011032466A1 (zh) 数据传送、接收的方法及装置
US8000604B2 (en) Orthogonal frequency division multiple access (OFDMA) based passive optical network (PON) architecture and its extension to long distance
CN101656894B (zh) 包分插复用设备及包分插复用设备的数据传输方法
US8064766B2 (en) Orthogonal frequency division multiple access based optical ring network
US9331785B2 (en) Method and apparatus of building a coaxial convergence layer in ethernet passive optical network (PON) over coaxial network (EPoC)
CA2460581C (en) Allocation of bit streams for communication over multi-carrier frequency-division multiplexing (fdm)
US7599620B2 (en) Communications network for a metropolitan area
US20040264961A1 (en) Ethernet passive optical network system, and optical network terminal and optical line terminal provided in the same
CN102202248B (zh) 正交频分复用无源光网络系统
KR100516152B1 (ko) 부반송파다중화 방식이 적용된 파장 분할 다중 방식수동형 광가입자망 및 그것에서의 비대칭 패킷 데이터통신을 위한 매체접속 제어 방법
JP2009543402A (ja) 帯域幅非対称通信システム
WO2011063728A1 (zh) 无源光纤网络的信号处理方法、设备和系统
WO2008040142A1 (fr) Procédé, système et dispositif de transmission de données
WO2014019359A1 (zh) 光传送网中传送、接收客户信号的方法和装置
WO2010096993A1 (zh) 一种业务适配的方法和业务适配装置
CN101640820A (zh) 一种正交频分复用无源光网络
WO2011057545A1 (zh) 传输多路业务的方法和装置
CN101753249A (zh) 包分插复用设备及包分插复用设备的数据传输方法
KR20130079296A (ko) 다수 캐리어들 상에서의 통합 계층 본딩
WO2021073406A1 (zh) 一种业务数据的传输方法、相关设备以及数字处理芯片
KR100281576B1 (ko) 이중링크 불연속 다중톤을 이용한 비동기 디지털 가입자회선 송수신 장치
WO2014176791A1 (zh) 多载波分复用系统的方法和装置
JP5692344B1 (ja) 局舎端末、光アクセスネットワーク及び通信方法
JP5935915B1 (ja) 通信装置、光ネットワーク及び通信方法
KR20150062710A (ko) 직교 주파수 분할 다중화 방식의 수동형 광가입자망에서 광종단장치의 부반송파 할당 방법 및 이를 지원하는 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 639/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010816670

Country of ref document: EP