WO2011057545A1 - 传输多路业务的方法和装置 - Google Patents

传输多路业务的方法和装置 Download PDF

Info

Publication number
WO2011057545A1
WO2011057545A1 PCT/CN2010/078467 CN2010078467W WO2011057545A1 WO 2011057545 A1 WO2011057545 A1 WO 2011057545A1 CN 2010078467 W CN2010078467 W CN 2010078467W WO 2011057545 A1 WO2011057545 A1 WO 2011057545A1
Authority
WO
WIPO (PCT)
Prior art keywords
tcont
node
payload area
frame
array
Prior art date
Application number
PCT/CN2010/078467
Other languages
English (en)
French (fr)
Inventor
陈志云
胡幸
颜敏
周建林
曹旸
李昆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to AU2010317239A priority Critical patent/AU2010317239B2/en
Priority to EP10829509.8A priority patent/EP2493138B1/en
Publication of WO2011057545A1 publication Critical patent/WO2011057545A1/zh
Priority to US13/468,807 priority patent/US8824498B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1611Synchronous digital hierarchy [SDH] or SONET
    • H04J3/1617Synchronous digital hierarchy [SDH] or SONET carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0064Admission Control
    • H04J2203/0067Resource management and allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/009Topology aspects
    • H04Q2011/0092Ring

Definitions

  • the present invention relates to the field of optical transmission technologies, and in particular, to a method and apparatus for transmitting multiple services. Background technique
  • GPON Gigabit Passive Optical Network
  • TDM Time Division Multiplex and Multiplexer
  • the nodes on the ring network are divided into N nodes and S nodes.
  • the N nodes are common decentralized service access nodes.
  • the S nodes are also called the primary nodes.
  • Any node can directly go up and down the traditional TDM, Ethernet data services, etc., and can also provide PON (Passive Optical Network) tributary interface, and also provide 10GE (Gigabit Ethernet, Gigabit Ethernet) at the S node. Wait for the uplink service interface.
  • FB Fixed-bandwidth services
  • TDM Time Division Multiple Access
  • SDH Serial Digital Hierarchy
  • SONET Synchronous Optical Network
  • BE Band Effort
  • the network is a converged network, and the aggregation node is an S node, which implements dual backup.
  • the network is a peer-to-peer
  • TDM Time Division Multiple Access
  • SDH/SONET Secure Digital Network
  • the network includes a three-layer structure of service adaptation layer, channel layer and physical layer, with few layers, simple circuit processing, high reliability, cost and power consumption, and simple implementation.
  • the service adaptation layer is responsible for encapsulating and decapsulating various service entities according to the format of the E-GEM (Enhanced GPON Encapsulation Method) frame, and requires specifying a unique identifier for each service in the network.
  • E-GEM Enhanced GPON Encapsulation Method
  • T-CONT Transmission Container
  • the physical layer combines all T-CONT frames into TC (Transmission Convergence) frames, ie physical layer frames, plus physical layer overhead, including frame header synchronization, management overhead and bandwidth maps, to form GTH (Generic Transport). Hierarchy, universal transport system), so that the communication and management of the N nodes in the network can be realized, and the allocated time slots of each T-CONT can be easily adjusted to realize dynamic bandwidth adjustment.
  • TC Transmission Convergence
  • GTH Generic Transport
  • the process of the DBA is as follows: Each N node detects, counts, and reports the DBR (Dynamic Bandwidth Requirement) information of each service port of the local node to the master node. According to the existing bandwidth resources on the ring, the service type of each node, the priority, etc., the judgment and calculation are performed. Finally, the bandwidth allocation information of each node is sent to each node, and each node transmits data according to the allocated bandwidth.
  • the bandwidth allocation information refers to a BWmap (Bandwidth Map), and each node can assemble the size and number of T-CONT frames according to the bandwidth map.
  • a method of transmitting a multi-path service comprising:
  • a device for transmitting a multi-path service comprising:
  • a receiving module configured to receive bandwidth information of a transfer container TCONT of all nodes; an array of n, each array includes a specified number of time slots, and any two adjacent time slots in each array are n intervals And n is a natural number, and according to the TCONT bandwidth information of all the nodes, calculating a slot position of an array occupied by the TCONT of each node in the payload area;
  • a frame processing module configured to insert a TCONT of the local node into a corresponding time slot according to a slot position of an array occupied by a TCONT of the local node in the payload area, to obtain a GTH, starting from a specified frame. Frame and transmit the GTH frame.
  • the foregoing technical solution provided by the embodiment of the present invention can uniformly allocate time slots, can implement asynchronous adaptation of multiple services, and strictly guarantee bandwidth of different types of services, and simultaneously support flexible adjustment of service bandwidth, and reduce complexity of logic implementation. degree.
  • the service adopts slot interleave multiplexing instead of the block TCONT structure, the delay time for the node to separately send services to the working channel and the protection channel is greatly shortened, and the cache is reduced. It also does not cause the dual-issue process to fail.
  • the lines of different rates are multiplexed, it can reduce the need to map low-rate line services to high-speed lines. Cache and delay, even for FB-type services, can be well interleaved and reused, making full use of the bandwidth fragmentation left after some FB-type services are deleted, thereby improving the bandwidth utilization of the line.
  • FIG. 1 is a schematic diagram of a network architecture for transmitting a multi-path service according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a format of an E-GEM frame according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a format of a TCONT frame according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a GTH frame according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a typical application scenario of a technical solution provided by an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for transmitting a multi-path service according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of slot division of a GTH frame payload area according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a specific application scenario of a transmission multi-path service according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of a slot mapping table obtained by each node in the application scenario of FIG. 9;
  • FIG. 11 is a schematic diagram of a service transmission time slot of the application scenario of FIG. 9 after the K+1th frame;
  • FIG. 12 is a structural diagram of an apparatus for transmitting a multi-path service according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a specific implementation of an apparatus for transmitting a multi-path service according to an embodiment of the present invention.
  • the embodiment of the invention provides a method for transmitting a multi-path service, including: Receive bandwidth information of TCONTs of all nodes;
  • the local node's TCONT is interleaved into the corresponding time slot to obtain a GTH frame and transmit the GTH frame.
  • the primary node in the embodiment of the present invention refers to an S node in the network, and the local node may be an S node or an N node, and the N node refers to a normal Normal node.
  • TCONT is the control object of bandwidth allocation.
  • the master node can allocate one or more TCONTs to an N node.
  • the N node uses TCONT to transmit services in the network.
  • the services of the embodiments of the present invention include, but are not limited to, the TDM service, the SDH/SONET/ATM service, the Ethernet data service, and the like, which are not specifically limited in the embodiment of the present invention.
  • fixed bandwidth services such as: TDM services or data leased lines services
  • guaranteed bandwidth services such as video services
  • best-effort services such as the above-mentioned network services.
  • the network architecture for transmitting multiple services in the embodiment of the present invention may be as shown in FIG. 1.
  • the network layer of the network includes: a physical layer, a channel layer, and a service adaptation layer, which respectively correspond to GTH frames, TCONT frames, and E-GEM frames.
  • the format of the E-GEM frame is shown in Figure 2, including the frame header, address identifier, and payload data.
  • the frame header includes four fields: payload length, service identifier, frame type, and header check.
  • the address identifier is divided into the target and the source.
  • the format of the TCONT frame is shown in Figure 3, including the frame header, channel overhead, and payload data.
  • the frame header includes payload length, extension field and header check.
  • the channel overhead includes a channel identifier, a BIP checksum, and a monitoring field, and the monitoring field includes a REI (Remote Error Indication), an RDI (Remote Defect Indication), and a DBR.
  • REI Remote Error Indication
  • RDI Remote Defect Indication
  • DBR DBR
  • the payload data area is used to carry E-GEM frames and consists of multiple E-GEM frames.
  • FIG. 4 shows the structure of a GTH frame according to an embodiment of the present invention.
  • the GTH frame includes: a PCB (Physical Control Block) domain and a payload area.
  • the TC frame is carried in the payload area.
  • the PCB domain includes: Header, OAM, and BWPL (BWMAP PLend, Bandwidth Map Payload Length Field). Head
  • the part includes: PSync (Physical Synchronization), non-scrambling, length 4 bytes, content can be 0xB6AB31E0.
  • OAM Opation, Administration, and Maintenance
  • Ident superframe indication domain
  • PLO AM Physical Layer OAM, physical layer operation and maintenance management
  • BIP Bit Interleaved Parity verification
  • switching Protocol bytes Kl and K2, Ml and SI The Ident includes: FECind (Forward Error Correction) indication, Rev (Reserved Field), and Superframe Counter Super-frame for GTH frames.
  • Ml includes: REI, RDI, and Rev ( Reserved, reserved domain).
  • the BWPL includes: two identical Plend ( Payload Length) fields and one BWMAP Bandwidth Information field.
  • the PLend includes: a length BWMAP Length of the bandwidth information and a check CRC for the length.
  • the BWMAP includes: bandwidth information of N TCONTs, bandwidth information from TCONT1 to bandwidth information of TCONTN.
  • the bandwidth information of each TCONT includes: Alloc ID (Allocation Idendifer), TCONT bandwidth Width, Flag, and CRC (Cyclic Redundancy Code) for TCONT bandwidth information.
  • Alloc IDs include: Node ID and Seq ID.
  • Flags include: Rev (Reserved Field), Forward Error Correction FEC for TCONT Bandwidth Information, DBRu, and Loopback Flag Loopback.
  • the service data is encapsulated with the header and the address identifier according to the format shown in FIG. 2 to obtain an E-GEM frame.
  • the E-GEM frame is used as a data portion, and the packet is encapsulated according to the format shown in FIG. 3.
  • Part and channel overhead get the TCONT frame; use the TCONT frame as the data part, and package the PCB according to the format shown in Figure 4, then get the GTH frame.
  • the ring network includes a master node (S node) and N nodes, such as S1 and S2, Nl, N2, N3, N4, and N5. Any node in the ring network can directly access various services.
  • the S node can be connected to the BRAS (Broadband Remote Access Server) in the upper layer network.
  • the N node can connect different areas and networks to transmit various types of services.
  • this embodiment provides a method for transmitting a multi-path service, which specifically includes:
  • the local node receives the bandwidth information of the TCONT of all the nodes allocated by the master node.
  • the local node in this embodiment refers to any N node in the network.
  • each N node in the network periodically reports the DBR information to the master.
  • the main content of the DBR information is the service type of the local node and the bandwidth information that is desired to be obtained.
  • the master node uses the DBA algorithm on the transmitting side according to the resource and the service type, and allocates the bandwidth of the TCONT to each node, and Issued to each node.
  • the primary node allocates the bandwidth of the TCONT to each node according to the DBR reported by each node in the network.
  • the bandwidth of the TCONT may be allocated to each node by an independent bandwidth allocation device, or The bandwidth of the TCONT is allocated to each node in the network by the BRAS having the bandwidth allocation management capability of the entire network.
  • the local node divides the payload area of the GTH frame into an array of a preset number n, each array includes a specified number of time slots, and any two adjacent time slots in each array are all n. , n is a natural number;
  • the number n of arrays in the embodiment of the present invention is preset, and the same number of arrays is applied to each node to divide the payload area, including the master node and the N node.
  • the number of slots included in each array can be set as needed.
  • the number of slots included in any two arrays may be the same or different.
  • 1 ⁇ the total length of the time slot of the payload area can be set, and n> the number of service channels.
  • each array contains the same number of time slots, and the number is even.
  • the payload area of the GTH frame is divided into n arrays, each of which contains two time slots, and the order of the time slots in each array is: 1st time slot, 2nd A time slot, and the interval between the two time slots is n time slots.
  • the order of the n arrays is arranged in order: the first array, the second array, and the nth array, thereby obtaining the slot sequence shown in FIG.
  • the payload area in the figure can be divided into 2n time slots.
  • the method further includes: arranging n arrays in the payload area according to a preset rule to obtain a sequence of time slots in the payload area, as follows:
  • the preset number n 2 L , L is the number of bits occupied by the number n when represented by a binary number, L is a natural number, and L bits are calculated according to a binary reverse carry method, and n values are obtained, and the n numbers are obtained.
  • the value is arranged as an array of n arrays, and the time slots corresponding to the n arrays in the payload area are arranged according to the arrangement order to obtain the sequence of time slots in the payload area;
  • the n numerical values represent the serial number of the array, and the order of the n arrays is arranged according to the order of the n serial numbers.
  • the time slots corresponding to the n arrays are arranged in the order of the natural numbers, and the time slots corresponding to the n arrays are arranged in the order of the Gray code.
  • the present invention does not specifically limit this.
  • the above binary reverse carry method is adopted.
  • the time slots are sorted, and the principle is as follows: Arrange L bits from high to low, using bw, b L-2 , ... bj , b.
  • the initial value is taken as 0, and then the binary increment is 1 from the highest bit b w , the carry to the lower bit, the carry to the lower bit, ..., and finally to the lower b. carry.
  • the binary increment is 1 from the highest bit b w , the carry to the lower bit, the carry to the lower bit, ..., and finally to the lower b. carry.
  • 2 L or n values can be obtained, and the n values are expressed in decimal as the arrangement number of the n arrays.
  • the three bits are binary reversed and then get eight decimal numbers: 0, 4, 2, 6, 1, 5, 3, and 7.
  • This value is used as the slot position number of the 8 arrays, due to the time of the payload area.
  • the slot position is counted from 1 and has a total of 16 time slots. Therefore, the above 8 numbers starting from 0 are sequentially converted into sequence numbers starting from 1, that is, each value is incremented by 1, and the time slot in Table 1 is obtained.
  • the position number, the eight serial numbers respectively correspond to the first array to the eighth array, thereby obtaining the arrangement number of the eight arrays: the first array is ranked first, and the second array is ranked fifth.
  • the third array is ranked in the third and fourth arrays in the seventh, ..., the seventh array is in the fourth, and the eighth array is in the eighth.
  • the time slot distribution obtained after sorting is as shown in FIG. 8.
  • the eight arrays are sorted in the above order, and the first time slot in each array is separated from the second time slot by 8 time slots.
  • the master node sends a notification, which may specifically adopt a method of sending a preset identifier, such as sending FLAG-A, indicating that the local node has completed the above calculation process.
  • the main node may be notified in other ways, which is not specifically limited in the embodiment of the present invention.
  • the master node after receiving the notification from each node, the master node sends an indication message to each node, which is used to indicate that each node starts framing according to the calculated slot position from the specified frame.
  • the indication information may be in various forms, including but not limited to: the identification information, the specified frame information, and the like, which are not specifically limited in the embodiment of the present invention.
  • the local node receives the indication information sent by the primary node, and determines a corresponding frame according to the indication information.
  • the local node after receiving the indication information, the local node first updates the local slot mapping table, and confirms a corresponding frame, where the frame is used by the local node to determine when to start the frame according to the updated slot mapping table. Previously, interleaving multiplexing was performed according to the existing slot mapping table.
  • the local node saves two slot mapping tables, the current slot mapping table Cur and the next slot mapping table Next.
  • Cur is the overhead slot mapping table, and Next is empty.
  • the local node completes the calculation in 705
  • the obtained slot mapping table is saved in Next.
  • the local node still performs according to the table in Cur.
  • Interpolation multiplexing after receiving the instruction of the master node, the table in Next is updated to Cur, and then the table in Cur is used for interpolating multiplexing, that is, the table calculated by 705 is interpolated and multiplexed.
  • the local node calculates the new slot mapping table again, it still saves it to Next, and replaces the original table in Next, waiting for the instruction of the master node to perform the next update.
  • the local node starts from the corresponding frame, inserts a TCONT of the local node into the corresponding time slot according to the slot position of the array occupied by the TCONT of the local node in the payload area, obtains a GTH frame, and transmits the GTH. frame.
  • the process in which the local node inserts the TCONT into the time slot of the payload area may be as follows: In all TCONTs of the local node, starting from the first TCONT, using the above slot mapping table, n arrays All time slots in the first array are assigned to the first TCONT in turn, if The time slots of an array are allocated, and then the time slots of the second and third arrays are used for allocation until the time slot of the first TCONT is allocated, and then the time slot is allocated to the second TCONT; After the array is allocated to the first TCONT, and there are remaining time slots, it continues to be used to allocate time slots for the second TCONT; and so on, each TCONT is allocated from the last TCONT array slot. A time slot begins to be allocated until all TCONT allocation time slots are completed.
  • the process of transmitting the multi-path service in this embodiment is specifically described by taking the application scenario shown in FIG. 9 as an example.
  • the ring network has a primary node S node and two N nodes, N 1 and N2.
  • the N1 node has the service TCONT 1
  • the N2 node has the service TCONT2
  • the N1 and N2 report the DBR to the S node respectively.
  • the S node and the N1 and N2 nodes use the preset DBA algorithm to calculate the slot position of each node's TCONT in the payload area, respectively obtain and save a slot mapping table, and the slot mapping table obtained by all nodes is the same.
  • the preset DBA algorithm refers to the above-described binary reverse carry method in this embodiment. Assuming that the line payload area length is 16 time slots, divided into 8 arrays, each array has 2 time slots, each node uses the binary reverse carry method to obtain the sequence of time slot positions as shown in FIG. Each node determines the location of its own TCONT in the sequence of time slots based on the bandwidth of its own TCONT.
  • the N1 node has a TCONT1 bandwidth of 8, and occupies 8 time slots and is allocated to the payload area.
  • the occupied time slots are: the first time slot of the first array, and the first time of the third array. Time slot, the first time slot of the second array, the first time slot of the fourth array, the second time slot of the first array, the second time slot of the third array, the second time of the second array Gap, the second time slot of the fourth array.
  • the N2 node has a TCONT2 bandwidth of 4, and then occupies 4 time slots and is allocated to the payload area.
  • the occupied time slots are: the first time slot of the fifth array, the first time slot of the sixth array , the second time slot of the fifth array, the second time slot of the sixth array.
  • a slot mapping table as shown in FIG. 10 can be obtained.
  • N1 and N2 respectively report the FLAG-A flag to the S node, and the S node sends the flag Tu in the Kth frame after receiving, indicating that the two nodes are in the next frame, that is, the K+1 frame according to the above.
  • the slot map is framing.
  • the N1 and N2 nodes respectively transmit and receive TCONT1 and TCONT2 according to their saved slot mapping table in the next frame, ie, the K+1th frame.
  • the GTH frame format on the loop starting from the K+1th frame is as shown in FIG.
  • the N1 node interpolates TCONT1
  • the obtained time slot sequence is as shown in the lower part
  • the time slot shaded time slot is the time slot occupied by TCONT1
  • the N2 node is in the time slot sequence.
  • the obtained time slot sequence is shown in the figure above
  • the cross-hatched time slot is the time slot occupied by TCONT2, and finally transmitted to the S node, so that the transmission of multiple services can be realized.
  • the number of time slots can ensure that the output interleaving of the output can be optimal.
  • the method for transmitting a multi-path service can uniformly allocate time slots, can implement asynchronous adaptation of multiple services, and strictly guarantee the bandwidth of different types of services, and at the same time support flexible adjustment of service bandwidth, and reduce the bandwidth.
  • Logic implementation complexity since the service adopts slot interleave multiplexing instead of the block TCONT structure, the delay time for the node to separately send services to the working channel and the protection channel is greatly shortened, and the cache is reduced. It also does not cause the dual-issue process to fail.
  • the buffers and delays required for mapping low-rate line services to high-speed lines can be reduced. Even FB-type services can be very good.
  • the interleaving and multiplexing are implemented to make full use of the bandwidth fragment left after some FB services are deleted, thereby improving the bandwidth utilization of the line. Referring to FIG. 12, this embodiment provides an apparatus for transmitting a multi-path service, including:
  • the receiving module 1201 is configured to receive bandwidth information of the transmission container TCONT of all nodes.
  • the bandwidth information processing module 1202 is configured to divide the payload area of the GTH frame of the universal transmission system into an array of a preset number ⁇ , and each array includes a specified The number of time slots, and any two adjacent time slots in each array are ⁇ , ⁇ is a natural number. According to the TCONT bandwidth information of all nodes, the TCONT of each node is calculated in the GTH frame payload area. The slot position of the occupied array;
  • the frame processing module 1203 is configured to insert a TCONT of the local node into the corresponding time slot according to the slot position of the array occupied by the TCONT of the local node in the payload area, to obtain a GTH frame and transmit the data from the specified frame.
  • the GTH frame is configured to insert a TCONT of the local node into the corresponding time slot according to the slot position of the array occupied by the TCONT of the local node in the payload area, to obtain a GTH frame and transmit the data from the specified frame.
  • the GTH frame is configured to insert a TCONT of the local node into the corresponding time slot according to the slot position of the array occupied by the TCONT of the local node in the payload area
  • the bandwidth information processing module 1202 is further configured to: before calculating the time slot position of the TCONT of each node in the payload area, arrange the time slots corresponding to the n arrays in the payload area according to a preset rule, and obtain The order of the time slots in the payload area.
  • the bandwidth information processing module arranges n arrays in the payload area according to a preset rule to obtain a sequence of time slots in the payload area, which specifically includes:
  • the preset number n 2 L is the number of bits occupied by the number n in binary numbers, L is a natural number;
  • the n arrays in the payload area are arranged in the order of arrangement to obtain the sequence of time slots in the payload area.
  • the frame processing module 1203 specifically includes:
  • the indication information obtaining unit is configured to notify the master node that the local node has completed the calculation of the time slot position of the TCONT of each node in the payload area, and receives the indication information delivered by the master node;
  • a frame processing unit configured to insert, according to the indication information obtained by the indication information acquiring unit, the TCONT of the local node from the corresponding frame according to the time slot position of the array occupied by the local node TCONT in the payload area Within the time slot, a GTH frame is obtained and the GTH frame is transmitted.
  • FIG. 13 is a schematic diagram of a specific implementation of the above device.
  • the apparatus in the figure includes a GTH demapping unit 1301, a bandwidth information processing module 1302, a TCONT de-adaptive unit 1303, a GEM de-adaptive unit 1304, a GEM adaptation unit 1305, a TCONT adaptation unit 1306, a GTH framing unit 1307, and a transmission.
  • Side DBA module 1308 The foregoing apparatus provided in this embodiment may be integrated on any node in the network, including an N node and an S node.
  • FIG. 13 is a schematic diagram of a specific implementation of the above device.
  • the apparatus in the figure includes a GTH demapping unit 1301, a bandwidth information processing module 1302, a TCONT de-adaptive unit 1303, a GEM de-adaptive unit 1304, a GEM adaptation unit 1305, a TCONT adaptation unit 1306, a GTH framing unit 1307, and a transmission.
  • the GEM adaptation unit 1305, the TCONT adaptation unit 1306, and the GTH framing unit 1307 are mainly used for the transmission process of the service, and the GTH demapping unit 1301, the TCONT de-adaptive unit 1303, and the GEM de-adaptive unit 1304 are mainly used for services.
  • the receiving process, the bandwidth information processing module 1302 is the same as the bandwidth information processing module 1202 described above, and is configured to generate a current Cur slot mapping table and a next Next slot mapping table.
  • the GTH de-frame unit 1301, the bandwidth information processing module 1302, the TCONT de-adaptive unit 1303, the GEM de-adaptive unit 1304, the GEM adaptation unit 1305, the TCONT adaptation unit 1306, and the GTH are included.
  • the framing unit 1307 when the device is a master node device, includes a transmitting side DBA module 1308 for extracting B WMAP and DBR information from the received frame, in addition to the 1301 to 1307, and calculating all TCONTs in the network. The bandwidth is obtained.
  • the traffic receiving process of the device shown in FIG. 13 is as follows: The GTH deframing unit 1301 extracts the BWMAP information from the line and allocates it to the BWMAP configuration table.
  • the bandwidth information processing module 1302 calculates the slot positions of all the TCONT occupied arrays in the payload area according to the bandwidth information of all TCONTs in the BWMAP configuration table according to the method provided by the present invention, and uses the calculated result in the slot mapping table.
  • the form is saved to get the Next slot mapping table, and the Cur slot map
  • the shot table is a slot mapping table currently in use, and for the N node, if the indication of the master node is obtained, the Next slot mapping table is updated to the Cur slot mapping table.
  • the TCONT de-adaptive unit 1303 extracts data from the corresponding time slot in turn according to the ID of the received TCONT configured in the Alloc-ID configuration table, according to the slot position of the received TCONT in the Cur slot mapping table, and then transmits the data to the GEM.
  • the de-adaptation unit 1304 processes the recovered service data to complete the service reception process.
  • the GTH deframing unit 1301 extracts the DBR information and transmits it to the transmitting side DBA module 1308, and the module calculates all The bandwidth of the TCONT is configured in the BWMAP configuration table, and the bandwidth of all TCONTs in the BWMAP configuration table is sent to each node in the network through the GTH framing unit 1307.
  • the GTH deframing unit 1301 is in the secondary line. After extracting to BWMAP, it will be compared with the generated BWMAP configuration table for verification.
  • the device shown in FIG. 13 is used as the N-node device or the master node device, and the service transmission process is as follows: The service is encapsulated and rate-matched by the GEM adaptation unit 1305, and then transmitted to the TCONT adaptation unit 1306, and The process monitors the length of the service buffer queue of the GEM adaptation unit 1305, and calculates the required bandwidth information DBR of the equivalent transmission service to report to the TCONT adaptation unit 1306.
  • the TCONT adapting unit 1306 inserts the DBR information into the TCONT overhead according to the ID of the sending TCONT configured in the Alloc-ID configuration table, and then according to the slot position of the sending TCONT in the Cur slot mapping table, the carried services are sequentially It is inserted into the corresponding time slot and sent to the GTH framing unit 1307.
  • the GTH framing unit 1307 After receiving the GTH overhead, the GTH framing unit 1307 generates a GTH frame and sends it to the line, thereby completing the service transmission process.
  • the N-node reports the DBR information to the master node, it can be sent to the master node in the TCONT overhead mode or sent to the master node through the outband.
  • the apparatus for transmitting a multi-path service can uniformly allocate time slots, can implement asynchronous adaptation of multiple services, and strictly guarantee the bandwidth of different types of services, and at the same time support flexible adjustment of service bandwidth, and reduce the bandwidth.
  • Logic implementation complexity Compared with the prior art, since the service adopts slot interleave multiplexing instead of the block TCONT structure, the delay time for the node to separately send services to the working channel and the protection channel is greatly shortened, and the cache is reduced. It also does not cause the dual-issue process to fail. When the lines of different speeds are multiplexed, the buffers and delays required for mapping low-rate line services to high-speed lines can be reduced. Even FB-type services can be very good. The interleaving and multiplexing are implemented to make full use of the bandwidth fragment left after some FB services are deleted, thereby improving the bandwidth utilization of the line.
  • the TCONT involved in the embodiments of the present invention is not limited to the service.
  • the associated data may also include the overhead of the GTH frame.
  • the overhead of the GTH frame may be regarded as a TCONT, and then interpolated and multiplexed according to the above technical solution, that is, the TCONT of the node includes the TCONT of the service. It also includes the overhead TCONT, which performs interpolated multiplexing, which can better realize the multiplexing and transmission of multi-path services and improve the efficiency of multi-channel service transmission.
  • All or part of the above technical solutions provided by the embodiments of the present invention may be completed by hardware related to program instructions, and the program may be stored in a readable storage medium, and the storage medium includes: ROM, RAM, disk or CD. And other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

传输多路业务的方法和装置
本申请要求于 2009 年 11 月 10 日提交中国专利局、 申请号为 200910210795.8, 发明名称为"传输多路业务的方法和装置 "的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光传输技术领域, 特别涉及一种传输多路业务的方法和装置。 背景技术
现在的网络承载着多种业务, 如语音、 视频、 网络游戏、 网络浏览等。 近 年来,很多大的电信营运商都选择了以 GPON( Gigabit Passive Optical Network, 吉比特无源光网络)作为未来大宽带光纤接入的解决方案,对城域网设备提出 了更高的要求, 要求具备和 GPON对接的能力。 大容量光纤数字通信传输系 统的采用, 以及各种新型业务的引入, 使得通信网络趋于复杂, 容量也越来越 大, 要求城域网设备能针对数据业务类型多样化和业务流量不确定性的特点, 在保证对 TDM ( Time Division Multiplex and Multiplexer, 时分复用和复用器) 业务支持的同时, 支持多种数据接口。
现有技术中存在一种基于动态带宽调整的多业务传送的方法,它主要应用 于环形网络中。 环形网络上的节点分为 N节点和 S节点两种, N节点是普通 的分散型业务接入节点, S节点又称为主节点, 除了具备 N节点的功能外, 还 是和上层网络对接的节点。 任何一个节点都可以直接上下传统的 TDM、 以太 网数据业务等业务, 还可以提供 PON ( Passive Optical Network, 无源光网络) 支路接口, 在 S节点还提供 10GE ( Gigabit Ethernet, 千兆以太)等上行业务 接口。 该网络承载的业务类型可以包括三种: (1 ) 固定带宽业务, 称之为 FB ( Fixed Bandwidth )类业务, 主要用于承载带宽延时保证的业务, 如 TDM、 SDH ( Synchronous Digital Hierarchy, 同步数字系统) /SONET ( Synchronous Optical Network, 同步光纤网) 、 专线业务等; (2 ) 带宽保证业务, 称之为 AB ( Assured Bandwidth )类业务, 口视频、 VOIP ( Voice Over Internet Protocol, 网络电话) 、 专线等; (3 )尽力保证业务, 称之为 BE ( Best Effort )类业务, 如普通上网业务等。 对于 AB类和 BE类业务, 该网络是一种汇聚型网络, 汇 聚节点为 S节点, 该节点实现双备份。 对于 FB类业务, 该网络是一种对等交 换网络, 可以从任何一个节点上下 TDM、 SDH/SONET, 专线等业务。
该网络包含有业务适配层、 通道层和物理层三层结构, 层次少, 电路处理 简单、 可靠性高, 节省成本和功耗, 实现简单。 业务适配层负责对各种业务统 一按照 E-GEM ( Enhanced GPON Encapsulation Method, 扩展的 GPON封装形 式)帧的格式进行封装和解封装,并要求在网络中指定每一条业务唯一的标识。 才艮据业务类型、 优先级和目的地址等原则, 通道层 4巴多个 E-GEM帧加上通道 开销组成不同类型的 T-CONT ( Transmission Container, 传送容器) 帧, 即通 道层帧, 可以对通道层实现端到端的告警和传送性能监控。 物理层把所有的 T-CONT帧组成 TC ( Transmission Convergence , 传输汇聚层) 帧, 即物理层 帧, 再加上物理层开销, 包括帧头同步、 管理开销和带宽地图等, 组成 GTH ( Generic Transport Hierarchy, 通用传送体制 ) 帧, 从而可以实现网洛中主节 点对各个 N节点的通信和管理, 方便调整各 T-CONT的分配时隙, 实现动态 带宽调整。
该网洛进行 DBA ( Dynamic Bandwidth Assignment, 动态带宽分配 ) 的过 程如下:各个 N节点检测、统计和上报本节点内部各业务端口的 DBR( Dynamic Bandwidth Requirement, 动态带宽请求)信息给主节点, 主节点根据环上现有 的带宽资源、 各节点业务类型、 优先级等, 进行判断和计算, 最后把各节点的 带宽分配信息下发到各节点,各节点根据分配的带宽传送数据。 该带宽分配信 息是指 BWmap ( Bandwidth Map, 带宽地图), 各节点可以根据带宽地图组装 T-CONT帧的大小和数量。 当工作通道和保护通道的带宽地图相同时,任一个节点在分别向工作通道 和保护通道发送业务时, 会出现由于对齐两个通道上的帧头而带来延时的问 题。 当工作通道和保护通道的带宽地图不同时, 由于工作通道和保护通道的时 序不一致, 会使得业务只能发送到工作通道上而无法正确发送到保护通道上, 因此, 导致双发流程失败。 当不同速率的线路进行复用时, 由于速率不匹配使 得时序无法对齐,低速率的线路业务必须进行一定时间的緩存后, 才能映射到 高速率的线路上, 从而带来延时和緩存的问题。 对于 FB业务, 由于其具有时 序不变的特性, 在某个或某些 TC帧被删除后, 会产生带宽地图碎片的问题, 从而导致对带宽图片碎片进行 DBA动态分配相当复杂, 很难实现。 发明内容
为了克服现有技术的缺陷,本发明实施例提供了一种传输多路业务的方法 和装置。 所述技术方案如下:
一种传输多路业务的方法, 所述方法包括:
接收所有节点的传送容器 TCONT的带宽信息; 含指定个数的时隙,且每个数组内的任意两个相邻的时隙间隔均为 n, n为自然 数;
根据所述所有节点的 TCONT带宽信息, 计算每个节点的 TCONT在所述净 荷区中所占用数组的时隙位置;
从指定的帧开始, 根据本地节点的 TCONT在所述净荷区中所占用数组的 时隙位置, 将所述本地节点的 TCONT间插到相应的时隙内, 得到 GTH帧并传 输该 GTH帧。
一种传输多路业务的装置, 所述装置包括:
接收模块, 用于接收所有节点的传送容器 TCONT的带宽信息; n的数组, 每个数组均包含指定个数的时隙, 且每个数组内的任意两个相邻的 时隙间隔均为 n, n为自然数, 根据所述所有节点的 TCONT带宽信息, 计算每 个节点的 TCONT在所述净荷区中所占用数组的时隙位置;
帧处理模块, 用于从指定的帧开始, 根据本地节点的 TCONT在所述净荷 区中所占用数组的时隙位置,将所述本地节点的 TCONT间插到相应的时隙内, 得到 GTH帧并传输该 GTH帧。
本发明实施例提供的上述技术方案,对时隙进行均匀分配, 可以实现多路 业务的异步适配, 并严格保证了不同类型业务的带宽, 同时支持业务带宽的灵 活调整, 降低了逻辑实现复杂度。 与现有技术相比, 由于业务采用时隙间插复 用, 而不是块状的 TCONT结构, 因此, 极大地缩短了节点分别向工作通道和 保护通道发送业务时的延时时间, 降低了緩存, 也不会导致双发流程失败, 当 不同速率的线路进行复用时,能降低低速率线路业务映射到高速率线路上所需 的緩存和延时, 即使是 FB类业务, 也能够很好地实现间插和复用, 充分利用 了某些 FB类业务删除后留下的带宽碎片, 从而提高线路的带宽利用率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的传输多路业务的网络架构示意图;
图 2是本发明实施例提供的 E-GEM帧的格式示意图;
图 3是本发明实施例提供的 TCONT帧的格式示意图;
图 4是本发明实施例提供的 GTH帧的结构示意图;
图 5是本发明实施例提供的技术方案典型的应用场景示意图;
图 6是本发明实施例提供的传输多路业务的方法流程图;
图 7是本发明实施例提供的 GTH帧净荷区的时隙划分示意图;
图 9是本发明实施例提供的传输多路业务的一个具体应用场景示意图; 图 10是图 9的应用场景中各个节点得到的时隙映射表示意图;
图 11是图 9的应用场景在第 K+1帧后的业务传输时隙示意图;
图 12是本发明实施例提供的传输多路业务的装置结构图;
图 13是本发明实施例提供的传输多路业务的装置具体实现示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为使本发明的目的、技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。
本发明实施例提供了一种传输多路业务的方法, 包括: 接收所有节点的 TCONT的带宽信息;
将 GTH帧的净荷区划分为预设数目 n的数组, 每个数组均包含指定个数的 时隙, 且每个数组内的任意两个相邻的时隙间隔均为 n, n为自然数;
根据所有节点的 TCONT带宽信息, 计算每个节点的 TCONT在净荷区中所 占用数组的时隙位置;
从指定的帧开始, 根据本地节点的 TCONT在净荷区中所占用数组的时隙 位置, 将本地节点的 TCONT间插到相应的时隙内, 得到 GTH帧并传输该 GTH 帧。
本发明实施例中的主节点是指网络中的 S节点,本地节点可以是 S节点,也 可以是 N节点, N节点是指普通 Normal节点。 TCONT是带宽分配的控制对象, 主节点可以为一个 N节点分配一个或多个 TCONT, N节点利用 TCONT在网络中 传输业务。 本发明实施例涉及的业务包括但不限于: TDM业务、 SDH/SONET/ATM业务、 以太网数据业务等等, 本发明实施例不做具体限定。 本发明实施例涉及的业务有多种类型, 包括但不限于: 固定带宽的业务, 如: TDM业务或数据专线业务; 保证带宽业务, 如视频业务; 尽力而为的业务, 如上网业务等。
本发明实施例传输多路业务的网络架构可以如图 1所示。 该网络的网络层 次包括: 物理层、通道层和业务适配层,分别对应 GTH帧、 TCONT帧和 E-GEM 帧。
E-GEM帧的格式如图 2所示, 包括帧头部、 地址标识和净荷数据三部分。 帧头部包括净荷长度、 业务标识、 帧类型、 头校验四个字段。 地址标识分为目 的标 、和源标只。
TCONT帧的格式如图 3所示, 包括帧头部、 通道开销和净荷数据三部分。 其中, 帧头部: 包括净荷长度、 扩展字段和头校验。 通道开销包括通道标识、 BIP校验和监控字段, 监控字段又包括 REI ( Remote Error Indication远端误码 指示)、 RDI ( Remote Defect Indication, 远端缺陷指示)和 DBR。 净荷数据区 用来承载 E-GEM帧, 由多个 E-GEM帧构成。
图 4所示为本发明实施例涉及的 GTH帧的结构。 GTH帧包括: PCB( Physical Control Block, 物理层控制块)域和净荷区。 其中, 净荷区内承载 TC帧。 PCB 域包括: 头部、 OAM和 BWPL ( BWMAP PLend, 带宽地图净荷长度域) 。 头 部包括: PSync ( Physical Synchronization, 物理层同步) 不扰码, 长度为 4个 字节, 内容可以为 0xB6AB31E0。 OAM ( Operation, Administration and Maintenance,运行管理和维护)包括: Ident (超帧指示域)、 PLO AM ( Physical Layer OAM, 物理层运行维护管理)、 误码检测 BIP ( Bit Interleaved Parity )校 验、倒换协议字节 Kl和 K2、 Ml和 SI。 Ident包括: GTH帧的 FECind( Forward Error Correction, 前向错误纠正)指示、 Rev (预留字段)和超帧计数器 Super-frame。 Ml包括: REI、 RDI和 Rev ( Reserved,保留域)。 BWPL包括: 两个相同的 Plend ( Payload Length, 净荷长度)字段和一个 BWMAP带宽信息字段。 PLend包括: 带宽信息的长度 BWMAP Length和对该长度的校验 CRC。 BWMAP包括: N个 TCONT的带宽信息, 从 TCONT1的带宽信息至 TCONTN的带宽信息。 每个 TCONT的带宽信息包括: Alloc ID( Allocation Idendifer,分配标志符)、 TCONT 带宽 Width、 Flag和对 TCONT带宽信息的校验 CRC ( Cyclic Redundancy Code, 循环冗余码 )。 Alloc ID包括: Node ID (节点标志符 )和 Seq ID ( Sequence ID 序列标志符) 。 Flag包括: Rev (预留字段) 、 TCONT带宽信息的前向错误纠 正 FEC、 DBRu和环回标志 Loopback。
本发明实施例中,将业务数据按照图 2所示的格式封装上头部和地址标识, 得到 E-GEM帧; 将该 E-GEM帧作为数据部分, 按照图 3所示的格式封装上头部 和通道开销, 得到 TCONT帧; 将该 TCONT帧作为数据部分, 按照图 4所示的 格式封装上 PCB, 则得到 GTH帧。
本发明实施例提供的技术方案典型的应用场景如图 5所示。 该环形网络中 包括主节点 (S节点)和 N节点, 如 S1和 S2, Nl、 N2、 N3、 N4和 N5。 环形网 络中的任一个节点都可以直接上下各种业务。 S节点可以和上层网络中的 BRAS ( Broadband Remote Access Server, 宽带远程接入服务器)相连, N节点 可以连接不同的区域和网络, 传输各种类型的业务。
参见图 6, 本实施例提供了一种传输多路业务的方法, 具体包括:
601: 本地节点接收主节点分配的所有节点的 TCONT的带宽信息; 本实施例中的本地节点是指网络中的任一 N节点, 通常, 网络中的每个 N 节点都会定期上报 DBR信息给主节点,该 DBR信息主要内容为本地节点的业务 类型以及希望获得的带宽信息。主节点在收到各节点上报的 DBR后,会根据资 源以及业务类型利用传送侧的 DBA算法, 给各个节点分配 TCONT的带宽, 并 下发给各个节点。 在本实施例中, 是由主节点根据网络中各节点上报的 DBR 给各个节点分配 TCONT的带宽, 在其它的实施例中, 还可以由独立的带宽分 配装置给各个节点分配 TCONT的带宽, 或者由具有全网带宽分配管理能力的 BRAS给网络中各个节点分配 TCONT的带宽等。
602: 本地节点将 GTH帧的净荷区划分为预设数目 n的数组,每个数组均包 含指定个数的时隙,且每个数组内的任意两个相邻的时隙间隔均为 n, n为自然 数;
本发明实施例中的数组数目 n为预先设置的, 且在每个节点上都应用该相 同的数组数目对净荷区进行划分, 包括主节点和 N节点。
其中,每个数组包含的时隙个数可以根据需要进行设置。任意两个数组包 含的时隙个数可以相同,也可以不同。优选地,可以设置1 <净荷区的时隙总长, 且 n〉业务路数。
优选地, 每个数组均包含相同个数的时隙, 且该个数为偶数。 例如, 参见 图 7, 将 GTH帧的净荷区划分为 n个数组, 每个数组内包含两个时隙, 每个数组 内时隙的排列顺序依次为: 第 1个时隙、 第 2个时隙, 且该两个时隙的间隔为 n 个时隙。 该 n个数组的排列顺序为顺序排列: 第 1个数组、 第 2个数组 第 n 个数组, 从而得到图 7所示的时隙顺序。 该图中的净荷区划分后可以得到 2n个 时隙。
进一步地, 在将净荷区划分为 n个数组后, 还可以包括: 按照预设的规则 排列净荷区内的 n个数组, 得到净荷区内的时隙顺序, 具体如下:
603: 预设数目 n = 2L, L为数目 n用二进制数表示时占用的比特位数, L为 自然数, 将 L个比特位按照二进制逆向进位方法计算, 得到 n个数值, 将该 n个 数值作为 n个数组的排列顺序,按照该排列顺序对净荷区内的 n个数组对应的时 隙进行排列, 得到净荷区内的时隙顺序;
其中, 该 n个数值代表数组的序号, 根据该 n个序号的顺序排列出 n个数组 的顺序。 采用自然数的顺序排列 n个数组对应的时隙,也可以以格雷码的顺序排列 n个数 组对应的时隙等等, 本发明对此不做具体限定, 优选地, 采用上述二进制逆向 进位方法对时隙进行排序, 其原理如下: 将 L个比特位从高位到低位排列好, 用 bw、 bL-2, ...... bj , b。来表示, 初始 值取为 0, 然后从最高位 bw开始二进制递增 1, 向低位 进位, 向低位 进位, ... ..., 最后 ^向低位 b。进位。 每次都是从高位到低位的顺序递增, 可 以得到 2L个即 n个数值, 将该 n个数值用十进制表示出来, 作为 n个数组的排列 序号。
下面以一个具体实例说明该二进制逆向进位运算过程。
例如, GTH帧的净荷区长度为 16个时隙, 预设 n = 8, 将该净荷区划分为 8 个数组, 每个数组包括两个时隙。 由于 8可以用 3个二进制位来表示, 即 L = 3, 则排列 3个比特位 b2、 b1 ¾ bo, 从最高位开始向低位进位, 依次得到 8个二进制 数, 转换为十进制数后, 将其作为 8个数组的排列顺序, 如表 1所示。
表 1
Figure imgf000010_0001
3个比特位二进制逆向进位后依次得到 8个十进制数: 0、 4、 2、 6、 1、 5、 3和 7, 该值作为 8个数组排列的时隙位置序号, 由于净荷区的时隙位置是从 1 开始计数的, 共 16个时隙, 因此, 将上述 8个从 0开始的序号依次转换为从 1开 始的序号, 即每个值都加 1, 得到表 1中的时隙位置号, 该 8个序号分别对应第 一个数组至第八个数组, 由此, 得到了该 8个数组的排列序号: 第一个数组排 在第 1个, 第二个数组排在第 5个, 第三个数组排在第 3个、 第四个数组排在第 7 个, ... ..., 第七个数组排在第 4个, 第八个数组排在第 8个。 最后, 排序后得到 的时隙分布情况如图 8所示, 8个数组按照上述顺序排序, 且每个数组内的第 1 个时隙与第 2个时隙相隔 8个时隙。 604:本地节点根据所有节点的 TCONT带宽信息,计算每个节点的 TCONT 在净荷区中所占用数组的时隙位置;
605: 通知主节点本地节点已完成每个节点的 TCONT在净荷区中所占用数 组的时隙位置的计算, 进一步地, 该结果可以以时隙映射表的形式进行存储; 其中, 本地节点向主节点发送通知, 可以具体采用发送一个预先设置的标 识的方式, 如发送 FLAG-A, 表示本地节点已完成上述计算过程。 当然也可以 采用其它方式通知主节点, 本发明实施例不做具体限定。
相应地, 主节点在收到各个节点的通知后, 会给每个节点下发指示信息, 该指示信息用于指示各个节点从指定的帧开始按照上述计算得到的时隙位置 成帧。 具体地, 该指示信息可以采用多种形式, 包括但不限于: 标识信息、 指 定的帧信息等等, 本发明实施例不做具体限定。
606: 本地节点接收主节点下发的指示信息, 根据该指示信息确定相应的 帧;
具体地, 本地节点在收到该指示信息后, 先更新本地的时隙映射表, 并确 认相应的帧,该帧用于本地节点决定从何时开始按照更新后的时隙映射表进行 该帧之前, 还是按照现有的时隙映射表进行间插复用。
通常, 本地节点会保存有两个时隙映射表, 当前时隙映射表 Cur和下一个 时隙映射表 Next。 初始时, Cur为开销时隙映射表, Next为空; 当本地节点在 完成 705中的计算后, 将得到的时隙映射表保存在 Next中, 此时, 本地节点还 是按照 Cur中的表进行间插复用, 当收到主节点的指示后, 将 Next中的表更新 到 Cur中, 然后用 Cur中的表来进行间插复用, 即 705计算得到的表进行间插复 用。 后续当本地节点再次计算出新的时隙映射表时, 仍然保存到 Next中, 且将 Next中原有的表替换掉, 等待主节点的指示来进行下一次更新。
607: 本地节点从该相应的帧开始, 根据本地节点的 TCONT在净荷区中所 占用数组的时隙位置, 将本地节点的 TCONT间插到相应的时隙内, 得到 GTH 帧并传输该 GTH帧。
其中, 本地节点将 TCONT间插到净荷区的时隙中的过程, 可以具体如下: 在本地节点的所有 TCONT中, 先从第一个 TCONT开始, 利用上述时隙映 射表, 将 n个数组中第一个数组的所有时隙依次分配给第一个 TCONT, 如果第 一个数组的时隙分配完毕, 接着使用第二个、 第三个数组的时隙进行分配, 直 到将第一个 TCONT的时隙分配完毕, 然后继续给第二个 TCONT分配时隙; 如 果第一个数组给第一个 TCONT分配完后, 还有剩余的时隙, 则继续用来给第 二个 TCONT开始分配时隙; 依次类推,每个 TCONT都从上一个 TCONT分配的 数组时隙的下一个时隙开始进行分配, 直到所有 TCONT分配时隙完毕。
下面以图 9所示的应用场景为例具体说明本实施例传输多路业务的过程。 环形网络上有主节点 S节点和两个 N节点, N 1和 N2。 N 1节点具有业务 TCONT 1, N2节点具有业务 TCONT2 , N1和 N2分别上报 DBR到 S节点, S节点根据各个 TCONT的 DBR信息, 利用传送侧的 DBA算法计算出带宽地图, 得到 TCONT1 的带宽 width=8, 即 8个时隙, TCONT2的带宽 width=4, 即 4个时隙, 通过 GTH 线路帧将该带宽地图下发给两个节点。 S节点和 Nl、 N2节点均利用预设的 DBA 算法计算每个节点的 TCONT在净荷区中的时隙位置, 各自得到并保存一个时 隙映射表, 且所有节点得到的时隙映射表均相同。 其中, 预设的 DBA算法是指 本实施例中上述的二进制逆向进位方法。假设线路净荷区长度为 16个时隙, 划 分为 8个数组,每个数组 2个时隙, 则每个节点均利用二进制逆向进位方法得到 如图 8所示的时隙位置序列。 每个节点根据自己 TCONT的带宽, 确定自己的 TCONT在该时隙序列中的位置。 其中, N1节点的 TCONT1带宽为 8, 则占用 8 个时隙, 分配到净荷区中, 占用的时隙分别为: 第 1个数组的第 1个时隙, 第 3 个数组的第 1个时隙, 第 2数组的第 1个时隙, 第 4数组的第 1个时隙, 第 1数组第 2个时隙, 第 3数组的第 2个时隙, 第 2数组的第 2个时隙, 第 4数组的第 2个时隙。 N2节点的 TCONT2带宽为 4, 则占用 4个时隙, 分配到净荷区中, 占用的时隙分 别为: 第 5个数组的第 1个时隙, 第 6个数组的第 1个时隙, 第 5个数组的第 2个时 隙, 第 6个数组的第 2个时隙。 从而可以得到如图 10所示的时隙映射表。 在得到 时隙映射表后, N1和 N2分别向 S节点上报 FLAG-A标志, S节点收到后在第 K帧 下发标志 Tu, 指示两个节点在下一个帧即 K+1帧按照上述时隙映射表成帧。 N1和 N2节点接收到 Tu标志后, 在下一帧即第 K+1帧根据自己保存的时隙映射 表,分别发送和接收 TCONT1和 TCONT2。此后,从第 K+1帧开始环路上的 GTH 帧格式如图 11所示。 其中, 按照环路的方向, N1节点向间插 TCONT1 , 得到的 时隙序列如图下方所示,有斜线阴影的时隙为 TCONT1所占用的时隙,然后 N2 节点在该时隙序列的基础上间插 TCONT2, 得到的时隙序列如图上方所示, 有 交叉阴影的时隙为 TCONT2所占用的时隙, 最后传输给 S节点, 从而可以实现 多路业务的传输。
本实施例中, 优选地, 可以预先设置数组数目 n = 2 (K-L), 其中, 2L为业务 带宽的最小可调带宽占用的时隙个数, 2K为净荷区的长度占用的时隙个数, 此 时可以保证输出的业务间插能做到最优。
本发明实施例提供的传输多路业务的方法,对时隙进行均匀分配, 可以实 现多路业务的异步适配, 并严格保证了不同类型业务的带宽, 同时支持业务带 宽的灵活调整, 降低了逻辑实现复杂度。 与现有技术相比, 由于业务采用时隙 间插复用, 而不是块状的 TCONT结构, 因此, 极大地缩短了节点分别向工作 通道和保护通道发送业务时的延时时间, 降低了緩存,也不会导致双发流程失 败, 当不同速率的线路进行复用时, 能降低低速率线路业务映射到高速率线路 上所需的緩存和延时, 即使是 FB类业务, 也能够很好地实现间插和复用, 充 分利用了某些 FB类业务删除后留下的带宽碎片, 从而提高线路的带宽利用率。 参见图 12, 本实施例提供了一种传输多路业务的装置, 包括:
接收模块 1201, 用于接收所有节点的传送容器 TCONT的带宽信息; 带宽信息处理模块 1202,用于将通用传送体制 GTH帧的净荷区划分为预设 数目 η的数组, 每个数组均包含指定个数的时隙, 且每个数组内的任意两个相 邻的时隙间隔均为 η, η为自然数, 根据所有节点的 TCONT带宽信息, 计算每 个节点的 TCONT在 GTH帧净荷区中所占用数组的时隙位置;
帧处理模块 1203, 用于从指定的帧开始, 根据本地节点的 TCONT在净荷 区中所占用数组的时隙位置, 将本地节点的 TCONT间插到相应的时隙内, 得 到 GTH帧并传输该 GTH帧。
其中, 所述数组的数目 n = 2 (K-L), 其中, 2为业务带宽的最小可调带宽占 用的时隙, 2K为所述净荷区的长度占用的时隙。
进一步地, 带宽信息处理模块 1202还用于: 在计算每个节点的 TCONT在 净荷区中的时隙位置之前, 按照预设的规则排列净荷区内的 n个数组对应的时 隙, 得到净荷区内的时隙顺序。
本实施例中,带宽信息处理模块按照预设的规则排列净荷区内的 n个数组, 得到净荷区内的时隙顺序, 具体包括: 预设数目 n = 2 L为数目 n用二进制数表示时占用的比特位数, L为自然 数;
将 L个比特位按照二进制逆向进位方法计算, 得到 n个数值, 将该 n个数值 作为 n个数组的排列顺序;
按照排列顺序排列净荷区内的 n个数组, 得到净荷区内的时隙顺序。
本实施例中, 帧处理模块 1203具体包括:
指示信息获取单元, 用于通知主节点本地节点已完成每个节点的 TCONT 在净荷区中的时隙位置的计算, 并接收主节点下发的指示信息;
帧处理单元, 用于根据指示信息获取单元得到的指示信息,从相应的帧开 始, 根据本地节点的 TCONT在净荷区中所占用数组的时隙位置, 将本地节点 的 TCONT间插到相应的时隙内, 得到 GTH帧并传输该 GTH帧。
本实施例提供的上述装置可以集成于网络中的任一节点上, 包括 N节点和 S节点。 图 13为上述装置的一个具体实现示意图。 图中该装置包含 GTH解帧单 元 1301、 带宽信息处理模块 1302、 TCONT解适配单元 1303、 GEM解适配单元 1304、 GEM适配单元 1305、 TCONT适配单元 1306、 GTH成帧单元 1307和传送 侧 DBA模块 1308。 其中, GEM适配单元 1305、 TCONT适配单元 1306和 GTH成 帧单元 1307主要用于业务的发送流程, GTH解帧单元 1301、 TCONT解适配单 元 1303和 GEM解适配单元 1304主要用于业务的接收流程, 带宽信息处理模块 1302与上述带宽信息处理模块 1202相同, 用于生成当前的 Cur时隙映射表和下 一个 Next时隙映射表。 当该装置是 N节点装置时,包括上述 GTH解帧单元 1301、 带宽信息处理模块 1302、 TCONT解适配单元 1303、 GEM解适配单元 1304、 GEM 适配单元 1305、 TCONT适配单元 1306和 GTH成帧单元 1307, 当该装置是主节 点装置时, 除了包括 1301至 1307外,还包括传送侧 DBA模块 1308, 用于从接收 的帧中提取 B WMAP和 DBR信息, 计算出网络中所有 TCONT的带宽, 得到 其中, 图 13所示的装置当作为 N节点时其业务接收流程具体如下: GTH解 帧单元 1301从线路上提取开销获取 BWMAP信息,并配置到 BWMAP配置表中。 带宽信息处理模块 1302按照本发明提供的方法, 根据 BWMAP配置表中所有 TCONT的带宽信息, 计算所有 TCONT在净荷区中所占用数组的时隙位置, 并 将计算的结果以时隙映射表的形式进行保存得到 Next时隙映射表, Cur时隙映 射表是当前正在使用的时隙映射表,对于 N节点来说,如果得到主节点的指示, 则将 Next时隙映射表更新到 Cur时隙映射表。 TCONT解适配单元 1303根据 Alloc-ID配置表中配置的接收 TCONT的 ID, 按照 Cur时隙映射表中的该接收 TCONT的时隙位置, 依次从相应的时隙中提取数据, 然后传给 GEM解适配单 元 1304处理恢复出业务数据,从而完成业务接收流程。 当上述装置作为主节点 装置时,与 N节点装置的业务接收流程的区别在于,除了包含上述过程外, GTH 解帧单元 1301还提取 DBR信息传给传送侧 DBA模块 1308, 由该模块计算出所 有 TCONT的带宽, 并配置到 BWMAP配置表中, 并通过 GTH成帧单元 1307将 BWMAP配置表中的所有 TCONT的带宽下发给网络中的各个节点; 另夕卜, GTH 解帧单元 1301在从线路上提取到 BWMAP后, 会将其与已生成的 BWMAP配置 表比对, 以此来进行校验。
图 13所示的装置无论是作为 N节点装置还是作为主节点装置, 其业务发送 流程具体如下: 业务经过 GEM适配单元 1305进行封装和速率适配处理后传给 TCONT适配单元 1306, 并在此过程监视获取 GEM适配单元 1305的业务緩存队 列长度, 计算出等效发送业务的需求带宽信息 DBR上报给 TCONT适配单元 1306。 TCONT适配单元 1306根据 Alloc-ID配置表中配置的发送 TCONT的 ID, 将 DBR信息下插到 TCONT开销, 然后按照 Cur时隙映射表中该发送 TCONT的 时隙位置, 将承载的业务依次间插到相应的时隙中发送给 GTH成帧单元 1307, GTH成帧单元 1307收到后加入 GTH开销生成 GTH帧发送到线路, 从而完成了 业务发送流程。 N节点向主节点上报 DBR信息时,可以以 TCONT开销方式发送 到主节点, 也可以通过带外发送到主节点。
本发明实施例提供的传输多路业务的装置,对时隙进行均匀分配, 可以实 现多路业务的异步适配, 并严格保证了不同类型业务的带宽, 同时支持业务带 宽的灵活调整, 降低了逻辑实现复杂度。 与现有技术相比, 由于业务采用时隙 间插复用, 而不是块状的 TCONT结构, 因此, 极大地缩短了节点分别向工作 通道和保护通道发送业务时的延时时间, 降低了緩存,也不会导致双发流程失 败, 当不同速率的线路进行复用时, 能降低低速率线路业务映射到高速率线路 上所需的緩存和延时, 即使是 FB类业务, 也能够很好地实现间插和复用, 充 分利用了某些 FB类业务删除后留下的带宽碎片, 从而提高线路的带宽利用率。
另外, 值得一提的是, 本发明实施例中涉及的 TCONT, 不局限于与业务 相关的数据, 还可以包括 GTH帧的开销, 具体地, 可以将 GTH帧的开销视为一 种 TCONT, 然后按照上述技术方案进行间插复用, 即节点的 TCONT中既包含 了业务的 TCONT, 又包含了开销的 TCONT, 统一进行间插复用, 从而可以更 好地实现多路业务的复用和传输, 提高了多路业务传输的效率。 本发明实施例提供的上述技术方案的全部或部分可以通过程序指令相关 的硬件来完成, 所述程序可以存储在可读取的存储介质中, 该存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求
1、 一种传输多路业务的方法, 其特征在于, 所述方法包括:
接收所有节点的传送容器 TCONT的带宽信息; 含指定个数的时隙,且每个数组内的任意两个相邻的时隙间隔均为 n, n为自然 数;
根据所述所有节点的 TCONT带宽信息, 计算每个节点的 TCONT在所述净 荷区中所占用数组的时隙位置;
从指定的帧开始, 根据本地节点的 TCONT在所述净荷区中所占用数组的 时隙位置, 将所述本地节点的 TCONT间插到相应的时隙内, 得到 GTH帧并传 输该 GTH帧。
2、 根据权利要求 1所述的方法, 其特征在于, 所述数组的数目 η = 2 ( κ - , 其中, 2L为业务带宽的最小可调带宽占用的时隙个数, 2K为所述净荷区的长度 占用的时隙个数。
3、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述所有节点的 TCONT带宽信息, 计算每个节点的 TCONT在所述净荷区中所占用数组的时隙 位置之前, 还包括:
按照预设的规则排列所述净荷区内的 n个数组, 得到所述净荷区内的时隙 顺序。
4、根据权利要求 3所述的方法, 其特征在于, 按照预设的规则排列所述净 荷区内的 n个数组, 得到所述净荷区内的时隙顺序, 具体包括:
预设数目 n = 2 L为数目 n用二进制数表示时占用的比特位数, L为自然 数;
将 L个比特位按照二进制逆向进位方法计算, 得到 n个数值, 将该 n个数值 作为 n个数组的排列顺序;
按照所述排列顺序排列所述净荷区内的 n个数组, 得到所述净荷区内的时 隙顺序。
5、 根据权利要求 1所述的方法, 其特征在于, 从指定的帧开始, 根据本地 节点的 TCONT在所述净荷区中所占用数组的时隙位置, 将所述本地节点的 TCONT间插到相应的时隙内, 得到 GTH帧并传输该 GTH帧, 具体包括:
通知主节点本地节点已完成每个节点的 TCONT在所述净荷区中的时隙位 置的计算, 并接收所述主节点下发的指示信息;
根据所述指示信息, 从相应的帧开始, 根据本地节点的 TCONT在所述净 荷区中所占用数组的时隙位置, 将所述本地节点的 TCONT间插到相应的时隙 内, 得到 GTH帧并传输该 GTH帧。
6、 一种传输多路业务的装置, 其特征在于, 所述装置包括:
接收模块, 用于接收所有节点的传送容器 TCONT的带宽信息; n的数组, 每个数组均包含指定个数的时隙, 且每个数组内的任意两个相邻的 时隙间隔均为 n, n为自然数, 根据所述所有节点的 TCONT带宽信息, 计算每 个节点的 TCONT在所述净荷区中所占用数组的时隙位置;
帧处理模块, 用于从指定的帧开始, 根据本地节点的 TCONT在所述净荷 区中所占用数组的时隙位置,将所述本地节点的 TCONT间插到相应的时隙内, 得到 GTH帧并传输该 GTH帧。
7、 根据权利要求 6所述的装置, 其特征在于, 所述数组的数目 η = 2 ( κ_ , 其中, 2L为业务带宽的最小可调带宽占用的时隙个数, 2K为所述净荷区的长度 占用的时隙个数。
8、根据权利要求 6所述的装置, 其特征在于, 所述带宽信息处理模块还用 于: 在计算每个节点的 TCONT在所述净荷区中所占用数组的时隙位置之前, 按照预设的规则排列所述净荷区内的 n个数组,得到所述净荷区内的时隙顺序。
9、根据权利要求 8所述的装置, 其特征在于, 所述带宽信息处理模块按照 预设的规则排列所述净荷区内的 n个数组, 得到所述净荷区内的时隙顺序, 具 体包括:
预设数目 n = 2 L为数目 n用二进制数表示时占用的比特位数, L为自然 数;
将 L个比特位按照二进制逆向进位方法计算, 得到 n个数值, 将该 n个数值 作为 n个数组的排列顺序;
按照所述排列顺序排列所述净荷区内的 n个数组, 得到所述净荷区内的时 隙顺序。
10、根据权利要求 6所述的装置, 其特征在于, 所述帧处理模块具体包括: 指示信息获取单元, 用于通知主节点本地节点已完成每个节点的 TCONT 在所述净荷区中的时隙位置的计算, 并接收所述主节点下发的指示信息;
帧处理单元, 用于根据所述指示信息获取单元得到的指示信息,从相应的 帧开始, 根据本地节点的 TCONT在所述净荷区中所占用数组的时隙位置, 将 所述本地节点的 TCONT间插到相应的时隙内, 得到 GTH帧并传输该 GTH帧。
PCT/CN2010/078467 2009-11-10 2010-11-05 传输多路业务的方法和装置 WO2011057545A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2010317239A AU2010317239B2 (en) 2009-11-10 2010-11-05 Method and apparatus for transmitting multiple services
EP10829509.8A EP2493138B1 (en) 2009-11-10 2010-11-05 Method and apparatus for transmitting multipath service
US13/468,807 US8824498B2 (en) 2009-11-10 2012-05-10 Method and apparatus for transmitting multiple services

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102107958A CN102056031B (zh) 2009-11-10 2009-11-10 传输多路业务的方法和装置
CN200910210795.8 2009-11-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/468,807 Continuation US8824498B2 (en) 2009-11-10 2012-05-10 Method and apparatus for transmitting multiple services

Publications (1)

Publication Number Publication Date
WO2011057545A1 true WO2011057545A1 (zh) 2011-05-19

Family

ID=43959881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078467 WO2011057545A1 (zh) 2009-11-10 2010-11-05 传输多路业务的方法和装置

Country Status (5)

Country Link
US (1) US8824498B2 (zh)
EP (1) EP2493138B1 (zh)
CN (1) CN102056031B (zh)
AU (1) AU2010317239B2 (zh)
WO (1) WO2011057545A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102318362B (zh) * 2011-06-03 2013-09-11 华为技术有限公司 一种无源光网络的数据发送方法及设备
CN104053076B (zh) * 2013-03-11 2019-04-05 中兴通讯股份有限公司 一种提高带宽分配效率的方法及系统
CN104468406B (zh) * 2013-09-13 2019-10-22 中兴通讯股份有限公司 跨主节点业务处理方法和装置
FR3043810B1 (fr) * 2015-11-16 2017-12-08 Bull Sas Procede de surveillance d'echange de donnees sur un reseau de type liaison h implementant une technologie tdma
CN107566074B (zh) 2016-06-30 2019-06-11 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN109478941B (zh) * 2016-07-22 2020-06-26 华为技术有限公司 一种多路业务传送、接收方法及装置
CN108063985B (zh) 2016-11-07 2020-11-17 中兴通讯股份有限公司 一种数据收发方法和装置
US10887395B2 (en) * 2016-11-21 2021-01-05 Ecosteer Srl Processing signals from a sensor group
CN109450548B (zh) * 2018-12-14 2020-11-03 京信通信系统(中国)有限公司 信号链路的配置方法及数字通信设备
CN114520937B (zh) * 2020-11-20 2023-05-09 华为技术有限公司 Pon中的数据传输方法、装置和系统
CN115037965B (zh) * 2022-06-10 2024-01-19 苏州华兴源创科技股份有限公司 基于占用协调机制的多通道数据传输方法、装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232326A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 用于无源光网络系统的动态带宽分配装置及其实现方法
CN101252789A (zh) * 2008-03-20 2008-08-27 华为技术有限公司 多帧动态带宽分配的方法和装置
WO2009069880A1 (en) * 2007-11-27 2009-06-04 Electronics And Telecommunications Research Institute Apparatus and method for efficient bandwidth allocation on time division multiple access-based passive optical network (tdma-pon)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307868B1 (en) * 1995-08-25 2001-10-23 Terayon Communication Systems, Inc. Apparatus and method for SCDMA digital data transmission using orthogonal codes and a head end modem with no tracking loops
US6594279B1 (en) * 1999-04-22 2003-07-15 Nortel Networks Limited Method and apparatus for transporting IP datagrams over synchronous optical networks at guaranteed quality of service
CN100344103C (zh) 2003-01-28 2007-10-17 华为技术有限公司 物理层的数据发送时隙在整个时域上均匀分布的方法
US8401014B2 (en) * 2005-10-31 2013-03-19 Telecom Italia S.P.A. Method for transmitting data packets with different precedence through a passive optical network
CN101159751B (zh) * 2007-11-14 2011-10-26 中兴通讯股份有限公司 一种通过ip交换网传送时分复用业务的方法和装置
CA2715359C (en) * 2008-02-07 2017-01-17 Infinera Corporation Dual asyncronous mapping of client signals of arbitrary rate
WO2009124476A1 (en) * 2008-04-07 2009-10-15 Huawei Technologies Co., Ltd. Method and apparatus for extending the number of optical network units in a passive optical network
EP2111055A1 (en) * 2008-04-17 2009-10-21 Nokia Siemens Networks Oy Extended queue polling mechanism for ITU G.984 GPON system
US8139605B2 (en) * 2008-05-05 2012-03-20 Calix, Inc. Upgrade resilient multi-transport optical network terminal
US7899072B2 (en) * 2008-09-30 2011-03-01 Verizon Patent And Licensing Inc. Method and system for network bandwidth allocation
CN101729371B (zh) * 2008-10-31 2012-01-25 华为技术有限公司 一种业务传输的方法、及用于业务传输的装置
CN101465714B (zh) 2008-12-10 2010-10-27 华为技术有限公司 一种混合复接和解复接的方法、装置及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232326A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 用于无源光网络系统的动态带宽分配装置及其实现方法
WO2009069880A1 (en) * 2007-11-27 2009-06-04 Electronics And Telecommunications Research Institute Apparatus and method for efficient bandwidth allocation on time division multiple access-based passive optical network (tdma-pon)
CN101252789A (zh) * 2008-03-20 2008-08-27 华为技术有限公司 多帧动态带宽分配的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2493138A4 *

Also Published As

Publication number Publication date
EP2493138A1 (en) 2012-08-29
CN102056031B (zh) 2013-12-04
US8824498B2 (en) 2014-09-02
CN102056031A (zh) 2011-05-11
US20120224858A1 (en) 2012-09-06
AU2010317239A1 (en) 2012-06-14
AU2010317239B2 (en) 2014-02-27
EP2493138B1 (en) 2014-06-04
EP2493138A4 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
WO2011057545A1 (zh) 传输多路业务的方法和装置
CN101656894B (zh) 包分插复用设备及包分插复用设备的数据传输方法
CN101662417B (zh) 多业务适配和承载的方法及设备
US20110305458A1 (en) Method and device for service adaptation
JP5065492B2 (ja) 受動光ネットワークデータ伝送のための方法およびシステム
EP2348691B1 (en) Service transmission method and service transmission apparatus
JP3522252B2 (ja) 光回線データを広域/都市域リンクに伝送するためのフレキシブルなマルチプレクサ/デマルチプレクサ及び方法
US8416770B2 (en) Universal service transport transitional encoding
US20030137975A1 (en) Ethernet passive optical network with framing structure for native Ethernet traffic and time division multiplexed traffic having original timing
WO2008125060A1 (en) A method for transporting the client signal in the optical transport network and an equipment thereof
US20080037581A1 (en) Transmission apparatus
WO2004036836A1 (fr) Procede d&#39;emission de service de donnees sur un reseau numerique synchrone
CN101753249A (zh) 包分插复用设备及包分插复用设备的数据传输方法
WO2019114544A1 (zh) 一种数据传送的方法、设备和系统
AU2010230712A1 (en) Method and Device for Sending Data and Receiving Service Data
WO2021073406A1 (zh) 一种业务数据的传输方法、相关设备以及数字处理芯片
CN101668003B (zh) 数据帧传输方法、设备及系统
CN101489154B (zh) 无源光网络连接处理的方法、系统和设备
WO2010060297A1 (zh) 多业务传送网传输通道实现方法及系统
WO2011140916A1 (zh) 多环组网中业务的传输方法和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1221/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010829509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010317239

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010317239

Country of ref document: AU

Date of ref document: 20101105

Kind code of ref document: A