WO2010060297A1 - 多业务传送网传输通道实现方法及系统 - Google Patents

多业务传送网传输通道实现方法及系统 Download PDF

Info

Publication number
WO2010060297A1
WO2010060297A1 PCT/CN2009/072119 CN2009072119W WO2010060297A1 WO 2010060297 A1 WO2010060297 A1 WO 2010060297A1 CN 2009072119 W CN2009072119 W CN 2009072119W WO 2010060297 A1 WO2010060297 A1 WO 2010060297A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
data
working channel
working
node
Prior art date
Application number
PCT/CN2009/072119
Other languages
English (en)
French (fr)
Inventor
胡幸
曹旸
蔡涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010060297A1 publication Critical patent/WO2010060297A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0294Dedicated protection at the optical channel (1+1)

Definitions

  • the present invention relates to data communication technologies, and in particular, to a method and system for implementing a multi-service transport network transmission channel. Background technique
  • FIG. 1 it is a schematic diagram of the network architecture of the multi-service transport network:
  • the network hierarchy includes a three-layer structure of a service adaptation layer, a channel layer, and a physical layer.
  • the service adaptation layer is responsible for uniformly encapsulating and decapsulating various services, and uniformly encapsulating various services into an extended GEM (Gigabit-Passive Optical Network Encapsulation Method) frame, and It is required to specify a unique identifier for each service in the network.
  • GEM gigabit-Passive Optical Network Encapsulation Method
  • T-CONT transport container
  • T-CONT frames form a Transport Convergence Layer (TC) frame, plus physical layer overhead, including fields such as frame header synchronization, management overhead, and bandwidth map, to facilitate communication and management of hosts in the network for each node.
  • TC Transport Convergence Layer
  • the allocated time slot of each T-CONT frame realizes dynamic bandwidth adjustment.
  • the service ports of the network include traditional TDM (Time Division Multiplex) services, SDH (Synchronous Digital Hierarchy) or SONET (Synchronous Optical Network) or ATM (Asynchronous Transfer). Mode, Asynchronous Transfer Mode) Service, and Ethernet data service.
  • the data service is sent to the service adaptation layer after Layer 2 switching.
  • T-MPLS Transport Multi-Protocol Label Switching
  • PBB-TE Provide Backbone Bridge - Traffic Engineering
  • a basic requirement of the multi-service transport network is the availability of services. Therefore, it is necessary to provide a protection mechanism for the network so that a faulty path can be redirected through an alternate path.
  • a channel The path of a specific service from the end to the end through the multi-service transport network is called a channel.
  • a channel is represented by a virtual container (VC) and its associated channel overhead ( ⁇ ). Once established, the size and position of the channel will not change.
  • VC virtual container
  • channel overhead
  • the T-CONT frame in the multi-service transport network corresponds to the VC channel of the SDH, which is called the transmission channel of the multi-service transport network, that is, the T-CONT channel. Since the location and length of the T-CONT channel may change, the existing channel protection mechanism based on fixed time slot transmission technology (such as SDH) cannot be applied to the multi-service transmission network. Summary of the invention
  • Embodiments of the present invention provide a method and system for implementing a multi-service transport network transmission channel, which can implement transmission channel protection in a multi-service transport network simply and effectively.
  • a method for implementing a transmission channel of a multi-service transport network includes: setting a working time slot carrying a working channel and a protection time slot carrying a protection channel at the same time slot position of a data frame at different wavelengths, The type of the T-CONT frame in different directions of communication between the transmitting node and the receiving node in the working time slot is the same;
  • An embodiment of the present invention provides a system for implementing a multi-service transport network transmission channel, including: a host, configured to set a working time slot carrying a working channel and a protection time slot carrying a protection channel, where the working time slot and the protection time slot are different
  • the same slot position of the data frame on the wavelength, the type of the T-CONT frame in the different direction of communication between the transmitting node and the receiving node carried by the working slot is the same;
  • the sending node is configured to obtain a working channel and a protection channel that are sent by the host, and put the same type of T-CONT frame to be sent into the corresponding time slot according to the type of the T-CONT frame carried in the working time slot. send;
  • a receiving node configured to receive data from the working channel when the working channel is normal; and switch to the protection channel to receive data when the working channel fails.
  • the method and system for implementing a multi-service transport network transmission channel provided by an embodiment of the present invention, for a dynamic change of a transmission channel position and a bandwidth in a multi-service transport network, setting a working time slot carrying a working channel and a protection time slot carrying a protection channel
  • the same time slot position of the data frame at different wavelengths, the T-CONT frame of the different direction of communication between the transmitting node and the receiving node carried by the working time slot is of the same type; when the working channel is normal, the receiving node is from the The working channel receives data; when the working channel fails, the receiving node switches to the protection channel to receive data, thereby implementing dynamic transmission channel protection.
  • FIG. 1 is a schematic diagram of a network architecture of a multi-service transport network
  • FIG. 2 is a flowchart of a method for implementing a transmission channel of a multi-service transport network according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a configuration of a transmission channel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of implementing 1+1 channel protection for a dual-fiber unidirectional multi-service transport network by using the method of the embodiment of the present invention
  • FIG. 5 is a schematic diagram of switching of the 1+1 channel protection of the dual-fiber unidirectional ring network shown in FIG. 4;
  • FIG. 6 is a schematic diagram of implementing 1:1 channel protection for a dual-fiber unidirectional multi-service transport network by using the method of the embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a system for implementing a transmission channel of a multi-service transport network according to an embodiment of the present invention. detailed description
  • a T-CONT channel in which a node in a multi-service transport network normally transmits and receives data is referred to as a working channel
  • a time slot of a data frame occupied by a working channel is referred to as a working time slot.
  • the time slot of the data frame occupied by the protection channel is called a protection time slot.
  • a method for implementing a transmission channel of a multi-service transport network is configured to set a working time slot carrying a working channel and a protection time slot carrying a protection channel at different wavelengths according to a dynamic change of a transmission channel position and a bandwidth in a multi-service transmission network.
  • the same slot position of the data frame, the type of the T-CONT frame in different directions of communication between the transmitting node and the receiving node carried by the working slot is the same; when the working channel is normal, the receiving node receives data from the working channel When the working channel fails, the receiving node switches to the protection channel to receive data, thereby implementing dynamic transmission channel protection.
  • Step 201 Set a working time slot carrying a working channel and a protection time slot carrying a protection channel to a data frame at different wavelengths.
  • the same slot position, the type of the T-CONT frame in the different direction of communication between the transmitting node and the receiving node carried by the working slot is the same;
  • the setting of the working time slot and the protection time slot may be completed by the host in the system and sent to the corresponding node; when transmitting the data, the sending node needs to send according to the type of the T-CONT frame carried in the working time slot. The same type of T-CONT frame is sent to the corresponding time slot for transmission;
  • the length of the working time slot needs to be set to be the maximum length of the same type of T-CONT frame communicated between the sending node and the receiving node;
  • Step 202 the receiving node detects whether the working channel is normal; if yes, step 203 is performed; otherwise, step 204 is performed;
  • Step 203 The receiving node receives data from the working channel.
  • Step 204 The receiving node switches to the protection channel to receive data.
  • each node may collect the service bandwidth request information of the local node and report it to the host; the host is configured according to the service bandwidth request information, the current line bandwidth resource, and the service priority of each node.
  • Each node performs bandwidth allocation and delivers bandwidth allocation information to each node.
  • Each node assembles each T-CONT frame into the data payload area of the TC frame, that is, the data frame, according to the sequence number and bandwidth allocation information of each T-CONT frame of the node.
  • a bandwidth map indication of each T-CONT frame of the node needs to be sent along with the path, for indicating T-CONT The slot position and length of the frame. In this way, after receiving the TC frame, the peer network node can parse the data payload area in the TC frame according to the bandwidth map indication to obtain required data.
  • the bandwidth of the corresponding protection channel is consistent with the bandwidth map indication of the corresponding working channel and is updated as the bandwidth map indication of the corresponding working channel is updated.
  • FIG. 3 shows a schematic diagram of the configuration of the transmission channel in the embodiment of the present invention:
  • T-CONT(ij) represents the T-CONT channel for transmitting data from the i-node to the j-node
  • T-CONT(j,i) represents the T-CONT channel for transmitting data from the j-node to the i-node. Since the two types are the same, T-CONT(i) and T-CONT(j,i) share the same time slot in the data frame, and the length of T-CONT(ij) is greater than T-CONT(j,i), so The length of the time slot allocated in the data frame is equal to the length of T-CONT(i). The starting position of the T-CONT channel coincides with the starting position of the time slot.
  • the i-node receives the T-CONT(j,i) in the working slot and sends the T-CONT(ij) to the working slot.
  • the j-node also receives the T-CONT(ij) from the working slot. And send T-CONT(j,i) to the working time slot.
  • the 1+1 channel protection and the 1:1 channel protection of the multi-service transport network transmission channel can be realized, which are respectively described in detail below.
  • the method for implementing the dual-fiber one-way multi-service transmission network is implemented by using the method of the embodiment of the present invention.
  • W is the wavelength channel where the working channel is located
  • P is the wavelength channel where the protection channel is located
  • wavelength channels W and P are respectively located in different fibers.
  • Two T-CONT channels of the same type that communicate between Node 1 and Node 3 occupy the same time slot in the same data frame.
  • the host of the multi-service transport network allocates working time slots in the W-wavelength channel according to the maximum length of the same type of T-CONT channel communicated between node 1 and node 3.
  • the position and length of the protection time slot are determined. As shown in FIG. 4, the working time slot and the protection time slot have the same length and position in the data frame. Node 1 and node 3 obtain the position and length of the working time slot from the bandwidth map indication of the data frame, and at the same time obtain the position and length of the guard time slot on the P-wavelength channel.
  • the working channel and the protection channel send the same data frame, that is, dual-issue data, the working channel occupies the working time slot in the data frame, and the protection channel occupies the protection time slot.
  • the node When the node receives the bandwidth map indication of the new working channel, it automatically updates the location and length of the locally stored protection channel according to the new location and length of the working channel, and ensures the corresponding protection channel of the local storage.
  • the bandwidth map is consistent with the bandwidth map of the corresponding working channel.
  • node 1 and node 3 choose to receive data from the working channel, that is, receive data.
  • node 1 or node 3 detects the working channel failure, it automatically switches to the protection channel to receive data, achieving 1 + 1 channel protection. .
  • FIG. 5 it is a schematic diagram of the switching of the 1+1 channel protection of the dual-fiber unidirectional ring network shown in FIG. 4: when the W-wavelength channel between the node 3 and the node 4 fails (for example, the fiber of the wavelength channel is broken), the node 3 If the working channel is detected to be faulty, it will automatically switch to the protection channel without notifying node 1, and node 1 will still send data twice. At this time, for node 3, the protection channel becomes the working channel. When the original working channel is restored, node 3 decides whether to switch to the original working channel.
  • the method for implementing the dual-fiber unidirectional multi-service transport network is implemented by using the method of the embodiment of the present invention:
  • the method for allocating and dividing the working time slot and the protection time slot is consistent with the 1+1 channel protection shown in FIG. 4 above.
  • the working channel occupying the working time slot transmits the normal service, and the protection channel sends other low-level services, for example, the working channel sends the bandwidth-guaranteed video service, and the protection channel sends the best-fetched web browsing service.
  • Node 1 and Node 3 receive data from both the working channel and the protection channel.
  • node 1 and node 3 automatically update the position and length of the corresponding protection channel to ensure that the bandwidth map of the corresponding protection channel is consistent with the bandwidth map of the corresponding working channel.
  • the node 3 When the node 3 detects that the working channel is faulty, it switches to the protection channel to receive data, and notifies the node 1 of the transmitting data frame that the working channel is faulty. After receiving the fault notification, the node 1 sends the normal service to the protection channel, and stops at A low-level service is sent on the protection channel, and node 3 can only receive data from the protection channel.
  • node 3 When the working channel returns to normal, node 3 notifies node 1 that the working channel is back to normal, node 1 re-transmits the normal service on the working channel, and sends the low-level service on the protection channel.
  • the channel protection in the multi-service transport network can be implemented simply and effectively, and is applicable to the transmission channel in which the position and bandwidth dynamically change in the multi-service transport network.
  • the protection channel can The automatic adjustment is made, that is, the position and length of the protection channel are kept in sync with the working channel, and no manual change is required, which simplifies the configuration of the protection channel.
  • the embodiment of the present invention further provides a system for implementing a transmission channel of a multi-service transmission network, as shown in FIG. 7, which is a schematic structural diagram of the system:
  • the system includes: a host 701, a transmitting node 702, and a receiving node 703. among them:
  • the host 701 is configured to set a working time slot carrying the working channel and a protection time slot carrying the protection channel, where the working time slot and the protection time slot are located at the same time slot position of the data frame at different wavelengths, where the working time slot carries
  • the T-CONT frames of different directions for communication between the transmitting node and the receiving node are of the same type.
  • the length of the working time slot may be set to be the maximum length of the same type of T-CONT frame communicated between the transmitting node and the receiving node.
  • the sending node 702 is configured to obtain a working channel and a protection channel that are sent by the host, and put the same type of T-CONT frame to be sent to the corresponding time slot according to the type of the T-CONT frame carried in the working time slot. Send in
  • the receiving node 703 is configured to receive data from the working channel when the working channel is normal, and switch to the protection channel to receive data when the working channel is faulty.
  • the sending node 702 is further configured to obtain a bandwidth map indication of a corresponding working channel delivered by the host, where the bandwidth map indicates a slot position and a length for indicating the T-CONT frame.
  • the transmitting node 702 can transmit the same type of T-CONT frame to be transmitted in the corresponding time slot according to the time slot and type of the T-CONT frame indicated by the bandwidth map.
  • the receiving node 703 can parse the received data frame according to the bandwidth map indication to obtain the required data.
  • the bandwidth map indication corresponding to the protection channel may be set to be consistent with the bandwidth map indication of the corresponding working channel, and updated as the bandwidth map of the corresponding working channel is updated.
  • the 1+1 mode protection may be selected for the transmission channel, or the 1:1 mode protection may be selected. If the protection of the 1+1 mode is selected, the sending node 702 simultaneously transmits the same data in the working channel and the protection channel, the working channel occupies the working time slot in the data frame, and the protection channel occupies the protection time slot.
  • the receiving node 703 receives data from the working channel; after the working channel fails, the receiving node 703 switches to the protection channel to receive data, and implements 1+1 channel protection.
  • the sending node 702 still sends the same data frame in the working channel and the protection channel at the same time, and the receiving node 703 can decide whether to switch to the working channel after the working channel returns to normal.
  • the sending node 702 transmits the data of the normal service on the working channel, and simultaneously transmits the data of the other low-level service in the protection channel; accordingly, the receiving node 703 works from the work.
  • the channel receives the data of the normal service
  • the channel receives the data of the other low-level service from the protection channel.
  • the receiving node 703 detects a working channel failure, it notifies the transmitting node 702 that the working channel has failed. In this way, after receiving the notification that the working channel is faulty, the sending node 702 stops transmitting the data of the low-level service on the protection channel, and sends the data of the normal service to the protection channel to implement 1:1 channel protection. .
  • the receiving node 703 is further configured to notify the sending node that the working channel returns to normal after detecting that the working channel returns to normal, and re-switch to the working channel to receive data; and the sending node 702 receives the notification that the working channel returns to normal. After that, the normal service data is sent again in the working channel, and the data of other low-level services are sent in the protection channel.
  • sending node 702 and receiving node 703 may be any node in the multi-service transport network, and any node in the multi-service transport network may simultaneously transmit and receive data in the above manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

多业务传送网传输通道实现方法及系统
本申请要求于 2008 年 11 月 25 日提交中国专利局、 申请号为 200810179110.3、 发明名称为"多业务传送网传输通道实现方法及系统"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及数据通信技术,具体涉及一种多业务传送网传输通道实现方法 及系统。 背景技术
随着 IPTV等新型应用的兴起以及 PON ( Passive Optical Network, 无源光网 络)技术的使用, 要求在传送网络中实现多种业务的统一传输, 比如实时业务 如语音, 带宽保证的非实时业务如视频, 网络游戏以及其它的非实时业务如一 般的网络浏览等。 由于通信网络的带宽不可能无限制的增加, 数据传输不仅需 要承载多种业务, 而且需要合理分配信道带宽, 以适应不同类型业务的带宽需 求变化, 并为不同类型业务提供不同的服务质量保证。
本发明申请人在已经提交的专利申请中提出了一种多业务传送网络架构。 如图 1所示, 是该多业务传送网的网络架构示意图:
该网络层次包含有业务适配层、 通道层和物理层三层结构。 其中, 业务适 配层负责对各种业务进行统一形式的封装和解封装,将各种业务统一封装为扩 展的 GEM ( Gigabit-Passive Optical Network Encapsulation Method, 吉比特无源 光网絡封装形式)帧, 并要求在网絡中指定每一条业务唯一的标识。 根据业务 类型、 优先级和目的地址等, 将多个扩展的 GEM帧组成不同类型的传送容器 ( T-CONT ) 帧, 加上通道开销构成通道层, 可以对通道层实现端到端的告警 和传送性能监控。 所有的 T-CONT帧组成传输汇聚层(TC )帧, 再加上物理层 开销, 包括帧头同步、 管理开销和带宽地图等字段, 以方便网络中主机对各节 点的通信和管理, 方便调整各 T-CONT帧的分配时隙, 实现动态带宽调整。
该网络的业务端口包括传统的 TDM ( Time Division Multiplex, 时分复用) 业务、 SDH ( Synchronous Digital Hierarchy , 同步数字系统) 或 SONET ( Synchronous Optical Network, 同步光千网络 )或 ATM( Asynchronous Transfer Mode, 异步传输模式) 业务, 以及以太网数据业务, 数据业务经过二层交换 后送到业务适配层。 除了这些常见的业务形式外, 现在用于分组传送主流的技 术 T-MPLS ( Transport Multi-protocol Label Switching, 多协议标记交换传输) 和 PBB-TE ( Provider Backbone Bridge - Traffic Engineering , 运营商骨干网桥接 传输), 也可以作为该网络的业务端口。
该多业务传送网的一个基本要求就是业务的可获得性, 因此需要对网络 提供保护机制,使得一个有故障的路径的业务能够改道通过一个备用路径得以 恢复。
一条特定的业务从端到端通过多业务传送网的路径称为通道。 在 SDH中, 一个通道由一个虚容器 (VC ) 和与其关联的通道开销 (ΡΟΗ )表示, 一旦建 立后, 通道的大小及位置都不会发生变化。
多业务传送网中的 T-CONT帧与 SDH的 VC通道相对应,称为多业务传送网 的传输通道, 即 T-CONT通道。 由于 T-CONT通道的位置和长度都可能改变, 现有的基于固定时隙传输技术(如 SDH )的通道保护机制不能适用于多业务传 送网。 发明内容
本发明实施例提供一种多业务传送网传输通道实现方法及系统,以简单有 效地实现多业务传送网中的传输通道保护。
本发明实施例提供的一种多业务传送网传输通道实现方法, 包括: 将承载工作通道的工作时隙和承载保护通道的保护时隙设置在不同波长 上的数据帧的相同时隙位置,所述工作时隙承栽的发送节点和接收节点间通信 的不同方向的 T-CONT帧的类型相同;
当工作通道正常时 , 从所述工作通道接收数据;
当工作通道故障时, 切换到所述保护通道接收数据。
本发明实施例提供一种多业务传送网传输通道实现系统, 包括: 主机, 用于设置承载工作通道的工作时隙和承载保护通道的保护时隙, 所 述工作时隙和保护时隙位于不同波长上的数据帧的相同时隙位置,所述工作时 隙承载的发送节点和接收节点间通信的不同方向的 T-CONT帧的类型相同; 发送节点, 用于获取主机下发的工作通道和保护通道, 并按照所述工作时 隙承载的 T-CONT帧的类型, 将需要发送的相同类型的 T-CONT帧放到对应 的时隙中发送;
接收节点, 用于当工作通道正常时, 从所述工作通道接收数据; 当工作通 道故障时, 切换到所述保护通道接收数据。
本发明实施例提供的多业务传送网传输通道实现方法及系统,针对多业务 传送网中传输通道位置和带宽动态变化的特点,将承载工作通道的工作时隙和 承载保护通道的保护时隙设置在不同波长上的数据帧的相同时隙位置,所述工 作时隙承载的发送节点和接收节点间通信的不同方向的 T-CONT 帧的类型相 同; 当工作通道正常时, 接收节点从所述工作通道接收数据; 当工作通道故障 时, 接收节点切换到所述保护通道接收数据, 从而实现动态的传输通道保护。 附图说明
图 1是多业务传送网的网絡架构示意图;
图 2是本发明实施例多业务传送网传输通道实现方法的流程图; 图 3是是本发明实施例中传输通道配置示意图;
图 4是利用本发明实施例的方法对双纤单向多业务传送网实现 1+1通道保 护的示意图;
图 5是图 4所示双纤单向环网 1+1通道保护的倒换示意图;
图 6是利用本发明实施例的方法对双纤单向多业务传送网实现 1: 1通道 保护的示意图;
图 7是本发明实施例多业务传送网传输通道实现系统的结构示意图。 具体实施方式
为了使本技术领域的人员更好地理解本发明实施例的方案,下面结合附图 和实施方式对本发明实施例作进一步的详细说明。
为了表述方便, 在下面的描述中, 将多业务传送网中的节点正常情况下发 送和接收数据的 T-CONT通道称为工作通道,工作通道所占用的数据帧的时隙 称为工作时隙, 保护通道所占用的数据帧的时隙称为保护时隙。 本发明实施例多业务传送网传输通道实现方法,针对多业务传送网中传输 通道位置和带宽动态变化的特点 ,将承载工作通道的工作时隙和承载保护通道 的保护时隙设置在不同波长上的数据帧的相同时隙位置,所述工作时隙承载的 发送节点和接收节点间通信的不同方向的 T-CONT帧的类型相同;当工作通道 正常时, 接收节点从所述工作通道接收数据; 当工作通道故障时, 接收节点切 换到所述保护通道接收数据, 从而实现动态的传输通道保护。
如图 2所示, 是本发明实施例多业务传送网传输通道实现方法的流程图: 步骤 201 , 将承载工作通道的工作时隙和承载保护通道的保护时隙设置在 不同波长上的数据帧的相同时隙位置,所述工作时隙承载的发送节点和接收节 点间通信的不同方向的 T-CONT帧的类型相同;
工作时隙和保护时隙的设置可以由系统中的主机来完成并下发给相应节 点; 发送节点在发送数据时, 按照所述工作时隙承载的 T-CONT帧的类型, 将 需要发送的相同类型的 T-CONT帧放到对应的时隙中发送;
为了满足业务传输所需的带宽,需要设置所述工作时隙的长度为发送节点 和接收节点间通信的同类型的 T-CONT帧的长度最大值;
步骤 202, 接收节点检测工作通道是否正常; 如果是, 则执行步骤 203; 否则, 执行步骤 204;
步骤 203, 接收节点从所述工作通道接收数据;
步骤 204, 接收节点切换到所述保护通道接收数据。
在所述多业务传送网中,各节点可以自行收集本节点内各业务带宽请求信 息, 并上报给主机; 主机根据各节点的业务带宽请求信息、 当前线路带宽资源 和业务优先级等条件, 为各节点进行带宽分配, 并将带宽分配信息下发给各节 点。各节点才艮据本节点的各 T-CONT帧的序列号及带宽分配信息,将各 T-CONT 帧組装到 TC帧即数据帧的数据净荷区。 为了使对端网络节点在接收到 TC帧 后, 能够正确地解析出所需的数据, 在 TC 帧中, 需要随路发送本节点各 T-CONT帧的带宽地图指示, 用于指示 T-CONT帧的时隙位置和长度。 这样, 对端网络节点接收到所述 TC 帧后, 就可以根据所述带宽地图指示解析所述 TC帧中的数据净荷区, 获得所需的数据。
在本发明实施例多业务传送网传输通道实现方法中,对应保护通道的带宽 地图指示与对应工作通道的带宽地图指示保持一致,并随着对应工作通道的带 宽地图指示的更新而更新。
为了更直观地理解本发明实施例中传输通道的设置,图 3示出了本发明实 施例中传输通道配置示意图:
其中, T-CONT(ij)表示从 i节点到 j 节点的传输数据的 T-CONT通道,
T-CONT(j,i)表示从 j节点到 i节点的传输数据的 T-CONT通道。 由于两者类型 相同, T-CONT(i )和 T-CONT(j,i)共用数据帧中的相同时隙, 且 T-CONT(ij)的 长度大于 T-CONT(j,i), 所以在数据帧中分配的时隙长度与 T-CONT(i )长度相 等。 T-CONT通道的起始位置与时隙的起始位置一致。
正常情况下, i节点接收工作时隙中的 T-CONT(j,i)并将 T-CONT(ij)发送到 工作时隙上, j 节点同样从工作时隙中接收 T-CONT(ij)并将 T-CONT(j,i)发送 到工作时隙上。
利用本发明实施例的方法,可以实现对多业务传送网传输通道 1+1通道保 护和 1: 1通道保护, 下面对此分别进行详细说明。
如图 4 所示, 是利用本发明实施例的方法对双纤单向多业务传送网实现
1+1保护的示意图:
其中, W表示工作通道所在的波长信道, P表示保护通道所在的波长信道, 波长信道 W和 P分别位于不同的光纤。
节点 1和节点 3之间通信的同类型的两个 T-CONT通道占用相同数据帧中 的相同时隙。 多业务传送网的主机按节点 1 和节点 3 之间通信的同类型 T-CONT通道的长度最大值在 W波长信道中分配工作时隙。
工作时隙分配完成后, 即决定了保护时隙的位置和长度, 如图 4所示, 工 作时隙和保护时隙在数据帧中的长度和位置相同。节点 1和节点 3从数据帧的 带宽地图指示中获得工作时隙的位置和长度,同时得到 P波长信道上的保护时 隙的位置和长度。
节点 1与节点 3通信时, 工作通道和保护通道发送相同的数据帧, 即双发 数据, 工作通道占用数据帧中的工作时隙, 保护通道占用保护时隙。
节点收到新的工作通道的带宽地图指示时,根据工作通道新的位置和长度 自动更新本地存储的保护通道的位置和长度,保证本地存储的对应保护通道的 带宽地图与对应工作通道的带宽地图一致。
工作通道正常时, 节点 1和节点 3都选择从工作通道接收数据, 即选收数 据, 当节点 1或者节点 3监测到工作通道故障时, 自动切换到保护通道接收数 据, 实现 1 + 1通道保护。
如图 5所示, 是图 4所示双纤单向环网 1+1通道保护的倒换示意图: 当节点 3和节点 4之间的 W波长信道失效(例如波长信道所在光纤断裂) 时, 节点 3检测到工作通道故障, 自动切换到保护通道, 无需通知节点 1 , 节 点 1仍然双发数据。 此时对于节点 3 , 保护通道变成工作通道, 当原有的工作 通道恢复时, 节点 3决定是否切换到原有的工作通道。
如图 6所示,是利用本发明实施例的方法对双纤单向多业务传送网实现 1 :
1通道保护的示意图:
其中,工作时隙和保护时隙的分配和划分方法与上述图 4所示的 1+1通道 保护一致。
节点 1与节点 3之间通信时, 占用工作时隙的工作通道发送正常业务,保 护通道发送其它低等级业务, 比如工作通道发送带宽保证的视频业务, 保护通 道发送尽力转发的网页浏览业务。节点 1和节点 3同时从工作通道和保护通道 接收数据。
当工作通道的带宽地图指示更新时,节点 1和节点 3 自动更新对应的保护 通道的位置和长度,保证对应保护通道的带宽地图与对应工作通道的带宽地图 一致。
当节点 3检测到工作通道故障时, 切换到保护通道接收数据, 并通知发送 数据帧的节点 1工作通道发生故障, 节点 1收到故障通告后, 将正常业务发送 到保护通道上, 并停止在保护通道上发送低等级业务, 此时节点 3只能从保护 通道上接收数据。
当工作通道恢复正常时, 节点 3通知节点 1工作通道恢复正常, 节点 1重 新在工作通道上发送正常业务, 在保护通道上发送低等级的业务。
可见, 利用本发明实施例多业务传送网传输通道实现方法, 可以简单、 有 效地实现多业务传送网中的通道保护,适用于多业务传送网中位置和带宽动态 变化的传输通道。 进一步地, 当工作通道的带宽和位置变化时, 保护通道能够 进行自动的调整, 即保护通道的位置和长度与工作通道保持同步更新, 无需手 工更改, 简化了保护通道的配置。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于一计算机可 读取存储介质中, 所述的存储介质, 如: ROM/RAM、 磁碟、 光盘等。
本发明实施例还提供了一种多业务传送网传输通道实现系统, 如图 7 所 示, 是该系统的结构示意图:
该系统包括: 主机 701、 发送节点 702和接收节点 703。 其中:
主机 701 ,用于设置承载工作通道的工作时隙和承载保护通道的保护时隙, 所述工作时隙和保护时隙位于不同波长上的数据帧的相同时隙位置,所述工作 时隙承载的发送节点和接收节点间通信的不同方向的 T-CONT帧的类型相同。 为了保证业务的正确传输,可以设置所述工作时隙的长度为发送节点和接收节 点间通信的同类型的 T-CONT帧的长度最大值。
发送节点 702, 用于获取主机下发的工作通道和保护通道, 并按照所述工 作时隙承载的 T-CONT帧的类型, 将需要发送的相同类型的 T-CONT帧放到 对应的时隙中发送;
接收节点 703, 用于当工作通道正常时, 从所述工作通道接收数据; 当工 作通道故障时, 切换到所述保护通道接收数据。
进一步地, 为了使接收节点 703方便地对接收的数据帧进行解析, 获得所 需的数据。 发送节点 702 还用于获取主机下发的对应工作通道的带宽地图指 示, 所述带宽地图指示用于指示 T-CONT帧的时隙位置和长度。 这样, 发送节 点 702就可以按照所述带宽地图指示的 T-CONT帧的时隙及类型,将需要发送 的相同类型的 T-CONT帧放到相应的时隙中发送。 同样,接收节点 703就可以 根据所述带宽地图指示解析接收的数据帧, 获得所需的数据。
为了方便保护通道的配置,可以设置对应保护通道的带宽地图指示与对应 工作通道的带宽地图指示保持一致,并随着对应工作通道的带宽地图指示的更 新而更新。
在实际应用中,根据应用环境的需要, 可以对传输通道选用 1+1方式的保 护, 也可以选用 1 : 1方式的保护。 如杲选用 1+1方式的保护,则发送节点 702同时在工作通道和保护通道发 送相同的数据, 工作通道占用数据帧中的工作时隙, 保护通道占用保护时隙。 工作通道正常时, 接收节点 703从工作通道接收数据; 工作通道失效后, 接收 节点 703切换到保护通道接收数据, 实现 1+1通道保护。 此时, 发送节点 702 仍然同时在工作通道和保护通道发送相同的数据帧 ,接收节点 703在工作通道 恢复正常后, 可以自行决定是否切换到所述工作通道。
如果选用 1 : 1方式的保护, 则在工作通道正常时, 发送节点 702在工作 通道发送正常业务的数据, 同时在保护通道发送其他低等级业务的数据; 相应 地,接收节点 703从所述工作通道接收所述正常业务的数据时, 从所述保护通 道接收所述其他低等级业务的数据。 在接收节点 703检测到工作通道故障时, 通知发送节点 702工作通道发生故障。 这样,发送节点 702在收到工作通道发 生故障的通知后, 停止在保护通道上发送所述低等级业务的数据, 并将所述正 常业务的数据发送到保护通道上, 实现 1 : 1通道保护。
在这种应用中, 接收节点 703还用于在检测到工作通道恢复正常后, 通知 发送节点工作通道恢复正常, 并重新切换到工作通道接收数据; 发送节点 702 在收到工作通道恢复正常的通知后, 重新在工作通道发送正常业务的数据, 同 时在保护通道发送其他低等级业务的数据。
需要说明的是,上述发送节点 702和接收节点 703可以是多业务传送网中 的任何节点, 而且, 多业务传送网中的任何节点可以按照上述方式同时发送和 接收数据。
以上对本发明实施例进行了详细介绍,本文中应用了具体实施方式对本发 明进行了阐述, 以上实施例的说明只是用于帮助理解本发明的方法及设备; 同 时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用 范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种多业务传送网传输通道实现方法, 其特征在于, 包括:
将承载工作通道的工作时隙和承载保护通道的保护时隙设置在不同波长 上的数据帧的相同时隙位置,所述工作时隙承载的发送节点和接收节点间通信 的不同方向的 T-CONT帧的类型相同;
当工作通道正常时, 从所述工作通道接收数据;
当工作通道故障时, 切换到所述保护通道接收数据。
2、 根据权利要求 1所述的方法, 其特征在于, 所述数据帧携带用于指示 T-CONT帧的时隙位置和长度的带宽地图指示;
所述接收数据包括: 接收节点根据所述带宽地图指示解析接收的数据帧, 获得所需的数据。
3、 根据权利要求 2所述的方法, 其特征在于, 对应保护通道的带宽地图 指示与对应工作通道的带宽地图指示保持一致,并随着对应工作通道的带宽地 图指示的更新而更新。
4、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 按照发送节点和接收节点间同类型的 T-CONT 帧的长度最大值设置所述 工作时隙的长度。
5、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括:
同时在所述工作通道和所述保护通道发送相同的数据。
6、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 发送节点在所述工作通道发送正常业务的数据,同时在所述保护通道发送 其他低等级业务的数据;
接收节点从所述工作通道接收所述正常业务的数据时 ,从所述保护通道接 收所述其他低等级业务的数据。
7、 根据权利要求 6所述的方法, 其特征在于, 所述方法还包括: 接收节点检测到工作通道故障时, 通知发送节点工作通道发生故障; 发送节点收到工作通道发生故障的通知后,停止在保护通道上发送所述低 等级业务的数据, 并将所述正常业务的数据发送到所述保护通道上。
8、 根据权利要求 7所述的方法, 其特征在于, 所述方法还包括: 接收节点检测到工作通道恢复正常后, 通知发送节点工作通道恢复正常, 并重新切换到所述工作通道接收数据;
发送节点收到工作通道恢复正常的通知后,重新在所述工作通道发送正常 业务的数据, 同时在所述保护通道发送其他低等级业务的数据。
9、 一种多业务传送网传输通道实现系统, 其特征在于, 包括:
主机, 用于设置承载工作通道的工作时隙和承载保护通道的保护时隙, 所 述工作时隙和保护时隙位于不同波长上的数据帧的相同时隙位置,所述工作时 隙承载的发送节点和接收节点间通信的不同方向的 T-CONT帧的类型相同; 发送节点, 用于获取主机下发的工作通道和保护通道, 并按照所述工作时 隙承载的 T-CONT帧的类型, 将需要发送的相同类型的 T-CONT帧放到对应 的时隙中发送;
接收节点, 用于当工作通道正常时, 从所述工作通道接收数据; 当工作通 道故障时, 切换到所述保护通道接收数据。
10、 根据权利要求 9所述的系统, 其特征在于, 所述发送节点还用于获取 主机下发的对应工作通道的带宽地图指示, 所述带宽地图指示用于指示
T-CONT帧的时隙位置和长度;
所述接收节点还用于根据所述带宽地图指示解析接收的数据帧,获得所需 的数据。
11、 根据权利要求 10所述的系统, 其特征在于, 对应保护通道的带宽地 图指示与对应工作通道的带宽地图指示保持一致,并随着对应二作通道的带宽 地图指示的更新而更新。
12、 根据权利要求 9所述的系统, 其特征在于, 所述工作时隙的长度为发 送节点和接收节点间通信的同类型的 T-CONT帧的长度最大值。
13、 根据权利要求 9所述的方法, 其特征在于, 所述发送节点同时在所述 工作通道和所述保护通道发送相同的数据。
14、 根据权利要求 9所述的系统, 其特征在于,
所述发送节点在所述工作通道发送正常业务的数据,同时在所述保护通道 发送其他低等级业务的数据;
所述接收节点从所述工作通道接收所述正常业务的数据时,从所述保护通 道接收所述其他低等级业务的数据。
15、 根据权利要求 14所述的系统, 其特征在于,
所述接收节点还用于在检测到工作通道故障时,通知发送节点工作通道发 生故障;
所述发送节点还用于收到工作通道发生故障的通知后,停止在保护通道上 发送所述低等级业务的数据, 并将所述正常业务的数据发送到所述保护通道 上。
16、 根据权利要求 15所述的系统, 其特征在于,
所述接收节点还用于在检测到工作通道恢复正常后 ,通知发送节点工作通 道恢复正常, 并重新切换到所述工作通道接收数据;
所述发送节点还用于收到工作通道恢复正常的通知后,重新在所述工作通 道发送正常业务的数据, 同时在所述保护通道发送其他低等级业务的数据。
PCT/CN2009/072119 2008-11-25 2009-06-04 多业务传送网传输通道实现方法及系统 WO2010060297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101791103A CN101741703B (zh) 2008-11-25 2008-11-25 多业务传送网传输通道实现方法及系统
CN200810179110.3 2008-11-25

Publications (1)

Publication Number Publication Date
WO2010060297A1 true WO2010060297A1 (zh) 2010-06-03

Family

ID=42225225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072119 WO2010060297A1 (zh) 2008-11-25 2009-06-04 多业务传送网传输通道实现方法及系统

Country Status (2)

Country Link
CN (1) CN101741703B (zh)
WO (1) WO2010060297A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114567410B (zh) * 2020-11-27 2024-05-17 华为技术有限公司 一种信号帧的处理方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512684A (zh) * 2002-12-31 2004-07-14 北京邮电大学 以太网无源光网络系统中弹性保护倒换的方法和设备
CN1564472A (zh) * 2004-04-09 2005-01-12 中兴通讯股份有限公司 一种光传输链型网络无业务中断的扩容方法
CN101094141A (zh) * 2007-06-28 2007-12-26 中兴通讯股份有限公司 一种接入网的话路保护方法、系统及光线路终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100502258C (zh) * 2004-03-23 2009-06-17 华为技术有限公司 多光口光波长转换单元
US20060013210A1 (en) * 2004-06-18 2006-01-19 Bordogna Mark A Method and apparatus for per-service fault protection and restoration in a packet network
CN1694382A (zh) * 2005-06-09 2005-11-09 上海交通大学 基于快速可调相干接收机的光保护交换方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512684A (zh) * 2002-12-31 2004-07-14 北京邮电大学 以太网无源光网络系统中弹性保护倒换的方法和设备
CN1564472A (zh) * 2004-04-09 2005-01-12 中兴通讯股份有限公司 一种光传输链型网络无业务中断的扩容方法
CN101094141A (zh) * 2007-06-28 2007-12-26 中兴通讯股份有限公司 一种接入网的话路保护方法、系统及光线路终端

Also Published As

Publication number Publication date
CN101741703B (zh) 2012-01-25
CN101741703A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
US6952395B1 (en) Optical network restoration
US8462656B2 (en) Method and apparatus for multi-service adaptation and carriage
CA2558786C (en) Line-level path protection in the optical layer
JP5025581B2 (ja) 通信システム及び通信装置
US7606886B1 (en) Method and system for providing operations, administration, and maintenance capabilities in packet over optics networks
US7486614B2 (en) Implementation method on multi-service flow over RPR and apparatus therefor
US7660238B2 (en) Mesh with protection channel access (MPCA)
EP2348691B1 (en) Service transmission method and service transmission apparatus
US7773612B2 (en) Networking controller, device and communication network system of asynchronous transfer mode
US20050265365A1 (en) Ring bearing network and method of implementing service bearing thereof
US11271668B2 (en) Data transmission methods, apparatuses, devices, and system
WO2004043011A1 (en) Multiple service ring of n-ringlet structure based on multiple fe, ge and 10ge
WO2010020130A1 (zh) 包分插复用设备及包分插复用设备的数据传输方法
Ryoo et al. Ethernet ring protection for carrier ethernet networks
US8582582B2 (en) In-band control plane and management functionality in optical level one virtual private networks
WO2011057545A1 (zh) 传输多路业务的方法和装置
US20090103533A1 (en) Method, system and node apparatus for establishing identifier mapping relationship
JP2001160840A (ja) 通信システムおよび通信システムにおける方法
WO2007079649A1 (fr) Procede et dispositif de decouverte automatique pour liaison de couche client
US20020133698A1 (en) Method and apparatus for a network element to support a protected communication link in a communication network
US20020131431A1 (en) Method and apparatus for a network element to support a communication link in a communication network
US20020131368A1 (en) Method and apparatus for processing a network manager command in a communication network
WO2010060297A1 (zh) 多业务传送网传输通道实现方法及系统
WO2006039871A1 (fr) Procede pour la transmission de message de commande dans un reseau en boucle a commutation multiprotocole par etiquette
US20020131418A1 (en) Method and apparatus for establishing a path identifier in a communication network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828558

Country of ref document: EP

Kind code of ref document: A1