WO2011030886A1 - 高温ガス炉用制御棒 - Google Patents

高温ガス炉用制御棒 Download PDF

Info

Publication number
WO2011030886A1
WO2011030886A1 PCT/JP2010/065696 JP2010065696W WO2011030886A1 WO 2011030886 A1 WO2011030886 A1 WO 2011030886A1 JP 2010065696 W JP2010065696 W JP 2010065696W WO 2011030886 A1 WO2011030886 A1 WO 2011030886A1
Authority
WO
WIPO (PCT)
Prior art keywords
control rod
support
shaft
htgr
temperature gas
Prior art date
Application number
PCT/JP2010/065696
Other languages
English (en)
French (fr)
Inventor
平岡 利治
隆志 小西
山地 雅俊
洋 町野
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to KR1020127009478A priority Critical patent/KR101680926B1/ko
Priority to US13/395,925 priority patent/US9343188B2/en
Priority to CN201080040455.6A priority patent/CN102576574B/zh
Priority to PL10815476T priority patent/PL2472524T4/pl
Priority to EP10815476.6A priority patent/EP2472524B1/en
Publication of WO2011030886A1 publication Critical patent/WO2011030886A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/08Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
    • G21C7/10Construction of control elements
    • G21C7/107Control elements adapted for pebble-bed reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/24Selection of substances for use as neutron-absorbing material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/04Thermal reactors ; Epithermal reactors
    • G21C1/06Heterogeneous reactors, i.e. in which fuel and moderator are separated
    • G21C1/07Pebble-bed reactors; Reactors with granular fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a control rod for a HTGR used for a HTGR in nuclear power generation.
  • a control rod for a HTGR used in a HTGR in nuclear power generation has a structure in which a plurality of control rod elements are connected in a vertical direction (vertical direction). Each control rod element has a neutron absorption such as B 4 C. The body is stored.
  • control rods for high temperature gas reactors have been used as control rod elements as means for accommodating neutron absorbers in high temperature gas reactors, but the core power and power density are large and the temperature conditions are severe.
  • a metal material is used for the control rod element, the metal is melted, and there is a possibility that it cannot be used repeatedly.
  • a control rod material made of C / C composite that can be used repeatedly or a control rod element made of SiC / SiC composite may be used as a control rod material instead of a metal material. .
  • B 4 C powder is filled and sintered between the outer cylinder and the inner cylinder using C / C composite, and a C / C connecting band is arranged in the outer cylinder of the control rod element.
  • a structure has been proposed in which the connecting band is connected using a cross joint made of C / C (see Patent Document 2 below).
  • the connecting bands adjacent in the vertical direction are arranged in a state of being twisted by 90 °.
  • the cross-shaped cross joints provided in each control rod element are connected by a connecting band, so that the entire weight of the control rod must be supported by a long connecting band.
  • a connecting band there was a problem that there was a problem in strength.
  • the width of the connecting band must be reduced accordingly, resulting in a decrease in the strength of the connecting band.
  • the width of the connecting band is increased to improve the strength of the connecting band, the diameter of the cross-shaped cross joint has to be reduced accordingly, leading to a decrease in the strength of the cross joint. To do. Therefore, it is difficult to improve the strength of the entire control rod for the HTGR.
  • the present invention provides a high-strength support structure that does not impair the connection state between the control rod elements even when stress such as tension, bending, and shear is applied, and has heat resistance.
  • An object of the present invention is to provide a control rod for a HTGR that can drastically improve the safety of the HTGR by improving it.
  • the present invention includes a plurality of control rod elements in which a neutron absorber is disposed between an outer cylinder and an inner cylinder forming a double cylinder, and the control rod elements are connected in the vertical direction.
  • a control rod for a HTGR having a structure in which a columnar support that supports at least the neutron absorber is disposed in the inner cylinder, and at least one end of upper and lower ends of the support Is characterized in that a connecting means for connecting to another control rod element is provided. If a support that supports the neutron absorber is arranged in the inner cylinder as in the above configuration, the weight of the neutron absorber is added to the support, but since this support is columnar, it is more than the connecting band. Strength increases.
  • the connection state between the control rod elements is not impaired. Therefore, at the time of emergency insertion into the reactor core and power adjustment, the subsequent restart of the reactor can be performed without damage to the control rod body.
  • at least one of the upper and lower ends of the support body is provided with a connecting means for connecting to other control rod elements, so that the connection between the control rod elements can be achieved smoothly. it can. Therefore, the control rod for the HTGR can be manufactured by a simple method while improving safety.
  • the parts excluding the neutron absorber are preferably made of a C / C composite material or a SiC / SiC composite material. If the component excluding the neutron absorber is composed of a C / C composite material having high shear strength and excellent heat resistance, or an SiC / SiC composite material, the heat resistance can be improved, The mechanical strength can be improved. In particular, the SiC / SiC composite material has high strength, higher shear strength, and excellent neutron damage resistance. Therefore, when this material is used, the above-described effects are further exhibited. However, since the SiC / SiC composite material is more expensive than the C / C composite material, it is preferably used only for members that require particularly high strength as will be described later. Moreover, when comprised with the said material, in an inert atmosphere, it can be repeatedly used at 2000 degrees C or less, and there is no restriction
  • the support preferably has a side wall and a hollow portion surrounded by the side wall and extending in the vertical direction.
  • the connecting means preferably includes a shaft that horizontally passes through two holes formed in the side wall of the support, and a ring-shaped connecting band through which the shaft passes.
  • the connecting band is preferably plate-shaped.
  • the connection band is not limited to a plate shape, but if it is made a plate shape, a connection band that is lightweight and improved in strength can be provided. In addition, the resistance against torsional stress can be increased.
  • a gap be provided between the control rod elements. If a gap is provided between the control rod elements, the shaft can move up and down within the connecting band. Therefore, even when an axial (vertical) stress is applied to the control rod element, the control rod element can be prevented from being damaged.
  • the connecting band be configured to be smaller than the axial length of the shaft in the hollow portion. If the width of the connecting band is configured to be smaller than the axial length of the shaft in the hollow portion, the connecting band can move in the extending direction of the shaft in the hollow portion. If the shaft provided at the upper end and the shaft provided at the lower end are arranged in a twisted state, the connecting band provided at the upper end and the connecting band provided at the lower end can move in different directions. Therefore, if the direction is perpendicular to the axis of the control rod element (horizontal direction), the shaft and the connecting band can be prevented from being damaged even if stress is applied from any direction.
  • the diameter of the shaft is smaller than the diameter of the two holes formed in the side wall. If the diameter of the shaft is smaller than the diameter of the two holes formed in the side wall (that is, if the shaft is inserted through the hole with some play), the stress is reduced as described above. be able to.
  • the connecting band hollow width perpendicular to the shaft axis is larger than the diameter of the shaft. If the hollow width of the connecting band perpendicular to the shaft axis is larger than the diameter of the shaft, the shaft can rotate slightly in the horizontal direction within the connecting band, so the force in the bending direction (twisting direction) Even if it is a case where it adds, it can suppress that a connection band and a shaft are damaged.
  • the shaft is disposed in the vicinity of the lower end portion of the side wall of the support in the control rod element located above, while the control rod element located below is the above It is desirable that the shaft is disposed in the vicinity of the upper end portion of the side wall of the support.
  • the upper control rod element is positioned near the lower end of the side wall of the support, while the lower control rod element is positioned near the upper end of the side wall if the shaft is positioned near the upper end of the side wall. Therefore, the connecting band can be downsized. In addition, it is possible to suppress excessive swinging.
  • a neutron absorber support projection extending in the inner cylinder direction is formed at the lower end of the support or in the vicinity thereof. If a neutron absorber support projection extending in the inner cylinder direction is formed at the lower end of the support or in the vicinity thereof, the neutron absorber can be supported from below, so that the neutron absorber can be supported simply. it can.
  • the support has a polygonal cross section, and the polygon is preferably an even polygon. If the cross-sectional shape of the support is an even polygonal shape, the shaft can be disposed between the opposing side walls, so that the support can be easily manufactured.
  • the support having a polygonal cross section is preferably formed by combining flat carbon-based materials. If the support having a polygonal cross section is formed by combining a flat carbon-based material, it is easy to manufacture parts constituting the support, and the manufacturing cost of the control rod for the high temperature gas furnace is reduced.
  • the neutron absorber support protrusion is formed integrally with the flat carbon-based material. If the neutron absorber support protrusion is integrally formed with the carbon-based material, the load of the neutron absorber is dispersed because the load of the neutron absorber is applied in the plane direction of the carbon material. Therefore, breakage of the control rod element can be suppressed, and safety is further improved.
  • the connection state between the control rod elements is not impaired, and the heat resistance
  • FIG. 1 It is a perspective view which shows the control rod for high temperature gas reactors of this invention. It is a disassembled perspective view of the control-rod element which concerns on a 1st form. It is sectional drawing of the control-rod element which concerns on a 1st form. It is a cross-sectional perspective view of the control-rod element which concerns on a 1st form. It is a disassembled perspective view which shows the connection state of the support body which concerns on a 1st form. It is a figure which shows the support plate used for the support body which concerns on a 1st form, The figure (a) is a front view, The figure (b) is a side view.
  • the figure (a) is a front view
  • the figure (b) is a side view.
  • the figure (a) is a front view
  • the figure (b) is a side view.
  • the figure (a) is a front view
  • the figure (b) is a side view.
  • the figure (a) is a front view
  • the figure (b) is a side view.
  • FIG. 1 It is a figure which shows the inner cylinder used for the support body which concerns on a 1st form
  • the figure (a) is a front view
  • the figure (b) is a side view.
  • the figure (a) is a front view
  • the figure (b) is a side view.
  • the figure (a) is a top view
  • the figure (b) is CC sectional view taken on the line CC of the figure (a).
  • FIG. 1 It is a figure which shows the lower cover used for the support body which concerns on a 1st form
  • the figure (a) is a top view
  • the figure (b) is the DD sectional view taken on the line of the figure (a).
  • It is explanatory drawing which shows the modification of the support body which concerns on a 1st form.
  • the control rod for a HTGR of the present invention has a structure in which a plurality of control rod elements 1 are connected in a vertical direction (vertical direction).
  • the gap is provided.
  • the gap is provided between the control rod elements 1 because the connection bolts 3a and 3b can move up and down in the connection band 6 described later when a vertical stress is applied to the control rod element 1. This is because breakage of the control rod element 1 can be suppressed.
  • FIGS. 2 to 4 note that the neutron absorber 7 is omitted in FIG.
  • the control rod element 1 includes an outer cylinder 9, an inner cylinder 8, and both cylinders 8, 9
  • a neutron absorber 7 disposed in between, a columnar support 2 disposed in the inner cylinder 8, and a bottom disposed at the lower ends of both the cylinders 8 and 9 to support the neutron absorber 7 below.
  • a lid 5 and an upper lid 10 disposed at the upper ends of the cylinders 8 and 9 are provided.
  • the support 2 has a substantially square cross section, and includes two flat support plates (side walls) 12 a made of a C / C composite material and 2 made of a C / C composite material.
  • a plate-like support plate 12b (side wall) is combined.
  • the reason why the support plates 12a and 12b are formed in a flat plate shape is that the components constituting the support 2 can be easily manufactured, and the support plates 12a and 12b are made of a C / C composite material. This is to improve the mechanical strength and mechanical strength.
  • the hollow portion 28 can be formed in the center of the support body 2, so that the weight of the support body 2 can be reduced, and the weight applied to the connecting means described below. This is because of the decrease.
  • the support plate 12 a has a specific structure in which a protrusion 13 that fits into a slit of a support plate 12 b described later is formed on the side of the main body 14. And is integrally formed.
  • a lower lid support projection 15 extending in the direction of the inner cylinder 8 is integrally formed with the projection 13 (both of the main body portion 14) at the lower end position of the support plate 12a.
  • the lower lid 5 is placed.
  • the lower lid support protrusion 15 extends in the direction of the inner cylinder 8 and has a function as a neutron absorber support protrusion that receives a load of the neutron absorber via the lower lid 5.
  • the load of the neutron absorber 7 applied through the lower lid 5 is applied in the surface direction of the support plate 12a, and the load of the neutron absorber 7 is dispersed, so that the support 2 is damaged. Can be suppressed.
  • the structure is configured to utilize the high shear strength of the C / C composite.
  • a hole 16 is formed in the vicinity of the lower end of the support plate 12a.
  • a bolt (shaft) 3a shown in FIG. 8 is horizontally connected to the hole 16 and the ring-shaped connecting band 6 arranged in the support 2. It is structured to be inserted in the direction.
  • the bolt 3a is fixed to the support 2 by a nut 4 shown in FIG.
  • the connecting band 6, the bolt 3a, and the nut 4 are made of a C / C composite material for the same reason as described above (reason for considering strength, etc.).
  • the connecting band 6 has a plate shape, thereby reducing the weight of the connecting band 6 and improving the strength.
  • a notch 17 for placing the upper lid 10 is formed at the upper end position of the support plate 12a.
  • the specific structure of the support plate 12b is formed in the body portion 20 with a slit 18 that fits with the protrusion 13 of the support plate 12a.
  • the slit 18 is a long hole in the vertical direction, so that the contact area between the support plates is large, and both the support plates 12a and 12b are structured to apply loads in the surface direction. It has a structure that can make use of the high shear strength of the C composite.
  • a lower lid support projection 19 extending in the direction of the inner cylinder 8 is formed integrally with the main body portion 20 at the lower end position of the support plate 12a, and the lower lid 5 is mounted on the lower lid support projection 19. It is a structure to be placed.
  • the load of the neutron absorber 7 applied through the lower lid 5 is applied in the surface direction of the support plate 12b and the load of the neutron absorber 7 is dispersed as described above. 2 can be prevented from being damaged. Furthermore, since a load is applied in the surface direction of the support plate 12a, a structure utilizing the high shear strength of the C / C composite is provided.
  • the support plates 12a and 12b may be combined only if they can be secured simply by combining them, and the bonding strength may be increased using a carbon-based adhesive.
  • a hole 21 is formed in the vicinity of the upper end of the support plate 12b.
  • the hole 21 and the ring-shaped connecting band 6 (shown in FIG. 10) disposed in the support 2 are connected to the bolt shown in FIG.
  • the (shaft) 3b is inserted in the horizontal direction.
  • the bolt 3b is fixed to the support 2 with a nut 4 shown in FIG.
  • the bolt 3b is made of a C / C composite material for the same reason as described above (reason for considering the strength surface and the like).
  • a notch 22 for fitting the upper lid 10 is formed at the upper end position of the support plate 12a.
  • the upper lid 10 may be bonded to the support plates 12a and 12b using a carbon-based adhesive.
  • the tensile strength of the support plates 12a and 12b is about 250 MPa.
  • the connecting means is constituted by the connecting band 6, the bolt 3 a (or 3 b), and the nut 4. Since a strong connecting means can be configured with such a small number of members, a highly reliable connecting means can be provided at low cost. If the width of the connecting band 6 (L6 in FIG. 10B) is 28 mm and the thickness (L7 in FIG. 10A) is 3 mm, a static load of 19.6 kN can be suspended. is there. Therefore, the tensile strength is dramatically improved. When the diameter of the bolt 3a (or 3b) (L1 in FIG. 8B) is 18 mm, the shear strength is 19.2 kN, and the shear strength is dramatically improved.
  • the diameters of the holes 16 and 21 are configured to be slightly larger than the diameters of the bolts 3a and 3b (L1 in FIG. 8B). This facilitates the insertion of the bolt 3a (or 3b), and the bolt 3a (or 3b) passes through the holes 16 and 21 with some play, so the bolt 3a (or 3b) is inserted into the hole 16 , 21 can be moved a little, and when this is applied external stress is applied, stress relaxation can be achieved (bolt 3a (or 3b), connecting band 6 and other members constituting the support 2 are prevented from being damaged). it can). Further, in the connecting band 6, the hollow width (L4 in FIG.
  • the width of the connecting band 6 (L6 in FIG. 10B) is smaller than the axial length of the bolt 3a (or 3b) in the hollow portion 28 (L5 in FIG. 8B). It is configured. Therefore, since the connecting band 6 can move in the axial direction of the shaft, the external stress can be relaxed thereby.
  • both the connecting bands in FIG. 5, the connecting band 6 arranged on the upper portion of the support 2 and the support The connecting band 6) arranged at the bottom of the body 2 can move in different directions. Therefore, even if stress is applied in a direction (A direction or B direction in FIG. 5) perpendicular to the axis of the control rod element 1, the stress can be relaxed.
  • the bolt 3c is arranged near the lower end of the support plate 12a, while the bolt 3b is arranged near the upper end of the support plate 12a. Therefore, since the length of the connecting band 6 is reduced, the connecting band can be reduced in size.
  • the bolts 3a, 3b, 3c are moved away from the bolts 3a, 3b, 3c to one of the inner cylinders 8 due to aging or impact, the bolts 3a,
  • the length is set such that the heads 30 of 3b and 3c can be prevented from coming out of the two holes 16 (or 21, 23) in the inserted state by hitting the inner surface of the inner cylinder 8. Therefore, even if the nut 4 is removed, the control rod element 1 can be prevented from dropping due to the bolts 3a, 3b, 3c being removed.
  • the inner cylinder 8 has a cylindrical shape and is made of a C / C composite material.
  • the outer cylinder 9 has a cylindrical shape larger in diameter than the inner cylinder 8, and is made of a C / C composite material.
  • the upper lid 10 has a disk shape, and the outer diameter (L8 in FIG. 13B) is the outer diameter of the outer cylinder 9 (FIG. 12B). ) And L9). Further, a cutout 31 is formed on the outermost periphery of the upper lid 10, and the width of the cutout 31 (L10 in FIG. 13B) is the thickness of the outer cylinder 9 (L11 in FIG. 12B). It is comprised so that it may become the same. Further, a groove 32 is formed inside the notch 31. The outer diameter of the groove 32 (L12 in FIG. 13B) is configured to be the same as the outer diameter of the inner cylinder 8 (L13 in FIG.
  • the width of the groove 32 (FIG. 13 (b) L15) is configured to be the same as the thickness of the inner cylinder 8 (L14 in FIG. 11B). Further, a groove 33 into which the ends of the support plates 12a and 12b are fitted is formed inside the groove 32. With such a configuration, the upper lid 10 can be fitted on the inner cylinder 8, the outer cylinder 9, and the upper portion of the support body 10.
  • the lower lid 5 has a disk shape.
  • the lower lid 5 has substantially the same configuration as the upper lid 10 (the notch 35, the groove 32, and the groove 33 having the same size are formed in the same portion). With such a configuration, the lower lid 5 can be fitted at the lower part of the inner cylinder 8, the outer cylinder 9, and the support body 10.
  • the inner space shape 34 is slightly different and the thickness of the lower lid 5 (L17 in FIG. 14B) is equal to the thickness of the upper lid 10 (L18 in FIG. 13B) to support the neutron absorber 7 below. )
  • the point is slightly larger.
  • the safety of the nuclear reactor is improved by adopting such a structure in which it is supported by the disk-shaped lower lid 5 (that is, not supported by screws).
  • the thicknesses of both the cylinders 8, 9 (L14 in FIG. 11B, L11 in FIG. 12B) May be configured smaller. Further, since the upper lid 10 is used only for sealing the control rod element, the thickness of the upper lid 10 (L18 in FIG. 13B) may be small, and further, the lower lid 5 Although the thickness is slightly larger than that of the upper lid 10, the load is applied only to the portion sandwiched between the neutron absorber 7 and the lower lid protrusions 15 and 19, so the thickness of the lower lid 5 (FIG. 14B). L17) need not be so large. With the above configuration, the material cost of the control rod for the HTGR can be reduced.
  • the parts excluding the neutron absorber 7 among the parts constituting the control rod element 1 are made of C / C composite material.
  • all the parts excluding the neutron absorber 7 are made of SiC / SiC composite material.
  • only the main parts for example, bolts 3a, 3b, 3c and connecting bands
  • only main parts for example, the bolts 3a, 3b, 3c and the connecting band 6) may be made of C / C composite material or SiC / SiC composite material, and the other parts may be made of ordinary carbon material. .
  • the shape of the support is not limited to a quadrangular cross section, but may be a regular hexagonal cross section as shown in FIG. 15 or a regular octagonal cross section.
  • bolt 3 it is necessary is just to arrange
  • the bolts 3a, 3b, 3c and the connecting band 6 of the control rod element 1 arranged in the upper part are larger loads than the bolts 3a, 3b, 3c and the connecting band 6 of the control rod element 1 arranged in the lower part. Will be added. Therefore, the bolts 3a, 3b, 3c of the control rod element 1 arranged at the upper part have a larger diameter than the bolts 3a, 3b, 3c of the control rod element 1 arranged at the lower part, or the control rod elements arranged at the upper part.
  • One connecting band 6 may be configured to be thicker than the connecting band 6 of the control rod element 1 disposed below.
  • the bolts 3a, 3b, 3c and the connection band 6 of the control rod element 1 arranged at the upper part are made of SiC / SiC composite material, and the bolts 3a, 3b, 3c and the connection band of the control rod element 1 arranged at the lower part are connected.
  • the band 6 may be made of a C / C composite material.
  • the control rod element 1 includes an outer cylinder 9, an inner cylinder 8, a neutron absorber 7 disposed between both the cylinders 8, 9, and the inner cylinder 8.
  • a cylindrical support 2 disposed at the bottom, a lower lid 5 disposed at the lower ends of the cylinders 8 and 9 to support the neutron absorber 7 below, a support ring 50, and a fixing screw 51. is doing.
  • the outer cylinder 9 has a bell-like shape with a tapered top, and the neutron absorber 7 and the inner cylinder 8 are inserted through the lower opening 52.
  • a through hole 53 for inserting the columnar support 2 is provided at the upper end of the outer cylinder 9.
  • a through-hole 55 for inserting the support 2 is provided in the center of the disc-shaped lower lid 5 arranged at the lower end of the inner cylinder 8, and the outer diameter of the lower lid 5 (see FIG. 18 L21) is substantially the same as the inner diameter of the outer cylinder 9 (L20 in FIG. 18).
  • a support ring 50 is disposed below the lower lid 5, and the outer diameter (L22 in FIG. 18) of the support ring 50 is substantially the same as the inner diameter (L20 in FIG. 18) of the outer cylinder 9. .
  • the outer cylinder 9 and the support ring 50 are provided with holes 56 and 57 in advance at locations where the support ring 50 is aligned when the support ring 50 is disposed in the outer cylinder 9.
  • a plurality of screws 51 (about 10 in this embodiment) made of 2DC / C composite are screwed together.
  • the screw 51 is provided so as not to protrude from the outer surface of the outer cylinder 9.
  • the length of the inner cylinder 8 is such that the upper end of the inner cylinder 8 is substantially in contact with the upper inner surface of the outer cylinder 9, so that a large amount of the neutron absorber 7 between the cylinders 8 and 9 can be arranged. It has become.
  • the load on the inner cylinder 8 and the neutron absorber 7 is received by the lower lid 5, and the lower lid 5 is supported from below by the support ring 50. Since the support ring 50 has a width in the vertical direction and is screwed from the lateral direction, the load from the lower lid 5 is applied in the surface direction of the support ring 50 and further applied to a plurality of screw screw portions. The load bearing performance is enhanced.
  • the support body 2 is inserted inward of the inner cylinder 8, and the support body 2 is provided with a business trip section 62.
  • the outside diameter (L25 in FIG. 16) of the business trip part 62 is larger than the hole diameter (L26 in FIG. 16) of the through hole 53 provided at the upper end of the outer cylinder 9, and this causes a business trip to the through hole 53.
  • the control rod element 1 is supported by the support body 2 through the business trip portion 62.
  • the upper end of the business trip part 62 and the lower edge of the through-hole 53 of the outer cylinder 9 are tapered, and are configured such that the swinging of the outer cylinder 9 is reduced when the parts come into contact with each other.
  • the specific structure of the support 2 is composed of an upper support member 60, a business trip section 62, and a lower support member 64, as shown in FIG.
  • the lower support member 64 is provided with a screw portion 63, while the upper support member 60 is provided with a screw hole 61.
  • a small diameter portion 66 having a smaller diameter than other portions is provided at the lower end portion of the upper support member 60, and a stepped portion 68 is formed at the boundary between the small diameter portion 66 and the large diameter portion (other portion) 67.
  • the business trip section 62 is provided with an insertion hole 69, and the diameter of the insertion hole 69 (L30 in FIG. 17) is larger than the diameter of the small diameter section 66 of the small diameter section 66 (L31 in FIG.
  • the diameter is smaller than the diameter of the portion 67 (L32 in FIG. 17). Accordingly, when the insertion hole 69 of the business trip portion 62 is inserted into the small diameter portion 66 of the upper support member 60 from below the upper support member 60, the upper end of the business trip portion 62 is caught by the stepped portion 68. In this state, when the screw part 63 of the lower support member 64 is screwed into the screw hole 61 of the upper support member 60, the business trip part 62 is sandwiched and fixed between the upper support member 60 and the lower support member 64.
  • a screw hole (not shown) is provided at the lower end of the lower support member 64, and a business trip portion and a screw portion of another control rod element (not shown) from below. What is necessary is just to make it the structure which attaches the support
  • the structure which provides a screw part in the upper support member 60, and provides a screw hole in the lower support member 64 may be sufficient.
  • the neutron absorber 7 can be reliably accommodated in the outer cylinder 9 while being a simple configuration with a small number of members and parts, and the heavy neutron absorber 7 can be stably supported by the support 2. Can be supported.
  • the weight can be reduced while providing high strength.
  • a SiC / SiC composite can be used instead of the C / C composite to further increase the strength.
  • the SiC / SiC composite is expensive, it may be used only for the business trip part 62, the lower lid 5, the support ring 50, the screw 51, etc., which require particularly high strength.
  • the integral formation of the outer tube 9 having a converged shape on the upper side it is preferable to use a filament winding method or a hand lay-up method, and it is particularly preferable to use a filament winding method capable of obtaining higher strength.
  • the filament winding method usually involves immersing a carbon fiber bundle in which carbon fibers are bundled in a low-viscosity binder made of thermosetting resin, solvent, etc., and then winding the carbon fiber bundle to which the binder is attached around a crucible-shaped mandrel. To the required crucible shape.
  • the winding around the mandrel may be performed by an appropriate method, for example, as described in Japanese Patent Application Laid-Open No.
  • thermosetting is performed at a temperature of about 100 to 300 ° C., for example, and the resulting molded body is carbonized in an inert gas such as N 2 gas at a temperature of about 1000 ° C., for example.
  • an inert gas such as N 2 gas
  • the resin is impregnated with a phenol resin, tar pitch or the like, and further heated at a temperature of 1500 ° C. or higher to perform carbonization (graphitization).
  • the crucible obtained through the above steps is heated at a temperature of about 1500 to 2500 ° C. in a halogen gas atmosphere, for example, and subjected to a high-purification treatment to obtain a C / C material.
  • a carbon fiber cloth is attached to a crucible mold to produce a molded body, and then subjected to thermosetting, carbonization, graphitization, and purification treatment in the same manner as the FW method to obtain a C / C material. Is.
  • an insertion hole 70 is provided intermittently along the circumferential direction slightly above the lower end of the outer cylinder, and a flat support plate 71 is inserted into the insertion hole 70. Both ends are supported from below by the outer cylinder 9 below the insertion hole 70, so that the support plate 71 supports the neutron absorber and the inner cylinder from below. Near the center of the support plate 71 in the longitudinal direction, a through hole 55 through which the support 2 is inserted is provided.
  • positioned using the insertion hole 70 is not limited to two as above-mentioned, One may be sufficient and it is good also as three or more according to the intensity
  • the neutron absorber can be supported by an extremely simple configuration in which the insertion hole 70 is provided and the support plate 71 is inserted into the insertion hole 70. Moreover, what is necessary is just to set the thickness, width
  • the neutron absorber may be placed directly on the support plate 71, or the lower lid 5 shown in FIG. 18 may be placed on the support plate 71 and placed thereon. good. Further, the structure using the lower lid 5 and the support ring 50 as shown in FIGS. 16 and 18 may be used together to increase the support strength.
  • a bolt or the like is attached to a portion of the lower lid 5 or the support plate 71 corresponding to the through hole 55 for inserting the support, and the bolt is used. Can also be connected to other control rod elements.
  • the present invention can be used in a high temperature gas reactor for nuclear power generation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Vibration Dampers (AREA)

Abstract

 高強度な支持構造とすることにより、引張り、曲げ、せん断等の応力が加わった場合であっても各制御棒要素間の連結状態を損なうことが無く、且つ、耐熱性を向上させることにより、高温ガス炉の安全性を飛躍的に向上させることができる高温ガス炉用制御棒を提供することを目的としている。 二重円筒状を成す外筒9と内筒8との間に中性子吸収体7が配置された制御棒要素1を複数備え、この制御棒要素1が鉛直方向に連結される構造の高温ガス炉用制御棒であって、上記内筒8内には、少なくとも上記中性子吸収体7を支持する柱状の支持体2が配置され、この支持体2の上下両端部には、他の制御棒要素1と連結する連結手段が設けられていることを特徴とする。

Description

高温ガス炉用制御棒
 本発明は、原子力発電における高温ガス炉に用いられる高温ガス炉用制御棒に関するものである。
 原子力発電における高温ガス炉に用いられる高温ガス炉用制御棒は、複数の制御棒要素を鉛直方向(上下方向)に連結する構造であり、各制御棒要素には、BC等の中性子吸収体が収納されている。
 従来、高温ガス炉における中性子吸収体の収容手段としての制御棒要素としては、金属系の高温ガス炉用制御棒が用いられてきているが、炉心の出力や出力密度が大きく温度条件が厳しい大規模な高温ガス炉に適用した場合、制御棒要素に金属材料を用いると金属の溶融が起こり、繰り返し使用ができなくなる恐れがあることが技術課題となっている。このため、大規模な高温ガス炉では金属材料に代わる制御棒材料として、繰り返し使用できるC/Cコンポジット製の高温ガス炉用制御棒やSiC/SiCコンポジット製の制御棒要素が用いられる場合がある。
 ここで、制御棒駆動装置により昇降駆動される高温ガス炉用制御棒の昇降機構としては、制御棒要素と固定される一体のワイヤーが、各制御棒要素の内筒内部を挿通し、当該ワイヤーを上下動させて高温ガス炉用制御棒を昇降させる機構が知られている。このようなことを考慮して、各制御棒要素の外筒と内筒との下部に、ネジまたは勘合部を設けて各制御棒要素を接続するような機構も提案されている(下記特許文献1参照)。このような機構であれば高温ガス炉用制御棒が揺動するのをある程度抑制できるものの、しかしながらネジ接続では、ネジ山に引張り、曲げ、せん断等の応力が集中するので、吊り下げ荷重を大きくできず(即ち、制御棒要素の連結個数が制限され)、しかも、多少の揺れ等でネジが破断することがあるという課題を有していた。
 そこで、C/Cコンポジットを使用した外筒と内筒との間にBCパウダーを充填して焼結させると共に、制御棒要素の外筒内にC/C製の連結用バンドを配置し、この連結用バンドをC/C製の十字のクロスジョイントを用いて連結するような構造のものが提案されている(下記特許文献2参照)。尚、上下方向に隣り合う連結用バンドは90°捩れる状態で配置されている。
特開平03-134592号公報 特開平06-148372号公報
 しかしながら、上記従来の発明では、各制御棒要素に設けられた十字状のクロスジョイント間を連結用バンドで連結するという構成であるため、長尺の連結用バンドで制御棒の全重量を支えなければならず、強度上の問題があるという課題を有していた。尚、十字状のクロスジョイントの径を大きくして、クロスジョイントの強度向上を図った場合には、その分だけ連結用バンドの幅を小さくしなければならないので、連結用バンドの強度低下を招来する。一方、連結用バンドの幅を大きくして、連結用バンドの強度向上を図った場合には、その分だけ十字状のクロスジョイントの径を小さくしなければならないので、クロスジョイントの強度低下を招来する。したがって、高温ガス炉用制御棒全体として強度向上を図るのは困難である。
 そこで本発明は、高強度な支持構造とすることにより、引張り、曲げ、せん断等の応力が加わった場合であっても各制御棒要素間の連結状態を損なうことが無く、且つ、耐熱性を向上させることにより、高温ガス炉の安全性を飛躍的に向上させることができる高温ガス炉用制御棒を提供することを目的としている。
 本発明は上記目的を達成するために、二重円筒状を成す外筒と内筒との間に中性子吸収体が配置された制御棒要素を複数備え、この制御棒要素が鉛直方向に連結される構造の高温ガス炉用制御棒であって、上記内筒内には、少なくとも上記中性子吸収体を支持する柱状の支持体が配置され、この支持体の上下両端部のうち少なくとも一方の端部には、他の制御棒要素と連結する連結手段が設けられていることを特徴とする。
 上記構成の如く、内筒内に中性子吸収体を支持する支持体が配置されていれば、中性子吸収体の重量は支持体に加わるが、この支持体は柱状であるため、連結用バンドよりも強度が高くなる。したがって、引張り、曲げ、せん断等の応力が加わった場合であっても各制御棒要素間の連結状態を損なうことがない。したがって、原子炉炉心への緊急挿入および出力調整に際して、制御棒本体を損傷することなく、その後の原子炉の再起動を支障なく行うことができる。加えて、支持体の上下両端部のうち少なくとも一方の端部には、他の制御棒要素と連結する連結手段が設けられているので、各制御棒要素間の連結も円滑に達成することができる。したがって、安全性の向上を図りつつ簡便な方法で高温ガス炉用制御棒を作製できる。
 制御棒要素を構成する部品のうち中性子吸収体を除く部品は、C/Cコンポジット材料、又は、SiC/SiCコンポジット材料から成ることが望ましい。
 中性子吸収体を除く部品が、高いせん断強度を有すると共に耐熱性に優れたC/Cコンポジット材料、又は、SiC/SiCコンポジット材料から構成されていれば、耐熱性の向上を図ることができると共に、機械的な強度の向上を図ることができる。特に、SiC/SiCコンポジット材料は、高強度でより高いせん断強度を有すると共に、耐中性子損傷性に優れているので、この材料を用いた場合には、上記作用効果が一層発揮される。但し、SiC/SiCコンポジット材料はC/Cコンポジット材料に比べて高価であるので、後述の如く、特に強度等が必要とされる部材にのみ用いるのが好ましい。また、上記材料で構成した場合には、不活性雰囲気では2000℃以下で繰り返し使用することが可能であり、制御棒の使用温度限界による原子炉の運転条件への制約がない。
 上記支持体は、側壁と、この側壁に囲まれ鉛直方向に延びる中空部とを有することが望ましい。
 このように、支持体には鉛直方向に延びる中空部が形成されていれば、支持体の軽量化を図ることができるので、連結手段に加わる重量が減少する。したがって、高温ガス炉用制御棒が破損するのを抑制できるので、安全性が一層向上する。また、原材料が少なくて済むので、高温ガス炉用制御棒のコスト低減を図ることができる。尚、中空部の回りには側壁が存在するので、支持体の強度低下も抑制できる。
 上記連結手段は、上記支持体の側壁に形成された2つの孔を水平方向に挿通するシャフトと、このシャフトが貫通されたリング状の連結バンドとを備えることが望ましい。
 このように、支持体の側壁に形成された2つの孔を水平方向に挿通するシャフトと、このシャフトが貫通されたリング状の連結バンドとを設けるだけで連結することができるので、低コスト且つ容易に、制御棒要素同士を連結することが可能となる。
 上記連結バンドは板状を成すことが望ましい。
 連結バンドは板状に限定するものではないが、板状にすれば、軽量で強度が向上した連結バンドを提供できる。また、ねじれ応力に対する対抗力も高めることができる。
 上記制御棒要素間には隙間が設けられていることが望ましい。
 制御棒要素間には隙間が設けられていれば、連結バンド内においてシャフトが上下動することが可能となる。したがって、制御棒要素に軸方向(鉛直方向)の応力が加わった場合でも、制御棒要素が破損するのを抑制できる。
 上記支持体の上下両端に上記連結手段がそれぞれ設けられている場合には、上端に設けられたシャフトと下端に設けられたシャフトとはねじれ状態となるように配置され、且つ、上記連結バンドの幅は上記中空部におけるシャフトの軸方向の長さより小さくなるように構成されていることが望ましい。
 連結バンドの幅が中空部におけるシャフトの軸方向の長さより小さくなるように構成されていていれば、中空部内において、連結バンドがシャフトの延設方向に移動できることになる。また、上端に設けられたシャフトと下端に設けられたシャフトとをねじれ状態で配置すれば、上端に設けられた連結バンドと下端に設けられた連結バンドとが、異なる方向に移動できることになる。したがって、制御棒要素の軸に対して垂直な方向(水平方向)であれば、いかなる方向から応力が加わってもシャフトや連結バンドが破損するのを抑制できる。
 上記側壁に形成された2つの孔の径よりも、上記シャフトの径の方が小さくなっていることが望ましい。
 側壁に形成された2つの孔の径よりもシャフトの径の方が小さければ(即ち、若干の遊びを有する状態でシャフトが孔を挿通していれば)、上記と同様に応力の緩和を図ることができる。
 上記シャフトの軸に対して垂直方向となる上記連結バンド中空幅が、上記シャフトの径より大きくなっていることが望ましい。
 シャフトの軸に対して垂直方向となる連結バンド中空幅が、シャフトの径より大きくなっていれば、連結バンド内において、水平方向にシャフトが若干回動できるので、曲げ方向(捩れ方向)の力が加わった場合であっても、連結バンドやシャフトが破損するのを抑制できる。
 上記複数の制御棒要素のうち隣接する制御棒要素において、上方に位置する制御棒要素では上記シャフトが支持体の側壁の下端部近傍位置に配置される一方、下方に位置する制御棒要素では上記シャフトが支持体の側壁の上端部近傍位置に配置される、ことが望ましい。
 上方に位置する制御棒要素では支持体の側壁の下端部近傍位置に配置される一方、下方に位置する制御棒要素ではシャフトが側壁の上端部近傍位置に配置されていれば、連結バンドの長さが小さくなるので、連結バンドの小型化を図ることができる。また必要以上の揺動を抑制することもできる。
 上記シャフトの一端が上記内筒の内面と当接した状態であっても、上記シャフトは上記2つの孔を挿通している状態が維持されることが望ましい。
 シャフトの一端が内筒の内面と当接した状態であっても、シャフトが2つの孔を挿通している状態が維持されていれば、シャフトが外れることによる制御棒要素の落下を防止できる。
 上記支持体の下端部或いはその近傍には、上記内筒方向に延びる中性子吸収体支持突起が形成されていることが望ましい。
 支持体の下端部或いはその近傍に、内筒方向に延びる中性子吸収体支持突起が形成されていれば、中性子吸収体を下方から支持することができるので、中性子吸収体を簡便に支持することができる。
 上記支持体は断面多角形状であって、この多角形は偶数の多角形であることが望ましい。
 支持体の断面形状が偶数の多角形状であれば、対向する側壁間に上記シャフトを配置することができるので、支持体を容易に作製できる。
 上記断面多角形状の支持体は、平板状の炭素系材料を組み合わせて形成されることが望ましい。
 断面多角形状の支持体が平板状の炭素系材料を組み合わせて形成されていれば、支持体を構成する部品の作製が容易となって、高温ガス炉用制御棒の製造コストが低下する。
 上記中性子吸収体支持突起は、上記平板状の炭素系材料と一体形成されていることが望ましい。
 中性子吸収体支持突起が炭素系材料と一体形成されていれば、中性子吸収体の荷重が炭素材料の面方向に加わるので、中性子吸収体の荷重が分散される。したがって、制御棒要素の破損が抑制でき、安全性がより向上する。
 本発明によれば、高強度な支持構造とすることにより、引張り、曲げ、せん断等の応力が加わった場合であっても各制御棒要素間の連結状態を損なうことが無く、且つ、耐熱性を向上させることにより、高温ガス炉の安全性を飛躍的に向上させることができるといった優れた効果を奏する。
本発明の高温ガス炉用制御棒を示す斜視図である。 第1の形態に係る制御棒要素の分解斜視図である。 第1の形態に係る制御棒要素の断面図である。 第1の形態に係る制御棒要素の断面斜視図である。 第1の形態に係る支持体の連結状態を示す分解斜視図である。 第1の形態に係る支持体に用いる支持板を示す図であり、同図(a)は正面図、同図(b)は側面図である。 第1の形態に係る支持体に用いる支持板を示す図であり、同図(a)は正面図、同図(b)は側面図である。 第1の形態に係る支持体に用いる連結ボルトを示す図であり、同図(a)は正面図、同図(b)は側面図である。 第1の形態に係る支持体に用いるナットを示す図であり、同図(a)は正面図、同図(b)は側面図である。 第1の形態に係る支持体に用いる連結バンドを示す図であり、同図(a)は正面図、同図(b)は側面図である。 第1の形態に係る支持体に用いる内筒を示す図であり、同図(a)は正面図、同図(b)は側面図である。 第1の形態に係る支持体に用いる外筒を示す図であり、同図(a)は正面図、同図(b)は側面図である。 第1の形態に係る支持体に用いる上蓋を示す図であり、同図(a)は平面図、同図(b)は同図(a)のC-C線矢視断面図である。 第1の形態に係る支持体に用いる下蓋を示す図であり、同図(a)は平面図、同図(b)は同図(a)のD-D線矢視断面図である。 第1の形態に係る支持体の変形例を示す説明図である 第2の形態に係る制御棒要素の説明図である。 第2の形態に係る支持体の分解側面図である。 第2の形態に係る制御棒要素の分解斜視図である。 第3の形態に係る制御棒要素の分解斜視図である。
                (第1の形態)
 本発明の第1の形態を、図1~図15に基づいて、以下に説明する。
 図1に示すように、本発明の高温ガス炉用制御棒は、複数の制御棒要素1が鉛直方向(上下方向)に連結される構造となっており、上記制御棒要素1間には若干の隙間が設けられている。このように、制御棒要素1間には隙間を設けるのは、制御棒要素1に上下方向の応力が加わった場合に、後述する連結バンド6内において連結ボルト3a、3bが上下動できるので、制御棒要素1の破損を抑制できるからである。上記制御棒要素1は、図2~図4(尚、図2においては、中性子吸収体7は省略している)に示すように、外筒9と内筒8と、これら両筒8、9間に配置された中性子吸収体7と、上記内筒8内に配置された柱状の支持体2と、上記両筒8、9の下端に配置されて上記中性子吸収体7を下方で支持する下蓋5と、上記両筒8、9の上端に配置された上蓋10とを有している。
 上記支持体2は、図5に示すように、略断面四角形状であって、C/Cコンポジット材料から成る2枚の平板状の支持板(側壁)12aと、C/Cコンポジット材料から成る2枚の平板状の支持板12b(側壁)と、を組み合わせて構成されている。尚、支持板12a、12bと平板状とするのは、支持体2を構成する部品の作製が容易となるからであり、支持板12a、12bがC/Cコンポジット材料から成るのは、耐熱性の向上と機械的な強度の向上とを図るためである。更に、4枚の支持板12a、12bを組み合わせて構成すれば、支持体2の中央に中空部28を形成できるので、支持体2の軽量化を図ることができ、後述の連結手段に加わる重量が減少するからである。
 上記支持板12aの具体的な構造は、図6(a)(b)に示すように、後述する支持板12bのスリットに嵌合される突起13が、本体部14の側部に本体部14と一体形成されている。また、支持板12aの下端位置には、上記内筒8方向に延びる下蓋支持突起15が、上記突起13と(本体部14とも)一体形成されており、この下蓋支持突起15上に上記下蓋5が載置される構造である。下蓋支持突起15は、内筒8方向に延びると共に、下蓋5を介して中性子吸収材の荷重を受ける中性子吸収材支持突起としての機能を有する。このような構造であれば、下蓋5を介して加わる上記中性子吸収体7の荷重が支持板12aの面方向に加わり、中性子吸収体7の荷重が分散されるので、支持体2が破損するのを抑制できる。また荷重が支持板12aの面方向に加わるので、C/Cコンポジットの高いせん断強度を活用する構造となされている。
 上記支持板12aの下端近傍には孔16が形成されており、この孔16と上記支持体2内に配置されたリング状の連結バンド6とを、図8に示すボルト(シャフト)3aが水平方向に挿通する構造となっている。このボルト3aは、図9に示すナット4によって支持体2に固定されている。尚、上述の理由と同様の理由(強度面等を考慮するという理由)により、連結バンド6とボルト3aと、ナット4とはC/Cコンポジット材料から構成されている。また、上記連結バンド6は板状を成しており、これによって、連結バンド6の軽量化と強度の向上とを図っている。更に、上記支持板12aの上端位置には、上記上蓋10を載置するための切り欠き17が形成されている。
 一方、上記支持板12bの具体的な構造は、図7(a)(b)に示すように、上記支持板12aの突起13と嵌合するスリット18が本体部20に形成されている。スリット18は、上下方向の長孔となされていることで、支持板同士の接触面積が大きく取られると共に、支持板12a及び12bの双方がお互いに面方向に荷重がかかる構造となされ、C/Cコンポジットが備えた高いせん断強度を活かすことができる構造となっている。また、支持板12aの下端位置には、上記内筒8方向に延びる下蓋支持突起19が、上記本体部20と一体形成されており、この下蓋支持突起19上に上記下蓋5が載置される構造である。このような構造であれば、上記と同様、下蓋5を介して加わる上記中性子吸収体7の荷重が支持板12bの面方向に加わり、中性子吸収体7の荷重が分散されるので、支持体2が破損するのを抑制できる。更にまた、荷重が支持板12aの面方向に加わるので、C/Cコンポジットの高いせん断強度を活用する構造となされている。
 支持板12a及び12bは、単に組み合わせるのみで強度を確保することが可能であれば組み合わせるのみでもよく、またカーボン系接着材を用いて接合強度を高めるようにしてもよい。
 上記支持板12bの上端近傍には孔21が形成されており、この孔21と上記支持体2内に配置されたリング状の連結バンド6(図10に示す)とを、図8に示すボルト(シャフト)3bが水平方向に挿通する構造となっている。このボルト3bは、図9に示すナット4によって支持体2に固定されている。尚、上述の理由と同様の理由(強度面等を考慮するという理由)により、ボルト3bはC/Cコンポジット材料から構成されている。また、上記支持板12aの上端位置には、上記上蓋10を嵌着するための切り欠き22が形成されている。上蓋10は、支持板12a及び12bに、カーボン系接着剤を用いて接合するようにしてもよい。尚、上記支持板12a、12bの引っ張り強さは約250MPaであり、上記ボルト3bが貫通する最小断面積が1.35cmの場合には、33.7kNの静荷重を吊り下げることが可能である。
 ここで、上記連結バンド6とボルト3a(又は3b)とナット4とによって、連結手段が構成されている。このような少ない部材で強固な連結手段を構成できるので、低コストで信頼性の高い連結手段を提供できる。尚、連結バンド6の幅(図10(b)のL6)が28mmで、厚さ(図10(a)のL7)が3mmである場合、19.6kNの静荷重を吊り下げることが可能である。したがって、引っ張り強さが飛躍的に向上する。また、ボルト3a(又は3b)の直径(図8(b)のL1)が18mmの場合には、せん断強さは19.2kNであり、せん断強さが飛躍的に向上する。
 また、上記孔16、21の直径(図6のL2、図7のL3)は、上記ボルト3a、3bの直径(図8(b)のL1)よりも若干大きくなるように構成されている。これによってボルト3a(又は3b)の挿通が容易となる他、若干の遊びを有する状態でボルト3a(又は3b)が孔16、21を挿通しているので、ボルト3a(又は3b)が孔16、21内で若干移動でき、これによって外部応力が加わった場合に応力緩和を図ることができる(ボルト3a(又は3b)や連結バンド6等の支持体2を構成する部材が破損するのを抑制できる)。更に、連結バンド6において、ボルト3a(又は3b)の軸に対して垂直な方向の中空幅(図10(a)のL4)がボルト3a(又は3b)の直径(図8(b)のL1)より大きくなるように構成されている。このような構成によっても、上記と同様の理由により、外部応力を緩和できる。
 更に、上記連結バンド6の幅(図10(b)のL6)は、上記中空部28内におけるボルト3a(又は3b)の軸方向の長さ(図8(b)のL5)より小さくなるように構成されている。したがって、連結バンド6がシャフトの軸方向に移動できるので、これによって外部応力を緩和できる。
 加えて、ボルト3aとボルト3bとはねじれ状態(軸同士が直角となる状態)で配置されるので、両連結バンド(図5において、支持体2の上部に配置される連結バンド6と、支持体2の下部に配置される連結バンド6)は異なる方向に移動できることになる。したがって、制御棒要素1の軸に対して垂直な方向(図5のA方向やB方向)に応力が加わっても応力を緩和できる。
 また、図5において、ボルト3cは支持板12aの下端近傍位置に配置される一方、ボルト3bは支持板12aの上端近傍位置に配置される構成となっている。したがって、連結バンド6の長さが小さくなるので、連結バンドの小型化を図ることができる。
 更に、ボルト3a、3b、3cは、経年劣化や衝撃等により、例えナット4がボルト3a、3b、3cから外れて内筒8内でいずれか一方にずれた場合であっても、ボルト3a、3b、3cの頭部30が内筒8内面に当たって挿通状態にある2つの孔16(又は21、23)から外れるのを防止できるような長さとしている。したがって、ナット4が外れたとしても、ボルト3a、3b、3cが外れることによる制御棒要素1の落下を防止できる。
(その他の部材についての説明)
 図11(a)(b)に示すように、上記内筒8は円筒状を成し、C/Cコンポジット材料から構成されている。また、図12(a)(b)に示すように、上記外筒9は上記内筒8よりも大径の円筒状を成し、C/Cコンポジット材料から構成されている。
 図13(a)(b)に示すように、上記上蓋10は円板状を成し、その外径(図13(b)のL8)は、上記外筒9の外径(図12(b)のL9)と同一となるように構成されている。また、上蓋10の最外周には切り欠き31が形成されており、この切り欠き31の幅(図13(b)のL10)は、上記外筒9の厚み(図12(b)のL11)と同一となるように構成されている。更に、上記切り欠き31の内側には、溝32が形成されている。この溝32の外径(図13(b)のL12)は上記内筒8の外径(図11(b)のL13)と同一となるように構成され、また、この溝32の幅(図13(b)のL15)は上記内筒8の厚み(図11(b)のL14)と同一となるように構成されている。更に、上記溝32の内側には、上記支持板12a、12bの端部が嵌合される溝33が形成されている。このような構成することにより、上蓋10を、内筒8、外筒9、及び支持体10の上部で嵌合することができる。
 図14(a)(b)に示すように、上記下蓋5は円板状を成している。この下蓋5は上記上蓋10と略同様の構成である(同一部位に同一の大きさの切り欠き35、溝32、及び溝33が形成されている)。このような構成することにより、下蓋5を、内筒8、外筒9、及び支持体10の下部で嵌合することができる。但し、内部空間形状34が若干異なることと、中性子吸収体7を下方で支持すべく、下蓋5の厚み(図14(b)のL17)が上蓋10の厚み(図13(b)のL18)より若干大きくなっている点が異なる。尚、このように、円板状の下蓋5で支える(即ち、ネジで支えるのではない)という構造とすることにより、原子炉の安全性が向上する。
 尚、上記内筒8及び上記外筒9は中性子吸収体7を収納するだけの部材であるので、両筒8、9の厚み(図11(b)のL14、図12(b)のL11)は小さく構成しても良い。また、上記上蓋10は制御棒要素を封止するためだけに用いられるものであるので、上蓋10の厚み(図13(b)のL18)は小さく構成しても良く、さらに、上記下蓋5も上蓋10よりは若干厚みを大きくしているが、荷重がかかるのは中性子吸収体7と下蓋突起15及び19とに挟まれた部位だけなので、下蓋5の厚み(図14(b)のL17)はさほど大きく構成しなくても良い。以上のような構成とすることにより、高温ガス炉用制御棒の材料費を低減できる。
(第1の形態の変形例)
(1)上記実施例では、制御棒要素1を構成する部品のうち中性子吸収体7を除く部品をC/Cコンポジット材料から構成したが、中性子吸収体7を除く部品を全てSiC/SiCコンポジット材料から構成しても良く、また、主要部品(例えば、ボルト3a、3b、3cや連結バンド等)のみをSiC/SiCコンポジット材料で構成しても良い。更に、主要部品(例えば、ボルト3a、3b、3cや連結バンド6等)のみをC/Cコンポジット材料又はSiC/SiCコンポジット材料から構成し、その他の部品を通常の炭素材料で構成しても良い。
(2)支持体の形状は断面四角形状に限定するものではなく、図15に示すような断面正六角形状、又は、断面正八角形状等であっても良いことは勿論である。尚、図15に示すような断面正六角形状である場合には、ボルト3の軸同士が60°毎となるようにボルト3を配置すれば良い。
(3)上部に配置される制御棒要素1のボルト3a、3b、3cや連結バンド6は、下部に配置される制御棒要素1のボルト3a、3b、3cや連結バンド6に比べて大きな荷重が加わることになる。したがって、上部に配置される制御棒要素1のボルト3a、3b、3cは、下部に配置される制御棒要素1のボルト3a、3b、3cより大径としたり、上部に配置される制御棒要素1の連結バンド6は下部に配置される制御棒要素1の連結バンド6より厚みを大きくするような構成としても良い。また、上部に配置される制御棒要素1のボルト3a、3b、3cや連結バンド6をSiC/SiCコンポジット材料で構成し、下部に配置される制御棒要素1のボルト3a、3b、3cや連結バンド6をC/Cコンポジット材料で構成しても良い。
               (第2の形態)
 本発明の第2の形態を、図16~図18に基づいて、以下に説明する。
 図16に示すように、第2の形態に係る制御棒要素1は、外筒9と内筒8と、これら両筒8、9間に配置された中性子吸収体7と、上記内筒8内に配置された円柱状の支持体2と、上記両筒8、9の下端に配置されて上記中性子吸収体7を下方で支持する下蓋5と、支持リング50と、固定ネジ51とを有している。
 上記外筒9は上方が先細りとなる釣鐘状を成しており、下開口部52から上記中性子吸収体7及び内筒8が挿入される構造である。一方、外筒9の上端には、円柱状の支持体2を挿通するための貫通孔53が設けられている。更に、内筒8の下端部に配置された円盤状の下蓋5の中央には、支持体2を挿通するための貫通孔55が設けられており、また、下蓋5の外径(図18のL21)は外筒9の内径(図18のL20)と略同一となっている。更に、下蓋5の下方には支持リング50が配置されており、この支持リング50の外径(図18のL22)は外筒9の内径(図18のL20)と略同一となっている。
 上記外筒9と上記支持リング50とには、支持リング50が外筒9内に配置された際に一致する箇所に予め孔56、57が設けられており、該孔56、57には、例えば2DC/Cコンポジットからなる複数のネジ51(本形態では約10本)が螺合される。これによって、支持リング50が外筒9に固定されるようになっている。尚、ネジ51は、外筒9の外面から張り出さないように設けられる。また、内筒8の長さは、その上端が外筒9の上方内面にほぼ接する程度の長さとなっており、これにより、両筒8、9間の中性子吸収体7を多量に配置できる構造となっている。
 上記構成であれば、内筒8と中性子吸収体7との荷重は下蓋5により受けられ、下蓋5は支持リング50により下方から支持されている。支持リング50は上下方向に幅を有し、且つ、横方向からネジ止めされているので、下蓋5からの荷重は支持リング50の面方向に加わり、更に複数のネジ螺合部に加わるので、耐荷重性能が高められている。
 上記支持体2は内筒8の内方に挿通されており、また、支持体2には出張部62が設けられている。上記出張部62の外径(図16のL25)は、外筒9の上端に設けられた上記貫通孔53の孔径(図16のL26)より大きくなっており、これによって、貫通孔53に出張部62が引っ掛かり、出張部62を通じて支持体2により制御棒要素1が支持される。尚、出張部62の上端及び外筒9の貫通孔53の下縁はテーパー状となっており、当該部分同士が接することで外筒9の揺動が小さくなるような構成である。
 上記支持体2の具体的な構造は、図17に示すように、上支持部材60と出張部62と下支持部材64とから構成されている。上記下支持部材64にはネジ部63が設けられる一方、上記上支持部材60にはネジ孔61が設けられている。また、上支持部材60の下端部には他の部分より小径の小径部66が設けられており、この小径部66と大径部(他の部分)67との境界は段差部68が形成される。上記出張部62には挿通孔69が設けられており、この挿通孔69の直径(図17のL30)は、上記小径部66の小径部66の直径(図17のL31)より大きく、大径部67の直径(図17のL32)より小さくなるようになっている。これにより、上支持部材60の下方から、上支持部材60の小径部66に出張部62の挿通孔69を挿入すると、出張部62の上端は段差部68に引っ掛かる。その状態で下支持部材64のネジ部63を、上支持部材60のネジ孔61に螺合すると、上支持部材60と下支持部材64との間に出張部62が挟まれて固定される。
 ここで、制御棒要素1を複数連結する場合には、下支持部材64の下端にネジ孔(図示せず)を設け、下方から他の制御棒要素(図示せず)の出張部及びネジ部が設けられた支柱を取り付けるような構造とすれば良い。尚、ネジ部及びネジ孔を設ける場合、上支持部材60にネジ部を設け、下支持部材64にネジ孔を設ける構成であっても良い。
 本構成により、少ない部材、部品数で簡便な構成でありながら中性子吸収体7を外筒9内に確実に収容する構造とでき、また重量の大きい中性子吸収体7を支持体2により安定して支持することができる。
 尚、外筒9を含めた本実施形態の全ての部材及び部品は、C/Cコンポジット材により形成すれば、高強度を備えつつ軽量化を図ることができる。またC/Cコンポジットに替えて、SiC/SiCコンポジットを用いて、更に高強度とすることもできる。但しSiC/SiCコンポジットは高価であることから、とりわけ高い強度が必要とされる出張部62、下蓋5、支持リング50、ネジ51等に限って用いるようにしても良い。
 上方が収束された形状の外筒9の一体的な形成としては、フィラメントワインディング法又はハンドレイアップ法を用いるのが好ましく、より高い強度が得られるフィラメントワインディング法を用いるのが特に好ましい。フィラメントワインディング法は、通常炭素繊維を束ねた炭素繊維束を熱硬化性樹脂、溶剤等からなる低粘度の結合材に浸漬した後、結合材の付着した炭素繊維束をルツボ形状のマンドレルに巻付けて必要なルツボ形状に成形する。マンドレルへの巻き付けは、例えば、本出願人による特許出願である特開2003-201196に記載される等、適宜の方法で行ってよい。その後、例えば、100~300℃程度の温度で熱硬化を行い、得られる成形体をNガス等の不活性ガス中でたとえば約1000℃の温度で炭素化させる。この炭素化の後、必要に応じてフェノール樹脂、タールピッチ等を含浸させ、さらに1500℃以上の温度で加熱して炭素化(黒鉛化)を行う。以上の工程により得られたルツボを、例えば、ハロゲンガス雰囲気中で、1500~2500℃程度の温度において加熱し、高純度化処理を施し、C/C材とするものである。ハンドレイアップ法は、炭素繊維クロスをルツボ型に貼り付けて成形体を作製した後、FW法と同様に熱硬化、炭素化、黒鉛化および高純度化処理を施してC/C材とするものである。
               (第3の形態)
 本第3の形態を図19に基づいて説明するが、内筒、中性子吸収体、及び支持体の構造は上記第2の形態と同様の構造であるので、図19において、それらの部材は省略している。
 図19に示すように、外筒の下端からやや上方に円周方向に沿って断続的に挿通穴70が設けられ、この挿通穴70に平板状の支持板71が差し込まれ、支持板71の両端が挿通穴70の下部にある外筒9により下方から支持されることで、支持板71により中性子吸収体及び内筒が下方より支持される。支持板71の長手方向中央付近には、支持体2を挿通する貫通孔55が設けられている。
 尚、挿通穴70を用いて配置する支持板71は、上記の如く2枚に限定するものではなく、1枚でも良く、必要とされる強度に応じて3枚以上としてもよい。また、必要に応じて挿通穴70の幅も適宜の幅とすれば良く、更に、支持板71についても、必要とされる強度に応じて厚みを任意に設定してもよい。
 本構成であれば、挿通穴70を設け、この挿通穴70に支持板71を差し込むという、極めて簡便な構成により中性子吸収体の支持が可能となる。また中性子吸収体や内筒等の支持する対象の重量に応じて、支持板の厚みや幅等を設定すればよく、容易に強度設定が可能となり得る。
 尚、中性子吸収体は、支持板71の上に直接載置するようにしても良く、又は、支持板71の上に図18に示す下蓋5を配置してその上に載置しても良い。また図16及び図18に示したような、下蓋5及び支持リング50を用いる構成を併用し、支持強度を高めるようにしても良い。
 更に、上記第2の形態及び第3の形態において、場合によっては、下蓋5や支持板71の、支持体挿通用の貫通孔55に相当する部位にボルト等を取り付けて、そのボルトを用いて他の制御棒要素と接続することもできる。
 本発明は、原子力発電の高温ガス炉に用いることができる。

Claims (15)

  1. 二重円筒状を成す外筒と内筒との間に中性子吸収体が配置された制御棒要素を複数備え、この制御棒要素が鉛直方向に連結される構造の高温ガス炉用制御棒であって、
     上記内筒内には、少なくとも上記中性子吸収体を支持する柱状の支持体が配置され、この支持体の上下両端部のうち少なくとも一方の端部には、他の制御棒要素と連結する連結手段が設けられていることを特徴とする高温ガス炉用制御棒。
  2.  制御棒要素を構成する部材のうち中性子吸収体を除く部材は、C/Cコンポジット材料、又は、SiC/SiCコンポジット材料から成る、請求項1に記載の高温ガス炉用制御棒。
  3. 上記支持体は、側壁と、この側壁に囲まれ鉛直方向に延びる中空部とを有する、請求項1又は2に記載の高温ガス炉用制御棒。
  4. 上記連結手段は、上記支持体の側壁に形成された2つの孔を水平方向に挿通するシャフトと、このシャフトが貫通されたリング状の連結バンドとを備える、請求項3に記載の高温ガス炉用制御棒。
  5. 上記連結バンドは板状を成す、請求項4に記載の高温ガス炉用制御棒。
  6. 上記制御棒要素間には隙間が設けられている、請求項4又は5に記載の高温ガス炉用制御棒。
  7. 上記支持体の上下両端に上記連結手段がそれぞれ設けられている場合には、上端に設けられたシャフトと下端に設けられたシャフトとはねじれ状態となるように配置され、且つ、上記連結バンドの幅は上記中空部におけるシャフトの軸方向の長さより小さくなるように構成されている、請求項4~6の何れか1項に記載の高温ガス炉用制御棒。
  8. 上記側壁に形成された2つの孔の径よりも、上記シャフトの径の方が小さくなっている、請求項4~7の何れか1項に記載の高温ガス炉用制御棒。
  9. 上記シャフトの軸に対して垂直方向となる上記連結バンド中空幅が、上記シャフトの径より大きくなっている、請求項4~8の何れか1項に記載の高温ガス炉用制御棒。
  10. 上記複数の制御棒要素のうち隣接する制御棒要素において、上方に位置する制御棒要素では上記シャフトが支持体の側壁の下端部近傍位置に配置される一方、下方に位置する制御棒要素では上記シャフトが支持体の側壁の上端部近傍位置に配置される、請求項4~9の何れか1項に記載の高温ガス炉用制御棒。
  11. 上記シャフトの一端が上記内筒の内面と当接した状態であっても、上記シャフトは上記2つの孔を挿通している状態が維持される、請求項4~10の何れか1項に記載の高温ガス炉用制御棒。
  12. 上記支持体の下端部或いはその近傍には、上記内筒方向に延びる中性子吸収体支持突起が形成されている、請求項1~11の何れか1項に記載の高温ガス炉用制御棒。
  13. 上記支持体は断面多角形状であって、この多角形は偶数の多角形である、請求項1~12の何れか1項に記載の高温ガス炉用制御棒。
  14. 上記断面多角形状の支持体は、平板状の炭素系材料を組み合わせて形成される、請求項13に記載の高温ガス炉用制御棒。
  15. 上記中性子吸収体支持突起は、上記平板状の炭素系材料と一体形成されている、請求項14に記載の高温ガス炉用制御棒。
PCT/JP2010/065696 2009-09-14 2010-09-13 高温ガス炉用制御棒 WO2011030886A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127009478A KR101680926B1 (ko) 2009-09-14 2010-09-13 고온가스로용 제어봉
US13/395,925 US9343188B2 (en) 2009-09-14 2010-09-13 Control rod for high temperature gas reactor
CN201080040455.6A CN102576574B (zh) 2009-09-14 2010-09-13 高温气冷堆用控制棒
PL10815476T PL2472524T4 (pl) 2009-09-14 2010-09-13 Pręt kontrolny dla wysokotemperaturowego reaktora gazowego
EP10815476.6A EP2472524B1 (en) 2009-09-14 2010-09-13 Control rod for high-temperature gas reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-212474 2009-09-14
JP2009212474A JP5370763B2 (ja) 2009-09-14 2009-09-14 高温ガス炉用制御棒

Publications (1)

Publication Number Publication Date
WO2011030886A1 true WO2011030886A1 (ja) 2011-03-17

Family

ID=43732548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065696 WO2011030886A1 (ja) 2009-09-14 2010-09-13 高温ガス炉用制御棒

Country Status (8)

Country Link
US (1) US9343188B2 (ja)
EP (1) EP2472524B1 (ja)
JP (1) JP5370763B2 (ja)
KR (1) KR101680926B1 (ja)
CN (1) CN102576574B (ja)
PL (1) PL2472524T4 (ja)
TW (1) TW201135749A (ja)
WO (1) WO2011030886A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961624B1 (fr) * 2010-06-16 2014-11-28 Commissariat Energie Atomique Joint d'interface solide a porosite ouverte pour crayon de combustible nucleaire et pour barre de commande nucleaire
CN102915772B (zh) * 2012-04-27 2015-08-26 上海核工程研究设计院 一种长寿命灰控制棒及吸收体
WO2014050094A1 (ja) 2012-09-26 2014-04-03 株式会社 東芝 原子炉用制御棒および原子炉用制御棒の製造方法
CN105448355B (zh) * 2014-06-04 2018-02-02 华北电力大学 使用石墨烯层的反应堆控制棒

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151697A (ja) * 1974-10-28 1976-05-07 Efuiimobitsuchi Dereby Nikorai
JPS51113093A (en) * 1975-03-07 1976-10-05 Gen Atomic Co Reactor control unit
JPS53139083A (en) * 1977-05-10 1978-12-05 Ishikawajima Harima Heavy Ind Co Ltd Power controller of reactor
JPS60263892A (ja) * 1984-06-12 1985-12-27 株式会社東芝 高温ガス炉用制御棒
JPS61207992A (ja) * 1985-03-13 1986-09-16 株式会社東芝 原子炉用制御棒
JPH03134592A (ja) 1989-10-11 1991-06-07 General Atomic Co 制御棒組立体および原子炉の運転方法
JPH06148372A (ja) 1992-11-13 1994-05-27 Japan Atom Energy Res Inst 炭素複合材料製高温ガス炉用制御棒及びその製造方法
JP2003201196A (ja) 2001-10-25 2003-07-15 Toyo Tanso Kk 単結晶引き上げ用ルツボ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2925863A1 (de) 1979-06-27 1981-01-22 Hochtemperatur Reaktorbau Gmbh Hochtemperaturreaktor
JPS61207922A (ja) * 1985-03-11 1986-09-16 Shimadzu Corp 電空変換器
SU1828709A3 (ru) 1990-07-10 1995-05-20 Физико-энергетический институт Регулирующий стержень ядерного реактора на быстрых нейтронах
CN2209668Y (zh) 1994-07-25 1995-10-11 波丹公司 装配金属构架构件的可拆卸的装置
JPH08233969A (ja) 1995-02-28 1996-09-13 Japan Atom Energy Res Inst 高温ガス炉用制御棒
JP3143086B2 (ja) * 1997-10-14 2001-03-07 核燃料サイクル開発機構 SiC複合材料スリーブおよびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5151697A (ja) * 1974-10-28 1976-05-07 Efuiimobitsuchi Dereby Nikorai
JPS51113093A (en) * 1975-03-07 1976-10-05 Gen Atomic Co Reactor control unit
JPS53139083A (en) * 1977-05-10 1978-12-05 Ishikawajima Harima Heavy Ind Co Ltd Power controller of reactor
JPS60263892A (ja) * 1984-06-12 1985-12-27 株式会社東芝 高温ガス炉用制御棒
JPS61207992A (ja) * 1985-03-13 1986-09-16 株式会社東芝 原子炉用制御棒
JPH03134592A (ja) 1989-10-11 1991-06-07 General Atomic Co 制御棒組立体および原子炉の運転方法
JPH06148372A (ja) 1992-11-13 1994-05-27 Japan Atom Energy Res Inst 炭素複合材料製高温ガス炉用制御棒及びその製造方法
JP2003201196A (ja) 2001-10-25 2003-07-15 Toyo Tanso Kk 単結晶引き上げ用ルツボ

Also Published As

Publication number Publication date
KR20120087130A (ko) 2012-08-06
EP2472524B1 (en) 2017-05-31
JP5370763B2 (ja) 2013-12-18
CN102576574B (zh) 2015-09-23
EP2472524A1 (en) 2012-07-04
JP2011059086A (ja) 2011-03-24
US20120207263A1 (en) 2012-08-16
EP2472524A4 (en) 2014-06-18
PL2472524T3 (pl) 2018-01-31
TW201135749A (en) 2011-10-16
KR101680926B1 (ko) 2016-11-29
US9343188B2 (en) 2016-05-17
CN102576574A (zh) 2012-07-11
PL2472524T4 (pl) 2018-01-31

Similar Documents

Publication Publication Date Title
WO2011030886A1 (ja) 高温ガス炉用制御棒
JP5462879B2 (ja) 複合タイロッドおよびその作製方法
KR102181843B1 (ko) 인장 및 압축 하중에 대한 다른 섬유 보강부들을 구비한 비틀림 하중을 받는 로드형 구성 요소
RU2550780C2 (ru) Устройство для конструкционной передачи высоких нагрузок и способ его изготовления
US20100122606A1 (en) Tie rod and force transmitting assembly for a tie rod
CN106662185A (zh) 用于结构的振动阻尼装置
CN106369096A (zh) 一种初始刚度可调的反压式碟形弹簧阻尼器
JP2868738B2 (ja) 光ファイバ複合架空地線の構造及び製造方法
CN110258329B (zh) 一种frp拉索锚固装置及其安装方法
GB2054083A (en) A Tensile/Compressive Member
JP6570626B2 (ja) 風力タービンロータブレード
CN110565859A (zh) 消能减振撑杆及由其支撑的弦支组合楼盖
WO2014050094A1 (ja) 原子炉用制御棒および原子炉用制御棒の製造方法
US20110240582A1 (en) Fall-Back Support
KR20140147994A (ko) 합성기둥과 가새로 구성되는 풍력타워 구조 및 이를 이용한 풍력타워의 시공방법
JPH10321048A (ja) テンションメンバ、それを用いた軽量低弛度架空電線
CN208717469U (zh) 一种固化保温筒
CN103775515A (zh) 一种碳纤维复合材料轴与金属轴的连接结构
CN108350968A (zh) 弹性部件用线材以及弹性部件
CN106368482A (zh) 一种初始刚度可调的碟形弹簧阻尼器
CN210216149U (zh) 防胀型碳纤维增强树脂基复合材料大拉力单索及大拉力索
US20160003289A1 (en) Filament Wound Composite Tie Rod
GB2452761A (en) Composite rod and ferrule coupling
CN102808830B (zh) 销轴、工程机械的臂架的连接结构和混凝土泵送设备
CN108437486A (zh) 复合螺母及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040455.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010815476

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010815476

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2957/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127009478

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13395925

Country of ref document: US