WO2011030703A1 - Inverse-l shaped antenna - Google Patents

Inverse-l shaped antenna Download PDF

Info

Publication number
WO2011030703A1
WO2011030703A1 PCT/JP2010/064903 JP2010064903W WO2011030703A1 WO 2011030703 A1 WO2011030703 A1 WO 2011030703A1 JP 2010064903 W JP2010064903 W JP 2010064903W WO 2011030703 A1 WO2011030703 A1 WO 2011030703A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
antenna
inverted
length
inner conductor
Prior art date
Application number
PCT/JP2010/064903
Other languages
French (fr)
Japanese (ja)
Inventor
光雄 田口
徹也 山下
Original Assignee
国立大学法人長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人長崎大学 filed Critical 国立大学法人長崎大学
Publication of WO2011030703A1 publication Critical patent/WO2011030703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an ultra-low profile inverted L antenna that can be impedance-matched with high gain and disposed on a finite conductor plate.
  • Non-Patent Document 1 if a horizontal dipole antenna is arranged in the vicinity of a conductor plate, it has been theorized that electromagnetic waves are not radiated because of an image element made of a conductor plate.
  • Non-Patent Document 1 if a half-wave dipole antenna placed at a position of 1/30 wavelength in height on an infinite conductor plate is fed at two opposite points at equal distances from both ends, It has been clarified that the input impedance is 50 ⁇ and a high directivity gain of 8 dB or more can be obtained.
  • FIG. 1 is a configuration example of an antenna based on the technique described in Non-Patent Document 1.
  • the antenna configuration shown in FIG. 1 will be described.
  • Two coaxial cables 5 and 6 are connected in proximity to the conductor plate 4 and are parallel to the surface direction of the conductor plate 4 at a location slightly away from the connection point. It is bent by 90 °.
  • the coaxial cables 5 and 6 are arranged so that the ends of the coaxial cables 5 and 6 face away from each other, and the length between the ends is set to be approximately half the wavelength of the signal to be transmitted and received.
  • the height from the conductor plate 4 to the bending position is, for example, a distance of about 1/30 wavelength.
  • the coaxial cables 5 and 6 are composed of a center conductor and an outer conductor, and the outer conductor is electrically connected to the conductor plate 4 which is a ground potential portion.
  • the center conductor is not electrically connected to the outer conductor.
  • the peripheral conductor is cut off from the tip by a certain length, and this point becomes a feeding point.
  • the center conductors 5a and 6a are exposed at the tip.
  • the output of the signal source 1 (for example, a signal with a frequency of 2 GHz) is supplied to the coupler 2, and the oscillation signal as it is (0 ° signal).
  • a signal delayed in phase by 90 ° (a signal of ⁇ 90 °) is obtained.
  • the ⁇ 90 ° signal is supplied to the phase shifter 3 and is further delayed by 90 ° ( ⁇ 180 ° signal), and the 0 ° signal and the ⁇ 180 ° signal whose phases are reversed are obtained. obtain.
  • the 0 ° signal obtained in this way is supplied to the central conductor of the coaxial cable 5, and the ⁇ 180 ° signal is supplied to the central conductor of the coaxial cable 6, and the two coaxial cables are fed in reverse phase.
  • an inverted L-type antenna shown in FIG. 2 is known.
  • This inverted L-type antenna is obtained by attaching an inverted L-type element 8 on a conductor plate 7.
  • the inverted L-shaped element 8 formed of a conductor is bent at a location 8b having a predetermined height h from the connection point 8a, and is arranged in parallel with the conductor plate 7 from the bent location 8b to the tip 8c.
  • the conductive plate 7 is configured to supply power to the inverted L-type element 8 at the connection point 8a as a ground potential.
  • Non-Patent Document 1 shows that the antenna configuration shown in FIG. 1 makes it possible to obtain an input impedance of 50 ⁇ and a high directivity gain of 8 dB or more.
  • the length of the antenna needs to be 1 ⁇ 2 wavelength, and there is a problem that the total length of the antenna becomes long. Further, as shown in FIG. 1, it is necessary to generate and feed two signals having opposite phases, and there is a problem that the configuration for feeding is complicated.
  • the present invention has been made in view of these points, and an object of the present invention is to provide an antenna shape suitable for miniaturization, easy impedance matching, and high gain.
  • the inverted L-type antenna of the present invention includes a finite conductor plate having a surface ground potential, an outer conductor having a base end connected to a predetermined portion of the finite conductor plate, and a gap between the outer conductor and the outer conductor. And an inner conductor whose tip extends beyond the outer conductor. And the outer L conductor and the inner conductor are bent at a predetermined distance from the place connected to the finite conductor plate, arranged in parallel in close proximity to the finite conductor plate, and an inverted L-type antenna configured to feed the inner conductor; It is a thing.
  • the predetermined distance to the part to be bent is a distance of about 1/30 of one wavelength of a signal having a specific frequency.
  • the length from the bent portion of the inner conductor to the tip is set to about 1/4 of one wavelength of a signal having a specific frequency. Then, the impedance value of the feeder is matched with the setting of the length of the inner conductor and the length from the bent portion of the outer conductor to the tip of the outer conductor.
  • the ground conductor surface has a length in a direction parallel to the longitudinal direction of the inner conductor, a length from a predetermined location to one end portion toward the distal end side of the inner conductor, and a side from the predetermined location toward the distal end side of the inner conductor. The length to the other end on the opposite side was set so that current would flow in the direction from the bent portion of the inner conductor toward the tip.
  • a conductor having a short length of about a quarter wavelength is disposed on a finite conductor plate or in the same plane as the finite conductor plate, thereby reducing the size of the inverted L A type antenna can be constructed. According to this configuration, it is possible to directly perform impedance matching with the feed line without providing an impedance matching device, and a high gain antenna can be realized with a simple configuration.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. It is explanatory drawing which shows the example of the electric current generation state of the antenna by the 1st Embodiment of this invention. It is the characteristic view which showed the electric current and voltage distribution on an antenna. It is the characteristic view which showed the input impedance characteristic (FIG. 7A) and the return loss characteristic (FIG.
  • FIG. 8A is a characteristic diagram showing a radiation field directivity pattern example of the antenna according to the first embodiment of the present invention
  • FIG. 8A is a radiation field directivity pattern on the xz plane
  • FIG. 8B is a radiation field directivity pattern on the yz plane.
  • FIG. 9A is a characteristic diagram showing an example of a radiation field directivity pattern of a conventional inverted L-type antenna.
  • FIG. 9A is a radiation field directivity pattern on the xz plane
  • FIG. 9B is a radiation field directivity pattern on the yz plane.
  • FIG. 19 is a characteristic diagram showing a directivity gain (FIG. 18A) and a return loss characteristic (FIG. 18B) of an antenna according to a seventh embodiment of the present invention. It is a perspective view which shows the example of an antenna structure by the 8th Embodiment of this invention. It is the characteristic view which showed the return loss characteristic and axial ratio characteristic of the antenna by the 8th Embodiment of this invention.
  • FIG. 21A is a characteristic diagram showing calculated values of the radiation field directivity pattern of the antenna according to the eighth embodiment of the present invention, FIG. 21A is a radiation field directivity pattern on the xz plane, and FIG.
  • 21B is a radiation field directivity pattern on the yz plane. It is. It is explanatory drawing which shows the example of arrangement
  • Example of the first embodiment (FIGS. 3 to 9) 2.
  • Example of second embodiment (FIG. 10) 3.
  • Example of third embodiment (FIG. 11) 4).
  • Example of the fourth embodiment (FIGS. 12 to 13) 5.
  • Example of fifth embodiment (FIG. 14) 6).
  • Example of sixth embodiment (FIGS. 15 and 16) 7).
  • Example of seventh embodiment (FIGS. 17 and 18) 8).
  • Example of the eighth embodiment (FIGS. 19 to 21) 9.
  • Application example of antenna of each embodiment (FIGS. 22 and 23)
  • FIG. 3 is a diagram illustrating an antenna configuration of the example of the first embodiment. In this embodiment, it is configured as an ultra-low profile inverted L-type antenna. The configuration will be described with reference to FIG. 3.
  • a conductor plate 10 as a finite conductor having a predetermined rectangular size is used as an antenna.
  • the conductor plate 10 has at least the surface as a ground potential portion. The size of the conductor plate 10 will be described later.
  • connection point 21 connecting one end of the coaxial cable 20 is provided at a predetermined position on the surface of the conductor plate 10.
  • the coaxial cable 20 includes a center conductor 24 and an outer conductor 26. As shown in cross section in FIG. 4, the coaxial cable 20 has an insulator (dielectric material) 25 disposed so as to surround the outside of the central conductor 24 disposed at the center, and surrounds the outside of the insulator 25.
  • the outer conductor 26 is arranged on the front side.
  • the coaxial cable 20 is electrically connected to the outer conductor 26 and the surface of the conductor plate 10 serving as a ground potential portion at a connection point 21 with the conductor plate 10, and the outer conductor 26 serves as a ground potential portion. .
  • the coaxial cable 20 having one end connected to the connection portion 21 is bent at a position away from the surface of the conductor plate 10 by a predetermined distance h as a bent portion 22, and the distal end side of the bent coaxial cable 20 is They are arranged so as to be parallel to the surface of the conductor plate 10.
  • the distance h separating the surface of the conductor plate 10 and the center of the coaxial cable 20 is, for example, about 1/30 of one wavelength of a signal transmitted and received by the antenna of this example.
  • Coaxial cable bent at bent portion 22 extends parallel to the conductive plate 10 20 Yes stretched only the center conductor 24 to the center conductor end portion 24a to a length L 0, the outer conductor 26, the length L
  • the position of the length L 1 shorter than 0 is set as the outer conductor end portion 23.
  • the insulator 25 is also cut as an end.
  • the position where the outer conductor 26 is cut becomes the feeding point of the antenna.
  • the length L 0 from the bent portion 22 to the center conductor end 24a is, for example, about 1 ⁇ 4 of one wavelength of a signal transmitted / received by this antenna.
  • Outer conductor 26 of the thus stretched central conductor 24 and the length L 1 functions as an antenna device having an inverted L antenna of the present embodiment.
  • the length L 1 of the outer conductor 26, the impedance of the antenna is set to be (50 [Omega in this case) the desired value. That is, in such a configuration, the impedance can be set to an arbitrary value by setting the length of the center conductor 24 as the inner conductor and the length from the bent portion 22 to the tip 23 of the outer conductor 26.
  • this impedance is matched with the power supply line so as to match the impedance value of the power supply line. Specific examples of these values will be described later.
  • the coaxial cable connecting portion 21 of the conductor plate 10 is provided with a hole 20a penetrating from the front surface to the back surface, and the central conductor 24 of the coaxial cable 20 is passed through the hole 20a.
  • the insulator 25 is also passed through the hole 20a so that the central conductor 24 is not in electrical contact with the surface of the conductor plate 10 or the like.
  • Power is supplied using the outer conductor 26 and the center conductor 24 drawn out to the back side of the conductor plate 10.
  • a broken-line arrow from the back surface side of the conductor plate 10 shown in FIG. 3 toward the coaxial cable connection portion 21 indicates a state where power is supplied from the back surface side, and when transmitting, a transmission signal is supplied and received. In this case, the received signal is taken out.
  • FIG. 5 shows the direction of current flowing through the conductor plate 10 and the coaxial cable 20 of this example. If the current phase of each part is constant, the current I 2 in the horizontal direction (y-axis direction in FIG. 5) parallel to the longitudinal direction of the antenna element on the surface of the conductor plate 10, the center conductor 24 and the outer conductor 26 constituted current I 1 of the surface of the horizontal elements cancel each other become opposite, the radiation is reduced.
  • the current in the y-axis direction on the conductor plate is adjusted to flow in the + y-axis direction.
  • the + y-axis direction is a direction from the coaxial cable connecting portion 21 toward the central conductor end portion 24a.
  • the length pyp in the y-axis direction is the length from the connection point 21 to the end of the conductor plate 10 in the direction in which the antenna element (center conductor 24) extends, and the length pym in the y-axis direction is the connection point 21. To the end in the opposite direction to the x-axis direction.
  • the current on the conductor plate is rapidly attenuated as the distance from the base of the inverted L antenna increases. It should be noted that the currents on the horizontal element and the conductor plate immediately below the horizontal element have substantially opposite phases.
  • FIG. 7 to FIG. 9 show examples of specific shapes of the antennas of this embodiment and characteristics calculated by the shapes.
  • the antenna shape parameters were set as follows.
  • the radius of the coaxial cable constituting the antenna element the radius from the connection point 21 to the outer conductor end 23 (feed point) is 1.095 mm, and the radius of the center conductor 24 from the feed point to the tip is 0.255 mm.
  • the center frequency handled by this antenna was set to 2.45 GHz, and the characteristics were obtained.
  • the calculated value of the frequency bandwidth with a return loss of 10 dB or more was 2.71%
  • the calculated value of the directivity gain was 4.14 dBi.
  • the input impedance of the antenna of this example can be set to 50 ⁇ by setting the lengths L0 and L1 of the antenna element described above.
  • the value of this input impedance can be adjusted by setting the position of the outer conductor end 23 of the coaxial cable 20 (that is, the position of the feeding point).
  • the point that the input impedance can be adjusted by adjusting the position of the feeding point will be described.
  • FIG. 6 shows a current / voltage distribution of a general inverted L antenna. In FIG. 6, the current distribution is indicated as I ⁇ , and the voltage distribution is indicated as V ⁇ . As shown in FIG. 6, in order to operate the inverted L-type antenna in which the element 24 is disposed on the conductor plate 10, a large current must be passed through the antenna.
  • the current becomes maximum.
  • the voltage difference potential difference between both ends of the power supply point becomes large if the lengths at both ends are different. If the feeding point is at the tip of the antenna, the voltage is maximized.
  • the antenna input impedance is set to 50 ⁇ , which is equal to the impedance of the feeder line, by setting the lengths L 0 and L 1 of the antenna element.
  • an ultra-low profile inverted L-type antenna (unbalanced feeding inverted L-type antenna) of the example of the present embodiment and a conventional inverted L-type antenna (as shown in FIG.
  • the characteristics of the antenna shown will be described below.
  • the antenna shape parameters here are as follows.
  • the radius of the coaxial cable constituting the element of the unbalanced feed inverted L-type antenna of the example of the present embodiment is 1.095 mm from the feed point having the outer conductor to the feed point from the center conductor only to the tip. It shall be 0.255 mm. Furthermore, the radius of the radiating element of the conventional inverted L-type antenna as a comparative example is 1.095 mm.
  • FIG. 7 shows the input impedance characteristics (FIG. 7A) and the calculated return loss characteristics (FIG. 7B) of the unbalanced feed inverted L antenna of the example of this embodiment and the inverted L antenna of the comparative example. ).
  • the characteristic a is the characteristic of the unbalanced feed inverted L antenna of the example of the present embodiment
  • the characteristic b is the characteristic of the inverted L antenna of the comparative example.
  • the input resistance of a normal inverted L-type antenna is several ⁇
  • the input resistance of an unbalanced feed inverted L-type antenna is 50 ⁇ at a design frequency of 2.45 GHz. Yes.
  • FIG. 8 shows the radiation field directivity pattern calculation values of the unbalanced feed inverted L antenna with the same parameter settings as in FIG.
  • FIG. 9 shows a radiation field directivity pattern calculation value of the inverted L-type antenna of the comparative example with the same parameter setting as that of FIG.
  • FIG. 8 and FIG. 9 show the patterns seen on the xz plane (FIGS. 8A and 9A) and the patterns seen on the yz plane (FIGS. 8B and 9B), and are indicated by E ⁇ and E ⁇ . Both radiation electric field directivity patterns are almost the same.
  • the input impedance at the feed point is not matched with the characteristic impedance of the feed line.
  • the power supplied to the antenna is reduced, and electromagnetic waves are radiated from the antenna. Get smaller.
  • the input impedance at the feed point is 50 ⁇ matched with the characteristic impedance of the feed line, so that the power supplied to the antenna during transmission is small. The received power can be efficiently extracted from the antenna during reception.
  • the inverted L-type antenna of the example of the present embodiment it is possible to obtain a smaller, simpler and more efficient structure than the conventional low-profile horizontal dipole antenna shown in FIG. More efficient than conventional conventional inverted L-type antennas.
  • the length of the horizontal arrangement of the central conductor 24, which is an antenna element may be 1/4 wavelength, which is 1/2 wavelength of the conventional low-profile horizontal dipole antenna shown in FIG. About half is sufficient.
  • the gain is also high, and the impedance can be set to 50 ⁇ according to the cable to be connected. Conventionally, an impedance matching circuit that was necessary when connecting the antenna to the circuit is required.
  • an efficient antenna can be obtained with a simple configuration.
  • Table 1 and Table 2 show examples of changes in antenna characteristics when the shape of the ground conductor of the antenna and the height of the antenna element in the example of the present embodiment are changed.
  • Table 1 shows characteristic examples when the height h of the antenna element and the ground potential conductor is changed.
  • Table 1 shows that by reducing the height h between the antenna element and the ground potential conductor and narrowing the distance between them, the coupling between the antenna element and the ground potential conductor is strengthened, and the band in which wireless communication is possible However, the gain is increased.
  • the coupling is weakened and the band for wireless communication is widened, but the gain is reduced.
  • the bandwidth is the widest and the gain is low, and the bandwidth is narrowed and the gain is increased as the value is increased.
  • the entire antenna element length L 0 and the length L 1 of the ground element is one in which the impedance showed a value that is a 50 ⁇ when the respective values.
  • the high efficiency of the antenna of this embodiment will be described.
  • the power supplied to the antenna is small, and as a result, the power radiated from the antenna is small.
  • it is important to resonate the antenna that is, increase the current and increase the power supplied to the antenna.
  • the input impedance is defined by “line voltage at feeding point / feeding point current”.
  • the input resistance (real part of the input impedance) is as low as several ohms at the center, and the input resistance increases if the feed position is moved from the center to the tip.
  • the maximum power can be supplied at a point that matches the characteristic impedance of the feeder line. Therefore, if the feeding position can be arbitrarily changed as in the antenna of the present embodiment, the impedance can be adjusted. As a result, the power supplied to the antenna can be increased, and a highly efficient antenna can be obtained. can do. Further, the configuration can be simplified as compared with a conventional antenna that requires impedance matching.
  • FIG. 10 An example of the second embodiment of the ultra-low profile inverted L antenna of the present invention will be described with reference to FIG.
  • the central conductor of the coaxial cable constituting the antenna element is arranged on the surface of the conductor plate 10 in parallel with the surface.
  • the central conductor of the coaxial cable is arranged in parallel with the end face of the conductor plate 10, and the conductor constituting the antenna element is arranged in the same plane as the conductor plate.
  • a connection point 21 of the coaxial cable 20 is provided at a predetermined location on the end surface 11 of the conductor plate 10 ′, and the coaxial cable 20 attached to the connection point 21 is bent 90 ° at a bending location 22.
  • the central conductor 24 and the like are arranged in parallel with the end face 11 at a certain interval.
  • the interval is, for example, about 1/30 of one wavelength of a signal to be transmitted / received.
  • the coaxial cable 20 in this case, as shown in FIG.
  • the outer conductor 26 of the coaxial cable 20 is electrically connected to the end face 11 of the conductor plate 10 'serving as a ground potential portion, and the outer conductor of the coaxial cable 20 is used as the ground potential portion similarly to the end face and surface thereof. .
  • the coaxial cable 20 attached to the end face 11 of the conductor plate 10 ′ is configured to feed power by pulling out only the central conductor 24, for example, on the back surface of the conductor plate 10 ′ as in the example of FIG.
  • a circuit component for antenna connection may be arranged on the surface of the conductor plate 10 ', and the circuit component may be connected to the central conductor 24 in a state insulated from the ground potential portion.
  • FIG. 10 the configuration in which the central conductor 24 is drawn from the feeding point is omitted.
  • the length py in the y-axis direction and the length px in the x-axis direction of the conductor plate 10 'in the case shown in FIG. 10 and the length py2 from the bent portion 22 to the tip of the central conductor 24 are also shown in FIG.
  • the antenna is configured to have a size similar to the current characteristic of the antenna shown.
  • the impedance can be adjusted by setting the length of the central conductor 24 and the length of the outer conductor 26 of the coaxial cable 20. Yes, it can be 50 ⁇ suitable for connection to a communication circuit. Therefore, the same good characteristics as the antenna of the first embodiment can be obtained, and a simple configuration that does not require a matching circuit can be realized.
  • the ultra-low profile inverted L-type antenna of the example of the third embodiment shown in FIG. 11 has a ground conductor plate and an antenna element formed on a surface 31 of a substrate 30 that is a dielectric in a planar manner.
  • a coplanar line is used instead of a coaxial cable. That is, as shown in FIG. 11, a ground potential portion 40 having a relatively large area is provided on the surface 31 of the substrate 30, and the ground potential portion 40 is provided at one end (right end side in FIG. 11) of the ground potential portion 40.
  • the surface 31 is provided with no part.
  • Conductive patterns 41 and 42 connected by the ground potential portion 40 and the connection locations 40a and 40b are arranged in parallel at a location where the ground potential portion 40 is not present, and between the two ground potential conductive patterns 41 and 42.
  • the conductive pattern 51 constituting the antenna element is disposed.
  • Each of the conductive patterns 41, 42, 51 is bent 90 ° at the bent portions 41 a, 42 a, 51 a and arranged parallel to the end surface of the ground potential portion 40.
  • tip part 51b of the conductive pattern 51 which comprises an antenna element is made longer than the front-end
  • the conductive pattern 51 constituting the antenna element is connected to an antenna connection circuit (not shown) at a connection location 51c close to the ground potential portion 40.
  • an antenna connection circuit unit is disposed on the front surface 31 or the back surface of the substrate 30 and connected to the conductive pattern 51 at the circuit unit and the connection location 51c.
  • the conductive pattern 51 is configured in this way, and the distance h between the end surface of the ground potential portion 40 and the conductive pattern 51 is set to the same value as the height h in the first embodiment, and forms the antenna element.
  • the impedance can be set to 50 ⁇ or the like.
  • the length L 0 is, for example, about 1 ⁇ 4 of one wavelength of a signal to be transmitted / received.
  • the length pym to the one end of the connection portion 51c of the conductive pattern 51 and the ground potential portion 40 and the length pyp to the other end also have the same relationship as the length described in the first embodiment. It is preferable to do so.
  • each conductive pattern is configured on the same surface on the surface 31 of the substrate 30, so that the ground potential portion 40 and each of the conductive patterns 41, 42,. 51 can be configured.
  • an antenna having good characteristics can be easily arranged on a circuit board of various cards (such as a PC card and a memory card) to be installed in a card slot of a personal computer device.
  • FIG. 12 is a perspective view
  • FIG. 13 is a plan view seen from above.
  • the ultra-low profile inverted L-type antenna of the example of the fourth embodiment shown in FIGS. 12 and 13 basically has an antenna element beside the ground conductor on the substrate, as in the third embodiment. However, the ground potential portion is on the back side of the substrate and the antenna element side is on the front side of the substrate. That is, as shown in FIG.
  • a microstrip line 70 having a predetermined pattern is arranged on a surface 61 of a substrate 60, and the microstrip line 70 is extended to the end of the substrate 60 to form an antenna element portion 71. is there.
  • the antenna element portion 71 is provided with a bent portion 71a in the middle, and is bent 90 ° at the bent portion 71a.
  • a ground potential portion 80 having a relatively large area is disposed as shown by a broken line, and a conductive pattern 81 connected to the ground potential portion 40 is disposed in parallel so as to be conductive.
  • the pattern 81 is also bent by 90 ° at the bent portion 81a. Then, as shown in a plan view in FIG. 13, a conductive pattern 71 constituting the antenna element is arranged in the center of the conductive pattern 81 at the ground potential.
  • the length L 0 from the bent portion 71 a to the tip end portion 71 b of the conductive pattern 71 is longer than the length L 1 from the tip end portion 81 b of the conductive pattern 81, and the impedance can be determined to be 50 ⁇ by adjusting the length. Value.
  • the length L 0 is, for example, about 1 ⁇ 4 of one wavelength of a signal to be transmitted / received.
  • the distance h between the end face of the ground potential portion 80 and the conductive pattern 71 is set to the same value as the distance h in the third embodiment, and one of the bent portion 71a of the conductive pattern 71 and the ground potential portion 80 is set.
  • the length pym to the end and the length pyp to the other end have the same relationship as the length described in the first embodiment. Also in the case of the configuration of the fourth embodiment, the same good characteristics as those of the antenna of the third embodiment can be obtained, and a simple configuration that does not require a matching circuit can be realized.
  • the arrangement state of the microstrip line 70 connected to the conductive pattern 71 shown in FIG. 12 is an example, and various arrangement states can be considered according to the arrangement state of the circuit components to be connected.
  • FIG. 14 [5. Example of Fifth Embodiment (FIG. 14)]
  • a ground conductor plate is disposed on the surface 31 of the substrate 90, which is a dielectric, and only a height h from the ground conductor plate.
  • conductive patterns are arranged at positions separated in the thickness direction of the substrate. That is, as shown in FIG.
  • a ground potential portion 92 having a relatively large area is provided on almost the entire surface 91 of the substrate 90, and two conductors connected to the ground potential portion 92 are provided at predetermined positions of the ground potential portion 92.
  • the conductive patterns 94 and 95 are arranged in parallel in an upright state, and the conductive pattern 93 constituting the antenna element is arranged in an upright state between the two grounded conductive patterns 94 and 95.
  • the conductive patterns 94 and 95 are directly connected to the ground potential portion 92 at connection portions 94c and 95c.
  • the connection portion 93c of the conductive pattern 93 is not connected to the ground potential portion 92 but is connected to the communication circuit portion or the like by a coplanar line (not shown).
  • the conductive patterns 93, 94, and 95 are bent at bent portions 93a, 94a, and 95a so as to be parallel to the surface direction of the ground potential portion 92 at a height h. Furthermore, the leading end portions 94 b and 95 b of the conductive patterns 94 and 95 are shorter than the leading end portion 93 b of the conductive pattern 93.
  • the length L 0 from the connection portion 93 c of the conductive pattern 93 to the tip end portion 93 b of the conductive pattern 93 and the tips 94 b and 95 b of the conductive patterns 94 and 95 are set. Adjust the length L 1, it can be adjusted impedance 50 ⁇ like.
  • the length L 0 is, for example, about 1 ⁇ 4 of one wavelength of a signal to be transmitted / received. Also, good characteristics can be obtained by setting the sizes pym, pyp, pxm, pxp of the ground potential portion 92.
  • the lengths pxm and pxp in the x-axis direction orthogonal to the longitudinal direction of the conductive pattern 93 are not equal, and the length in the x-axis direction is not uniform so that there is no deterioration in characteristics. It is necessary to select each parameter appropriately.
  • the antenna characteristics are improved by controlling the current on the conductor plate, for example, by providing a slit on the surface of the conductor plate at the ground potential. It may be.
  • the parallel conductor frame 310 is configured by three ground conductor bars 311, 312, 313 and the ground conductor bars 314 orthogonal to each other.
  • the three ground conductor rods 311, 312, and 313 have the same length.
  • one end of the coaxial cable 320 is connected with an intersection of the ground conductor rod 311 and the ground conductor rod 314 of the parallel conductor frame 310 as a connection point 315.
  • the coaxial cable is penetrated at a connection point 315 and further extended downward (not shown) to connect a transmission / reception circuit (not shown).
  • the outer conductor 324 of the coaxial cable 320 is connected to the ground conductor rod 311 side to be at the ground potential.
  • the center conductor 322 is connected to a power feeding unit of a transmission / reception circuit (not shown).
  • the coaxial cable 320 is bent at 90 ° at a bent portion 323 so that the tip side is parallel to the ground conductor bar 311.
  • the coaxial cable 320 parallel to the ground conductor bar 311 has a configuration in which the central conductor 322 extends from the end 321 of the outer conductor 324.
  • the antenna in the example of FIG. 15 has the distance (height) h between the center conductor 322 and the ground conductor bar 311 of the coaxial cable 320 and the lengths L0, L1, pyp, pym, pxp, pxm in FIG. Set under the same conditions as. 2a is the diameter (a is a radius) of each of the conductor rods 311 to 314.
  • FIG. 16 shows an example of the return loss characteristic of the antenna shown in FIG. 15 manufactured with this size.
  • the horizontal axis represents frequency (GHz) and the vertical axis represents return loss characteristics (dB).
  • the example of FIG. 16 is an example in the case of being configured as an antenna having characteristics with a center frequency around 1.06 GHz.
  • the ground potential portion is not flat and a structure in which the conductor rods are assembled can also provide good characteristics.
  • the seventh embodiment is an example in which the antenna of the sixth embodiment is further developed as an antenna for receiving digital terrestrial television broadcasts. That is, as shown in FIG. 17, the parallel conductor frame 410 is constituted by the ground conductor rods 411, 412, 413 arranged in parallel with the ground conductor rods 414 orthogonal to each other. The three ground conductor bars 411, 412, and 413 have the same length.
  • one end of the coaxial cable 420 is connected with an intersection of the ground conductor rod 411 and the ground conductor rod 414 of the parallel conductor frame 410 as a connection point 415.
  • the outer conductor 424 of the coaxial cable 420 is connected to the ground conductor rod 411 side to obtain a ground potential.
  • the center conductor 422 is connected to a power feeding unit of a receiving circuit (not shown).
  • the coaxial cable 420 is bent at 90 ° at a bent portion 423 so that the tip end side is parallel to the ground conductor bar 411.
  • the coaxial cable 420 parallel to the ground conductor rod 411 has a configuration in which the center conductor 422 is extended from the end 421 of the outer conductor. Up to this point, the configuration is the same as that of the antenna shown in FIG. 15.
  • the waveguide 431 and the reflector 432 are arranged in the front and rear. That is, the waveguide 431 is disposed with the ground conductor rod 411 and the distance Dz in the z-axis direction shown in FIG.
  • the reflector 432 is disposed with the ground conductor rod 411 and the distance Rz in the opposite direction to the z-axis direction. It is.
  • the director 431 and the reflector 432 are fixed to the parallel conductive wire frame 410 side by a support (not shown). When viewed from the position where the ground conductor rod 411 is disposed, the side on which the director 431 is disposed is the transmitting station side of terrestrial digital television broadcasting. In FIG. 17, the length of the director 431 is Dy, and the length of the reflector 432 is Ry.
  • FIG. 17 shows an example of the length of each antenna.
  • pyp 210 mm
  • pym 44 mm
  • h 24.5 mm
  • L0 130 mm
  • L1 41 mm
  • a 1.5 mm
  • Dy 208 mm
  • Dz 80 mm
  • Ry 320 mm
  • Rz 82 mm.
  • FIG. 18A shows the directivity characteristics of the antenna of FIG. 17, and FIG. 18B shows the calculated values of the return loss characteristics.
  • a sufficient gain is obtained in the transmission frequency band of terrestrial digital television broadcasting in Japan, which is 470 MHz to 710 MHz.
  • one waveguide 431 and one reflector 432 are disposed.
  • a plurality of waveguides 431 may be disposed at a predetermined interval.
  • a plurality of reflectors 432 may be arranged.
  • you may comprise the parallel conducting wire frame 410, the waveguide 431, and the reflector 432 with a conductor board.
  • FIG. The eighth embodiment is an example of a circularly polarized antenna for an RFID (Radio Frequency IDentification) reader / writer, for example, an antenna that handles a circularly polarized signal in the 2.4 GHz band.
  • a conductor plate 510 having a ground potential portion on the surface is prepared, and a connection point 521 connecting one end of the coaxial cable 520 is provided at a predetermined position on the surface of the conductor plate 510.
  • the coaxial cable 520 includes a center conductor 524 and an outer conductor 527, and the outer conductor 527 is electrically connected to the ground potential portion.
  • the coaxial cable 520 having one end connected to the connection portion 521 is bent 90 ° with a predetermined distance h away from the surface of the conductor plate 510 as a bent portion 522, and the end of the bent coaxial cable 520 is bent.
  • the side is arranged so as to be parallel to the surface of the conductor plate 510.
  • the coaxial cable 520 that is bent at the bent portion 522 and extends in parallel with the conductor plate 510 extends by extending only the center conductor 524 from the outer conductor end 523, and further, a bent portion 525 in the middle of the drawn center conductor 524.
  • the center conductor tip 526 is bent at 90 ° horizontally. By being bent horizontally, the central conductor 524 ahead of the outer conductor end 523 is in a state where the parallelism with the conductor plate 510 is maintained. In FIG. 19, the length from the bent portion 525 to the center conductor tip 526 is a.
  • one end of the conductor rod 530 is connected to the connection portion 531 of the conductor plate 510.
  • the conductor rod 530 is electrically connected to the ground potential portion on the surface of the conductor plate 510.
  • the conductor bar 530 is bent at 90 ° horizontally at the bent portion 532, and the tip of the bent portion 532 is parallel to the distal end portion 526 of the center conductor 524 with the parallel portion 533.
  • the height at which the conductor rod 530 is bent at the bent portion 532 is set equal to the height h of the coaxial cable 520, for example.
  • FIG. 20 shows an example of the return loss characteristic and the axial ratio characteristic of the antenna shown in FIG. 19 manufactured with this size.
  • the horizontal axis is frequency (GHz)
  • the left side of the vertical axis is the return loss characteristic (dB)
  • the right side of the vertical axis is the axial ratio characteristic (dB).
  • the thin solid line in the figure shows the return loss characteristic obtained by calculation
  • the thick solid line shows the measured return loss characteristic
  • the broken line shows the calculated axial ratio characteristic.
  • FIG. 21 shows a calculated value of the radiation electric field directivity pattern at 2.45 GHz.
  • RHCP represents right-hand circular polarization
  • LHCP represents left-hand circular polarization. As can be seen from these characteristics, a circularly polarized antenna with good characteristics can be obtained.
  • FIG. 22 shows an example applied to an antenna device provided in a wireless LAN base station.
  • the wireless LAN base station antenna 100 is assumed to be composed of a cylindrical portion 110 and a plurality of protruding plate portions 120 arranged around the cylindrical portion 110.
  • the coaxial cable 111 is arranged around the cylindrical portion 110 in the state shown in FIG. 3 and the like, the central conductor 112 is exposed, and is arranged in parallel with the circumference of the cylindrical portion 110.
  • This arrangement state is, for example, the arrangement state shown in FIG.
  • the coaxial cable 121 is disposed on the end surface of the protruding plate portion 120 so that the central conductor 122 is exposed, and is disposed in parallel with the end surface of the protruding plate portion 120.
  • This arrangement state is, for example, the arrangement state shown in FIG. With this configuration, it is possible to arrange a plurality of antennas around the wireless LAN base station antenna 100. In the case of the example shown in FIG. 22, the same configuration may be used instead of each coaxial cable, such as a Copnar line or a microstrip line.
  • FIG. 23 shows an example of positions where the antennas of each example of the present embodiment are arranged on the airplane 200.
  • the antenna mounting positions 201 and 202 on the upper and lower sides of the fuselage of the airplane 200 and the antenna mounting positions 203 and 204 on the tip of the main wing or tail wing may be used. Or you may install in another position.
  • 22 and 23 show preferred examples of application examples, and it goes without saying that the antenna of the example of this embodiment can be applied to other various wireless communication antennas.
  • conductive pattern 93a, 94a, 95a ... bent portion, 93b, 94b, 95b ... tip, 93c, 94c, 95c ... connection location, 100 ... base station antenna for wireless LAN, 110 ... cylindrical portion, 111 ... coaxial cable , 112 ... center conductor, 120 ... projecting plate part, 121 ... coaxial cable, 122 ... center conductor, 200 ... airplane, 201, 202, 203, 204 ... antenna mounting position, 310 ... parallel conductor frame, 311, 312, 313 314, ground conductor bar, 315, connection location, 320, coaxial cable, 321, outer conductor end, 322, center conductor, 323, bent point. 324 ...

Abstract

Provided is an inverse-L shaped antenna that has a shape suited for making the size of the antenna compact, making impedance matching easy, and achieving high-gain. The inverse-L shaped antenna is configured to be provided with: a grounding conductor face (10) provided on the front-side or back-side, and having a ground electric potential; an outer conductor (26) that has the base-end section (21) thereof connected to a prescribed section of that grounding conductor face (10); and an inner conductor (24) that is surrounded by that outer conductor (26), arranged so as to have a gap between the inner conductor and the outer conductor (26), and that has the tip thereof elongating further than the outer conductor. The inverse-L shaped antenna is also configured so that the outer conductor (26) and the inner conductor (24) are bent at a place (22) separated at a prescribed distance from the place where the conductors are connected to the grounding conductor face (10), then arranged in proximity and parallel to the grounding conductor face (10), and so that electricity is fed to the inner conductor (24).

Description

逆L型アンテナInverted L antenna
 逆L型アンテナに関し、詳しくは有限導体板上に配置した高利得でインピーダンス整合可能な超低姿勢逆L型アンテナに関する。 More specifically, the present invention relates to an ultra-low profile inverted L antenna that can be impedance-matched with high gain and disposed on a finite conductor plate.
 従来、導体板の近傍に水平ダイポールアンテナを配置すれば、導体板によるイメージ素子のため、電磁波は放射されないというのが定説であった。これに対して、非特許文献1に記載された技術では、無限導体板上の高さ1/30波長の位置に置いた半波長ダイポールアンテナを両端から等距離の2点で逆相給電すれば、入力インピーダンスが50Ωとなり,8dB以上の高い指向性利得が得られることが明らかにされている。 Conventionally, if a horizontal dipole antenna is arranged in the vicinity of a conductor plate, it has been theorized that electromagnetic waves are not radiated because of an image element made of a conductor plate. In contrast, in the technique described in Non-Patent Document 1, if a half-wave dipole antenna placed at a position of 1/30 wavelength in height on an infinite conductor plate is fed at two opposite points at equal distances from both ends, It has been clarified that the input impedance is 50Ω and a high directivity gain of 8 dB or more can be obtained.
 図1は、この非特許文献1に記載された技術に基づいたアンテナの構成例である。
 図1に示したアンテナ構成について説明すると、導体板4に2本の同軸ケーブル5,6を近接して接続し、その接続点から若干離れた箇所で、導体板4の面方向と平行になるように90°折り曲げてある。この折り曲げる際には、それぞれの同軸ケーブル5,6の先端が反対側を向くように離れた状態で配置し、先端間の長さが送受信する信号の波長の約半波長となるようにする。導体板4から折り曲げる位置までの高さは、例えば約1/30波長の距離とする。
FIG. 1 is a configuration example of an antenna based on the technique described in Non-Patent Document 1.
The antenna configuration shown in FIG. 1 will be described. Two coaxial cables 5 and 6 are connected in proximity to the conductor plate 4 and are parallel to the surface direction of the conductor plate 4 at a location slightly away from the connection point. It is bent by 90 °. When this bending is performed, the coaxial cables 5 and 6 are arranged so that the ends of the coaxial cables 5 and 6 face away from each other, and the length between the ends is set to be approximately half the wavelength of the signal to be transmitted and received. The height from the conductor plate 4 to the bending position is, for example, a distance of about 1/30 wavelength.
 同軸ケーブル5,6は、中心導体と外導体とで構成されて、外導体は接地電位部である導体板4と電気的に接続させてある。中心導体は外導体とは電気的に接続していない。それぞれの同軸ケーブル5,6は、周辺導体を先端からある程度の長さで切り落としてあり、この点が給電点となる。先端部では中心導体5a,6aが露出した状態としてある。 The coaxial cables 5 and 6 are composed of a center conductor and an outer conductor, and the outer conductor is electrically connected to the conductor plate 4 which is a ground potential portion. The center conductor is not electrically connected to the outer conductor. In each of the coaxial cables 5 and 6, the peripheral conductor is cut off from the tip by a certain length, and this point becomes a feeding point. The center conductors 5a and 6a are exposed at the tip.
 この図1の構成のアンテナの給電構成としては、信号源1の出力(例えば2GHzの周波数の信号)の出力を、カプラ2に供給して、その発振信号そのままの信号(0°の信号)と、位相を90°遅らせた信号(-90°の信号)とを得る。さらに、-90°の信号については、移相器3に供給して、さらに90°遅らせた信号(-180°の信号)とし、相互に位相が反転した0°信号と-180°信号とを得る。
 このようにして得た0°信号を、同軸ケーブル5の中心導体に供給し、-180°の信号を、同軸ケーブル6の中心導体に供給し、2本の同軸ケーブルに逆相給電する。
In the antenna power supply configuration shown in FIG. 1, the output of the signal source 1 (for example, a signal with a frequency of 2 GHz) is supplied to the coupler 2, and the oscillation signal as it is (0 ° signal). , A signal delayed in phase by 90 ° (a signal of −90 °) is obtained. Further, the −90 ° signal is supplied to the phase shifter 3 and is further delayed by 90 ° (−180 ° signal), and the 0 ° signal and the −180 ° signal whose phases are reversed are obtained. obtain.
The 0 ° signal obtained in this way is supplied to the central conductor of the coaxial cable 5, and the −180 ° signal is supplied to the central conductor of the coaxial cable 6, and the two coaxial cables are fed in reverse phase.
 なお、図1に示した水平ダイポールアンテナより簡単な構成のアンテナとしては、例えば図2に示した逆L型アンテナが知られている。この逆L型アンテナは、導体板7の上に、逆L型素子8を取り付けたものである。導体で構成される逆L型素子8は、接続点8aから所定高さhの箇所8bで折り曲げてあり、その折り曲げ箇所8bから先端8cまで、導体板7と平行に配置してある。導体板7は例えば接地電位として、逆L型素子8には、接続点8aで給電する構成とする。 As an antenna having a simpler configuration than the horizontal dipole antenna shown in FIG. 1, for example, an inverted L-type antenna shown in FIG. 2 is known. This inverted L-type antenna is obtained by attaching an inverted L-type element 8 on a conductor plate 7. The inverted L-shaped element 8 formed of a conductor is bent at a location 8b having a predetermined height h from the connection point 8a, and is arranged in parallel with the conductor plate 7 from the bent location 8b to the tip 8c. For example, the conductive plate 7 is configured to supply power to the inverted L-type element 8 at the connection point 8a as a ground potential.
 この図1に示したアンテナ構成とすることで、入力インピーダンスが50Ωとなり、8dB以上の高い指向性利得が得られることが、非特許文献1に示されている。この図1に示したアンテナ構成の場合、アンテナの長さが1/2波長必要であり、アンテナの全長が長くなる問題があった。また、図1に示したように、位相が逆の2つの信号を生成させて給電する必要があり、給電のための構成が複雑である問題があった。 Non-Patent Document 1 shows that the antenna configuration shown in FIG. 1 makes it possible to obtain an input impedance of 50Ω and a high directivity gain of 8 dB or more. In the case of the antenna configuration shown in FIG. 1, the length of the antenna needs to be ½ wavelength, and there is a problem that the total length of the antenna becomes long. Further, as shown in FIG. 1, it is necessary to generate and feed two signals having opposite phases, and there is a problem that the configuration for feeding is complicated.
 本発明はこれらの点に鑑みてなされたものであり、小型化に適したアンテナ形状でかつインピーダンス整合が容易で高利得が得られるようにすることを目的とする。 The present invention has been made in view of these points, and an object of the present invention is to provide an antenna shape suitable for miniaturization, easy impedance matching, and high gain.
 本発明の逆L型アンテナは、表面接地電位の有限導体板と、その有限導体板の所定箇所に基端部が接続された外導体と、その外導体で囲まれ外導体とは隙間を開けて配置され外導体よりも先端が伸びた内導体とを備える。
 そして、外導体及び内導体を、有限導体板に接続した箇所から所定距離離れた箇所で折り曲げ、有限導体板と近接して平行に配置し、内導体に給電する構成とした逆L型アンテナとしたものである。
 折り曲げる箇所までの所定距離は、特定の周波数の信号の1波長の約1/30の距離とする。内導体の折り曲げた箇所から先端までの長さは、特定の周波数の信号の1波長の約1/4の長さにする。そして、内導体の長さと外導体を折り曲げた箇所から外導体の先端までの長さとの設定で、給電線のインピーダンス値と整合させる。
 接地導体面は、内導体の長手方向と平行な方向の長さとして、所定箇所から内導体の先端側に向かう一方の端部までの長さと、所定箇所から内導体の先端側に向かう側と反対側の他方の端部までの長さを、内導体の折り曲げた箇所から先端に向かう方向に電流が流れるように設定した。
The inverted L-type antenna of the present invention includes a finite conductor plate having a surface ground potential, an outer conductor having a base end connected to a predetermined portion of the finite conductor plate, and a gap between the outer conductor and the outer conductor. And an inner conductor whose tip extends beyond the outer conductor.
And the outer L conductor and the inner conductor are bent at a predetermined distance from the place connected to the finite conductor plate, arranged in parallel in close proximity to the finite conductor plate, and an inverted L-type antenna configured to feed the inner conductor; It is a thing.
The predetermined distance to the part to be bent is a distance of about 1/30 of one wavelength of a signal having a specific frequency. The length from the bent portion of the inner conductor to the tip is set to about 1/4 of one wavelength of a signal having a specific frequency. Then, the impedance value of the feeder is matched with the setting of the length of the inner conductor and the length from the bent portion of the outer conductor to the tip of the outer conductor.
The ground conductor surface has a length in a direction parallel to the longitudinal direction of the inner conductor, a length from a predetermined location to one end portion toward the distal end side of the inner conductor, and a side from the predetermined location toward the distal end side of the inner conductor. The length to the other end on the opposite side was set so that current would flow in the direction from the bent portion of the inner conductor toward the tip.
 本発明によると、有限導体板上、あるいは、有限導体板と同一面内に、長さが4分の1波長程度の短い長さの導体を配置することで、単純な構造で小型の逆L型アンテナを構成できる。この構成によると、インピーダンス整合器を設けることなく、直接給電線とインピーダンス整合させることが可能で、簡単な構成で高利得のアンテナを実現することができる。 According to the present invention, a conductor having a short length of about a quarter wavelength is disposed on a finite conductor plate or in the same plane as the finite conductor plate, thereby reducing the size of the inverted L A type antenna can be constructed. According to this configuration, it is possible to directly perform impedance matching with the feed line without providing an impedance matching device, and a high gain antenna can be realized with a simple configuration.
従来の水平ダイポールアンテナの例を示した説明図である。It is explanatory drawing which showed the example of the conventional horizontal dipole antenna. 従来の逆L型アンテナの例を示した説明図である。It is explanatory drawing which showed the example of the conventional inverted L type | mold antenna. 本発明の第1の実施の形態によるアンテナ構成例を示す斜視図である。It is a perspective view which shows the example of an antenna structure by the 1st Embodiment of this invention. 図3のA-A線に沿う断面図である。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 本発明の第1の実施の形態によるアンテナの電流発生状態の例を示す説明図である。It is explanatory drawing which shows the example of the electric current generation state of the antenna by the 1st Embodiment of this invention. アンテナ上の電流、電圧分布を示した特性図である。It is the characteristic view which showed the electric current and voltage distribution on an antenna. 本発明の第1の実施の形態によるアンテナの入力インピーダンス特性(図7A)とリターンロス特性(図7B)を、従来の逆L型アンテナと比較して示した特性図である。It is the characteristic view which showed the input impedance characteristic (FIG. 7A) and the return loss characteristic (FIG. 7B) of the antenna by the 1st Embodiment of this invention compared with the conventional inverted L type | mold antenna. 本発明の第1の実施の形態によるアンテナの放射電界指向性パターン例を示した特性図で、図8Aはxz面の放射電界指向性パターンで、図8Bはyz面の放射電界指向性パターンである。FIG. 8A is a characteristic diagram showing a radiation field directivity pattern example of the antenna according to the first embodiment of the present invention, FIG. 8A is a radiation field directivity pattern on the xz plane, and FIG. 8B is a radiation field directivity pattern on the yz plane. is there. 従来の逆L型アンテナの放射電界指向性パターン例を示した特性図で、図9Aはxz面の放射電界指向性パターンで、図9Bはyz面の放射電界指向性パターンである。FIG. 9A is a characteristic diagram showing an example of a radiation field directivity pattern of a conventional inverted L-type antenna. FIG. 9A is a radiation field directivity pattern on the xz plane, and FIG. 9B is a radiation field directivity pattern on the yz plane. 本発明の第2の実施の形態によるアンテナ構成例を示す斜視図である。It is a perspective view which shows the example of an antenna structure by the 2nd Embodiment of this invention. 本発明の第3の実施の形態によるアンテナ構成例を示す斜視図である。It is a perspective view which shows the example of an antenna structure by the 3rd Embodiment of this invention. 本発明の第4の実施の形態によるアンテナ構成例を示す斜視図である。It is a perspective view which shows the example of an antenna structure by the 4th Embodiment of this invention. 本発明の第4の実施の形態によるアンテナ構成例を示す平面図である。It is a top view which shows the example of an antenna structure by the 4th Embodiment of this invention. 本発明の第5の実施の形態によるアンテナ構成例を示す斜視図である。It is a perspective view which shows the example of an antenna structure by the 5th Embodiment of this invention. 本発明の第6の実施の形態によるアンテナ構成例を示す斜視図である。It is a perspective view which shows the example of an antenna structure by the 6th Embodiment of this invention. 本発明の第6の実施の形態によるアンテナのリターンロス特性を示した特性図である。It is the characteristic view which showed the return loss characteristic of the antenna by the 6th Embodiment of this invention. 本発明の第7の実施の形態によるアンテナ構成例を示す斜視図である。It is a perspective view which shows the example of an antenna structure by the 7th Embodiment of this invention. 本発明の第7の実施の形態によるアンテナの指向性利得(図18A)とリターンロス特性(図18B)を示した特性図である。FIG. 19 is a characteristic diagram showing a directivity gain (FIG. 18A) and a return loss characteristic (FIG. 18B) of an antenna according to a seventh embodiment of the present invention. 本発明の第8の実施の形態によるアンテナ構成例を示す斜視図である。It is a perspective view which shows the example of an antenna structure by the 8th Embodiment of this invention. 本発明の第8の実施の形態によるアンテナのリターンロス特性と軸比特性を示した特性図である。It is the characteristic view which showed the return loss characteristic and axial ratio characteristic of the antenna by the 8th Embodiment of this invention. 本発明の第8の実施の形態によるアンテナの放射電界指向性パターン計算値を示した特性図で、図21Aはxz面の放射電界指向性パターンで、図21Bはyz面の放射電界指向性パターンである。FIG. 21A is a characteristic diagram showing calculated values of the radiation field directivity pattern of the antenna according to the eighth embodiment of the present invention, FIG. 21A is a radiation field directivity pattern on the xz plane, and FIG. 21B is a radiation field directivity pattern on the yz plane. It is. 本発明の各実施の形態によるアンテナの配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the antenna by each embodiment of this invention. 本発明の各実施の形態によるアンテナを飛行機に配置する箇所の例を示す説明図である。It is explanatory drawing which shows the example of the location which arrange | positions the antenna by each embodiment of this invention to an airplane.
 以下、本発明の実施の形態の例を、以下の順序で説明する。
1.第1の実施の形態の例(図3~図9)
2.第2の実施の形態の例(図10)
3.第3の実施の形態の例(図11)
4.第4の実施の形態の例(図12~図13)
5.第5の実施の形態の例(図14)
6.第6の実施の形態の例(図15,図16)
7.第7の実施の形態の例(図17,図18)
8.第8の実施の形態の例(図19~図21)
9.各実施の形態のアンテナの適用例(図22,図23)
Hereinafter, examples of embodiments of the present invention will be described in the following order.
1. Example of the first embodiment (FIGS. 3 to 9)
2. Example of second embodiment (FIG. 10)
3. Example of third embodiment (FIG. 11)
4). Example of the fourth embodiment (FIGS. 12 to 13)
5. Example of fifth embodiment (FIG. 14)
6). Example of sixth embodiment (FIGS. 15 and 16)
7). Example of seventh embodiment (FIGS. 17 and 18)
8). Example of the eighth embodiment (FIGS. 19 to 21)
9. Application example of antenna of each embodiment (FIGS. 22 and 23)
[1.第1の実施の形態の例(図3~図9)]
 図3は、第1の実施の形態の例のアンテナ構成を示した図である。本実施の形態においては、超低姿勢逆L型アンテナとして構成したものである。図3に基づいて構成を説明すると、四角形の所定サイズとされた有限導体としての導体板10を使って、アンテナとして構成してある。導体板10は、少なくとも表面を接地電位部としてある。導体板10のサイズについては後述する。
[1. Example of First Embodiment (FIGS. 3 to 9)]
FIG. 3 is a diagram illustrating an antenna configuration of the example of the first embodiment. In this embodiment, it is configured as an ultra-low profile inverted L-type antenna. The configuration will be described with reference to FIG. 3. A conductor plate 10 as a finite conductor having a predetermined rectangular size is used as an antenna. The conductor plate 10 has at least the surface as a ground potential portion. The size of the conductor plate 10 will be described later.
 導体板10の表面の所定箇所には、同軸ケーブル20の一方の端部を接続した接続点21を設けてある。この同軸ケーブル20は、中心導体24と外導体26とを備える。図4に断面で示すように、同軸ケーブル20は、中心に配置された中心導体24の外側を囲むように絶縁体(誘電体)25が配置してあり、その絶縁体25の外側を囲むように外導体26が配置してある。同軸ケーブル20は、導体板10との接続点21で、接地電位部である導体板10の表面と外導体26とを電気的に接続してあり、外導体26が接地電位部となっている。 A connection point 21 connecting one end of the coaxial cable 20 is provided at a predetermined position on the surface of the conductor plate 10. The coaxial cable 20 includes a center conductor 24 and an outer conductor 26. As shown in cross section in FIG. 4, the coaxial cable 20 has an insulator (dielectric material) 25 disposed so as to surround the outside of the central conductor 24 disposed at the center, and surrounds the outside of the insulator 25. The outer conductor 26 is arranged on the front side. The coaxial cable 20 is electrically connected to the outer conductor 26 and the surface of the conductor plate 10 serving as a ground potential portion at a connection point 21 with the conductor plate 10, and the outer conductor 26 serves as a ground potential portion. .
 この接続部21に一方の端部が接続された同軸ケーブル20は、所定距離hだけ導体板10の表面と離れた位置を曲折箇所22として折り曲げて、その折り曲げられた同軸ケーブル20の先端側が、導体板10の表面と平行になるように配置してある。導体板10の表面と同軸ケーブル20の中心とを離す距離hについては、例えば本例のアンテナで送受信する信号の1波長の約1/30とする。 The coaxial cable 20 having one end connected to the connection portion 21 is bent at a position away from the surface of the conductor plate 10 by a predetermined distance h as a bent portion 22, and the distal end side of the bent coaxial cable 20 is They are arranged so as to be parallel to the surface of the conductor plate 10. The distance h separating the surface of the conductor plate 10 and the center of the coaxial cable 20 is, for example, about 1/30 of one wavelength of a signal transmitted and received by the antenna of this example.
 曲折箇所22で折り曲げられて導体板10と平行に伸びた同軸ケーブル20は、中心導体24だけを中心導体端部24aまで長さLに伸ばしてあり、外導体26については、その長さLよりも短い長さLの位置を、外導体端部23としてある。この外導体端部23の位置で、絶縁体25についても端部として、切断してある。この外導体26を切断した位置が、このアンテナの給電点となる。
 曲折箇所22から中心導体端部24aまでの長さLについては、例えばこのアンテナで送受信する信号の1波長の約1/4とする。このように伸ばされた中心導体24と長さLの外導体26が、本例の逆L型アンテナのアンテナ素子として機能する。外導体26の長さLについては、アンテナのインピーダンスが所望の値(ここでは50Ω)になるように設定する。即ち、このように構成した場合、内導体である中心導体24の長さと、曲折箇所22から外導体26の先端23までの長さとの設定で、インピーダンスを任意の値に設定できる。ここでは、このインピーダンスを、給電線のインピーダンス値と一致させて、給電線と整合させてある。これらの値の具体的な例については後述する。
Coaxial cable bent at bent portion 22 extends parallel to the conductive plate 10 20 Yes stretched only the center conductor 24 to the center conductor end portion 24a to a length L 0, the outer conductor 26, the length L The position of the length L 1 shorter than 0 is set as the outer conductor end portion 23. At the position of the outer conductor end 23, the insulator 25 is also cut as an end. The position where the outer conductor 26 is cut becomes the feeding point of the antenna.
The length L 0 from the bent portion 22 to the center conductor end 24a is, for example, about ¼ of one wavelength of a signal transmitted / received by this antenna. Outer conductor 26 of the thus stretched central conductor 24 and the length L 1 functions as an antenna device having an inverted L antenna of the present embodiment. The length L 1 of the outer conductor 26, the impedance of the antenna is set to be (50 [Omega in this case) the desired value. That is, in such a configuration, the impedance can be set to an arbitrary value by setting the length of the center conductor 24 as the inner conductor and the length from the bent portion 22 to the tip 23 of the outer conductor 26. Here, this impedance is matched with the power supply line so as to match the impedance value of the power supply line. Specific examples of these values will be described later.
 図4に示すように、導体板10の同軸ケーブル接続部21には、表面から裏面まで貫通した孔20aを設けてあり、その孔20aに、同軸ケーブル20の中心導体24を通過させてある。このとき、例えば絶縁体25についても孔20aを貫通させて、中心導体24が導体板10の表面などと電気的に接触しない構成としてある。
 この導体板10の裏面側に引き出された外導体26と中心導体24を使って給電する。図3に示した導体板10の裏面側から同軸ケーブル接続部21に向かう破線の矢印は、この裏面側から給電している状態を示しており、送信する場合に送信信号を供給し、受信する場合に受信信号を取り出す。
As shown in FIG. 4, the coaxial cable connecting portion 21 of the conductor plate 10 is provided with a hole 20a penetrating from the front surface to the back surface, and the central conductor 24 of the coaxial cable 20 is passed through the hole 20a. At this time, for example, the insulator 25 is also passed through the hole 20a so that the central conductor 24 is not in electrical contact with the surface of the conductor plate 10 or the like.
Power is supplied using the outer conductor 26 and the center conductor 24 drawn out to the back side of the conductor plate 10. A broken-line arrow from the back surface side of the conductor plate 10 shown in FIG. 3 toward the coaxial cable connection portion 21 indicates a state where power is supplied from the back surface side, and when transmitting, a transmission signal is supplied and received. In this case, the received signal is taken out.
 次に、図5を参照して、本例の逆L型アンテナの放射原理と、導体板10のサイズについて説明する。
 図5は、本例の導体板10と同軸ケーブル20を流れる電流の方向を示している。各部の電流位相が一定であれば、導体板10の表面上のアンテナ素子の長手方向と平行な水平方向(図5中のy軸方向)の電流Iと、中心導体24と外導体26で構成される水平素子の表面の電流Iは逆向きとなり打ち消し合って、放射が小さくなる。
Next, with reference to FIG. 5, the radiation principle of the inverted L-type antenna of this example and the size of the conductor plate 10 will be described.
FIG. 5 shows the direction of current flowing through the conductor plate 10 and the coaxial cable 20 of this example. If the current phase of each part is constant, the current I 2 in the horizontal direction (y-axis direction in FIG. 5) parallel to the longitudinal direction of the antenna element on the surface of the conductor plate 10, the center conductor 24 and the outer conductor 26 constituted current I 1 of the surface of the horizontal elements cancel each other become opposite, the radiation is reduced.
 また、本例では、導体板10の表面上の、アンテナ素子(中心導体24)の長手方向と直交する方向(図5中のx軸方向)については、同軸ケーブル接続部21から一方の端部までの長さpxmと、同軸ケーブル接続部21から他方の端部までの長さpxpとを、等しくしてある。このようにしたことで、図5に示したx軸方向の電流I3が打ち消し合い、電流I3による放射を抑制する。但し、長さpxmと長さpxpとを等しくするのは1つの例であり、x軸方向を等しくないサイズとして、同様にx軸方向の電流I3が打ち消し合うようにしてもよい。
 その上で、導体板10のy軸方向の長さpym,pypの設定で、導体板上のy軸方向の電流が+y軸方向に流れるように調整する。ここでの+y軸方向とは、同軸ケーブル接続部21から中心導体端部24aに向かう方向である。y軸方向の長さpypは、接続点21からアンテナ素子(中心導体24)が伸びた方向の導体板10の端部までの長さであり、y軸方向の長さpymは、接続点21からx軸方向の反対方向の端部までの長さである。
Moreover, in this example, about the direction (x-axis direction in FIG. 5) orthogonal to the longitudinal direction of an antenna element (center conductor 24) on the surface of the conductor board 10, it is one edge part from the coaxial cable connection part 21. And the length pxp from the coaxial cable connecting portion 21 to the other end are equal. By doing so, the currents I3 in the x-axis direction shown in FIG. 5 cancel each other, and radiation by the current I3 is suppressed. However, making the length pxm and the length pxp equal is one example, and the currents I3 in the x-axis direction may cancel each other out in the same manner with the x-axis direction being unequal.
Then, by adjusting the lengths pym and pyp of the conductor plate 10 in the y-axis direction, the current in the y-axis direction on the conductor plate is adjusted to flow in the + y-axis direction. Here, the + y-axis direction is a direction from the coaxial cable connecting portion 21 toward the central conductor end portion 24a. The length pyp in the y-axis direction is the length from the connection point 21 to the end of the conductor plate 10 in the direction in which the antenna element (center conductor 24) extends, and the length pym in the y-axis direction is the connection point 21. To the end in the opposite direction to the x-axis direction.
 送受信時の電流の向きについて、より詳しく説明すると、同軸ケーブル20の内部では、中心導体24と外導体26とには逆向きの電流が流れる。そして、外導体26が配置された位置の同軸ケーブル20は、その外導体26で遮蔽されているので、電磁波は放射されない。
 一方、外導体端部23から中心導体24を外部に延ばすことで、そこから電流が流れ出る。それと等量の電流が外導体26の表面から同軸ケーブル20内部に流れ込む。もし、外導体端部23から中心導体24が延長されていなければ、外導体端部23から放射される電磁界はほぼ零となる。
 アンテナで受信する場合には、外導体端部23から延長された中心導体24と同軸ケーブル20の外導体26の表面に電流が誘起する。両者によって、外導体端部23での中心導体24と外導体26の間に電位差(電圧)が生じ、それによって、同軸ケーブル20内部に電流が流れ込み、受信が行われる。
The direction of the current during transmission / reception will be described in more detail. Inside the coaxial cable 20, a reverse current flows through the center conductor 24 and the outer conductor 26. And since the coaxial cable 20 of the position where the outer conductor 26 is arrange | positioned is shielded by the outer conductor 26, electromagnetic waves are not radiated | emitted.
On the other hand, by extending the central conductor 24 from the outer conductor end 23 to the outside, a current flows out therefrom. An equal amount of current flows from the surface of the outer conductor 26 into the coaxial cable 20. If the central conductor 24 is not extended from the outer conductor end 23, the electromagnetic field radiated from the outer conductor end 23 is almost zero.
When receiving by an antenna, current is induced on the surface of the central conductor 24 extended from the outer conductor end 23 and the outer conductor 26 of the coaxial cable 20. As a result, a potential difference (voltage) is generated between the center conductor 24 and the outer conductor 26 at the outer conductor end 23, whereby current flows into the coaxial cable 20 and reception is performed.
 図5によれば、y<0の領域では、電流は導体板の端y=-pymで反射して、+y軸方向の電流と-y軸方向の電流が打ち消し合っている。y>0の領域では、逆Lアンテナの基部から遠ざかるにつれて導体板上の電流が急激に減衰している。なお、水平素子と水平素子直下の導体板上の電流はほぼ逆位相となっている。 According to FIG. 5, in the region of y <0, the current is reflected at the end y = −pym of the conductor plate, and the current in the + y axis direction and the current in the −y axis direction cancel each other. In the region of y> 0, the current on the conductor plate is rapidly attenuated as the distance from the base of the inverted L antenna increases. It should be noted that the currents on the horizontal element and the conductor plate immediately below the horizontal element have substantially opposite phases.
 ここで、本実施の形態のアンテナの具体的な形状の例と、その形状で計算した特性について、図7~図9に示す。
 アンテナの形状パラメータとして、以下のように設定した。
アンテナ素子を構成する同軸ケーブルの半径として、接続点21から外導体端部23(給電点)までの半径を1.095mmとし、給電点から先端までの中心導体24の半径を0.255mmとする。
 また、図3に示したx軸方向の長さとして、pxm=pxp=15mmとし、y軸方向の長さとして、pym=10mm,pyp=50mmとする。
 さらに、アンテナ素子の長さ及び高さとして、L=31.6mm,L=22.8mm,h=4.0mmとする。
Here, FIG. 7 to FIG. 9 show examples of specific shapes of the antennas of this embodiment and characteristics calculated by the shapes.
The antenna shape parameters were set as follows.
As the radius of the coaxial cable constituting the antenna element, the radius from the connection point 21 to the outer conductor end 23 (feed point) is 1.095 mm, and the radius of the center conductor 24 from the feed point to the tip is 0.255 mm. .
Further, the length in the x-axis direction shown in FIG. 3 is set to pxm = pxp = 15 mm, and the length in the y-axis direction is set to pym = 10 mm and pyp = 50 mm.
Further, the length and height of the antenna element are L 0 = 31.6 mm, L 1 = 22.8 mm, and h = 4.0 mm.
 このパラメータを設定した上で、このアンテナが扱う中心周波数を2.45GHzとして、特性を求めた。
 得られたアンテナ特性は、リターンロス10dB以上となる周波数帯域幅の計算値、測定値は2.71%,指向性利得の計算値は4.14dBiとなった。
After setting this parameter, the center frequency handled by this antenna was set to 2.45 GHz, and the characteristics were obtained.
As for the obtained antenna characteristics, the calculated value of the frequency bandwidth with a return loss of 10 dB or more, the measured value was 2.71%, and the calculated value of the directivity gain was 4.14 dBi.
 また、上述したアンテナ素子の長さL0及びL1の設定で、本例のアンテナの入力インピーダンスを50Ωとすることができる。この入力インピーダンスの値は、同軸ケーブル20の外導体端部23の位置(即ち給電点の位置)の設定により調整することができる。
 この給電点の位置の調整により、入力インピーダンスを調整できる点について説明する。
 図6に、一般的な逆L型アンテナの電流・電圧分布を示す。図6では、電流分布をIαとし、電圧分布をVαとして示す。図6に示すように導体板10上に素子24を配置した逆L型アンテナを動作させるためには、アンテナ上に大きい電流を流さなければならない。逆L型アンテナの素子24の水平素子長がほぼ4分の1波長のとき、電流は最大となる。アンテナ上のある点で給電するとき、給電点の両端の電圧差(電位差)は両端の長さが異なれば大きくなる。給電点をアンテナ先端にとれば、電圧は最大となる。給電点での入力インピーダンスは、次式で定義される。
 給電点での入力インピーダンス=給電点での電圧/電流
 従って、逆L型アンテナの基部で給電すれば、入力抵抗は小さく、先端にいくほど大きくなる。
Moreover, the input impedance of the antenna of this example can be set to 50Ω by setting the lengths L0 and L1 of the antenna element described above. The value of this input impedance can be adjusted by setting the position of the outer conductor end 23 of the coaxial cable 20 (that is, the position of the feeding point).
The point that the input impedance can be adjusted by adjusting the position of the feeding point will be described.
FIG. 6 shows a current / voltage distribution of a general inverted L antenna. In FIG. 6, the current distribution is indicated as Iα, and the voltage distribution is indicated as Vα. As shown in FIG. 6, in order to operate the inverted L-type antenna in which the element 24 is disposed on the conductor plate 10, a large current must be passed through the antenna. When the horizontal element length of the element 24 of the inverted L-shaped antenna is approximately a quarter wavelength, the current becomes maximum. When power is supplied at a certain point on the antenna, the voltage difference (potential difference) between both ends of the power supply point becomes large if the lengths at both ends are different. If the feeding point is at the tip of the antenna, the voltage is maximized. The input impedance at the feeding point is defined by the following equation.
Input impedance at the feed point = voltage / current at the feed point Therefore, if power is fed at the base of the inverted L antenna, the input resistance is small and increases toward the tip.
 この特性を利用して、本実施の形態の例では、アンテナ素子の長さL及びLの設定で、アンテナの入力インピーダンスを、給電線のインピーダンスと等しい50Ωとした。 Using this characteristic, in the example of the present embodiment, the antenna input impedance is set to 50Ω, which is equal to the impedance of the feeder line, by setting the lengths L 0 and L 1 of the antenna element.
 次に、本実施の形態の例の超低姿勢逆L型アンテナ(不平衡給電逆L型アンテナ)と、比較例としてアンテナ素子だけを逆L型とした従来の逆L型アンテナ(図52に示したアンテナ)との特性について、以下、説明する。
 ここでのアンテナの形状パラメータは、次の通りである。
 x軸方向の長さpxm=pxp=15mm、y軸方向の接続点からの一方の端部までの長さpym=10mm、y軸方向の接続点からの他方の端部までの長さpyp=50.0mm、アンテナ素子の曲折位置から先端までの長さL=31.6mm、不平衡給電逆L型アンテナでの外導体の長さL=22.8mm、高さh=4.0mmである。
 また、本実施の形態の例の不平衡給電逆L型アンテナの素子を構成する同軸ケーブルの半径として、外導体を有する給電点までを1.095mmとし、中心導体だけの給電点から先端までを0.255mmとする。さらに、比較例である従来の逆L型アンテナの放射素子の半径は1.095mmとする。
Next, an ultra-low profile inverted L-type antenna (unbalanced feeding inverted L-type antenna) of the example of the present embodiment and a conventional inverted L-type antenna (as shown in FIG. The characteristics of the antenna shown will be described below.
The antenna shape parameters here are as follows.
Length in the x-axis direction pxm = pxp = 15 mm, length from the connection point in the y-axis direction to one end pym = 10 mm, length from the connection point in the y-axis direction to the other end pyp = 50.0 mm, length L 0 from the bending position of the antenna element to the tip, 31.6 mm, length L 1 of the outer conductor in the unbalanced feed inverted L antenna = 22.8 mm, height h = 4.0 mm It is.
Further, the radius of the coaxial cable constituting the element of the unbalanced feed inverted L-type antenna of the example of the present embodiment is 1.095 mm from the feed point having the outer conductor to the feed point from the center conductor only to the tip. It shall be 0.255 mm. Furthermore, the radius of the radiating element of the conventional inverted L-type antenna as a comparative example is 1.095 mm.
 図7は、このようなパラメータとして、本実施の形態の例の不平衡給電逆L型アンテナと比較例の逆L型アンテナの、入力インピーダンス特性(図7A)とリターンロス特性計算値(図7B)を示したものである。
 図7A及び図7Bにおいて、特性aは本実施の形態の例の不平衡給電逆L型アンテナの特性であり、特性bは比較例の逆L型アンテナの特性である。
 図7A及び図7Bから判るように、通常の逆L型アンテナの入力抵抗は数Ωであるのに対し、不平衡給電逆L型アンテナの入力抵抗は、設計周波数2.45GHzで50Ωとなっている。
FIG. 7 shows the input impedance characteristics (FIG. 7A) and the calculated return loss characteristics (FIG. 7B) of the unbalanced feed inverted L antenna of the example of this embodiment and the inverted L antenna of the comparative example. ).
7A and 7B, the characteristic a is the characteristic of the unbalanced feed inverted L antenna of the example of the present embodiment, and the characteristic b is the characteristic of the inverted L antenna of the comparative example.
As can be seen from FIGS. 7A and 7B, the input resistance of a normal inverted L-type antenna is several Ω, whereas the input resistance of an unbalanced feed inverted L-type antenna is 50Ω at a design frequency of 2.45 GHz. Yes.
 図8は、図7と同じパラメータ設定での、不平衡給電逆L型アンテナの放射電界指向性パターン計算値を示す。図9は、図7と同じパラメータ設定での、比較例の逆L型アンテナの放射電界指向性パターン計算値を示す。これら図8及び図9は、xz面で見たパターン(図8A,図9A)及びyz面で見たパターン(図8B,図9B)であり、Eφ,Eθで示してある。
 両者の放射電界指向性パターンは、ほぼ同じである。しかしながら、逆L型アンテナでは、給電点での入力インピーダンスが給電線の特性インピーダンスと整合がとれていないため、送信の場合には、アンテナへの供給電力が小さくなり、アンテナからの電磁波の放射が小さくなる。受信の場合には、アンテナから受信電力を取り出せにくくなる。
 一方、本実施の形態の例の不平衡給電逆L型アンテナの場合には、給電点での入力インピーダンスが給電線の特性インピーダンスと整合した50Ωであるため、送信時にアンテナへの供給電力が小さくなることがなく、受信時にアンテナから受信電力を効率よく取り出すことができる。
FIG. 8 shows the radiation field directivity pattern calculation values of the unbalanced feed inverted L antenna with the same parameter settings as in FIG. FIG. 9 shows a radiation field directivity pattern calculation value of the inverted L-type antenna of the comparative example with the same parameter setting as that of FIG. FIG. 8 and FIG. 9 show the patterns seen on the xz plane (FIGS. 8A and 9A) and the patterns seen on the yz plane (FIGS. 8B and 9B), and are indicated by Eφ and Eθ.
Both radiation electric field directivity patterns are almost the same. However, in an inverted L-type antenna, the input impedance at the feed point is not matched with the characteristic impedance of the feed line. Therefore, in the case of transmission, the power supplied to the antenna is reduced, and electromagnetic waves are radiated from the antenna. Get smaller. In the case of reception, it becomes difficult to extract received power from the antenna.
On the other hand, in the case of the unbalanced feed inverted L antenna of the example of the present embodiment, the input impedance at the feed point is 50Ω matched with the characteristic impedance of the feed line, so that the power supplied to the antenna during transmission is small. The received power can be efficiently extracted from the antenna during reception.
 このように本実施の形態の例の逆L型アンテナによると、図1に示した従来の低姿勢水平ダイポールアンテナに比べて小型で、かつ構成が簡単で高効率なものが得られ、また一般的な従来の逆L型アンテナよりも効率のよいもの得られる。即ち、アンテナ素子である中心導体24を水平に配置する長さとしては、1/4波長の長さでよく、図1に示した従来の低姿勢水平ダイポールアンテナの1/2波長の長さに比べて約半分でよい。また、1つの中心導体24に給電するだけでよく、移相器などを必要としない簡単な給電構成とすることができる。
 そして、利得についても高利得であり、インピーダンスについても接続されるケーブルに合わせた50Ωなどとすることが可能であり、従来、アンテナを回路に接続させる際に必要であったインピーダンスの整合回路が必要なくなり、それだけ簡単な構成で効率のよいアンテナが得られる。
As described above, according to the inverted L-type antenna of the example of the present embodiment, it is possible to obtain a smaller, simpler and more efficient structure than the conventional low-profile horizontal dipole antenna shown in FIG. More efficient than conventional conventional inverted L-type antennas. In other words, the length of the horizontal arrangement of the central conductor 24, which is an antenna element, may be 1/4 wavelength, which is 1/2 wavelength of the conventional low-profile horizontal dipole antenna shown in FIG. About half is sufficient. Further, it is only necessary to supply power to one central conductor 24, and a simple power supply configuration that does not require a phase shifter can be achieved.
In addition, the gain is also high, and the impedance can be set to 50Ω according to the cable to be connected. Conventionally, an impedance matching circuit that was necessary when connecting the antenna to the circuit is required. Thus, an efficient antenna can be obtained with a simple configuration.
 ここで、本実施の形態の例のアンテナの接地導体の形状とアンテナ素子の高さを変えた場合のアンテナ特性の変化例を、表1及び表2に示す。 Here, Table 1 and Table 2 show examples of changes in antenna characteristics when the shape of the ground conductor of the antenna and the height of the antenna element in the example of the present embodiment are changed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この表1は、アンテナ素子と接地電位導体との高さhを変化させた場合の特性例である。この表1では、高さh以外のパラメータとして、pxp=pxm=15mm,pym=10mm,pyp=L+18.4mmとした例である。
 この表1から判るように、アンテナ素子と接地電位導体との高さhを小さくして両者の間隔を狭くすることで、アンテナ素子と接地電位導体との結合が強くなり、無線通信可能な帯域が狭くなるが、利得が高くなる。一方、高さhを大きくして間隔を開けることで結合が弱くなり、無線通信可能な帯域が広くなるが、利得が低くなる。この表1に示したように、1波長λの1/30である4.0mmとした場合には、リターンロス-10dBで、2.71%の帯域幅(Bandwidth)が確保され、指向性利得(Gain)4.14dBiが確保され、比較的広い帯域と良好な利得が確保されていることが判る。なお、アンテナ素子全体の長さLと接地素子の長さLとは、それぞれの値とした場合にインピーダンスが50Ωとなる値を示したものである。
Table 1 shows characteristic examples when the height h of the antenna element and the ground potential conductor is changed. Table 1 shows an example in which pxp = pxm = 15 mm, pym = 10 mm, pyp = L 0 +18.4 mm as parameters other than the height h.
As can be seen from Table 1, by reducing the height h between the antenna element and the ground potential conductor and narrowing the distance between them, the coupling between the antenna element and the ground potential conductor is strengthened, and the band in which wireless communication is possible However, the gain is increased. On the other hand, by increasing the height h and increasing the spacing, the coupling is weakened and the band for wireless communication is widened, but the gain is reduced. As shown in Table 1, when 4.0 mm, which is 1/30 of one wavelength λ, a return loss of −10 dB and a bandwidth (Bandwidth) of 2.71% are secured, and a directivity gain is obtained. It can be seen that (Gain) 4.14 dBi is secured, and a relatively wide band and a good gain are secured. Incidentally, the entire antenna element length L 0 and the length L 1 of the ground element is one in which the impedance showed a value that is a 50Ω when the respective values.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この表2は、アンテナ素子の長手方向と直交する方向の接地導体部の長さであるpxp=pxmを変化させた場合の特性例である。この表2は、高さh以外のパラメータとして、h=4.0mm,pym=10mm,pyp=L+18.4mmとした例である。
 この表2から判るように、pxp及びpxmの値が最も小さい5.0mmのとき、帯域幅が最も広く、利得が低くなり、値が大きくなるに従って、帯域幅が狭くなり、利得が上がっていることが判る。表2においても、アンテナ素子全体の長さLと接地素子の長さLとは、それぞれの値とした場合にインピーダンスが50Ωとなる値を示したものである。
Table 2 shows an example of characteristics when pxp = pxm, which is the length of the ground conductor in the direction orthogonal to the longitudinal direction of the antenna element, is changed. Table 2 shows an example in which h = 4.0 mm, pym = 10 mm, and pyp = L 0 +18.4 mm as parameters other than the height h.
As can be seen from Table 2, when the values of pxp and pxm are the smallest 5.0 mm, the bandwidth is the widest and the gain is low, and the bandwidth is narrowed and the gain is increased as the value is increased. I understand that. Also in Table 2, the entire antenna element length L 0 and the length L 1 of the ground element is one in which the impedance showed a value that is a 50Ω when the respective values.
 ここで、本実施の形態のアンテナが高効率であることについて説明する。
 図2に示した従来の低姿勢逆L型アンテナの場合には、アンテナへの供給電力が小さくなるために、結果として、アンテナから放射される電力が小さくなってしまう。アンテナを効率よく使うためには、アンテナを共振させること、つまり電流を大きくすることと、アンテナへの供給電力を大きくすることが重要である。アンテナへの供給電力を大きくするためには、まず、アンテナ給電点での入力インピーダンスを給電線の特性インピーダンス(本例の場合には50Ω)に近づけることが必要である。入力インピーダンスは、「給電点での線間電圧/給電点電流」で定義される。電流は先端で零、アンテナ素子の中央で最大となるので、入力抵抗(入力インピーダンスの実部)は中央で数オームと低く、給電位置を中央から先端方向に移動すれば、入力抵抗が高くなり、給電線の特性インピーダンスに一致する点で電力を最大供給することができる。
 従って、本実施の形態のアンテナのように、給電位置を任意に変えることができれば、インピーダンスを調整することができ、結果として、アンテナに供給する電力を大きくすることができ、高効率のアンテナとすることができる。また従来のインピーダンス整合が必要なアンテナに比べて構成を簡単にすることができる。
Here, the high efficiency of the antenna of this embodiment will be described.
In the case of the conventional low profile inverted L-type antenna shown in FIG. 2, the power supplied to the antenna is small, and as a result, the power radiated from the antenna is small. In order to use the antenna efficiently, it is important to resonate the antenna, that is, increase the current and increase the power supplied to the antenna. In order to increase the power supplied to the antenna, it is first necessary to bring the input impedance at the antenna feeding point close to the characteristic impedance of the feeding line (50Ω in this example). The input impedance is defined by “line voltage at feeding point / feeding point current”. Since the current is zero at the tip and maximum at the center of the antenna element, the input resistance (real part of the input impedance) is as low as several ohms at the center, and the input resistance increases if the feed position is moved from the center to the tip. The maximum power can be supplied at a point that matches the characteristic impedance of the feeder line.
Therefore, if the feeding position can be arbitrarily changed as in the antenna of the present embodiment, the impedance can be adjusted. As a result, the power supplied to the antenna can be increased, and a highly efficient antenna can be obtained. can do. Further, the configuration can be simplified as compared with a conventional antenna that requires impedance matching.
[2.第2の実施の形態の例(図10)]
 次に、本発明の超低姿勢逆L型アンテナの第2の実施の形態の例について、図10を参照して説明する。
 図3~図5に示した第1の実施の形態の例では、アンテナ素子を構成する同軸ケーブルの中心導体を、導体板10の表面上に、その表面と平行に配置したが、図10の例では、導体板10の端面と平行に、同軸ケーブルの中心導体を配置し、アンテナ素子を構成する導体を導体板と同一面内に配置した例とした。
[2. Example of Second Embodiment (FIG. 10)]
Next, an example of the second embodiment of the ultra-low profile inverted L antenna of the present invention will be described with reference to FIG.
In the example of the first embodiment shown in FIGS. 3 to 5, the central conductor of the coaxial cable constituting the antenna element is arranged on the surface of the conductor plate 10 in parallel with the surface. In the example, the central conductor of the coaxial cable is arranged in parallel with the end face of the conductor plate 10, and the conductor constituting the antenna element is arranged in the same plane as the conductor plate.
 即ち、図10に示すように、導体板10′の端面11の所定箇所に、同軸ケーブル20の接続点21を設け、その接続点21に取り付けられた同軸ケーブル20を曲折箇所22で90°折り曲げて、中心導体24などを端面11と一定の間隔を開けて平行に配置する。
その間隔は、例えば送受信する信号の1波長の約1/30とする。曲折箇所22から中心導体24の先端までの長さpy2については、例えば送受信する信号の1波長の約1/4とする。
 この場合の同軸ケーブル20についても、図10に示したように、先端側では中心導体24だけを露出させて、外導体26については途中で切断させてある。同軸ケーブル20の外導体26については、接地電位部である導体板10′の端面11と電気的に接続させてあり、その端面や表面と同様に同軸ケーブル20の外導体を接地電位部としてある。
That is, as shown in FIG. 10, a connection point 21 of the coaxial cable 20 is provided at a predetermined location on the end surface 11 of the conductor plate 10 ′, and the coaxial cable 20 attached to the connection point 21 is bent 90 ° at a bending location 22. Thus, the central conductor 24 and the like are arranged in parallel with the end face 11 at a certain interval.
The interval is, for example, about 1/30 of one wavelength of a signal to be transmitted / received. About length py2 from the bending location 22 to the front-end | tip of the center conductor 24, let it be about 1/4 of 1 wavelength of the signal transmitted / received, for example.
Also in the coaxial cable 20 in this case, as shown in FIG. 10, only the center conductor 24 is exposed on the tip side, and the outer conductor 26 is cut halfway. The outer conductor 26 of the coaxial cable 20 is electrically connected to the end face 11 of the conductor plate 10 'serving as a ground potential portion, and the outer conductor of the coaxial cable 20 is used as the ground potential portion similarly to the end face and surface thereof. .
 導体板10′の端面11に取り付けられた同軸ケーブル20は、図3の例と同様に、例えば中心導体24だけを導体板10′の裏面などに引き出して、給電する構成とする。或いは、導体板10′の表面上に、アンテナ接続用の回路部品を配置し、その回路部品を接地電位部とは絶縁された状態で中心導体24と接続させる構成としてもよい。
図10では給電点から中心導体24が引き出される構成については省略してある。
 この図10に示した場合の導体板10′のy軸方向の長さpy及びx軸方向の長さpxと、折り曲げ箇所22から中心導体24の先端までの長さpy2についても、図5に示したアンテナの電流特性と同様の特性になるようなサイズで構成する。
The coaxial cable 20 attached to the end face 11 of the conductor plate 10 ′ is configured to feed power by pulling out only the central conductor 24, for example, on the back surface of the conductor plate 10 ′ as in the example of FIG. Alternatively, a circuit component for antenna connection may be arranged on the surface of the conductor plate 10 ', and the circuit component may be connected to the central conductor 24 in a state insulated from the ground potential portion.
In FIG. 10, the configuration in which the central conductor 24 is drawn from the feeding point is omitted.
The length py in the y-axis direction and the length px in the x-axis direction of the conductor plate 10 'in the case shown in FIG. 10 and the length py2 from the bent portion 22 to the tip of the central conductor 24 are also shown in FIG. The antenna is configured to have a size similar to the current characteristic of the antenna shown.
 図10に示した第2の実施の形態の構成の超低姿勢逆L型アンテナの場合にも、同軸ケーブル20の中心導体24の長さと外導体26の長さの設定でインピーダンス調整が可能であり、通信回路に接続するのに適した50Ωとすることができる。従って、第1の実施の形態のアンテナと同様の良好な特性が得られると共に、整合回路を必要としない簡単な構成が実現できる。 Also in the case of the ultra-low profile inverted L antenna having the configuration of the second embodiment shown in FIG. 10, the impedance can be adjusted by setting the length of the central conductor 24 and the length of the outer conductor 26 of the coaxial cable 20. Yes, it can be 50Ω suitable for connection to a communication circuit. Therefore, the same good characteristics as the antenna of the first embodiment can be obtained, and a simple configuration that does not require a matching circuit can be realized.
[3.第3の実施の形態の例(図11)]
 次に、本発明の超低姿勢逆L型アンテナの第3の実施の形態の例について、図11を参照して説明する。
 図11に示した第3の実施の形態の例の超低姿勢逆L型アンテナは、誘電体である基板30の表面31に、接地導体板とアンテナ素子とを平面的に形成し、アンテナ素子として同軸ケーブルを使う代りに、コプレーナ線路を使った例としたものである。
 即ち、図11に示すように、基板30の表面31に、比較的大きな面積の接地電位部40を設け、その接地電位部40の一方の端(図11では右端側)に、接地電位部40がない箇所を表面31に設ける。その接地電位部40がない箇所に、接地電位部40と接続箇所40a,40bで接続された導電パターン41,42を平行に配置すると共に、その2本の接地電位の導電パターン41,42の間に、アンテナ素子を構成する導電パターン51を配置する。
[3. Example of Third Embodiment (FIG. 11)]
Next, an example of the third embodiment of the ultra-low profile inverted L antenna of the present invention will be described with reference to FIG.
The ultra-low profile inverted L-type antenna of the example of the third embodiment shown in FIG. 11 has a ground conductor plate and an antenna element formed on a surface 31 of a substrate 30 that is a dielectric in a planar manner. As an example, a coplanar line is used instead of a coaxial cable.
That is, as shown in FIG. 11, a ground potential portion 40 having a relatively large area is provided on the surface 31 of the substrate 30, and the ground potential portion 40 is provided at one end (right end side in FIG. 11) of the ground potential portion 40. The surface 31 is provided with no part. Conductive patterns 41 and 42 connected by the ground potential portion 40 and the connection locations 40a and 40b are arranged in parallel at a location where the ground potential portion 40 is not present, and between the two ground potential conductive patterns 41 and 42. In addition, the conductive pattern 51 constituting the antenna element is disposed.
 各導電パターン41,42,51は、曲折箇所41a,42a,51aで90°曲折させて、接地電位部40の端の面と平行に配置させる。そして、アンテナ素子を構成する導電パターン51の先端部51bを、その両脇の導電パターン41,42の先端部41b,41bよりも長くする。
 アンテナ素子を構成する導電パターン51は、接地電位部40と近接した接続箇所51cで、図示しないアンテナ接続回路と接続させてある。例えば、基板30の表面31や裏面に、アンテナ接続回路部を配置し、その回路部と接続箇所51cで導電パターン51と接続させる。
Each of the conductive patterns 41, 42, 51 is bent 90 ° at the bent portions 41 a, 42 a, 51 a and arranged parallel to the end surface of the ground potential portion 40. And the front-end | tip part 51b of the conductive pattern 51 which comprises an antenna element is made longer than the front-end | tip parts 41b and 41b of the conductive patterns 41 and 42 of the both sides.
The conductive pattern 51 constituting the antenna element is connected to an antenna connection circuit (not shown) at a connection location 51c close to the ground potential portion 40. For example, an antenna connection circuit unit is disposed on the front surface 31 or the back surface of the substrate 30 and connected to the conductive pattern 51 at the circuit unit and the connection location 51c.
 このように構成し、接地電位部40の端の面と、導電パターン51との間隔hを、第1の実施の形態での高さhと同様の値とし、アンテナ素子を構成する導電パターン51を平行に配置する長さL0と、接地電位の導電パターン41,42を平行に配置する長さLとを、第1の実施の形態での長さL,Lと同様に調整することで、インピーダンスを50Ωなどに設定することが可能となる。また長さLは、例えば送受信する信号の1波長の約1/4とする。
 なお、導電パターン51の接続箇所51cと接地電位部40の一方の端までの長さpym及び他方の端までの長さpypについても、第1の実施の形態で説明した長さと同様の関係になるようにするのが好ましい。
The conductive pattern 51 is configured in this way, and the distance h between the end surface of the ground potential portion 40 and the conductive pattern 51 is set to the same value as the height h in the first embodiment, and forms the antenna element. the length L0 arranged parallel to and a length L 1 arranged parallel to the conductive pattern 41 and a ground potential, adjusted in the same manner as the length L 0, L 1 of the first embodiment Thus, the impedance can be set to 50Ω or the like. The length L 0 is, for example, about ¼ of one wavelength of a signal to be transmitted / received.
Note that the length pym to the one end of the connection portion 51c of the conductive pattern 51 and the ground potential portion 40 and the length pyp to the other end also have the same relationship as the length described in the first embodiment. It is preferable to do so.
 この第3の実施の形態の構成の場合にも、第1の実施の形態のアンテナと同様の良好な特性が得られると共に、整合回路を必要としない簡単な構成が実現できる。また、第3の実施の形態の構成の場合には、基板30の表面31上の同一面に各導電パターンが構成されるので、比較的簡単に接地電位部40と各導電パターン41,42,51を構成させることができる。例えば、パーソナルコンピュータ装置のカードスロットに装着される各種カード(PCカードやメモリカードなど)の回路基板上に、良好な特性のアンテナを簡単に配置できるようになる。 Also in the case of the configuration of the third embodiment, good characteristics similar to those of the antenna of the first embodiment can be obtained, and a simple configuration that does not require a matching circuit can be realized. In the case of the configuration of the third embodiment, each conductive pattern is configured on the same surface on the surface 31 of the substrate 30, so that the ground potential portion 40 and each of the conductive patterns 41, 42,. 51 can be configured. For example, an antenna having good characteristics can be easily arranged on a circuit board of various cards (such as a PC card and a memory card) to be installed in a card slot of a personal computer device.
[4.第4の実施の形態の例(図12~図13)]
 次に、本発明の超低姿勢逆L型アンテナの第4の実施の形態の例について、図12及び図13を参照して説明する。図12は斜視図で示し、図13は上側から見た平面図で示したものである。
 図12及び図13に示した第4の実施の形態の例の超低姿勢逆L型アンテナは、基本的に第3の実施の形態と同様に、基板上の接地導部の脇にアンテナ素子を配置したものであるが、接地電位部を基板の裏面側とし、アンテナ素子側を基板の表面側に配置したものである。
 即ち、図12に示すように、基板60の表面61に、所定パターンのマイクロストリップライン70を配置し、そのマイクロストリップライン70を、基板60の端まで伸ばして、アンテナ素子部71としたものである。アンテナ素子部71は、途中に曲折部71aを設けてあり、その曲折部71aで90°曲折させてある。
[4. Example of Fourth Embodiment (FIGS. 12 to 13)]
Next, an example of a fourth embodiment of the ultra-low profile inverted L-type antenna of the present invention will be described with reference to FIGS. FIG. 12 is a perspective view, and FIG. 13 is a plan view seen from above.
The ultra-low profile inverted L-type antenna of the example of the fourth embodiment shown in FIGS. 12 and 13 basically has an antenna element beside the ground conductor on the substrate, as in the third embodiment. However, the ground potential portion is on the back side of the substrate and the antenna element side is on the front side of the substrate.
That is, as shown in FIG. 12, a microstrip line 70 having a predetermined pattern is arranged on a surface 61 of a substrate 60, and the microstrip line 70 is extended to the end of the substrate 60 to form an antenna element portion 71. is there. The antenna element portion 71 is provided with a bent portion 71a in the middle, and is bent 90 ° at the bent portion 71a.
 そして基板60の裏面62側には、破線で示したように比較的大きな面積の接地電位部80が配置してあり、その接地電位部40と接続された導電パターン81を平行に配置し、導電パターン81についても曲折箇所81aで90°曲折させてある。
 そして、図13に平面的に示されるように、接地電位の導電パターン81の中央に、アンテナ素子を構成する導電パターン71が配置されるようにする。曲折部71aから導電パターン71の先端部71bまでの長さLは、導電パターン81の先端部81bまでの長さLよりも長くし、その長さの調整でインピーダンスを50Ωなどの決められた値とする。また長さLは、例えば送受信する信号の1波長の約1/4とする。
 接地電位部80の端の面と、導電パターン71との間隔hを、第3の実施の形態での間隔hと同様の値とし、導電パターン71の曲折部71aと接地電位部80の一方の端までの長さpym及び他方の端までの長さpypについても、第1の実施の形態で説明した長さと同様の関係になるようにするのが好ましい。
 この第4の実施の形態の構成の場合にも、第3の実施の形態のアンテナとほぼ同様の良好な特性が得られると共に、整合回路を必要としない簡単な構成が実現できる。なお、図12に示した導電パターン71に接続されるマイクロストリップライン70の配置状態は一例であり、接続させる回路部品の配置状態に対応して、様々の配置状態が考えられる。
On the back surface 62 side of the substrate 60, a ground potential portion 80 having a relatively large area is disposed as shown by a broken line, and a conductive pattern 81 connected to the ground potential portion 40 is disposed in parallel so as to be conductive. The pattern 81 is also bent by 90 ° at the bent portion 81a.
Then, as shown in a plan view in FIG. 13, a conductive pattern 71 constituting the antenna element is arranged in the center of the conductive pattern 81 at the ground potential. The length L 0 from the bent portion 71 a to the tip end portion 71 b of the conductive pattern 71 is longer than the length L 1 from the tip end portion 81 b of the conductive pattern 81, and the impedance can be determined to be 50Ω by adjusting the length. Value. The length L 0 is, for example, about ¼ of one wavelength of a signal to be transmitted / received.
The distance h between the end face of the ground potential portion 80 and the conductive pattern 71 is set to the same value as the distance h in the third embodiment, and one of the bent portion 71a of the conductive pattern 71 and the ground potential portion 80 is set. It is preferable that the length pym to the end and the length pyp to the other end have the same relationship as the length described in the first embodiment.
Also in the case of the configuration of the fourth embodiment, the same good characteristics as those of the antenna of the third embodiment can be obtained, and a simple configuration that does not require a matching circuit can be realized. The arrangement state of the microstrip line 70 connected to the conductive pattern 71 shown in FIG. 12 is an example, and various arrangement states can be considered according to the arrangement state of the circuit components to be connected.
[5.第5の実施の形態の例(図14)]
 次に、本発明の超低姿勢逆L型アンテナの第5の実施の形態の例について、図14を参照して説明する。
 図14に示した第5の実施の形態の例の超低姿勢逆L型アンテナは、誘電体である基板90の表面31に、接地導体板を配置し、その接地導体板から高さhだけ基板の厚さ方向に離れた位置に、導電パターンを配置した例としたものである。
 即ち、図14に示すように、基板90の表面91のほぼ全面に比較的大きな面積の接地電位部92を設け、その接地電位部92の所定箇所に、接地電位部92に導通した2本の導電パターン94,95を直立した状態で平行に配置すると共に、その2本の接地電位の導電パターン94,95の間に、アンテナ素子を構成する導電パターン93を直立した状態で配置する。
[5. Example of Fifth Embodiment (FIG. 14)]
Next, an example of the fifth embodiment of the ultra-low profile inverted L antenna of the present invention will be described with reference to FIG.
In the ultra-low profile inverted L-type antenna of the example of the fifth embodiment shown in FIG. 14, a ground conductor plate is disposed on the surface 31 of the substrate 90, which is a dielectric, and only a height h from the ground conductor plate. In this example, conductive patterns are arranged at positions separated in the thickness direction of the substrate.
That is, as shown in FIG. 14, a ground potential portion 92 having a relatively large area is provided on almost the entire surface 91 of the substrate 90, and two conductors connected to the ground potential portion 92 are provided at predetermined positions of the ground potential portion 92. The conductive patterns 94 and 95 are arranged in parallel in an upright state, and the conductive pattern 93 constituting the antenna element is arranged in an upright state between the two grounded conductive patterns 94 and 95.
 導電パターン94,95は、接続箇所94c,95cで接地電位部92と直接接続させてある。また導電パターン93の接続箇所93cは、接地電位部92とは接続させず、図示しないコプレーナ線路などで、通信回路部などと接続させてある。
 そして、各導電パターン93,94,95は、曲折部93a,94a,95aで、接地電位部92の面方向と高さhで平行になるように曲折させてある。さらに、導電パターン94,95の先端部94b,95bは、導電パターン93の先端部93bよりも短くしてある。
The conductive patterns 94 and 95 are directly connected to the ground potential portion 92 at connection portions 94c and 95c. The connection portion 93c of the conductive pattern 93 is not connected to the ground potential portion 92 but is connected to the communication circuit portion or the like by a coplanar line (not shown).
The conductive patterns 93, 94, and 95 are bent at bent portions 93a, 94a, and 95a so as to be parallel to the surface direction of the ground potential portion 92 at a height h. Furthermore, the leading end portions 94 b and 95 b of the conductive patterns 94 and 95 are shorter than the leading end portion 93 b of the conductive pattern 93.
 このように構成したことで、図14に示すように、導電パターン93の接続箇所93cから導電パターン93の先端部93bまでの長さLと、導電パターン94,95の先端94b,95bまでの長さLとを調整して、インピーダンスを50Ωなど調整できる。また長さLは、例えば送受信する信号の1波長の約1/4とする。また、接地電位部92の各サイズpym,pyp,pxm,pxpの設定で、良好な特性とすることができる。但し本例の場合には、導電パターン93の長手方向と直交するx軸方向の長さpxm,pxpが等しくなく、そのx軸方向の長さが均等でないことによる特性の劣化がないように、各パラメータを適切に選定する必要がある。 With this configuration, as shown in FIG. 14, the length L 0 from the connection portion 93 c of the conductive pattern 93 to the tip end portion 93 b of the conductive pattern 93 and the tips 94 b and 95 b of the conductive patterns 94 and 95 are set. adjust the length L 1, it can be adjusted impedance 50Ω like. The length L 0 is, for example, about ¼ of one wavelength of a signal to be transmitted / received. Also, good characteristics can be obtained by setting the sizes pym, pyp, pxm, pxp of the ground potential portion 92. However, in the case of this example, the lengths pxm and pxp in the x-axis direction orthogonal to the longitudinal direction of the conductive pattern 93 are not equal, and the length in the x-axis direction is not uniform so that there is no deterioration in characteristics. It is necessary to select each parameter appropriately.
 なお、ここまで説明したそれぞれの実施の形態の例のアンテナにおいて、例えば接地電位の導体板の表面にスリットを設ける等して、導体板上の電流を制御することで、アンテナ特性を改善するようにしてもよい。 In the antennas of the embodiments described above, the antenna characteristics are improved by controlling the current on the conductor plate, for example, by providing a slit on the surface of the conductor plate at the ground potential. It may be.
[6.第6の実施の形態の例(図15,図16)]
 次に、本発明の超低姿勢逆L型アンテナの第6の実施の形態の例について、図15及び図16を参照して説明する。第6の実施の形態では、接地電位部を平板状とせず、導体棒を組み立てた構造としたものであり、同軸ケーブルの構成は図1の例と同様である。
[6. Example of sixth embodiment (FIGS. 15 and 16)]
Next, an example of a sixth embodiment of the ultra-low profile inverted L antenna of the present invention will be described with reference to FIGS. 15 and 16. In the sixth embodiment, the ground potential portion is not flat but has a structure in which conductor bars are assembled, and the configuration of the coaxial cable is the same as that in the example of FIG.
 即ち、図15に示すように、3本平行に配置された接地導体棒311,312,313と直交する接地導体棒314とで、平行導線フレーム310を構成する。3本の接地導体棒311,312,313は、同じ長さとしてある。そして、その平行導体フレーム310の接地導体棒311と接地導体棒314との交点を接続箇所315として、同軸ケーブル320の一端を接続してある。同軸ケーブルは接続箇所315で貫通させ、さらに下方に延長し(図示せず)、送受信回路(図示せず)を接続する。この接続箇所315で、同軸ケーブル320の外導体324を接地導体棒311側と接続させて、接地電位としてある。中心導体322は、送受信回路(図示せず)の給電部と接続してある。 That is, as shown in FIG. 15, the parallel conductor frame 310 is configured by three ground conductor bars 311, 312, 313 and the ground conductor bars 314 orthogonal to each other. The three ground conductor rods 311, 312, and 313 have the same length. Then, one end of the coaxial cable 320 is connected with an intersection of the ground conductor rod 311 and the ground conductor rod 314 of the parallel conductor frame 310 as a connection point 315. The coaxial cable is penetrated at a connection point 315 and further extended downward (not shown) to connect a transmission / reception circuit (not shown). At this connection location 315, the outer conductor 324 of the coaxial cable 320 is connected to the ground conductor rod 311 side to be at the ground potential. The center conductor 322 is connected to a power feeding unit of a transmission / reception circuit (not shown).
 同軸ケーブル320は、曲折箇所323で90°曲折させて、先端側が接地導体棒311と平行になるようにしてある。そして、接地導体棒311と平行になった同軸ケーブル320は、外導体324の端部321から中心導体322を伸ばした構成としてある。
 なお、図15例のアンテナは、同軸ケーブル320の中心導体322と接地導体棒311との間隔(高さ)hや、各長さL0,L1,pyp,pym,pxp,pxmについては、図3と同様の条件で設定する。2aは、各導体棒311~314の直径(aは半径)である。
The coaxial cable 320 is bent at 90 ° at a bent portion 323 so that the tip side is parallel to the ground conductor bar 311. The coaxial cable 320 parallel to the ground conductor bar 311 has a configuration in which the central conductor 322 extends from the end 321 of the outer conductor 324.
The antenna in the example of FIG. 15 has the distance (height) h between the center conductor 322 and the ground conductor bar 311 of the coaxial cable 320 and the lengths L0, L1, pyp, pym, pxp, pxm in FIG. Set under the same conditions as. 2a is the diameter (a is a radius) of each of the conductor rods 311 to 314.
 図15例のアンテナの各長さの一例を示すと、pxp=pxm=35.0mm、pyp=115.0mm、pym=23.0mm、h=9.0mm、L0=72.2mm、L1=39.3mm、a=1.5mm、外導体324の半径1.095mm、中心導体322の半径0.255mmとする。 An example of each length of the antenna of FIG. 15 is shown as pxp = pxm = 35.0 mm, pyp = 115.0 mm, pym = 23.0 mm, h = 9.0 mm, L0 = 72.2 mm, L1 = 39. 3 mm, a = 1.5 mm, outer conductor 324 radius 1.095 mm, and central conductor 322 radius 0.255 mm.
 このサイズで製作した図15に示したアンテナのリターンロス特性の例を示したのが、図16である。横軸が周波数(GHz)で、縦軸がリターンロス特性(dB)である。この図16の例では、1.06GHz付近を中心周波数とした特性を有するアンテナとして構成させた場合の例である。
 この図15例のアンテナのように、接地電位部を平板状とせず、導体棒を組み立てた構造とすることでも、良好な特性とすることができる。
FIG. 16 shows an example of the return loss characteristic of the antenna shown in FIG. 15 manufactured with this size. The horizontal axis represents frequency (GHz) and the vertical axis represents return loss characteristics (dB). The example of FIG. 16 is an example in the case of being configured as an antenna having characteristics with a center frequency around 1.06 GHz.
As in the antenna of FIG. 15, the ground potential portion is not flat and a structure in which the conductor rods are assembled can also provide good characteristics.
[7.第7の実施の形態の例(図17,図18)]
 次に、本発明の超低姿勢逆L型アンテナの第7の実施の形態の例について、図17及び図18を参照して説明する。第7の実施の形態では、第6の実施の形態のアンテナを、さらに地上デジタルテレビジョン放送受信用のアンテナとして発展させた例である。
 即ち、図17に示したように、3本平行に配置された接地導体棒411,412,413と直交する接地導体棒414とで、平行導線フレーム410を構成する。3本の接地導体棒411,412,413は、同じ長さとしてある。そして、その平行導体フレーム410の接地導体棒411と接地導体棒414との交点を接続箇所415として、同軸ケーブル420の一端を接続してある。この接続箇所415で、同軸ケーブル420の外導体424を接地導体棒411側と接続させて、接地電位としてある。中心導体422は、受信回路(図示せず)の給電部と接続してある。
[7. Example of seventh embodiment (FIGS. 17 and 18)]
Next, an example of the seventh embodiment of the ultra-low profile inverted L-type antenna of the present invention will be described with reference to FIGS. The seventh embodiment is an example in which the antenna of the sixth embodiment is further developed as an antenna for receiving digital terrestrial television broadcasts.
That is, as shown in FIG. 17, the parallel conductor frame 410 is constituted by the ground conductor rods 411, 412, 413 arranged in parallel with the ground conductor rods 414 orthogonal to each other. The three ground conductor bars 411, 412, and 413 have the same length. Then, one end of the coaxial cable 420 is connected with an intersection of the ground conductor rod 411 and the ground conductor rod 414 of the parallel conductor frame 410 as a connection point 415. At this connection location 415, the outer conductor 424 of the coaxial cable 420 is connected to the ground conductor rod 411 side to obtain a ground potential. The center conductor 422 is connected to a power feeding unit of a receiving circuit (not shown).
 同軸ケーブル420は、曲折箇所423で90°曲折させて、先端側が接地導体棒411と平行になるようにしてある。そして、接地導体棒411と平行になった同軸ケーブル420は、外導体の端部421から中心導体422を伸ばした構成としてある。
 ここまでは、図15に示したアンテナと同様の構成であるが、さらに本実施の形態においては、導波器431と反射器432を前後に配置してある。即ち、図17に示したz軸方向に、接地導体棒411と間隔Dzで導波器431を配置し、z軸方向の反対方向に、接地導体棒411と間隔Rzで反射器432を配置してある。導波器431と反射器432は、図示しない支持体により平行導線フレーム410側と固定させる。接地導体棒411を配置した位置から見て、導波器431を配置した側が、地上デジタルテレビジョン放送の送信局側である。
 図17では、導波器431の長さをDy、反射器432の長さをRyとしてある。
The coaxial cable 420 is bent at 90 ° at a bent portion 423 so that the tip end side is parallel to the ground conductor bar 411. The coaxial cable 420 parallel to the ground conductor rod 411 has a configuration in which the center conductor 422 is extended from the end 421 of the outer conductor.
Up to this point, the configuration is the same as that of the antenna shown in FIG. 15. However, in this embodiment, the waveguide 431 and the reflector 432 are arranged in the front and rear. That is, the waveguide 431 is disposed with the ground conductor rod 411 and the distance Dz in the z-axis direction shown in FIG. 17, and the reflector 432 is disposed with the ground conductor rod 411 and the distance Rz in the opposite direction to the z-axis direction. It is. The director 431 and the reflector 432 are fixed to the parallel conductive wire frame 410 side by a support (not shown). When viewed from the position where the ground conductor rod 411 is disposed, the side on which the director 431 is disposed is the transmitting station side of terrestrial digital television broadcasting.
In FIG. 17, the length of the director 431 is Dy, and the length of the reflector 432 is Ry.
 図17例のアンテナの各長さの一例を示すと、放送周波数470MHz~710MHzの信号を受信する場合の例として、pxp=pxm=40mm、pyp=210mm、pym=44mm、h=24.5mm、L0=130mm、L1=41mm、a=1.5mm、Dy=208mm、Dz=80mm、Ry=320mm、Rz=82mmとする。 FIG. 17 shows an example of the length of each antenna. As an example of receiving a signal having a broadcast frequency of 470 MHz to 710 MHz, pxp = pxm = 40 mm, pyp = 210 mm, pym = 44 mm, h = 24.5 mm, L0 = 130 mm, L1 = 41 mm, a = 1.5 mm, Dy = 208 mm, Dz = 80 mm, Ry = 320 mm, Rz = 82 mm.
 この図17のアンテナの指向性特性を示したのが図18Aで、リターンロス特性の計算値を示したのが図18Bである。
 これらの図18A,図18Bの特性から判るように、日本での地上デジタルテレビジョン放送の送信周波数帯域である470MHz~710MHzで、十分な利得が得られている。
 なお、図17の例では、導波器431と反射器432とを、それぞれ1本ずつ配置した例としたが、例えば導波器431を、一定の間隔を開けて複数本配置してもよい。あるいは反射器432を複数本配置してもよい。
 また、平行導線フレーム410と導波器431、反射器432とを、導体板で構成しても良い。
FIG. 18A shows the directivity characteristics of the antenna of FIG. 17, and FIG. 18B shows the calculated values of the return loss characteristics.
As can be seen from the characteristics of FIGS. 18A and 18B, a sufficient gain is obtained in the transmission frequency band of terrestrial digital television broadcasting in Japan, which is 470 MHz to 710 MHz.
In the example of FIG. 17, one waveguide 431 and one reflector 432 are disposed. However, for example, a plurality of waveguides 431 may be disposed at a predetermined interval. . Alternatively, a plurality of reflectors 432 may be arranged.
Moreover, you may comprise the parallel conducting wire frame 410, the waveguide 431, and the reflector 432 with a conductor board.
[8.第8の実施の形態の例(図19~図21)]
 次に、本発明の超低姿勢逆L型アンテナの第8の実施の形態の例について、図19~図21を参照して説明する。第8の実施の形態では、RFID(Radio Frequency IDentification)リーダ・ライタ用の円偏波アンテナとした例で、例えば2.4GHz帯の円偏波信号を扱うアンテナとした例である。
 表面が接地電位部の導体板510を用意し、導体板510の表面の所定箇所に、同軸ケーブル520の一方の端部を接続した接続点521を設けてある。この同軸ケーブル520は、中心導体524と外導体527とを備え、外導体527を接地電位部と電気的に接続させてある。
[8. Example of Eighth Embodiment (FIGS. 19 to 21)]
Next, an eighth embodiment of the ultra-low profile inverted L antenna of the present invention will be described with reference to FIGS. 19 to 21. FIG. The eighth embodiment is an example of a circularly polarized antenna for an RFID (Radio Frequency IDentification) reader / writer, for example, an antenna that handles a circularly polarized signal in the 2.4 GHz band.
A conductor plate 510 having a ground potential portion on the surface is prepared, and a connection point 521 connecting one end of the coaxial cable 520 is provided at a predetermined position on the surface of the conductor plate 510. The coaxial cable 520 includes a center conductor 524 and an outer conductor 527, and the outer conductor 527 is electrically connected to the ground potential portion.
 この接続部521に一方の端部が接続された同軸ケーブル520は、所定距離hだけ導体板510の表面と離れた位置を曲折箇所522として90°折り曲げて、その折り曲げられた同軸ケーブル520の先端側が、導体板510の表面と平行になるように配置してある。 The coaxial cable 520 having one end connected to the connection portion 521 is bent 90 ° with a predetermined distance h away from the surface of the conductor plate 510 as a bent portion 522, and the end of the bent coaxial cable 520 is bent. The side is arranged so as to be parallel to the surface of the conductor plate 510.
 曲折箇所522で折り曲げられて導体板510と平行に伸びた同軸ケーブル520は、中心導体524だけを外導体端部523から引き出して伸ばし、さらに、その引き出された中心導体524の途中の曲折箇所525で90°水平に曲折させて、中心導体先端部526を曲げた位置としてある。水平に曲折させてあることで、外導体端部523から先の中心導体524は、導体板510との平行は維持された状態である。図19では、曲折箇所525から中心導体先端部526までの長さをaとしてある。 The coaxial cable 520 that is bent at the bent portion 522 and extends in parallel with the conductor plate 510 extends by extending only the center conductor 524 from the outer conductor end 523, and further, a bent portion 525 in the middle of the drawn center conductor 524. The center conductor tip 526 is bent at 90 ° horizontally. By being bent horizontally, the central conductor 524 ahead of the outer conductor end 523 is in a state where the parallelism with the conductor plate 510 is maintained. In FIG. 19, the length from the bent portion 525 to the center conductor tip 526 is a.
 そして、この同軸ケーブル520とは別に、導体板510の接続箇所531に、導体棒530の一端を接続してある。導体棒530は、導体板510の表面の接地電位部と電気的に接続させてある。
 この導体棒530は、曲折箇所532で水平に90°曲折させてあり、曲折箇所532より先を平行部533として、中心導体524の先端部526と平行になるようにしてある。導体棒530を曲折箇所532で曲折させる高さは、例えば同軸ケーブル520の高さhと等しくする。曲折箇所532から平行部533の先端までの長さをLとし、平行部533と、中心導体524の先端部526との間隔をCとする。
In addition to the coaxial cable 520, one end of the conductor rod 530 is connected to the connection portion 531 of the conductor plate 510. The conductor rod 530 is electrically connected to the ground potential portion on the surface of the conductor plate 510.
The conductor bar 530 is bent at 90 ° horizontally at the bent portion 532, and the tip of the bent portion 532 is parallel to the distal end portion 526 of the center conductor 524 with the parallel portion 533. The height at which the conductor rod 530 is bent at the bent portion 532 is set equal to the height h of the coaxial cable 520, for example. The length from the bent portion 532 to the tip of the parallel portion 533 and L 2, a parallel portion 533, the distance between the tip portion 526 of the center conductor 524 and C 1.
 図19例のアンテナの各長さの一例を示すと、pxp=23.0mm、pxm=31.2mm、pyp=46.0mm、pym=6.0mm、h=5.5mm、L=27.5mm、L=19.5mm、L=25.2mm、a=3.5mm、C=12.5mmとする。 An example of each length of the antenna of FIG. 19 is shown as pxp = 23.0 mm, pxm = 31.2 mm, pyp = 46.0 mm, pym = 6.0 mm, h = 5.5 mm, L 0 = 27. 5 mm, L 1 = 19.5 mm, L 2 = 25.2 mm, a = 3.5 mm, and C 1 = 12.5 mm.
 このサイズで製作した図19に示したアンテナのリターンロス特性と軸比特性の例を示したのが、図20である。横軸が周波数(GHz)で、縦軸の左側がリターンロス特性(dB)で、縦軸の右側が軸比特性(dB)である。図中の細い実線は計算で得たリターンロス特性を示し、太い実線は計測したリターンロス特性を示し、破線は軸比特性計算値を示す。
 図21は、2.45GHzでの放射電界指向性パターン計算値を示す。RHCPは右旋円偏波を、LHCPは左旋円偏波を表す。これらの特性から判るように、円偏波アンテナとして良好な特性のものが得られる。
FIG. 20 shows an example of the return loss characteristic and the axial ratio characteristic of the antenna shown in FIG. 19 manufactured with this size. The horizontal axis is frequency (GHz), the left side of the vertical axis is the return loss characteristic (dB), and the right side of the vertical axis is the axial ratio characteristic (dB). The thin solid line in the figure shows the return loss characteristic obtained by calculation, the thick solid line shows the measured return loss characteristic, and the broken line shows the calculated axial ratio characteristic.
FIG. 21 shows a calculated value of the radiation electric field directivity pattern at 2.45 GHz. RHCP represents right-hand circular polarization, and LHCP represents left-hand circular polarization. As can be seen from these characteristics, a circularly polarized antenna with good characteristics can be obtained.
[6.各実施の形態のアンテナの適用例(図22,図23)]
 図22及び図23は、本実施の形態の各例の低姿勢逆L型アンテナの配置状態を示した図である。
 図22は、無線LAN用基地局が備えるアンテナ装置に適用した例である。
 この図42の例の場合には、無線LAN用基地局アンテナ100として、円筒部110と、その円筒部110の周囲に配置した複数の突起状板部120とで構成されるとする。このとき、円筒部110の周囲に、同軸ケーブル111を図3などに示した状態で配置して、中心導体112を露出させて、円筒部110の周囲と平行に配置させる。この配置状態は、例えば図3に示した配置状態である。
 また、突起状板部120の端面に、同軸ケーブル121を配置し、中心導体122を露出させて、突起状板部120の端面と平行に配置させる。この配置状態は、例えば図10に示した配置状態である。
 このように構成して、無線LAN用基地局アンテナ100の周囲に複数のアンテナを配置することが可能である。なお、図22の例の場合にも、それぞれの同軸ケーブルの代りに、コプナール線路やマイクロストリップラインで同様の構成としてもよい。
[6. Application example of antenna of each embodiment (FIGS. 22 and 23)]
22 and 23 are diagrams showing the arrangement state of the low-position inverted L-shaped antenna of each example of the present embodiment.
FIG. 22 shows an example applied to an antenna device provided in a wireless LAN base station.
In the case of the example of FIG. 42, the wireless LAN base station antenna 100 is assumed to be composed of a cylindrical portion 110 and a plurality of protruding plate portions 120 arranged around the cylindrical portion 110. At this time, the coaxial cable 111 is arranged around the cylindrical portion 110 in the state shown in FIG. 3 and the like, the central conductor 112 is exposed, and is arranged in parallel with the circumference of the cylindrical portion 110. This arrangement state is, for example, the arrangement state shown in FIG.
Further, the coaxial cable 121 is disposed on the end surface of the protruding plate portion 120 so that the central conductor 122 is exposed, and is disposed in parallel with the end surface of the protruding plate portion 120. This arrangement state is, for example, the arrangement state shown in FIG.
With this configuration, it is possible to arrange a plurality of antennas around the wireless LAN base station antenna 100. In the case of the example shown in FIG. 22, the same configuration may be used instead of each coaxial cable, such as a Copnar line or a microstrip line.
 図23は、飛行機200に本実施の形態の各例のアンテナを配置する位置の例を示したものである。
 図23に示した例では、飛行機200の胴体の上部や下部のアンテナ取り付け位置201、202や、主翼又は尾翼の先端のアンテナ取り付け位置203,204としてもよい。或いは、その他の位置に設置してもよい。
 図22や図23は、適用例の好適な例を示したものであり、その他の各種無線通信用アンテナに、本実施の形態の例のアンテナを適用できることは勿論である。
FIG. 23 shows an example of positions where the antennas of each example of the present embodiment are arranged on the airplane 200.
In the example shown in FIG. 23, the antenna mounting positions 201 and 202 on the upper and lower sides of the fuselage of the airplane 200 and the antenna mounting positions 203 and 204 on the tip of the main wing or tail wing may be used. Or you may install in another position.
22 and 23 show preferred examples of application examples, and it goes without saying that the antenna of the example of this embodiment can be applied to other various wireless communication antennas.
 1…信号源、2…カプラ、3…移相器、4…導体板、5,6…同軸ケーブル、5a,6a…中心導体、7…導体板、8…逆L型素子、10…導体板、11…導体板端面、20…同軸ケーブル、20a…孔、21…接続点、22…曲折箇所、23…外導体端部、24…中心導体、24a…中心導体先端部、25…絶縁体、26…外導体、30…基板(誘電体)、31…表面、40…接地電位部、40a,40b…接続箇所、41,42…導電パターン(接地電位部)、41a,42a…曲折箇所、41b,41b…先端部、51…導電パターン、51a…曲折箇所、51b…先端部、51c…接続箇所、60…基板、61…表面、62…裏面、70…マイクロストリップライン、71…アンテナ素子部、71a…曲折部、71b…先端部、80…接地電位部、80a,80b…接続箇所、81…導電パターン(接地電位部)、81a…曲折箇所、81b…先端部、90…基板、91…表面、92…接地電位部、93,94,95…導電パターン、93a,94a,95a…曲折部、93b,94b,95b…先端部、93c,94c,95c…接続箇所、100…無線LAN用基地局アンテナ、110…円筒部、111…同軸ケーブル、112…中心導体、120…突起状板部、121…同軸ケーブル、122…中心導体、200…飛行機、201,202,203,204…アンテナ取り付け位置、310…平行導線フレーム、311,312,313,314…接地導体棒、315…接続箇所、320…同軸ケーブル、321…外導体端部、322…中心導体、323…曲折箇所、324…外導体、410…平行導線フレーム、411,412,413,414…接地導体棒、415…接続箇所、420…同軸ケーブル、421…外導体端部、422…中心導体、423…曲折箇所、424…外導体、431…導波器、432…反射器、510…導体板、520…同軸ケーブル、521…接続箇所、522…曲折箇所、523…外導体端部、524…中心導体、525…曲折箇所、526…先端部、530…導体棒、531…接続箇所、532…曲折箇所、533…平行部 DESCRIPTION OF SYMBOLS 1 ... Signal source, 2 ... Coupler, 3 ... Phase shifter, 4 ... Conductor plate, 5, 6 ... Coaxial cable, 5a, 6a ... Center conductor, 7 ... Conductor plate, 8 ... Inverted L-type element, 10 ... Conductor plate 11 ... Conductor plate end face, 20 ... Coaxial cable, 20a ... Hole, 21 ... Connection point, 22 ... Bending point, 23 ... Outer conductor end, 24 ... Center conductor, 24a ... Center conductor tip, 25 ... Insulator, 26 ... outer conductor, 30 ... substrate (dielectric), 31 ... surface, 40 ... ground potential part, 40a, 40b ... connection place, 41, 42 ... conductive pattern (ground potential part), 41a, 42a ... bent part, 41b , 41b ... tip part, 51 ... conductive pattern, 51a ... bent part, 51b ... tip part, 51c ... connection part, 60 ... substrate, 61 ... surface, 62 ... back surface, 70 ... microstrip line, 71 ... antenna element part, 71a ... bent portion, 71b ... tip, 8 ... ground potential part, 80a, 80b ... connection place, 81 ... conductive pattern (ground potential part), 81a ... bent part, 81b ... tip part, 90 ... substrate, 91 ... surface, 92 ... ground potential part, 93, 94, 95 ... conductive pattern, 93a, 94a, 95a ... bent portion, 93b, 94b, 95b ... tip, 93c, 94c, 95c ... connection location, 100 ... base station antenna for wireless LAN, 110 ... cylindrical portion, 111 ... coaxial cable , 112 ... center conductor, 120 ... projecting plate part, 121 ... coaxial cable, 122 ... center conductor, 200 ... airplane, 201, 202, 203, 204 ... antenna mounting position, 310 ... parallel conductor frame, 311, 312, 313 314, ground conductor bar, 315, connection location, 320, coaxial cable, 321, outer conductor end, 322, center conductor, 323, bent point. 324 ... Outer conductor, 410 ... Parallel conductor frame, 411, 412, 413, 414 ... Ground conductor bar, 415 ... Connection point, 420 ... Coaxial cable, 421 ... Outer conductor end, 422 ... Center conductor, 423 ... Bending point 424 ... outer conductor, 431 ... waveguide, 432 ... reflector, 510 ... conductor plate, 520 ... coaxial cable, 521 ... connection point, 522 ... bent point, 523 ... outer conductor end, 524 ... center conductor, 525 ... bent portion, 526 ... tip portion, 530 ... conductor rod, 531 ... connection portion, 532 ... bent portion, 533 ... parallel portion

Claims (8)

  1.  所定のインピーダンス値の給電線が接続されて、特定の周波数を中心とした周波数帯の送信又は受信を行う逆L型アンテナにおいて、
     表面又は裏面に設けた接地導体面と、
     前記接地導体面の所定箇所に基端部が接続された外導体と、前記外導体で挟まれ前記外導体とは隙間を開けて配置され前記外導体よりも先端が伸びた内導体とを備え、
     前記外導体及び内導体を、前記接地導体面の所定箇所から所定距離離れた箇所で折り曲げて、前記接地導体面と近接して平行に配置し、
     前記内導体に前記給電線を接続して給電する構成とし、
     前記所定距離を前記特定の周波数の信号の1波長の約1/30の距離とし、
     前記内導体の折り曲げた箇所から先端までの長さを、前記特定の周波数の信号の1波長の約1/4の長さにすると共に、その内導体の長さと前記外導体を折り曲げた箇所から前記外導体の先端までの長さとの設定で、前記給電線のインピーダンス値と整合させ、
     前記接地導体面は、前記内導体の長手方向と平行な方向の長さとして、前記所定箇所から前記内導体の先端側に向かう一方の端部までの長さと、前記所定箇所から前記内導体の先端側に向かう側と反対側の他方の端部までの長さを、前記内導体の折り曲げた箇所から先端に向かう方向に電流が流れるように設定した逆L型アンテナ。
    In an inverted L-type antenna that is connected to a feeder line of a predetermined impedance value and performs transmission or reception in a frequency band centered on a specific frequency,
    A ground conductor surface provided on the front surface or the back surface;
    An outer conductor having a base end connected to a predetermined portion of the ground conductor surface, and an inner conductor sandwiched between the outer conductors and disposed with a gap between them and having a distal end extending from the outer conductor. ,
    The outer conductor and the inner conductor are bent at a predetermined distance away from a predetermined location on the ground conductor surface, and are arranged in parallel near the ground conductor surface,
    The power supply is configured by connecting the power supply line to the inner conductor,
    The predetermined distance is a distance of about 1/30 of one wavelength of the signal of the specific frequency,
    The length from the bent portion of the inner conductor to the tip is set to about ¼ of one wavelength of the signal of the specific frequency, and from the length of the inner conductor and the bent portion of the outer conductor. In setting with the length to the tip of the outer conductor, to match the impedance value of the feeder line,
    The grounding conductor surface has a length in a direction parallel to the longitudinal direction of the inner conductor, a length from the predetermined location to one end toward the tip end side of the inner conductor, and from the predetermined location to the inner conductor. An inverted L-type antenna in which the length to the other end on the side opposite to the tip side is set so that a current flows in a direction from the bent portion of the inner conductor toward the tip.
  2.  請求項1記載の逆L型アンテナにおいて、
     前記外導体と前記内導体は、内導体と外導体とを所定の間隔を開けて配置したコプレーナ線路あるいはマイクロストリップラインで構成した逆L型アンテナ。
    The inverted L-shaped antenna according to claim 1,
    The outer conductor and the inner conductor are inverted L-type antennas configured by a coplanar line or a microstrip line in which an inner conductor and an outer conductor are arranged at a predetermined interval.
  3.  請求項1記載の逆L型アンテナにおいて、
     前記外導体と前記内導体は、同軸ケーブルの外導体及び内導体で構成した逆L型アンテナ。
    The inverted L-shaped antenna according to claim 1,
    The said outer conductor and the said inner conductor are reverse L type antennas comprised by the outer conductor and inner conductor of a coaxial cable.
  4.  請求項1~3のいずれか1項に記載の逆L型アンテナにおいて、
     前記接地導体面と前記外導体とを接続する所定箇所は、前記接地導体面の端面とした逆L型アンテナ。
    The inverted L-type antenna according to any one of claims 1 to 3,
    An inverted L-shaped antenna in which a predetermined portion connecting the ground conductor surface and the outer conductor is an end surface of the ground conductor surface.
  5.  請求項1記載の逆L型アンテナにおいて、
     前記内導体の長手方向と直交する方向の前記接地導体面の長さとして、前記所定箇所から一方の端部及び他方の端部までの長さを等しくした逆L型アンテナ。
    The inverted L-shaped antenna according to claim 1,
    An inverted L-type antenna in which the length from the predetermined portion to one end and the other end is made equal as the length of the ground conductor surface in a direction orthogonal to the longitudinal direction of the inner conductor.
  6.  請求項1記載の逆L型アンテナにおいて、
     前記接地導体面として、複数の導体棒を組み合わせて構成した逆L型アンテナ。
    The inverted L-shaped antenna according to claim 1,
    An inverted L-shaped antenna configured by combining a plurality of conductor rods as the ground conductor surface.
  7.  請求項6記載の逆L型アンテナにおいて、
     複数の導体棒を組み合わせて構成した接地導体面に対して前後となる位置に導波器及び反射器を配置した逆L型アンテナ。
    The inverted L-shaped antenna according to claim 6,
    An inverted L-type antenna in which a director and a reflector are arranged at positions in front of and behind a ground conductor surface configured by combining a plurality of conductor rods.
  8.  請求項1記載の逆L型アンテナにおいて、
     前記内導体の先端を水平に曲折させ、その曲折した内導体と平行に、前記外導体及び前記内導体とは別の導体を配置した逆L型アンテナ。
    The inverted L-shaped antenna according to claim 1,
    An inverted L-type antenna in which a tip of the inner conductor is bent horizontally and a conductor different from the outer conductor and the inner conductor is arranged in parallel with the bent inner conductor.
PCT/JP2010/064903 2009-09-14 2010-09-01 Inverse-l shaped antenna WO2011030703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009212365 2009-09-14
JP2009-212365 2009-09-14

Publications (1)

Publication Number Publication Date
WO2011030703A1 true WO2011030703A1 (en) 2011-03-17

Family

ID=43732376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064903 WO2011030703A1 (en) 2009-09-14 2010-09-01 Inverse-l shaped antenna

Country Status (2)

Country Link
JP (1) JP2011082951A (en)
WO (1) WO2011030703A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780074A (en) * 2012-06-19 2012-11-14 深圳天珑无线科技有限公司 Mobile terminal built-in antenna system and mobile terminal
WO2018118709A1 (en) * 2016-12-21 2018-06-28 Cts Corporation Radio frequency antenna with granular or powder insulating material and method of making the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533224B2 (en) * 2010-05-12 2014-06-25 富士通株式会社 Antenna device
JP2013183596A (en) * 2012-03-05 2013-09-12 Nagasaki Univ Wireless power transmission device and wireless power transmission system
JP5950204B2 (en) * 2012-09-28 2016-07-13 パナソニックIpマネジメント株式会社 Wireless communication module
JP6338401B2 (en) * 2014-02-28 2018-06-06 光雄 田口 Inverted L antenna
JP6362352B2 (en) * 2014-02-28 2018-07-25 国立研究開発法人情報通信研究機構 Planar broadband antenna
JP6678616B2 (en) * 2017-03-28 2020-04-08 学校法人智香寺学園 Dual polarized antenna
JP6678617B2 (en) * 2017-03-29 2020-04-08 学校法人智香寺学園 Circularly polarized antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993026A (en) * 1995-09-28 1997-04-04 Taichi Sato Monopolar antenna
JP2000134026A (en) * 1998-10-21 2000-05-12 Matsushita Electric Ind Co Ltd Monopole antenna
JP2005236656A (en) * 2004-02-19 2005-09-02 Fujitsu Ten Ltd Circular polarization antenna
JP2007180696A (en) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd L-band antenna for dab receiver
JP2008153816A (en) * 2006-12-15 2008-07-03 Nippon Antenna Co Ltd Antenna and antenna system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309419A (en) * 2002-04-16 2003-10-31 Nippon Dengyo Kosaku Co Ltd Ground plane antenna
JP4345719B2 (en) * 2005-06-30 2009-10-14 ソニー株式会社 ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
JP2008160681A (en) * 2006-12-26 2008-07-10 Toshiba Corp Antenna apparatus and wireless unit
JP4807705B2 (en) * 2007-01-12 2011-11-02 株式会社国際電気通信基礎技術研究所 Low-profile antenna structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993026A (en) * 1995-09-28 1997-04-04 Taichi Sato Monopolar antenna
JP2000134026A (en) * 1998-10-21 2000-05-12 Matsushita Electric Ind Co Ltd Monopole antenna
JP2005236656A (en) * 2004-02-19 2005-09-02 Fujitsu Ten Ltd Circular polarization antenna
JP2007180696A (en) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd L-band antenna for dab receiver
JP2008153816A (en) * 2006-12-15 2008-07-03 Nippon Antenna Co Ltd Antenna and antenna system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Record of Joint Conference of Electrical and Electronics Engineers in Kyusyu (CD-ROM)", vol. 62, 10 September 2009, article MITSUO TAGUCHI ET AL.: "Ultra Low Profile Inverted L antenna for Wireless Communication" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102780074A (en) * 2012-06-19 2012-11-14 深圳天珑无线科技有限公司 Mobile terminal built-in antenna system and mobile terminal
WO2018118709A1 (en) * 2016-12-21 2018-06-28 Cts Corporation Radio frequency antenna with granular or powder insulating material and method of making the same
CN110073546A (en) * 2016-12-21 2019-07-30 Cts公司 Radio-frequency antenna and its manufacturing method with graininess or powdered insulation material
US10476142B2 (en) 2016-12-21 2019-11-12 Cts Corporation Radio frequency antenna with granular or powder insulating material and method of making the same

Also Published As

Publication number Publication date
JP2011082951A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
WO2011030703A1 (en) Inverse-l shaped antenna
Ghosh et al. Miniaturization of slot antennas using slit and strip loading
Jin et al. Metamaterial-inspired, electrically small Huygens sources
JP5548779B2 (en) Antenna device
EP3172797B1 (en) Slot antenna
JP3734666B2 (en) ANTENNA DEVICE AND ARRAY ANTENNA USING THE SAME
US7791554B2 (en) Tulip antenna with tuning stub
US7554507B2 (en) UWB antenna with unidirectional radiation pattern
WO2014009697A1 (en) Antennas
KR20130046494A (en) Radiation device for planar inverted f antenna and antenna using it
Lee et al. A wideband planar monopole antenna array with circular polarized and band-notched characteristics
Zhang et al. A broadband horizontally polarized omnidirectional antenna for VHF application
Luo et al. A broadband printed monofilar square spiral antenna: A circularly polarized low-profile antenna
JP2013232768A (en) Dual frequency antenna
Kasemodel et al. A planar dual linear-polarized antenna with integrated balun
KR100643543B1 (en) Multi-band monopole antenna
JP6634237B2 (en) Multi-frequency antenna device
JP2011199350A (en) Antenna
KR100888605B1 (en) Broadband fractal antenna
Zarifi et al. An omnidirectional printed collinear microstrip antenna array
JP2006014152A (en) Plane antenna
Lu et al. Design of high gain planar dipole array antenna for WLAN application
JP2997451B1 (en) Small antenna
JP2014075723A (en) Roadside antenna
Buhtiyarov et al. The linearly polarized ends-fed magnetic dipole antenna excited by circular waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815300

Country of ref document: EP

Kind code of ref document: A1