WO2011030506A1 - Nanofiber manufacturing device and nanofiber manufacturing method - Google Patents

Nanofiber manufacturing device and nanofiber manufacturing method Download PDF

Info

Publication number
WO2011030506A1
WO2011030506A1 PCT/JP2010/005037 JP2010005037W WO2011030506A1 WO 2011030506 A1 WO2011030506 A1 WO 2011030506A1 JP 2010005037 W JP2010005037 W JP 2010005037W WO 2011030506 A1 WO2011030506 A1 WO 2011030506A1
Authority
WO
WIPO (PCT)
Prior art keywords
outflow
material liquid
raw material
nanofiber
nanofiber manufacturing
Prior art date
Application number
PCT/JP2010/005037
Other languages
French (fr)
Japanese (ja)
Inventor
和宜 石川
住田 寛人
黒川 崇裕
正伸 宮田
隆敏 光嶋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/258,128 priority Critical patent/US8834775B2/en
Priority to CN201080015437.2A priority patent/CN102365398B/en
Publication of WO2011030506A1 publication Critical patent/WO2011030506A1/en
Priority to US14/451,945 priority patent/US20140342027A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a nanofiber manufacturing apparatus and a nanofiber manufacturing method for manufacturing a fiber (nanofiber) having a fineness of submicron order or nano order by an electrostatic stretching phenomenon.
  • This electrostatic stretching phenomenon means that a raw material liquid in which a solute such as a resin is dispersed or dissolved in a solvent is discharged (injected) into the space by a nozzle or the like, and an electric charge is applied to the raw material liquid to charge the space.
  • This is a method of obtaining nanofibers by electrically stretching a raw material liquid in flight.
  • the electrostatic stretching phenomenon is explained as follows. That is, the raw material liquid that has been charged and discharged into the space gradually evaporates the solvent while flying through the space. As a result, the volume of the raw material liquid in flight gradually decreases, but the charge imparted to the raw material liquid remains in the raw material liquid. As a result, the charge density of the raw material liquid in flight through the space gradually increases. Since the solvent continues to evaporate, the charge density of the raw material liquid further increases, and when the repulsive Coulomb force generated in the raw material liquid exceeds the surface tension of the raw material liquid, the raw material liquid explodes. The phenomenon that the film is stretched linearly occurs. This is the electrostatic stretching phenomenon. The electrostatic stretching phenomenon occurs geometrically in succession in the space, and thereby nanofibers made of a resin having a diameter of submicron order or nano order are manufactured.
  • Improvement of production efficiency can be cited as an exclusive issue for an apparatus for producing nanofibers using the electrostatic stretching phenomenon as described above.
  • the invention described in Patent Document 1 prevents the electric field interference by disposing a separator in a lattice shape between nozzles and applying an AC voltage to the separator.
  • Patent Document 1 since it is necessary to provide a separator between the nozzles, the interval between the nozzles is increased accordingly, and the production efficiency is reduced. Further, since the nozzle is surrounded by the separator, there is a concern that the charged vapor is likely to stagnate in the enclosed space and adversely affect the manufactured nanofiber. Moreover, it is difficult to make the pressure of the raw material liquid supplied to each nozzle uniform, and it is considered that unevenness occurs in the quality of the manufactured nanofibers.
  • the present inventors have found that even if a separator is provided, ion wind is generated from the outer peripheral wall of the nozzle and the like, and the ion wind has an adverse effect on the manufactured nanofiber.
  • ionic wind is considered to be generated by the following phenomenon. That is, when charge is accumulated in a portion having the outer peripheral wall surface, air existing around the portion is ionized. The ionized air is repelled by the charge on the wall surface and jumps out, thereby generating an ion wind that is a flow of air containing ions.
  • ion wind is likely to be generated at a specific portion of the shape of the outer peripheral wall, such as the tip of a protrusion or the tip of a corner.
  • the ion wind intersects with the raw material liquid flying in the space, it is manufactured by disturbing the flight path of the raw material liquid and the nanofiber being manufactured or adversely affecting the charged state of the raw material liquid.
  • the quality of the nanofiber was degraded. It also led to a decrease in nanofiber production efficiency.
  • the present invention is based on the above-mentioned problems and knowledge, and suppresses electric field interference to maintain a high production amount of nanofibers per unit area per unit time, and suppresses the influence of ion wind to suppress nanofibers. It aims at providing the nanofiber manufacturing apparatus and nanofiber manufacturing method which aim at the improvement and uniformization of the quality of the fiber.
  • a nanofiber manufacturing apparatus is a nanofiber manufacturing apparatus that manufactures nanofibers by electrically stretching a raw material liquid in a space.
  • An outflow body having a plurality of outflow holes to be flowed out, and a distal end portion in which openings, which are the front ends of the outflow holes, are arranged one-dimensionally at a predetermined interval, and a mutual interval increases as the distance from the front end portion increases.
  • An outflow body having two side portions that are arranged so as to sandwich the outflow hole from the tip portion, a supply means for supplying a raw material liquid to the outflow hole at a predetermined pressure, and the outflow And a charging power source for applying a predetermined voltage between the outflow body and the charging electrode.
  • the gap between the opening portions of the outflow holes arranged at a predetermined interval is completely filled with the tip portion, so that electric field interference is unlikely to occur. Therefore, the interval between the openings through which the raw material liquid flows can be reduced as much as possible, and the production amount of nanofibers per unit area can be increased.
  • the effluent body has the narrowest tip portion and has a side surface portion that gradually spreads away from the opening portion, the ionic wind is produced even if ion wind is generated from the side surface portion. It is difficult to fly in a direction that adversely affects nanofibers. Furthermore, since the side surface portion is a surface that extends widely in the direction in which the opening portion is disposed, ion wind is unlikely to be generated. Therefore, the effluent can suppress the influence of the ionic wind on the nanofiber.
  • the outflow body may further include a storage tank that stores the raw material liquid supplied from the supply unit, is connected to the plurality of outflow holes, and supplies the raw material liquid simultaneously to the outflow holes.
  • the raw material liquid supplied by the supply means can be temporarily stored and simultaneously supplied to the outflow hole, the pressure of the raw material liquid supplied to the outflow hole can be made as uniform as possible. It becomes. In addition, the effect can be enjoyed with a simple structure and without increasing the number of parts.
  • the tip portion may be a rectangle having a predetermined width, and may have a width wider than the diameter of the corresponding opening portion arranged at the tip portion.
  • the liquid pool generated around the opening (see the embodiment section for the liquid pool) is sufficiently held by the tip. Then, the raw material liquid flows out thinly from the liquid pool into the space, and an electrostatic stretching phenomenon occurs from there. As described above, since the raw material liquid covers the joint portion between the outflow hole and the tip portion, it is possible to suppress the generation of ion wind.
  • a collecting means for collecting the nanofibers manufactured in the space and an attracting means for attracting the nanofibers to the collecting means may be provided.
  • the outflow body is separable so that a surface formed by the outflow hole is exposed, and the divided outflow body can be assembled.
  • a nanofiber manufacturing method is a nanofiber manufacturing method for manufacturing nanofibers by electrically stretching a raw material liquid in a space.
  • An outflow body having a plurality of outflow holes to be flowed out therein, a front end portion in which openings that are front ends of the outflow holes are arranged one-dimensionally at a predetermined interval, and a distance from each other as the distance from the front end portion increases
  • the gap between the opening portions of the outflow holes arranged at a predetermined interval is completely filled with the tip portion, so that electric field interference is unlikely to occur. Therefore, the interval between the openings through which the raw material liquid flows can be reduced as much as possible, and the production amount of nanofibers per unit area can be increased.
  • the effluent body has the narrowest tip portion and has a side surface portion that gradually spreads away from the opening portion, the ionic wind is produced even if ion wind is generated from the side surface portion. It is difficult to fly in a direction that adversely affects nanofibers. Furthermore, since the side surface portion is a surface that extends widely in the direction in which the opening portion is disposed, ion wind is unlikely to be generated. Therefore, the effluent can suppress the influence of the ionic wind on the nanofiber.
  • FIG. 1 is a perspective view showing a nanofiber manufacturing apparatus.
  • FIG. 2 is a perspective view with the effluent cut away.
  • FIG. 3 is a perspective view showing the outflow body viewed from the tip side.
  • FIG. 4 is a perspective view showing variations of the tip portion.
  • FIG. 5 is a perspective view showing a nanofiber manufacturing apparatus according to another embodiment.
  • FIG. 6 is an exploded perspective view showing a decomposable effluent.
  • FIG. 7 is a perspective view showing another form of the effluent cut away.
  • FIG. 8 is a perspective view showing another form of the effluent cut away.
  • FIG. 9 is a perspective view showing another form of the effluent cut away.
  • FIG. 10 is a perspective view showing another form of the effluent cut away.
  • FIG. 1 is a perspective view showing a nanofiber manufacturing apparatus.
  • the nanofiber manufacturing apparatus 100 is an apparatus that manufactures nanofibers 301 by electrically stretching a raw material liquid 300 in a space, and includes an effluent body 115, a supply means 107, a charging device. An electrode 121 and a charging power source 122 are provided.
  • the nanofiber manufacturing apparatus 100 further includes a collecting unit 128 and an attracting unit 104.
  • the nanofiber manufacturing apparatus 100 includes a moving unit 129.
  • FIG. 2 is a perspective view with the spilled body cut away.
  • the outflow body 115 is a member that causes the raw material liquid 300 to flow out into the space by the pressure of the raw material liquid 300 (which may include gravity), and includes an outflow hole 118, a tip end portion 116, and a side surface portion 117. Furthermore, a storage tank 113 is provided.
  • the outflow body 115 also functions as an electrode for supplying electric charge to the outflowing raw material liquid 300, and at least a part of the portion in contact with the raw material liquid 300 is formed of a conductive member.
  • the entire outflow body 115 is made of metal.
  • Arbitrary materials such as brass and stainless steel, can be selected.
  • the outflow holes 118 are holes through which the raw material liquid 300 flows out into the space, and a plurality of outflow bodies 115 are provided. Moreover, the opening part 119 in the front-end
  • the hole length and hole diameter of the outflow hole 118 are not particularly limited, and a shape suitable for the viscosity of the raw material liquid 300 may be selected.
  • the hole length is preferably selected from a range of 1 mm or more and 5 mm or less.
  • the hole diameter is preferably selected from a range of 0.1 mm or more and 2 mm or less.
  • the shape of the outflow hole 118 is not limited to a cylindrical shape, and an arbitrary shape can be selected.
  • the shape of the opening 119 is not limited to a circular shape, and may be a polygonal shape such as a triangle or a quadrangle, or a shape having a protruding portion such as a star shape.
  • the intervals at which the openings 119 are arranged may be equally spaced, and the interval between the openings 119 at the end of the effluent 115 is wider than the interval between the openings 119 at the center of the effluent 115. (Narrow) can be arbitrarily determined. In the knowledge currently obtained, when the hole diameter of the opening part 119 is 0.3 mm, the pitch of the opening part 119 can be shortened to about 2.5 mm. It should be noted that these hole diameters and pitches may vary depending on other conditions such as the viscosity of the raw material liquid 300.
  • the openings 119 need not only be arranged on the same straight line, but also need only be arranged one-dimensionally.
  • the term “one-dimensional” refers to a state where the opening 119 is not lined up in the width direction of the rectangle when a marginal region where all the openings 119 are arranged is surrounded by a rectangle.
  • the rectangular region where the opening 119 is disposed has a band shape.
  • the opening 119 may be arranged in a zigzag manner, or may be arranged so as to draw a wave such as a sine curve.
  • the front end portion 116 is a portion of the outflow body 115 where the opening portion 119 of the outflow hole 118 is disposed, and is a portion that connects between the opening portions 119 disposed at a predetermined interval with a smooth surface.
  • the distal end portion 116 has an elongated rectangular plane on the surface, and the width thereof is set to be wider than the diameter of the corresponding opening 119.
  • the width of the tip 116 varies depending on the diameter of the outflow hole 118, but is set to 1 mm or more in consideration of the diameter of the base of the liquid reservoir 303 (see FIG. 3 described later) being about 1 mm. It is preferable to do.
  • a liquid pool 303 is generated around the opening 119 due to the presence of the tip 116 having a flat surface all around the opening 119.
  • This liquid reservoir 303 is called a tailor cone, which is considered to be generated by the viscosity of the raw material liquid 300 and has a conical shape having a circular bottom surface larger than the opening 119.
  • the liquid reservoir 303 adheres to the front end portion 116 of the outflow body 115 so as to cover the opening 119. Then, the raw material liquid 300 flows out from the conical liquid pool 303 into the space. Thereby, since the opening part 119 does not contact air directly, it becomes possible to suppress the ionic wind generated from the opening part 119.
  • the tip end portion 116 is not limited to a rectangular flat surface, and the liquid pool 303 may be generated even if it is not a flat surface.
  • tip part 116 may be provided with a curved surface, and as shown in FIG.4 (b), it may be provided with two planes with which the edge part was put together.
  • the tip end portion 116 may have a straight band shape or a zigzag shape or a corrugated shape following the arrangement of the opening portion 119.
  • the front end portion 116 connects a plurality of openings 119 with a plane (in FIG. 4B, the two ends are connected as described above). It is possible to suppress the electric field interference that occurs when they are arranged. In addition, ion wind generated in a region between the opening 119 and the opening 119 can be suppressed. Therefore, even if the openings 119 are arranged in a narrowed state, the nanofibers 301 can be manufactured satisfactorily, and therefore the production amount of the nanofibers 301 per unit time and unit area can be improved. Become.
  • the liquid pool 303 can be held in a good state by the tip portion 116, it is considered that the generation of ion wind can be suppressed and the quality of the nanofiber 301 can be improved and the production efficiency can be improved.
  • the side surface portion 117 is two surfaces disposed so as to sandwich the outflow hole 118, and is a portion of the outflow body 115 that is extended from the distal end portion 116 and disposed in an upright state. Further, the side surface portion 117 is provided so as to extend in the arrangement direction of the outflow holes 118 arranged side by side, and is provided so as to sandwich all the outflow holes 118 between the two side surface portions 117. Further, as shown in FIG. 2, the side surface portions 117 are arranged so that the distance between the side surface portions 117 increases as the distance from the front end portion 116 increases.
  • the angle between the two side surfaces 117 the more concentrated the charge can be at the tip, and the high quality nanofiber 301 can be manufactured with the raw material liquid 300 at a high charge density.
  • the angle between the side surfaces 117 becomes sharper, the volume of the storage tank 113 provided in the outflow body 115 becomes smaller, and processing when the storage tank 113 is provided in the outflow body 115 becomes difficult.
  • the angle between the both side surfaces 117 in the outflow body 115 is not limited to this.
  • the boundary between the tip portion 116 and the side surface portion 117 is ambiguous.
  • the shape of the side surface portion 117 may be not only a flat surface but also a curved surface.
  • the outflow hole 118 when the outflow hole 118 is provided in the peripheral wall of the cylindrical outflow body 115, the position where the outflow hole 118 is arranged on the peripheral wall of the cylindrical outflow body 115 becomes the front end, and the front end (outflow)
  • the peripheral wall portions at both ends sandwiching the position where the holes 118 are disposed become the side surface portions 117.
  • the member which comprises the outflow body 115 can be obtained easily, and a process also becomes easy.
  • the concentration of charges on the tip 116 is inferior to other shapes (for example, the shape of the effluent 115 shown in FIG. 2), the voltage is increased or the position and shape of the charging electrode 121 are devised. Can be covered.
  • the side surface portion 117 is a plane, but the portion where the storage tank 113 is generated may be cylindrical. Further, as shown in FIG. 9, the side surface portion 117 has a shape in which the interval between the front end portion 116 is widened on the curved surface, and the portion forming the storage tank 113 is a rectangular cylindrical shape. It doesn't matter.
  • the outflow body 115 may be an oval cylindrical body.
  • the side parts 117 exemplified above are arranged so that the distance between them increases as the distance from the tip part 116 increases. Moreover, it extends along the arrangement direction of the outflow holes 118 so as to sandwich the outflow holes 118 from the front end portion 116. Moreover, the outflow body 115 which combines each part of the illustrated outflow body 115 is also included in this invention. Further, the side surface portion 117 is a portion of the effluent body 115 having a continuous surface in which the distance between each other increases as the distance from the distal end portion 116 increases.
  • the side surface portion 117 and the front end portion 116 have a smooth surface as a whole and have a shape that suppresses the generation of ion wind without providing a peculiar portion as much as possible (except for the opening portion 119).
  • the outflow body 115 is provided with the side surface portion 117 so as to suppress the generation of the ionic wind, and even if the ionic wind is generated, the ionic wind can be blown in a direction not intersecting with the raw material liquid 300 flowing into the space. Therefore, the nanofiber 301 can be manufactured in a stable state without being affected by the ion wind.
  • the side surface portion 117 is arranged so as to become gradually narrower toward the tip portion 116, electric charges can be easily concentrated on the tip portion 116, and the charges can be efficiently supplied to the raw material liquid 300.
  • the space around the opening 119 can be opened widely, it is possible to avoid charging with charged vapor. Further, it is considered that a gas flow along the side surface portion 117 is generated and the charging vapor is actively avoided.
  • the quality of the manufactured nanofiber 301 can be improved.
  • the storage tank 113 is a tank that is formed inside the outflow body 115 and stores the raw material liquid 300 supplied from the supply means 107 (see FIG. 1).
  • the storage tank 113 is connected to the plurality of outflow holes 118 and supplies the raw material liquid 300 to the outflow holes 118 at the same time.
  • one storage tank 113 is provided in the outflow body 115, is widely provided from one end portion to the other end portion of the outflow body 115, and is connected to all outflow holes 118.
  • the storage tank 113 has a function of temporarily storing the raw material liquid 300 in the vicinity of the outflow holes 118 and supplying the raw material liquid 300 to the plurality of outflow holes 118 with an equal pressure.
  • the raw material liquid 300 can be allowed to flow out from each outflow hole 118 in an even state. Therefore, it is possible to suppress spatial unevenness in the quality of the manufactured nanofiber 301.
  • the supply means 107 is a device that supplies the raw material liquid 300 to the effluent body 115, and includes a container 151 that stores a large amount of the raw material liquid 300 and a pump that conveys the raw material liquid 300 at a predetermined pressure ( (Not shown) and a guide tube 114 for guiding the raw material liquid 300.
  • the charging electrode 121 is disposed at a predetermined interval from the effluent body 115 and has a conductivity for inducing electric charge to the effluent body 115 when the charging electrode 121 is at a higher voltage or lower voltage than the effluent body 115. It is.
  • the charging electrode 121 also functions as an attracting means 104 for attracting the nanofiber 301, is disposed at a position facing the front end portion 116 of the outflow body 115, and is grounded. Therefore, when a positive voltage is applied to the efflux body 115, a negative charge is induced in the charging electrode 121, and when a negative voltage is applied to the efflux body 115, a positive charge is induced in the charging electrode 121. Is done.
  • the charging power source 122 is a power source that can apply a high voltage to the effluent body 115.
  • the charging power source 122 is preferably a DC power source.
  • the charged nanofiber 301 is used to attract the nanofiber 301 with an electrode to which a reverse polarity potential is applied. Is preferably a DC power supply.
  • the charging power source 122 is a direct current power source, the voltage applied by the charging power source 122 to the charging electrode 121 is preferably set from a value in the range of 5 KV or more and 100 KV or less.
  • the relatively large charging electrode 121 can be set to the ground state, which improves safety. It becomes possible to contribute to.
  • a charge may be applied to the raw material liquid 300 by connecting a power source to the charging electrode 121 to maintain the charging electrode 121 at a high voltage and grounding the effluent 115. Further, the charging electrode 121 and the outflow body 115 may be in a connection state in which neither is grounded.
  • the collecting means 128 is a member that deposits and collects the nanofibers 301 manufactured by the electrostatic stretching phenomenon.
  • the collecting means 128 is a sheet of tungsten that is a member that forms a capacitor that is an electronic device, and is supplied in a state of being wound around a roll 127.
  • the collection means 128 is not limited to this.
  • the collecting means 128 may be made of a rigid plate-like member.
  • the collection means 128 having a high releasability when the nanofiber 301 is peeled off, such as coating the surface of the collection means 128 with a fluororesin or silicon. There may be.
  • the attracting means 104 is an apparatus for attracting the nanofibers 301 manufactured in the space to the collecting means 128.
  • the attracting means 104 is a metal plate that also functions as the charging electrode 121 and is disposed behind the collecting means 128.
  • the attracting means 104 attracts the charged nanofiber 301 to the collecting means 128 by an electric field. That is, the attracting means 104 is an electrode for generating an electric field for attracting the charged nanofiber 301.
  • the moving means 129 is a device that relatively moves the outflow body 115 and the collecting means 128.
  • the outflow body 115 is fixed, and only the collecting means 128 is moved.
  • the transfer means is configured to pull out the long collection means 128 from the roll 127 while winding it, and convey the collection means 128 together with the nanofibers 301 to be deposited.
  • the moving means 129 may not only move the collecting means 128 but also move the effluent 115 relative to the collecting means 128.
  • the moving means 129 moves the collecting means 128 in a certain direction.
  • Arbitrary operation states such as reciprocating the outflow body 115, can be exemplified.
  • the collecting means 128 is moved in a direction orthogonal to the direction in which the openings 119 are arranged, the present invention is not limited to this, and the collecting means 128 is moved in the direction in which the openings 119 are arranged, and the effluent 115 is moved to the opening. You may make it reciprocate in the direction orthogonal to the arrangement direction of 119.
  • the resin constituting the nanofiber 301 and the solute dissolved or dispersed in the raw material liquid 300 includes polypropylene, polyethylene, polystyrene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly- m-phenylene terephthalate, poly-p-phenylene isophthalate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinyl chloride, polyvinylidene chloride-acrylate copolymer, polyacrylonitrile, polyacrylonitrile-methacrylate copolymer Coalesced, polycarbonate, polyarylate, polyester carbonate, polyamide, aramid, polyimide, polycaprolactone, polylactic acid, polyglycol , Collagen, polyhydroxybutyrate, poly (vinyl acetate), polypeptide or the like and can be exemplified a polyprop
  • Examples of the solvent used for the raw material liquid 300 include volatile organic solvents. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, hexafluoroisopropanol, tetraethylene glycol, triethylene glycol, dibenzyl alcohol, 1,3-dioxolane, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl.
  • Ketone methyl-n-hexyl ketone, methyl-n-propyl ketone, diisopropyl ketone, diisobutyl ketone, acetone, hexafluoroacetone, phenol, formic acid, methyl formate, ethyl formate, propyl formate, methyl benzoate, ethyl benzoate, benzoate Propyl acid, methyl acetate, ethyl acetate, propyl acetate, dimethyl phthalate, diethyl phthalate, dipropyl phthalate, methyl chloride, ethyl chloride, methylene chloride, chloroform, o-chloroto Ene, p-chlorotoluene, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethane, dichloropropane, dibromoe
  • an inorganic solid material may be added to the raw material liquid 300.
  • the inorganic solid material include oxides, carbides, nitrides, borides, silicides, fluorides, sulfides, and the like. From the viewpoint of heat resistance and workability of the nanofiber 301 to be manufactured. It is preferable to use an oxide.
  • the oxide include Al 2 O 3 , SiO 2 , TiO 2 , Li 2 O, Na 2 O, MgO, CaO, SrO, BaO, B 2 O 3 , P 2 O 5 , SnO 2 , ZrO 2 , K.
  • the mixing ratio of the solvent and the solute in the raw material liquid 300 varies depending on the type of solvent selected and the type of solute, but the amount of solvent is preferably between about 60 wt% and 98 wt%. Preferably, the solute is 5-30%.
  • the raw material liquid 300 is supplied to the effluent 115 by the supply means 107 (supply process). As described above, the raw material liquid 300 is filled in the storage tank 113 of the effluent 115.
  • the charging electrode 121 is set to a positive or negative high voltage by the charging power source 122.
  • Charge concentrates on the front end portion 116 of the outflow body 115 facing the charging electrode 121, and the charge passes through the outflow hole 118 and is transferred to the raw material liquid 300 flowing out into the space, so that the raw material liquid 300 is charged (charging process). ).
  • the charging process and the supplying process are performed at the same time, and the charged raw material liquid 300 flows out from the opening 119 of the effluent body 115 (outflow process).
  • the raw material liquid 300 flowing out from the opening 119 forms a liquid pool 303 that covers the opening 119 and hangs down from the front end 116.
  • the liquid pool 303 is formed for each of a plurality of openings 119, and the raw material liquid 300 hangs down from the tip of the liquid pool 303.
  • the nanofiber 301 is manufactured by the action of the electrostatic stretching phenomenon on the raw material liquid 300 that has flew in the space to some extent (the nanofiber manufacturing process).
  • the raw material liquid 300 flows out in a strong charged state (high charge density) without being influenced by the ion wind, and the raw material liquid 300 flying from each opening 119 flows out in a thin state without being collected. Thereby, most of the raw material liquid 300 is changed to the nanofiber 301.
  • electrostatic stretching occurs over many orders, and a large amount of nanofibers 301 with a small wire diameter are manufactured.
  • the nanofiber 301 is attracted to the collecting means 128 by the electric field generated between the attracting means 104 and the outflow body 115 arranged behind the collecting means 128 (attraction process).
  • the nanofiber 301 is deposited and collected on the collecting means 128 (collecting step). Since the collecting means 128 is slowly transferred by the moving means 129, the nanofiber 301 is also collected as a long belt-like member extending in the transfer direction.
  • nanofiber manufacturing apparatus 100 configured as described above and performing the above nanofiber manufacturing method, high quality nanofibers 301 are not spatially uneven while maintaining high production efficiency. It becomes possible to manufacture uniformly.
  • the charging electrode 121 may be disposed in the vicinity of the effluent 115 and between the effluent 115 and the collecting means 128.
  • the attracting means is further provided with a collecting means 128 having air permeability and capable of depositing the nanofiber 301, and generating a gas flow that collects in a predetermined place.
  • 104 may be provided.
  • the vacuum suction device 141 may be arranged to serve as the attracting means 104 that generates a gas flow from the back of the collecting means 128 toward the collecting means 128.
  • a collection power supply 123 different from (or in common with) the charging power supply 122 is provided, and an electric field method for attracting the nanofibers 301 with an electric field and a gas flow method for attracting with a gas flow can be performed simultaneously or selectively. It doesn't matter if you do.
  • the spilled body 115 may be divided.
  • the present invention can be used for producing nanofibers, spinning using nanofibers, and producing nonwoven fabrics.
  • Nanofiber production apparatus 100
  • Attracting means 107
  • Supplying means 113
  • Storage tank 114
  • Guide tube 115
  • Outflow body 116
  • Tip part 117
  • Side face part 118
  • Outlet hole 119
  • Opening part 121
  • Charging electrode 122
  • Charging power supply 127
  • Roll 128 Collection means 129
  • Moving means 151
  • Container 300
  • Raw material Liquid 301 Nanofiber

Abstract

Disclosed is a nanofiber manufacturing device (100) for manufacturing nanofibers (301) by electrically stretching a starting material liquid (300) in a space, the nanofiber manufacturing device being provided with: a discharge body (115) which has a plurality of discharge holes (118) for discharging the starting material liquid (300) into the space, the discharge body (115) comprising a front end portion (116) at which openings (119) that are the front ends of the discharge holes (118) are one-dimensionally disposed side by side at predetermined intervals, and two side surface portions (117) which are disposed such that the interval therebetween increases with increasing distance from the front end portion (116) and extend from the front end portion (116) so as to sandwich the discharge holes (118) therebetween; a charged electrode (121) which is disposed at a predetermined interval from the discharge body (115); and a charged power source (122) which applies a predetermined voltage between the discharge body (115) and the charged electrode (121), thereby maintaining high production volumes of nanofibers per unit time and per unit area, and improving and uniforming the quality of nanofibers by suppressing the influence of ion wind.

Description

ナノファイバ製造装置、ナノファイバ製造方法Nanofiber manufacturing apparatus and nanofiber manufacturing method
 本願発明は、静電延伸現象によりサブミクロンオーダーやナノオーダーの細さである繊維(ナノファイバ)を製造するナノファイバ製造装置、ナノファイバ製造方法に関する。 The present invention relates to a nanofiber manufacturing apparatus and a nanofiber manufacturing method for manufacturing a fiber (nanofiber) having a fineness of submicron order or nano order by an electrostatic stretching phenomenon.
 樹脂などから成り、サブミクロンスケールやナノスケールの直径を有する糸状(繊維状)物質を製造する方法として、静電延伸現象(エレクトロスピニング)を用いた方法が知られている。 As a method for producing a thread-like (fibrous) substance made of a resin and having a submicron scale or nanoscale diameter, a method using an electrostatic stretching phenomenon (electrospinning) is known.
 この静電延伸現象とは、溶媒中に樹脂などの溶質を分散または溶解させた原料液を空間中にノズルなどにより流出(噴射)させるとともに、原料液に電荷を付与して帯電させ、空間を飛行中の原料液を電気的に延伸させることにより、ナノファイバを得る方法である。 This electrostatic stretching phenomenon means that a raw material liquid in which a solute such as a resin is dispersed or dissolved in a solvent is discharged (injected) into the space by a nozzle or the like, and an electric charge is applied to the raw material liquid to charge the space. This is a method of obtaining nanofibers by electrically stretching a raw material liquid in flight.
 より具体的に静電延伸現象を説明すると次のようになる。すなわち、帯電され空間中に流出された原料液は、空間を飛行中に徐々に溶媒が蒸発していく。これにより、飛行中の原料液の体積は、徐々に減少していくが、原料液に付与された電荷は、原料液に留まる。この結果として、空間を飛行中の原料液は、電荷密度が徐々に上昇することとなる。そして、溶媒は、継続して蒸発し続けるため、原料液の電荷密度がさらに高まり、原料液の中に発生する反発方向のクーロン力が原料液の表面張力より勝った時点で原料液が爆発的に線状に延伸される現象が生じる。これが静電延伸現象である。この静電延伸現象が、空間において次々と幾何級数的に発生することで、直径がサブミクロンオーダーやナノオーダーの樹脂から成るナノファイバが製造される。 More specifically, the electrostatic stretching phenomenon is explained as follows. That is, the raw material liquid that has been charged and discharged into the space gradually evaporates the solvent while flying through the space. As a result, the volume of the raw material liquid in flight gradually decreases, but the charge imparted to the raw material liquid remains in the raw material liquid. As a result, the charge density of the raw material liquid in flight through the space gradually increases. Since the solvent continues to evaporate, the charge density of the raw material liquid further increases, and when the repulsive Coulomb force generated in the raw material liquid exceeds the surface tension of the raw material liquid, the raw material liquid explodes. The phenomenon that the film is stretched linearly occurs. This is the electrostatic stretching phenomenon. The electrostatic stretching phenomenon occurs geometrically in succession in the space, and thereby nanofibers made of a resin having a diameter of submicron order or nano order are manufactured.
 以上のような静電延伸現象を用いてナノファイバを製造する装置の専らの課題として生産効率の向上が挙げられる。例えば、原料液を空間中に流出させる円筒状のノズルをマトリクス状に配置し、単位時間あたり単位面積あたりのナノファイバの発生量を増加させ、ナノファイバの生産効率を向上させることが考えられる。しかし、単位面積あたりのナノファイバの発生量を増加させるためには、ノズルの配置間隔を狭めればよいが、間隔が狭まると隣接するノズル同士が電界干渉を起こして発生するナノファイバに不具合が発生する。そこで当該課題を解決するために特許文献1に記載の発明は、ノズルの間に格子状に隔離板を配置し、該隔離板に交流電圧を印加することで、電界干渉を防止している。 Improvement of production efficiency can be cited as an exclusive issue for an apparatus for producing nanofibers using the electrostatic stretching phenomenon as described above. For example, it is conceivable to improve the production efficiency of nanofibers by arranging cylindrical nozzles that flow the raw material liquid into the space in a matrix, increasing the amount of nanofibers generated per unit area per unit time. However, in order to increase the amount of nanofibers generated per unit area, it is only necessary to narrow the nozzle arrangement interval. However, if the interval is narrowed, there is a problem with the nanofibers that are generated due to electric field interference between adjacent nozzles. appear. Therefore, in order to solve the problem, the invention described in Patent Document 1 prevents the electric field interference by disposing a separator in a lattice shape between nozzles and applying an AC voltage to the separator.
特開2008-174867号公報JP 2008-174867 A
 ところが、特許文献1の発明では、ノズルの間に隔離板を設ける必要があるため、その分ノズルの間隔が広くなり、生産効率低下を招くことになる。また、ノズルを隔離板で囲うことになるため、当該囲われた空間に帯電蒸気が滞りやすくなり製造されるナノファイバに悪影響を及ぼすことが懸念される。また、各ノズルに供給される原料液の圧力を均一にするのは難しく、製造されるナノファイバの質にムラが発生することが考えられる。 However, in the invention of Patent Document 1, since it is necessary to provide a separator between the nozzles, the interval between the nozzles is increased accordingly, and the production efficiency is reduced. Further, since the nozzle is surrounded by the separator, there is a concern that the charged vapor is likely to stagnate in the enclosed space and adversely affect the manufactured nanofiber. Moreover, it is difficult to make the pressure of the raw material liquid supplied to each nozzle uniform, and it is considered that unevenness occurs in the quality of the manufactured nanofibers.
 さらに、本願発明者らは、隔離板が設けられていたとしても、ノズルの外周壁などからイオン風が発生し、該イオン風が製造されるナノファイバに悪影響を及ぼすことを見いだすに至った。 Furthermore, the present inventors have found that even if a separator is provided, ion wind is generated from the outer peripheral wall of the nozzle and the like, and the ion wind has an adverse effect on the manufactured nanofiber.
 ここで、イオン風は、次のような現象で発生すると考えられている。すなわち、外周壁面のある部分に電荷が溜まると、該部分の周辺に存在する空気がイオン化する。そして、イオン化した空気が壁面の電荷に反発して飛び出すことで、イオンを含んだ空気の流れであるイオン風が発生する。特にイオン風は、例えば、突起部の先端や角の先端など、外周壁の形状の特異な部分で発生し易いという知見を得ている。 Here, ionic wind is considered to be generated by the following phenomenon. That is, when charge is accumulated in a portion having the outer peripheral wall surface, air existing around the portion is ionized. The ionized air is repelled by the charge on the wall surface and jumps out, thereby generating an ion wind that is a flow of air containing ions. In particular, it has been found that ion wind is likely to be generated at a specific portion of the shape of the outer peripheral wall, such as the tip of a protrusion or the tip of a corner.
 また、当該イオン風が空間中を飛行している原料液と交差すると、原料液や製造されつつあるナノファイバの飛行経路を乱したり、原料液の帯電状態に悪影響を及ぼしたりして製造されるナノファイバの品質が低下していた。また、ナノファイバの生産効率の低下にもつながっていた。 In addition, when the ion wind intersects with the raw material liquid flying in the space, it is manufactured by disturbing the flight path of the raw material liquid and the nanofiber being manufactured or adversely affecting the charged state of the raw material liquid. The quality of the nanofiber was degraded. It also led to a decrease in nanofiber production efficiency.
 本願発明は、前記問題点や知見に基づくものであり、電界干渉を抑制して単位時間あたり単位面積あたりのナノファイバの生産量を高い状態に維持し、イオン風の影響を抑制してナノファイバの質の向上と均一化を図るナノファイバ製造装置、ナノファイバ製造方法の提供を目的としている。 The present invention is based on the above-mentioned problems and knowledge, and suppresses electric field interference to maintain a high production amount of nanofibers per unit area per unit time, and suppresses the influence of ion wind to suppress nanofibers. It aims at providing the nanofiber manufacturing apparatus and nanofiber manufacturing method which aim at the improvement and uniformization of the quality of the fiber.
 上記目的を達成するために、本願発明にかかるナノファイバ製造装置は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置であって、原料液を空間中に流出させる流出孔を複数有する流出体であり、前記流出孔の先端である開口部が所定の間隔で一次元的に並んで配置される先端部と、前記先端部から離れるに従い相互の間隔が広がるように配置され、前記先端部から前記流出孔を挟むように延設される二つの側面部とを有する流出体と、前記流出孔に所定の圧力で原料液を供給する供給手段と、前記流出体と所定の間隔を隔てて配置される帯電電極と、前記流出体と前記帯電電極との間に所定の電圧を印加する帯電電源とを備えることを特徴としている。 In order to achieve the above object, a nanofiber manufacturing apparatus according to the present invention is a nanofiber manufacturing apparatus that manufactures nanofibers by electrically stretching a raw material liquid in a space. An outflow body having a plurality of outflow holes to be flowed out, and a distal end portion in which openings, which are the front ends of the outflow holes, are arranged one-dimensionally at a predetermined interval, and a mutual interval increases as the distance from the front end portion increases. An outflow body having two side portions that are arranged so as to sandwich the outflow hole from the tip portion, a supply means for supplying a raw material liquid to the outflow hole at a predetermined pressure, and the outflow And a charging power source for applying a predetermined voltage between the outflow body and the charging electrode.
 これにより、所定間隔で配置される流出孔の開口部の隙間が先端部によって埋め尽くされた状態となるため、電界干渉が発生しにくい状態となる。したがって、原料液が流出する開口部の間隔を可及的に狭めることができ、単位面積あたりのナノファイバの生産量を増加させることが可能となる。 Thereby, the gap between the opening portions of the outflow holes arranged at a predetermined interval is completely filled with the tip portion, so that electric field interference is unlikely to occur. Therefore, the interval between the openings through which the raw material liquid flows can be reduced as much as possible, and the production amount of nanofibers per unit area can be increased.
 また、流出体は、先端部の幅が最も狭く、開口部から遠ざかるに従って徐々に広がるように側面部を備えているため、たとえ側面部からイオン風が発生したとしても、該イオン風が製造されるナノファイバに悪影響を与える方向に飛翔し難い構造となっている。さらに、側面部は開口部が配置される方向に広く延びる面であるため、イオン風が発生しにくい。従って、流出体はイオン風がナノファイバに与える影響を抑制することが可能となる。 In addition, since the effluent body has the narrowest tip portion and has a side surface portion that gradually spreads away from the opening portion, the ionic wind is produced even if ion wind is generated from the side surface portion. It is difficult to fly in a direction that adversely affects nanofibers. Furthermore, since the side surface portion is a surface that extends widely in the direction in which the opening portion is disposed, ion wind is unlikely to be generated. Therefore, the effluent can suppress the influence of the ionic wind on the nanofiber.
 前記流出体はさらに、前記供給手段から供給される原料液を貯留し、複数の前記流出孔に接続され、前記流出孔に同時に原料液を供給する貯留槽を備えていてもよい。 The outflow body may further include a storage tank that stores the raw material liquid supplied from the supply unit, is connected to the plurality of outflow holes, and supplies the raw material liquid simultaneously to the outflow holes.
 これによれば、供給手段により供給される原料液を一旦貯留し、同時に原料液を流出孔に供給することができる為、流出孔に供給する原料液の圧力をできる限り均等にすることが可能となる。また、当該効果を簡単な構造でかつ、部品点数を増加させることなく享受することが可能となる。 According to this, since the raw material liquid supplied by the supply means can be temporarily stored and simultaneously supplied to the outflow hole, the pressure of the raw material liquid supplied to the outflow hole can be made as uniform as possible. It becomes. In addition, the effect can be enjoyed with a simple structure and without increasing the number of parts.
 また、前記先端部は、所定幅の矩形であり、前記先端部に配置される対応する前記開口部の径よりも広い幅であってもよい。 Further, the tip portion may be a rectangle having a predetermined width, and may have a width wider than the diameter of the corresponding opening portion arranged at the tip portion.
 これによれば開口部の周囲に発生する液溜まり(液溜まりについては実施の形態の項参照)を先端部により充分に保持される。そして、液溜まりから原料液が空間中に細く流出し、そこから静電延伸現象が発生する。以上によって、流出孔と先端部との接合部分を原料液が覆い隠すため、イオン風の発生を抑制することが可能となる。 According to this, the liquid pool generated around the opening (see the embodiment section for the liquid pool) is sufficiently held by the tip. Then, the raw material liquid flows out thinly from the liquid pool into the space, and an electrostatic stretching phenomenon occurs from there. As described above, since the raw material liquid covers the joint portion between the outflow hole and the tip portion, it is possible to suppress the generation of ion wind.
 さらに、空間中で製造されるナノファイバを収集する収集手段と、前記収集手段にナノファイバを誘引する誘引手段とを備えてもよい。 Furthermore, a collecting means for collecting the nanofibers manufactured in the space and an attracting means for attracting the nanofibers to the collecting means may be provided.
 これにより、製造されたナノファイバを堆積する対象を限定して、機能的な材料などを製造することが可能となる。 This makes it possible to manufacture functional materials and the like by limiting the targets on which the manufactured nanofibers are deposited.
 さらに、前記流出体と、前記収集手段とを相対的に移動させる移動手段を備えてもよい。 Furthermore, you may provide the moving means which moves the said outflow body and the said collection means relatively.
 これにより、広範囲にわたって均一にナノファイバを堆積させることが可能となる。 This makes it possible to deposit nanofibers uniformly over a wide range.
 また、前記流出体は、前記流出孔の形成する面が露出するように分割可能で、かつ、分割された流出体を組立可能に構成されることが好ましい。 Further, it is preferable that the outflow body is separable so that a surface formed by the outflow hole is exposed, and the divided outflow body can be assembled.
 これにより、流出体のメンテナンス性が向上する。 This improves the maintainability of the spilled body.
 また、上記目的を達成するために、本願発明にかかるナノファイバ製造方法は、原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造方法であって、原料液を空間中に流出させる流出孔を複数有する流出体であり、前記流出孔の先端である開口部が所定の間隔で一次元的に並んで配置される先端部と、前記先端部から離れるに従い相互の間隔が広がるように配置され、前記先端部から前記流出孔を挟むように延設される二つの側面部とを有する流出体から原料液を流出させる流出工程と、供給手段により前記流出孔に所定の圧力で原料液を供給する供給工程と、前記流出体と所定の間隔を隔てて配置される帯電電極と、前記流出体との間に所定の電圧を印加する帯電工程とを含むことを特徴としている。 In order to achieve the above object, a nanofiber manufacturing method according to the present invention is a nanofiber manufacturing method for manufacturing nanofibers by electrically stretching a raw material liquid in a space. An outflow body having a plurality of outflow holes to be flowed out therein, a front end portion in which openings that are front ends of the outflow holes are arranged one-dimensionally at a predetermined interval, and a distance from each other as the distance from the front end portion increases An outflow step for flowing out the raw material liquid from an outflow body having two side portions extending from the tip end portion so as to sandwich the outflow hole, and a predetermined amount in the outflow hole by the supply means A supply step of supplying a raw material liquid under pressure, a charging electrode arranged at a predetermined interval from the effluent, and a charging step of applying a predetermined voltage between the effluent. Yes.
 これにより、所定間隔で配置される流出孔の開口部の隙間が先端部によって埋め尽くされた状態となるため、電界干渉が発生しにくい状態となる。したがって、原料液が流出する開口部の間隔を可及的に狭めることができ、単位面積あたりのナノファイバの生産量を増加させることが可能となる。 Thereby, the gap between the opening portions of the outflow holes arranged at a predetermined interval is completely filled with the tip portion, so that electric field interference is unlikely to occur. Therefore, the interval between the openings through which the raw material liquid flows can be reduced as much as possible, and the production amount of nanofibers per unit area can be increased.
 また、流出体は、先端部の幅が最も狭く、開口部から遠ざかるに従って徐々に広がるように側面部を備えているため、たとえ側面部からイオン風が発生したとしても、該イオン風が製造されるナノファイバに悪影響を与える方向に飛翔し難い構造となっている。さらに、側面部は開口部が配置される方向に広く延びる面であるため、イオン風が発生しにくい。従って、流出体はイオン風がナノファイバに与える影響を抑制することが可能となる。 In addition, since the effluent body has the narrowest tip portion and has a side surface portion that gradually spreads away from the opening portion, the ionic wind is produced even if ion wind is generated from the side surface portion. It is difficult to fly in a direction that adversely affects nanofibers. Furthermore, since the side surface portion is a surface that extends widely in the direction in which the opening portion is disposed, ion wind is unlikely to be generated. Therefore, the effluent can suppress the influence of the ionic wind on the nanofiber.
 本願発明によれば、ナノファイバの生産効率を向上させると共に、製造されるナノファイバの品質の向上を図ることが可能となる。 According to the present invention, it is possible to improve the production efficiency of nanofibers and improve the quality of manufactured nanofibers.
図1は、ナノファイバ製造装置を示す斜示図である。FIG. 1 is a perspective view showing a nanofiber manufacturing apparatus. 図2は、流出体を切り欠いて示す斜示図である。FIG. 2 is a perspective view with the effluent cut away. 図3は、先端部側から見た流出体を示す斜示図である。FIG. 3 is a perspective view showing the outflow body viewed from the tip side. 図4は、先端部のバリエーションを示す斜示図である。FIG. 4 is a perspective view showing variations of the tip portion. 図5は、他の実施形態に係るナノファイバ製造装置を示す斜示図である。FIG. 5 is a perspective view showing a nanofiber manufacturing apparatus according to another embodiment. 図6は、分解可能な流出体を示す分解斜示図である。FIG. 6 is an exploded perspective view showing a decomposable effluent. 図7は、他の形態の流出体を切り欠いて示す斜示図である。FIG. 7 is a perspective view showing another form of the effluent cut away. 図8は、他の形態の流出体を切り欠いて示す斜示図である。FIG. 8 is a perspective view showing another form of the effluent cut away. 図9は、他の形態の流出体を切り欠いて示す斜示図である。FIG. 9 is a perspective view showing another form of the effluent cut away. 図10は、他の形態の流出体を切り欠いて示す斜示図である。FIG. 10 is a perspective view showing another form of the effluent cut away.
 (実施の形態1)
 次に、本願発明に係るナノファイバ製造装置、ナノファイバ製造方法を、図面を参照しつつ説明する。
(Embodiment 1)
Next, a nanofiber manufacturing apparatus and a nanofiber manufacturing method according to the present invention will be described with reference to the drawings.
 図1は、ナノファイバ製造装置を示す斜示図である。 FIG. 1 is a perspective view showing a nanofiber manufacturing apparatus.
 同図に示すように、ナノファイバ製造装置100は、原料液300を空間中で電気的に延伸させて、ナノファイバ301を製造する装置であって、流出体115と、供給手段107と、帯電電極121と、帯電電源122とを備えている。本実施の形態の場合さらに、ナノファイバ製造装置100は、収集手段128と、誘引手段104とを備えている。さらに、ナノファイバ製造装置100は、移動手段129を備えている。 As shown in the figure, the nanofiber manufacturing apparatus 100 is an apparatus that manufactures nanofibers 301 by electrically stretching a raw material liquid 300 in a space, and includes an effluent body 115, a supply means 107, a charging device. An electrode 121 and a charging power source 122 are provided. In the case of the present embodiment, the nanofiber manufacturing apparatus 100 further includes a collecting unit 128 and an attracting unit 104. Furthermore, the nanofiber manufacturing apparatus 100 includes a moving unit 129.
 図2は、流出体を切り欠いて示す斜示図である。 FIG. 2 is a perspective view with the spilled body cut away.
 流出体115は、原料液300の圧力(重力も含む場合がある)により原料液300を空間中に流出させるための部材であり、流出孔118と、先端部116と、側面部117とを備え、さらに、貯留槽113を備えている。また、流出体115は、流出する原料液300に電荷を供給する電極としても機能しており、原料液300と接触する部分の少なくとも一部は導電性を備えた部材で形成される。本実施の形態の場合、流出体115全体が金属で形成されている。なお、金属の種類は導電性を備えておれば、特に限定されるものではなく、黄銅やステンレス鋼など任意の材料を選定しうる。 The outflow body 115 is a member that causes the raw material liquid 300 to flow out into the space by the pressure of the raw material liquid 300 (which may include gravity), and includes an outflow hole 118, a tip end portion 116, and a side surface portion 117. Furthermore, a storage tank 113 is provided. The outflow body 115 also functions as an electrode for supplying electric charge to the outflowing raw material liquid 300, and at least a part of the portion in contact with the raw material liquid 300 is formed of a conductive member. In the case of the present embodiment, the entire outflow body 115 is made of metal. In addition, if the kind of metal is provided with electroconductivity, it will not specifically limit, Arbitrary materials, such as brass and stainless steel, can be selected.
 流出孔118は、原料液300を空間中に流出させる孔であり、流出体115に複数個設けられている。また、流出孔118の先端にある開口部119は、所定の間隔で一次元的に並んで配置されている。本実施の形態の場合、流出孔118は、開口部119が同一平面内に直線的に並ぶように配置されており、開口部119が配置される方向に対し流出孔118の軸が直角に交わるように配置されている。 The outflow holes 118 are holes through which the raw material liquid 300 flows out into the space, and a plurality of outflow bodies 115 are provided. Moreover, the opening part 119 in the front-end | tip of the outflow hole 118 is arrange | positioned along with the predetermined spacing one-dimensionally. In the case of the present embodiment, the outflow holes 118 are arranged so that the openings 119 are linearly arranged in the same plane, and the axis of the outflow holes 118 intersects at right angles to the direction in which the openings 119 are arranged. Are arranged as follows.
 流出孔118の孔長や孔径は、特に限定されるものではなく、原料液300の粘度などにより適した形状を選定すれば良い。具体的には、孔長は、1mm以上、5mm以下の範囲から選定されるのが好ましい。孔径は、0.1mm以上、2mm以下の範囲から選定されるのが好ましい。また、流出孔118の形状は、円筒形状に限定されるわけではなく、任意の形状を選定しうる。特に開口部119の形状は、円形に限定されるわけではなく、三角形や四角形などの多角形、星形など内側に突出する部分のある形状などでもかまわない。 The hole length and hole diameter of the outflow hole 118 are not particularly limited, and a shape suitable for the viscosity of the raw material liquid 300 may be selected. Specifically, the hole length is preferably selected from a range of 1 mm or more and 5 mm or less. The hole diameter is preferably selected from a range of 0.1 mm or more and 2 mm or less. Further, the shape of the outflow hole 118 is not limited to a cylindrical shape, and an arbitrary shape can be selected. In particular, the shape of the opening 119 is not limited to a circular shape, and may be a polygonal shape such as a triangle or a quadrangle, or a shape having a protruding portion such as a star shape.
 また、開口部119が並べられる間隔は、全てを等間隔としてもよく、また、流出体115の端部における開口部119の間隔は、流出体115の中央部における開口部119の間隔よりも広く(狭く)するなど任意に定めることができる。現在得られている知見において、開口部119の孔径が0.3mmの場合、開口部119のピッチは、2.5mm程度までは短縮可能である。なお、これら孔径やピッチなどは、原料液300の粘度など他の条件により変化することが考えられる。 The intervals at which the openings 119 are arranged may be equally spaced, and the interval between the openings 119 at the end of the effluent 115 is wider than the interval between the openings 119 at the center of the effluent 115. (Narrow) can be arbitrarily determined. In the knowledge currently obtained, when the hole diameter of the opening part 119 is 0.3 mm, the pitch of the opening part 119 can be shortened to about 2.5 mm. It should be noted that these hole diameters and pitches may vary depending on other conditions such as the viscosity of the raw material liquid 300.
 また、開口部119は、同一直線上に配置されるばかりでなく、一次元的に並べられていればよい。ここで、一次元的とは、全ての開口部119が配置されるぎりぎりの領域を矩形で囲った場合、開口部119が前記矩形の幅方向には並ばない状態をいう。また、前記開口部119が配置される矩形の領域は、帯形状となる。この意味において、開口部119は、ジグザグに配置されてもよく、サインカーブなどの波を描くように配置されてもよい。 Moreover, the openings 119 need not only be arranged on the same straight line, but also need only be arranged one-dimensionally. Here, the term “one-dimensional” refers to a state where the opening 119 is not lined up in the width direction of the rectangle when a marginal region where all the openings 119 are arranged is surrounded by a rectangle. The rectangular region where the opening 119 is disposed has a band shape. In this sense, the opening 119 may be arranged in a zigzag manner, or may be arranged so as to draw a wave such as a sine curve.
 先端部116は、流出孔118の開口部119が配置される流出体115の部分であり、所定の間隔で配置される開口部119の間を滑らかな面で接続する部分である。本実施の形態の場合、先端部116は、細長い矩形の平面を表面に備え、その幅は、対応する開口部119の径よりも広くなるように設定されている。具体的に例えば、先端部116の幅は、流出孔118の孔径により異なるが、液溜まり303(後述、図3参照)の根元の径が1mm程となることを勘案して、1mm以上に設定することが好ましい。 The front end portion 116 is a portion of the outflow body 115 where the opening portion 119 of the outflow hole 118 is disposed, and is a portion that connects between the opening portions 119 disposed at a predetermined interval with a smooth surface. In the case of the present embodiment, the distal end portion 116 has an elongated rectangular plane on the surface, and the width thereof is set to be wider than the diameter of the corresponding opening 119. Specifically, for example, the width of the tip 116 varies depending on the diameter of the outflow hole 118, but is set to 1 mm or more in consideration of the diameter of the base of the liquid reservoir 303 (see FIG. 3 described later) being about 1 mm. It is preferable to do.
 図3に示すように、開口部119の周囲の全てにわたって表面が平面の先端部116が存在することにより、開口部119の周りに液溜まり303が発生する。この液溜まり303は、テーラーコーンと称されており、原料液300の粘性により発生すると考えられ、開口部119よりも大きな円形の底面を備える円錐形状となっている。液溜まり303は、開口部119を覆うように流出体115の先端部116に付着する。そして、円錐状の液溜まり303から原料液300が空間中に細く流出するものとなっている。これにより開口部119が空気と直接接触しないので、開口部119から発生するイオン風を抑制することが可能となる。 As shown in FIG. 3, a liquid pool 303 is generated around the opening 119 due to the presence of the tip 116 having a flat surface all around the opening 119. This liquid reservoir 303 is called a tailor cone, which is considered to be generated by the viscosity of the raw material liquid 300 and has a conical shape having a circular bottom surface larger than the opening 119. The liquid reservoir 303 adheres to the front end portion 116 of the outflow body 115 so as to cover the opening 119. Then, the raw material liquid 300 flows out from the conical liquid pool 303 into the space. Thereby, since the opening part 119 does not contact air directly, it becomes possible to suppress the ionic wind generated from the opening part 119.
 なお、先端部116は、矩形の平面を備えるものに限定されるわけではなく、また、平面ではなくとも液溜まり303が発生する場合もある。例えば図4(a)に示すように、先端部116は曲面を備えてもよく、また、図4(b)に示すように、端部がつきあわされた二つの平面を備えていてもよい。 Note that the tip end portion 116 is not limited to a rectangular flat surface, and the liquid pool 303 may be generated even if it is not a flat surface. For example, as shown to Fig.4 (a), the front-end | tip part 116 may be provided with a curved surface, and as shown in FIG.4 (b), it may be provided with two planes with which the edge part was put together.
 また、先端部116は、上述したように開口部119がジグザグや波形に配置された場合、まっすぐな帯形状でもよく、開口部119の配置に追随したジグザグ形状や波形等であってもよい。 Further, when the opening 119 is arranged in a zigzag shape or a corrugated shape as described above, the tip end portion 116 may have a straight band shape or a zigzag shape or a corrugated shape following the arrangement of the opening portion 119.
 以上のように、先端部116は、複数存在する開口部119の間を面でつなげている(図4(b)では、上記のように二つの平面でつなげている)ため、複数のノズルを並べたときに発生する電界干渉を抑制することが可能となる。また、開口部119と開口部119との間の領域で発生するイオン風を抑制することができる。従って、開口部119の間隔を狭めた状態で配置しても、良好にナノファイバ301を製造することができるため、単位時間、単位面積あたりのナノファイバ301の生産量を向上させることが可能となる。 As described above, the front end portion 116 connects a plurality of openings 119 with a plane (in FIG. 4B, the two ends are connected as described above). It is possible to suppress the electric field interference that occurs when they are arranged. In addition, ion wind generated in a region between the opening 119 and the opening 119 can be suppressed. Therefore, even if the openings 119 are arranged in a narrowed state, the nanofibers 301 can be manufactured satisfactorily, and therefore the production amount of the nanofibers 301 per unit time and unit area can be improved. Become.
 また、先端部116により液溜まり303を良好な状態で保持することが可能であるため、イオン風の発生を抑制し、ナノファイバ301の品質向上や生産効率の向上が図れると考えられる。 Further, since the liquid pool 303 can be held in a good state by the tip portion 116, it is considered that the generation of ion wind can be suppressed and the quality of the nanofiber 301 can be improved and the production efficiency can be improved.
 図2において、側面部117は、流出孔118を挟むように配置される二つの面であり、先端部116から延設され、起立状態で配置される流出体115の部分である。また、側面部117は、並んで配置されている流出孔118の配置方向に延びた状態で設けられており、全ての流出孔118を二つの側面部117で挟むように設けられている。また、側面部117は、図2に示すように、先端部116から離れるに従い相互の間隔が広がるように配置されている。双方の側面部117の間の角度は、鋭角である程先端部に電荷を集中することができ、原料液300を高い電荷密度として高品質なナノファイバ301を製造することが可能となる。一方、双方の側面部117の間の角度が鋭角になる程、流出体115に備えられる貯留槽113の容積が小さくなり、また、流出体115に貯留槽113を設ける際の加工が難しくなる。以上を勘案し、双方の側面部117の間の角度は60度程度に設定することが好ましい。但し、流出体115における双方の側面部117の間の角度はこれに限定されるものでは無い。 In FIG. 2, the side surface portion 117 is two surfaces disposed so as to sandwich the outflow hole 118, and is a portion of the outflow body 115 that is extended from the distal end portion 116 and disposed in an upright state. Further, the side surface portion 117 is provided so as to extend in the arrangement direction of the outflow holes 118 arranged side by side, and is provided so as to sandwich all the outflow holes 118 between the two side surface portions 117. Further, as shown in FIG. 2, the side surface portions 117 are arranged so that the distance between the side surface portions 117 increases as the distance from the front end portion 116 increases. The sharper the angle between the two side surfaces 117, the more concentrated the charge can be at the tip, and the high quality nanofiber 301 can be manufactured with the raw material liquid 300 at a high charge density. On the other hand, as the angle between the side surfaces 117 becomes sharper, the volume of the storage tank 113 provided in the outflow body 115 becomes smaller, and processing when the storage tank 113 is provided in the outflow body 115 becomes difficult. Considering the above, it is preferable to set the angle between the side portions 117 to about 60 degrees. However, the angle between the both side surfaces 117 in the outflow body 115 is not limited to this.
 なお、図4(a)、図4(b)に示すように先端部116と側面部117との境界は曖昧である。また、側面部117の形状は、平面ばかりでなく、曲面であってもかまわない。例えば図7に示すように、円筒形の流出体115の周壁に流出孔118を設けた場合、円筒形の流出体115の周壁における流出孔118の配置箇所が先端部となり、その先端部(流出孔118の配置箇所)を挟む両端の周壁部が側面部117となる。この場合、流出体115を構成する部材を容易に入手することができ、また、加工も容易となる。一方、先端部116への電荷の集中が他の形状(例えば、図2に示す流出体115の形状)よりも劣るが、電圧を高くしたり、帯電電極121の位置や形状を工夫したりすることでカバー可能である。また、図8に示すように、側面部117は、平面であるが、貯留槽113が生成される部分は円筒形であってもかまわない。また、図9に示すように、側面部117は、先端部116を挟んで相互の間隔が曲面上に広がる形状となっており、また、貯留槽113を形成する部分は矩形の筒形状であってもかまわない。さらに、図10に示すように、流出体115は、断面形状が卵形の筒体であってもかまわない。 Note that, as shown in FIGS. 4A and 4B, the boundary between the tip portion 116 and the side surface portion 117 is ambiguous. Further, the shape of the side surface portion 117 may be not only a flat surface but also a curved surface. For example, as shown in FIG. 7, when the outflow hole 118 is provided in the peripheral wall of the cylindrical outflow body 115, the position where the outflow hole 118 is arranged on the peripheral wall of the cylindrical outflow body 115 becomes the front end, and the front end (outflow) The peripheral wall portions at both ends sandwiching the position where the holes 118 are disposed become the side surface portions 117. In this case, the member which comprises the outflow body 115 can be obtained easily, and a process also becomes easy. On the other hand, although the concentration of charges on the tip 116 is inferior to other shapes (for example, the shape of the effluent 115 shown in FIG. 2), the voltage is increased or the position and shape of the charging electrode 121 are devised. Can be covered. As shown in FIG. 8, the side surface portion 117 is a plane, but the portion where the storage tank 113 is generated may be cylindrical. Further, as shown in FIG. 9, the side surface portion 117 has a shape in which the interval between the front end portion 116 is widened on the curved surface, and the portion forming the storage tank 113 is a rectangular cylindrical shape. It doesn't matter. Furthermore, as shown in FIG. 10, the outflow body 115 may be an oval cylindrical body.
 以上に例示した側面部117は、先端部116から離れるに従い相互の間隔が広がるように配置されている。また、先端部116から流出孔118を挟むように流出孔118の並び方向に沿って延設されている。また、例示した流出体115の各部分を組み合わせてできる流出体115も、本願発明に含まれる。また、先端部116から離れるに従い相互の間隔が広がるような連続的な面を備える流出体115の部分が側面部117である。 The side parts 117 exemplified above are arranged so that the distance between them increases as the distance from the tip part 116 increases. Moreover, it extends along the arrangement direction of the outflow holes 118 so as to sandwich the outflow holes 118 from the front end portion 116. Moreover, the outflow body 115 which combines each part of the illustrated outflow body 115 is also included in this invention. Further, the side surface portion 117 is a portion of the effluent body 115 having a continuous surface in which the distance between each other increases as the distance from the distal end portion 116 increases.
 側面部117や先端部116は、全体にわたって滑らかな表面を備えており、できる限り特異な部分を設けることなく(開口部119は除く)イオン風の発生を抑制する形状とすることが望ましい。 It is desirable that the side surface portion 117 and the front end portion 116 have a smooth surface as a whole and have a shape that suppresses the generation of ion wind without providing a peculiar portion as much as possible (except for the opening portion 119).
 流出体115は、上記側面部117を備えることで、イオン風の発生を抑制し、また、イオン風が発生したとしても、空間中に流出する原料液300と交差しない方向にイオン風を飛ばせることができるため、イオン風が影響を及ぼすことなく安定した状態でナノファイバ301を製造することが可能となる。 The outflow body 115 is provided with the side surface portion 117 so as to suppress the generation of the ionic wind, and even if the ionic wind is generated, the ionic wind can be blown in a direction not intersecting with the raw material liquid 300 flowing into the space. Therefore, the nanofiber 301 can be manufactured in a stable state without being affected by the ion wind.
 また、側面部117は先端部116に向かって徐々に細くなるように配置されているため、先端部116に電荷が集中させやすく、原料液300に効率的に電荷を供給することができる。 Further, since the side surface portion 117 is arranged so as to become gradually narrower toward the tip portion 116, electric charges can be easily concentrated on the tip portion 116, and the charges can be efficiently supplied to the raw material liquid 300.
 さらに、開口部119の周囲の空間を広く開放することができるため、帯電蒸気が充満することを回避することが可能となる。また、側面部117に沿った気体の流れが発生し、帯電蒸気の充満を積極的に回避しているとも考えられる。 Furthermore, since the space around the opening 119 can be opened widely, it is possible to avoid charging with charged vapor. Further, it is considered that a gas flow along the side surface portion 117 is generated and the charging vapor is actively avoided.
 また例えば、開口部119近傍から原料液300の流出方向の下流側に向かう風を発生させると、側面部117から原料液300に沿って流出方向(下方)に帯電蒸気やイオン風を排除することができ、製造されるナノファイバ301の品質の向上を図ることが可能となる。 Further, for example, when a wind is generated from the vicinity of the opening 119 toward the downstream side in the outflow direction of the raw material liquid 300, the charged vapor or the ionic wind is excluded from the side surface portion 117 along the raw material liquid 300 in the outflow direction (downward). Thus, the quality of the manufactured nanofiber 301 can be improved.
 貯留槽113は、図2に示すように、流出体115の内部に形成され、供給手段107(図1参照)から供給される原料液300を貯留するタンクである。また、貯留槽113は、複数の流出孔118に接続され、流出孔118に同時に原料液300を供給するものとなっている。本実施の形態の場合、貯留槽113は、流出体115に一つ設けられており、流出体115の一端部から他端部にわたって広く設けられ、全ての流出孔118と接続されている。 As shown in FIG. 2, the storage tank 113 is a tank that is formed inside the outflow body 115 and stores the raw material liquid 300 supplied from the supply means 107 (see FIG. 1). The storage tank 113 is connected to the plurality of outflow holes 118 and supplies the raw material liquid 300 to the outflow holes 118 at the same time. In the case of the present embodiment, one storage tank 113 is provided in the outflow body 115, is widely provided from one end portion to the other end portion of the outflow body 115, and is connected to all outflow holes 118.
 以上のように貯留槽113は、原料液300を流出孔118の近傍で一時的に貯留し、複数の流出孔118に均等な圧力で原料液300を供給する機能を備えており、これにより、各流出孔118から均等な状態で原料液300を流出させることが可能となる。従って、製造されるナノファイバ301の品質の空間的なムラを抑制することが可能となる。 As described above, the storage tank 113 has a function of temporarily storing the raw material liquid 300 in the vicinity of the outflow holes 118 and supplying the raw material liquid 300 to the plurality of outflow holes 118 with an equal pressure. The raw material liquid 300 can be allowed to flow out from each outflow hole 118 in an even state. Therefore, it is possible to suppress spatial unevenness in the quality of the manufactured nanofiber 301.
 供給手段107は、図1に示すように、流出体115に原料液300を供給する装置であり、原料液300を大量に貯留する容器151と、原料液300を所定の圧力で搬送するポンプ(図示せず)と、原料液300を案内する案内管114とを備えている。 As shown in FIG. 1, the supply means 107 is a device that supplies the raw material liquid 300 to the effluent body 115, and includes a container 151 that stores a large amount of the raw material liquid 300 and a pump that conveys the raw material liquid 300 at a predetermined pressure ( (Not shown) and a guide tube 114 for guiding the raw material liquid 300.
 帯電電極121は、流出体115と所定の間隔を隔てて配置され、自身が流出体115に対し高い電圧もしくは低い電圧となることで、流出体115に電荷を誘導するための導電性を備える部材である。本実施の形態の場合、帯電電極121は、ナノファイバ301を誘引する誘引手段104としても機能しており、流出体115の先端部116と対向する位置に配置されており、接地されている。従って、流出体115に正の電圧が印加されると帯電電極121には、負の電荷が誘導され、流出体115に負の電圧が印加されると帯電電極121には、正の電荷が誘導される。 The charging electrode 121 is disposed at a predetermined interval from the effluent body 115 and has a conductivity for inducing electric charge to the effluent body 115 when the charging electrode 121 is at a higher voltage or lower voltage than the effluent body 115. It is. In the case of the present embodiment, the charging electrode 121 also functions as an attracting means 104 for attracting the nanofiber 301, is disposed at a position facing the front end portion 116 of the outflow body 115, and is grounded. Therefore, when a positive voltage is applied to the efflux body 115, a negative charge is induced in the charging electrode 121, and when a negative voltage is applied to the efflux body 115, a positive charge is induced in the charging electrode 121. Is done.
 帯電電源122は、流出体115に高電圧を印加することのできる電源である。帯電電源122は、一般には、直流電源が好ましい。特に、発生させるナノファイバ301の帯電極性に影響を受けないような場合、生成したナノファイバ301の帯電を利用して、逆極性の電位を印加した電極でナノファイバ301を誘引するような場合には、直流電源を採用することが好ましい。また、帯電電源122が直流電源である場合、帯電電源122が帯電電極121に印加する電圧は、5KV以上、100KV以下の範囲の値から設定されるのが好適である。 The charging power source 122 is a power source that can apply a high voltage to the effluent body 115. In general, the charging power source 122 is preferably a DC power source. In particular, when the charged polarity of the nanofiber 301 is not affected, the charged nanofiber 301 is used to attract the nanofiber 301 with an electrode to which a reverse polarity potential is applied. Is preferably a DC power supply. When the charging power source 122 is a direct current power source, the voltage applied by the charging power source 122 to the charging electrode 121 is preferably set from a value in the range of 5 KV or more and 100 KV or less.
 本実施の形態のように、帯電電源122の一方電極を接地電位とし、帯電電極121を接地するものとすれば、比較的大型の帯電電極121を接地状態とすることができ、安全性の向上に寄与することが可能となる。 If one electrode of the charging power source 122 is set to the ground potential and the charging electrode 121 is grounded as in the present embodiment, the relatively large charging electrode 121 can be set to the ground state, which improves safety. It becomes possible to contribute to.
 なお、帯電電極121に電源を接続して帯電電極121を高電圧に維持し、流出体115を接地することで原料液300に電荷を付与してもよい。また、帯電電極121と流出体115とのいずれも接地しないような接続状態であってもかまわない。 Note that a charge may be applied to the raw material liquid 300 by connecting a power source to the charging electrode 121 to maintain the charging electrode 121 at a high voltage and grounding the effluent 115. Further, the charging electrode 121 and the outflow body 115 may be in a connection state in which neither is grounded.
 収集手段128は、静電延伸現象により製造されるナノファイバ301を堆積させて収集する部材である。本実施の形態の場合、収集手段128は、電子デバイスであるコンデンサを形成する部材であるタングステンのシートであり、ロール127に巻き付けられた状態で供給されている。 The collecting means 128 is a member that deposits and collects the nanofibers 301 manufactured by the electrostatic stretching phenomenon. In the case of the present embodiment, the collecting means 128 is a sheet of tungsten that is a member that forms a capacitor that is an electronic device, and is supplied in a state of being wound around a roll 127.
 なお、収集手段128はこれに限定されるわけではない。例えば、収集手段128は、剛性のある板状の部材からなるものでもかまわない。また、ナノファイバ301の堆積物のみを利用する場合には、収集手段128の表面にフッ素樹脂コート、または、シリコンコートを行うなど、ナノファイバ301を剥ぎ取る際の剥離性が高い収集手段128であってもよい。 Note that the collection means 128 is not limited to this. For example, the collecting means 128 may be made of a rigid plate-like member. Further, when only the deposit of the nanofiber 301 is used, the collection means 128 having a high releasability when the nanofiber 301 is peeled off, such as coating the surface of the collection means 128 with a fluororesin or silicon. There may be.
 誘引手段104は、空間中で製造されたナノファイバ301を収集手段128に誘引するための装置である。本実施の形態の場合、誘引手段104は、帯電電極121としても機能する金属板であり、収集手段128の後方に配置されている。誘引手段104は、帯電しているナノファイバ301を電界により収集手段128に誘引する。つまり、誘引手段104は、帯電したナノファイバ301を誘引するための電界を発生させるための電極である。 The attracting means 104 is an apparatus for attracting the nanofibers 301 manufactured in the space to the collecting means 128. In the case of the present embodiment, the attracting means 104 is a metal plate that also functions as the charging electrode 121 and is disposed behind the collecting means 128. The attracting means 104 attracts the charged nanofiber 301 to the collecting means 128 by an electric field. That is, the attracting means 104 is an electrode for generating an electric field for attracting the charged nanofiber 301.
 移動手段129は、流出体115と、収集手段128とを相対的に移動させる装置である。本実施の形態の場合、流出体115は固定されており、収集手段128のみを移動するものとなっている。具体的に移送手段は、長尺の収集手段128を巻き取りながらロール127から引き出し、堆積するナノファイバ301と共に収集手段128を搬送するものとなっている。 The moving means 129 is a device that relatively moves the outflow body 115 and the collecting means 128. In the case of the present embodiment, the outflow body 115 is fixed, and only the collecting means 128 is moved. Specifically, the transfer means is configured to pull out the long collection means 128 from the roll 127 while winding it, and convey the collection means 128 together with the nanofibers 301 to be deposited.
 なお、移動手段129は、収集手段128を移動させるばかりではなく、流出体115を収集手段128に対して移動させるものでもかまわない、また、移動手段129は、収集手段128を一定方向に移動させ、流出体115を往復動させるなど、任意の動作状態を例示することができる。また、開口部119の並び方向と直交する方向に収集手段128を移動させているが、それに限定するものではなく、開口部119の並び方向に収集手段128を移動させ、流出体115を開口部119の並び方向と直交する方向に往復動させるものであってもかまわない。 The moving means 129 may not only move the collecting means 128 but also move the effluent 115 relative to the collecting means 128. The moving means 129 moves the collecting means 128 in a certain direction. Arbitrary operation states, such as reciprocating the outflow body 115, can be exemplified. Further, although the collecting means 128 is moved in a direction orthogonal to the direction in which the openings 119 are arranged, the present invention is not limited to this, and the collecting means 128 is moved in the direction in which the openings 119 are arranged, and the effluent 115 is moved to the opening. You may make it reciprocate in the direction orthogonal to the arrangement direction of 119.
 ここで、ナノファイバ301を構成する樹脂であって、原料液300に溶解、または、分散する溶質としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ-m-フェニレンテレフタレート、ポリ-p-フェニレンイソフタレート、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン-アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル-メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ポリアミド、アラミド、ポリイミド、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等およびこれらの共重合体等の高分子物質を例示できる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明は上記樹脂に限定されるものではない。 Here, the resin constituting the nanofiber 301 and the solute dissolved or dispersed in the raw material liquid 300 includes polypropylene, polyethylene, polystyrene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly- m-phenylene terephthalate, poly-p-phenylene isophthalate, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinyl chloride, polyvinylidene chloride-acrylate copolymer, polyacrylonitrile, polyacrylonitrile-methacrylate copolymer Coalesced, polycarbonate, polyarylate, polyester carbonate, polyamide, aramid, polyimide, polycaprolactone, polylactic acid, polyglycol , Collagen, polyhydroxybutyrate, poly (vinyl acetate), polypeptide or the like and can be exemplified a polymer material such as a copolymer thereof. Moreover, the kind selected from the above may be used, and a plurality of kinds may be mixed. In addition, the above is an illustration and this invention is not limited to the said resin.
 原料液300に使用される溶媒としては、揮発性のある有機溶剤などを例示することができる。具体的に例示すると、メタノール、エタノール、1-プロパノール、2-プロパノール、ヘキサフルオロイソプロパノール、テトラエチレングリコール、トリエチレングリコール、ジベンジルアルコール、1,3-ジオキソラン、1,4-ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メチル-n-ヘキシルケトン、メチル-n-プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、ヘキサフルオロアセトン、フェノール、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、クロロホルム、o-クロロトルエン、p-クロロトルエン、クロロホルム、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、酢酸、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロヘキサノン、シクロペンタン、o-キシレン、p-キシレン、m-キシレン、アセトニトリル、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホオキシド、ピリジン、水等を挙示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明に用いられる原料液300は上記溶媒を採用することに限定されるものではない。 Examples of the solvent used for the raw material liquid 300 include volatile organic solvents. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, hexafluoroisopropanol, tetraethylene glycol, triethylene glycol, dibenzyl alcohol, 1,3-dioxolane, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl. Ketone, methyl-n-hexyl ketone, methyl-n-propyl ketone, diisopropyl ketone, diisobutyl ketone, acetone, hexafluoroacetone, phenol, formic acid, methyl formate, ethyl formate, propyl formate, methyl benzoate, ethyl benzoate, benzoate Propyl acid, methyl acetate, ethyl acetate, propyl acetate, dimethyl phthalate, diethyl phthalate, dipropyl phthalate, methyl chloride, ethyl chloride, methylene chloride, chloroform, o-chloroto Ene, p-chlorotoluene, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, trichloroethane, dichloropropane, dibromoethane, dibromopropane, methyl bromide, ethyl bromide, propyl bromide, acetic acid, Benzene, toluene, hexane, cyclohexane, cyclohexanone, cyclopentane, o-xylene, p-xylene, m-xylene, acetonitrile, tetrahydrofuran, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, pyridine, water Etc. can be listed. Moreover, the kind selected from the above may be used, and a plurality of kinds may be mixed. In addition, the above is an illustration and the raw material liquid 300 used for this invention is not limited to employ | adopting the said solvent.
 さらに、原料液300に無機質固体材料を添加してもよい。当該無機質固体材料としては、酸化物、炭化物、窒化物、ホウ化物、珪化物、弗化物、硫化物等を挙げることができるが、製造されるナノファイバ301の耐熱性、加工性などの観点から酸化物を用いることが好ましい。当該酸化物としては、Al23、SiO2、TiO2、Li2O、Na2O、MgO、CaO、SrO、BaO、B23、P25、SnO2、ZrO2、K2O、Cs2O、ZnO、Sb23、As23、CeO2、V25、Cr23、MnO、Fe23、CoO、NiO、Y23、Lu23、Yb23、HfO2、Nb25等を例示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明の原料液300に添加される物質は、上記添加剤に限定されるものではない。 Furthermore, an inorganic solid material may be added to the raw material liquid 300. Examples of the inorganic solid material include oxides, carbides, nitrides, borides, silicides, fluorides, sulfides, and the like. From the viewpoint of heat resistance and workability of the nanofiber 301 to be manufactured. It is preferable to use an oxide. Examples of the oxide include Al 2 O 3 , SiO 2 , TiO 2 , Li 2 O, Na 2 O, MgO, CaO, SrO, BaO, B 2 O 3 , P 2 O 5 , SnO 2 , ZrO 2 , K. 2 O, Cs 2 O, ZnO, Sb 2 O 3 , As 2 O 3 , CeO 2 , V 2 O 5 , Cr 2 O 3 , MnO, Fe 2 O 3 , CoO, NiO, Y 2 O 3 , Lu 2 Examples thereof include O 3 , Yb 2 O 3 , HfO 2 , Nb 2 O 5 and the like. Moreover, the kind selected from the above may be used, and a plurality of kinds may be mixed. In addition, the above is an illustration and the substance added to the raw material liquid 300 of this invention is not limited to the said additive.
 原料液300における溶媒と溶質との混合比率は、選定される溶媒の種類と溶質の種類とにより異なるが、溶媒量は、約60重量%から98重量%の間が望ましい。好適には溶質が5~30%となる。 The mixing ratio of the solvent and the solute in the raw material liquid 300 varies depending on the type of solvent selected and the type of solute, but the amount of solvent is preferably between about 60 wt% and 98 wt%. Preferably, the solute is 5-30%.
 次に、上記構成のナノファイバ製造装置100を用いたナノファイバ301の製造方法を説明する。 Next, a manufacturing method of the nanofiber 301 using the nanofiber manufacturing apparatus 100 having the above configuration will be described.
 まず、供給手段107により流出体115に原料液300を供給する(供給工程)。以上により、流出体115の貯留槽113に原料液300が満たされる。 First, the raw material liquid 300 is supplied to the effluent 115 by the supply means 107 (supply process). As described above, the raw material liquid 300 is filled in the storage tank 113 of the effluent 115.
 次に、帯電電源122により帯電電極121を正または負の高電圧とする。帯電電極121と対向する流出体115の先端部116に電荷が集中し、当該電荷が流出孔118を通過して空間中に流出する原料液300に転移し、原料液300が帯電する(帯電工程)。 Next, the charging electrode 121 is set to a positive or negative high voltage by the charging power source 122. Charge concentrates on the front end portion 116 of the outflow body 115 facing the charging electrode 121, and the charge passes through the outflow hole 118 and is transferred to the raw material liquid 300 flowing out into the space, so that the raw material liquid 300 is charged (charging process). ).
 前記帯電工程と供給工程とは同時期に実施され、流出体115の開口部119から帯電した原料液300が流出する(流出工程)。 The charging process and the supplying process are performed at the same time, and the charged raw material liquid 300 flows out from the opening 119 of the effluent body 115 (outflow process).
 ここで、開口部119から流出する原料液300は、開口部119を覆い先端部116から垂れ下がる液溜まり303を形成する。この液溜まり303は、複数ある開口部119毎に形成され、その先端から原料液300が糸状に垂れ下がる。このように液溜まり303が形成されることで、イオン風の発生を抑制し、製造されるナノファイバ301の品質を高めることが可能となる。 Here, the raw material liquid 300 flowing out from the opening 119 forms a liquid pool 303 that covers the opening 119 and hangs down from the front end 116. The liquid pool 303 is formed for each of a plurality of openings 119, and the raw material liquid 300 hangs down from the tip of the liquid pool 303. By forming the liquid reservoir 303 in this way, it is possible to suppress the generation of ion wind and improve the quality of the manufactured nanofiber 301.
 次にある程度空間中を飛行した原料液300に静電延伸現象が作用することによりナノファイバ301が製造される(ナノファイバ製造工程)。ここで、原料液300は、イオン風に影響されることなく強い帯電状態(高い電荷密度)で流出し、また、各開口部119から飛行する原料液300がまとまることなく細い状態で流出する。これにより、原料液300のほとんどがナノファイバ301に変化していく。また、原料液300は、強い帯電状態(高い電荷密度)で流出しているため、静電延伸が何次にもわたって発生し、線径の細いナノファイバ301が大量に製造される。 Next, the nanofiber 301 is manufactured by the action of the electrostatic stretching phenomenon on the raw material liquid 300 that has flew in the space to some extent (the nanofiber manufacturing process). Here, the raw material liquid 300 flows out in a strong charged state (high charge density) without being influenced by the ion wind, and the raw material liquid 300 flying from each opening 119 flows out in a thin state without being collected. Thereby, most of the raw material liquid 300 is changed to the nanofiber 301. In addition, since the raw material liquid 300 flows out in a strongly charged state (high charge density), electrostatic stretching occurs over many orders, and a large amount of nanofibers 301 with a small wire diameter are manufactured.
 この状態において、収集手段128の背方に配置される誘引手段104と流出体115との間に発生する電界により、ナノファイバ301が収集手段128に誘引される(誘引工程)。 In this state, the nanofiber 301 is attracted to the collecting means 128 by the electric field generated between the attracting means 104 and the outflow body 115 arranged behind the collecting means 128 (attraction process).
 以上により、収集手段128にナノファイバ301が堆積して収集される(収集工程)。収集手段128は、移動手段129によりゆっくり移送されているため、ナノファイバ301も移送方向に延びた長尺の帯状部材として回収される。 As described above, the nanofiber 301 is deposited and collected on the collecting means 128 (collecting step). Since the collecting means 128 is slowly transferred by the moving means 129, the nanofiber 301 is also collected as a long belt-like member extending in the transfer direction.
 以上のような構成のナノファイバ製造装置100を用い、以上のナノファイバ製造方法を実施することによって、高い生産効率を維持しつつ、品質の高いナノファイバ301を空間的にムラが発生することなく均一に製造することが可能となる。 By using the nanofiber manufacturing apparatus 100 configured as described above and performing the above nanofiber manufacturing method, high quality nanofibers 301 are not spatially uneven while maintaining high production efficiency. It becomes possible to manufacture uniformly.
 なお、本願発明は、上記実施の形態に限定されるわけではない。例えば図5に示すように、流出体115の近傍であって、流出体115と収集手段128との間に、帯電電極121を配置してもかまわない。また、このような態様のナノファイバ製造装置100とした場合、さらに、通気性を備えると共にナノファイバ301を堆積させることのできる収集手段128を備え、所定の場所に集まる気体流を発生させる誘引手段104を備えてもよい。具体的には、同図に示すように、真空吸引装置141を配置して収集手段128の背部から収集手段128に向かう気体流を発生させる誘引手段104とすれば良い。さらに、帯電電源122とは異なる(又は共用で)収集電源123を備え、ナノファイバ301を電界で誘引する電界方式と、気体流により誘引する気体流方式とを同時、または、選択的に実施できるようにしてもかまわない。 Note that the present invention is not limited to the above embodiment. For example, as shown in FIG. 5, the charging electrode 121 may be disposed in the vicinity of the effluent 115 and between the effluent 115 and the collecting means 128. Further, in the case of the nanofiber manufacturing apparatus 100 of such an aspect, the attracting means is further provided with a collecting means 128 having air permeability and capable of depositing the nanofiber 301, and generating a gas flow that collects in a predetermined place. 104 may be provided. Specifically, as shown in the figure, the vacuum suction device 141 may be arranged to serve as the attracting means 104 that generates a gas flow from the back of the collecting means 128 toward the collecting means 128. Furthermore, a collection power supply 123 different from (or in common with) the charging power supply 122 is provided, and an electric field method for attracting the nanofibers 301 with an electric field and a gas flow method for attracting with a gas flow can be performed simultaneously or selectively. It doesn't matter if you do.
 また、図6に示すように、流出体115を分割可能な構成としてもかまわない。特に、流出孔118の内壁面を露出できるような分割構造を採用すれば、流出孔118に付着した樹脂などの除去が容易になり好ましい。 Further, as shown in FIG. 6, the spilled body 115 may be divided. In particular, it is preferable to employ a split structure that can expose the inner wall surface of the outflow hole 118 because the resin attached to the outflow hole 118 can be easily removed.
 本願発明は、ナノファイバの製造やナノファイバを用いた紡糸、不織布の製造に利用可能である。 The present invention can be used for producing nanofibers, spinning using nanofibers, and producing nonwoven fabrics.
100 ナノファイバ製造装置
104 誘引手段
107 供給手段
113 貯留槽
114 案内管
115 流出体
116 先端部
117 側面部
118 流出孔
119 開口部
121 帯電電極
122 帯電電源
127 ロール
128 収集手段
129 移動手段
151 容器
300 原料液
301 ナノファイバ
100 Nanofiber production apparatus 104 Attracting means 107 Supplying means 113 Storage tank 114 Guide tube 115 Outflow body 116 Tip part 117 Side face part 118 Outlet hole 119 Opening part 121 Charging electrode 122 Charging power supply 127 Roll 128 Collection means 129 Moving means 151 Container 300 Raw material Liquid 301 Nanofiber

Claims (9)

  1.  原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造装置であって、
     原料液を空間中に流出させる流出孔を複数有する流出体であり、前記流出孔の先端である開口部が所定の間隔で一次元的に並んで配置される先端部と、前記先端部から離れるに従い相互の間隔が広がるように配置され、前記先端部から前記流出孔を挟むように延設される二つの側面部とを有する流出体と、
     前記流出体と所定の間隔を隔てて配置される帯電電極と、
     前記流出体と前記帯電電極との間に所定の電圧を印加する帯電電源と
    を備えるナノファイバ製造装置。
    A nanofiber manufacturing apparatus for manufacturing nanofibers by electrically stretching a raw material liquid in a space,
    An outflow body having a plurality of outflow holes through which the raw material liquid flows out into the space, and a distal end portion in which openings that are front ends of the outflow holes are arranged one-dimensionally at predetermined intervals, and is separated from the front end portion And an outflow body having two side portions that are arranged so as to be spaced apart from each other and extend so as to sandwich the outflow hole from the tip portion,
    A charging electrode disposed at a predetermined interval from the effluent body;
    A nanofiber manufacturing apparatus comprising: a charging power source that applies a predetermined voltage between the effluent and the charging electrode.
  2.  前記流出体はさらに、
     前記流出孔に所定の圧力で原料液を供給する供給手段と、
     前記供給手段から供給される原料液を貯留し、複数の前記流出孔に接続され、前記流出孔に同時に原料液を供給する貯留槽
    を備える請求項1に記載のナノファイバ製造装置。
    The effluent is further
    Supply means for supplying a raw material liquid to the outflow hole at a predetermined pressure;
    The nanofiber manufacturing apparatus according to claim 1, further comprising a storage tank that stores the raw material liquid supplied from the supply unit, is connected to the plurality of outflow holes, and supplies the raw material liquid to the outflow holes at the same time.
  3.  前記先端部は、所定幅の矩形であり、前記先端部に配置される対応する前記開口部の径よりも広い幅
    を備える請求項1に記載のナノファイバ製造装置。
    2. The nanofiber manufacturing apparatus according to claim 1, wherein the tip portion is a rectangle having a predetermined width, and has a width wider than the diameter of the corresponding opening arranged at the tip portion.
  4.  さらに、
     空間中で製造されるナノファイバを収集する収集手段と、
     前記収集手段にナノファイバを誘引する誘引手段と
    を備える請求項1に記載のナノファイバ製造装置。
    further,
    A collection means for collecting nanofibers produced in space;
    The nanofiber manufacturing apparatus according to claim 1, further comprising an attracting unit that attracts the nanofiber to the collecting unit.
  5.  さらに、
     前記流出体と、前記収集手段とを相対的に移動させる移動手段
    を備える請求項4に記載のナノファイバ製造装置。
    further,
    The nanofiber manufacturing apparatus according to claim 4, further comprising a moving unit that relatively moves the outflow body and the collecting unit.
  6.  前記流出体は、前記流出孔の形成する面が露出するように分割可能で、かつ、分割された流出体を組立可能に構成される
    請求項1に記載のナノファイバ製造装置。
    2. The nanofiber manufacturing apparatus according to claim 1, wherein the outflow body can be divided so that a surface formed by the outflow hole is exposed, and the divided outflow body can be assembled.
  7.  前記先端部は、複数の前記開口部の間を滑らかな面でつなげる
    請求項1に記載のナノファイバ製造装置。
    The nanofiber manufacturing apparatus according to claim 1, wherein the tip portion connects the plurality of openings with a smooth surface.
  8.  原料液を空間中で電気的に延伸させて、ナノファイバを製造するナノファイバ製造方法であって、
     原料液を空間中に流出させる流出孔を複数有する流出体であり、前記流出孔の先端である開口部が所定の間隔で一次元的に並んで配置される先端部と、前記先端部から離れるに従い相互の間隔が広がるように配置され、前記先端部から前記流出孔を挟むように延設される二つの側面部とを有する流出体から原料液を流出させる流出工程と、
     前記流出体と所定の間隔を隔てて配置される帯電電極と、前記流出体との間に所定の電圧を印加する帯電工程と
    を含むナノファイバ製造方法。
    A nanofiber manufacturing method for manufacturing a nanofiber by electrically stretching a raw material liquid in a space,
    An outflow body having a plurality of outflow holes for allowing the raw material liquid to flow out into the space, and an opening that is a front end of the outflow hole is arranged one-dimensionally at a predetermined interval, and is separated from the front end According to the outflow step of causing the raw material liquid to flow out from the outflow body having two side portions that are arranged so as to widen each other and extend so as to sandwich the outflow hole from the tip portion,
    A nanofiber manufacturing method, comprising: a charging electrode disposed at a predetermined interval from the effluent body; and a charging step of applying a predetermined voltage between the effluent body.
  9.  さらに、
     空間中で製造されるナノファイバを収集手段により収集する収集工程と、
     前記収集手段にナノファイバを誘引する誘引工程と
    を含む請求項8に記載のナノファイバ製造方法。
    further,
    A collection step of collecting nanofibers produced in space by a collection means;
    The nanofiber manufacturing method according to claim 8, further comprising an attracting step of attracting the nanofiber to the collecting means.
PCT/JP2010/005037 2009-09-09 2010-08-11 Nanofiber manufacturing device and nanofiber manufacturing method WO2011030506A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/258,128 US8834775B2 (en) 2009-09-09 2010-08-11 Method of manufacturing nanofibers
CN201080015437.2A CN102365398B (en) 2009-09-09 2010-08-11 Nanofiber manufacturing device and nanofiber manufacturing method
US14/451,945 US20140342027A1 (en) 2009-09-09 2014-08-05 Nanofiber manufacturing apparatus and method of manufacturing nanofibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009208727 2009-09-09
JP2009-208727 2009-09-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/258,128 A-371-Of-International US8834775B2 (en) 2009-09-09 2010-08-11 Method of manufacturing nanofibers
US14/451,945 Division US20140342027A1 (en) 2009-09-09 2014-08-05 Nanofiber manufacturing apparatus and method of manufacturing nanofibers

Publications (1)

Publication Number Publication Date
WO2011030506A1 true WO2011030506A1 (en) 2011-03-17

Family

ID=43732187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005037 WO2011030506A1 (en) 2009-09-09 2010-08-11 Nanofiber manufacturing device and nanofiber manufacturing method

Country Status (5)

Country Link
US (2) US8834775B2 (en)
JP (3) JP4763845B2 (en)
KR (1) KR20120049174A (en)
CN (1) CN102365398B (en)
WO (1) WO2011030506A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102492999A (en) * 2011-12-21 2012-06-13 东南大学 Spray nozzle capable of realizing mass production of nanometer fibers in electrostatic spinning method
JP2012180617A (en) * 2011-03-01 2012-09-20 Panasonic Corp Nanofiber production apparatus, method for producing outflow body and nanofiber production method
JP2012184518A (en) * 2011-03-03 2012-09-27 Panasonic Corp Device for manufacturing nanofiber, and method for manufacturing nanofiber
JP2012184530A (en) * 2011-03-07 2012-09-27 Panasonic Corp Device for manufacturing nanofiber, and method for manufacturing nanofiber
JP2012219420A (en) * 2011-04-13 2012-11-12 Panasonic Corp Apparatus for producing nanofiber, and method for producing nanofiber
WO2016035472A1 (en) * 2014-09-04 2016-03-10 富士フイルム株式会社 Electrospinning nozzle, and apparatus and method for manufacturing nanofibers
WO2018105438A1 (en) * 2016-12-08 2018-06-14 株式会社幹細胞&デバイス研究所 Spinning nozzle
JP2021500494A (en) * 2017-10-25 2021-01-07 エス2メディカル アーベーS2Medical Ab Electrospinning equipment and electrospinning method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5363359B2 (en) * 2010-01-19 2013-12-11 パナソニック株式会社 Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5438868B2 (en) 2011-07-22 2014-03-12 パナソニック株式会社 Collector apparatus, nonwoven fabric manufacturing apparatus, and nonwoven fabric manufacturing method
JP5874005B2 (en) * 2012-10-17 2016-03-01 パナソニックIpマネジメント株式会社 Nanofiber manufacturing apparatus, nanofiber manufacturing method, and nanofiber manufacturing nozzle
CZ304137B6 (en) * 2012-12-17 2013-11-13 Technická univerzita v Liberci Process for preparing polymeric nanofibers by spinning a solution of polymer melt in electric field and linear form of polymeric nanofibers prepared in such a manner
JP6699093B2 (en) 2014-08-05 2020-05-27 Jnc株式会社 Spinneret for electrostatic spinning
JP6117263B2 (en) * 2015-03-17 2017-04-19 株式会社東芝 Nozzle head for nanofiber manufacturing apparatus and nanofiber manufacturing apparatus provided with the same
CN105369366B (en) * 2015-10-10 2017-06-23 北京化工大学 A kind of porous flexible pipe needleless electrostatic spinning apparatus
CN105543984B (en) * 2015-12-15 2018-01-16 佛山轻子精密测控技术有限公司 A kind of adjustable melting electrostatic spinning shower nozzle of hole
JP6617055B2 (en) * 2016-03-03 2019-12-04 富士フイルム株式会社 Electrospinning nozzle, nanofiber manufacturing apparatus and method
NL2019764B1 (en) * 2017-10-19 2019-04-29 Innovative Mechanical Engineering Tech B V Electrospinning device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031398A (en) * 2008-07-25 2010-02-12 Univ Of Shiga Prefecture Electrostatic spinning method and spinning head for electrostatic spinning

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2168027A (en) * 1935-12-07 1939-08-01 Du Pont Apparatus for the production of filaments, threads, and the like
DE1435461C3 (en) * 1964-02-22 1978-04-06 Fa. Carl Freudenberg, 6940 Weinheim Spinneret for melt spinning sheets of thread
US3865535A (en) * 1973-06-04 1975-02-11 Beloit Corp Two piece die assembly for extruding micro-filaments
JPS59204957A (en) * 1983-05-04 1984-11-20 旭化成株式会社 Production of nonwoven article
JPS62162268U (en) * 1986-03-31 1987-10-15
US6713011B2 (en) * 2001-05-16 2004-03-30 The Research Foundation At State University Of New York Apparatus and methods for electrospinning polymeric fibers and membranes
KR100549140B1 (en) * 2002-03-26 2006-02-03 이 아이 듀폰 디 네모아 앤드 캄파니 A electro-blown spinning process of preparing for the nanofiber web
KR20050113637A (en) * 2003-03-07 2005-12-02 필립모리스 프로덕츠 에스.에이. Apparatuses and methods for electrostatically processing polymer formulations
JP2006152479A (en) * 2004-11-29 2006-06-15 Toray Ind Inc Apparatus for producing ultra fine fiber and method for producing the same using the apparatus
JP4965188B2 (en) * 2006-08-10 2012-07-04 日本バイリーン株式会社 Polymer solution supply member, electrospinning apparatus, and method for producing electrospun nonwoven fabric
JP4800879B2 (en) * 2006-08-25 2011-10-26 日本バイリーン株式会社 Polymer solution supply member, electrospinning apparatus, and method for producing electrospun nonwoven fabric
US20110180951A1 (en) * 2006-09-18 2011-07-28 Wee Eong Teo Fiber structures and process for their preparation
JP4862665B2 (en) * 2007-01-16 2012-01-25 パナソニック株式会社 Nozzle for polymer fiber production
JP4867672B2 (en) * 2007-01-18 2012-02-01 パナソニック株式会社 Polymer fiber production method and apparatus, polymer web production method and apparatus using them
JP5224704B2 (en) * 2007-03-14 2013-07-03 株式会社メック Nano-fiber manufacturing method and apparatus
US8636493B2 (en) * 2007-11-08 2014-01-28 The University Of Akron Method of characterization of viscoelastic stress in elongated flow materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031398A (en) * 2008-07-25 2010-02-12 Univ Of Shiga Prefecture Electrostatic spinning method and spinning head for electrostatic spinning

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180617A (en) * 2011-03-01 2012-09-20 Panasonic Corp Nanofiber production apparatus, method for producing outflow body and nanofiber production method
JP2012184518A (en) * 2011-03-03 2012-09-27 Panasonic Corp Device for manufacturing nanofiber, and method for manufacturing nanofiber
JP2012184530A (en) * 2011-03-07 2012-09-27 Panasonic Corp Device for manufacturing nanofiber, and method for manufacturing nanofiber
JP2012219420A (en) * 2011-04-13 2012-11-12 Panasonic Corp Apparatus for producing nanofiber, and method for producing nanofiber
CN102492999A (en) * 2011-12-21 2012-06-13 东南大学 Spray nozzle capable of realizing mass production of nanometer fibers in electrostatic spinning method
WO2016035472A1 (en) * 2014-09-04 2016-03-10 富士フイルム株式会社 Electrospinning nozzle, and apparatus and method for manufacturing nanofibers
JP2016053230A (en) * 2014-09-04 2016-04-14 富士フイルム株式会社 Electro-spinning nozzle, and method and apparatus for producing nanofiber
WO2018105438A1 (en) * 2016-12-08 2018-06-14 株式会社幹細胞&デバイス研究所 Spinning nozzle
JP2021500494A (en) * 2017-10-25 2021-01-07 エス2メディカル アーベーS2Medical Ab Electrospinning equipment and electrospinning method

Also Published As

Publication number Publication date
CN102365398B (en) 2015-06-17
JP5236042B2 (en) 2013-07-17
KR20120049174A (en) 2012-05-16
US20120013047A1 (en) 2012-01-19
US8834775B2 (en) 2014-09-16
JP4763845B2 (en) 2011-08-31
JP2013047410A (en) 2013-03-07
JP2011080186A (en) 2011-04-21
US20140342027A1 (en) 2014-11-20
CN102365398A (en) 2012-02-29
JP2011168949A (en) 2011-09-01
JP5226151B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5236042B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5437983B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP2011208340A (en) Device and method for manufacturing nanofiber
JP5417276B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5222270B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5789773B2 (en) Fiber deposition apparatus and fiber deposition method
JP5216551B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5417244B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5368504B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5234355B2 (en) Nanofiber manufacturing apparatus and manufacturing method
JP5322112B2 (en) Nanofiber manufacturing apparatus and manufacturing method
JP5458280B2 (en) Nanofiber manufacturing apparatus and manufacturing method
JP5395831B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5285667B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5355608B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5364004B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5395830B2 (en) Nanofiber manufacturing apparatus, effluent manufacturing method, and nanofiber manufacturing method
JP5458292B2 (en) Nanofiber manufacturing apparatus and manufacturing method
JP2012007258A (en) Apparatus and method for manufacturing nanofiber
JP2011174202A (en) Apparatus and method for producing nanofiber
JP2014148763A (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5903603B2 (en) Nanofiber manufacturing apparatus and manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015437.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13258128

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117022680

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10815107

Country of ref document: EP

Kind code of ref document: A1