WO2011029350A1 - 聚晶金刚石复合片基体 - Google Patents

聚晶金刚石复合片基体 Download PDF

Info

Publication number
WO2011029350A1
WO2011029350A1 PCT/CN2010/075459 CN2010075459W WO2011029350A1 WO 2011029350 A1 WO2011029350 A1 WO 2011029350A1 CN 2010075459 W CN2010075459 W CN 2010075459W WO 2011029350 A1 WO2011029350 A1 WO 2011029350A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
diamond
polycrystalline diamond
protrusions
cemented carbide
Prior art date
Application number
PCT/CN2010/075459
Other languages
English (en)
French (fr)
Inventor
王晓
Original Assignee
河南晶锐超硬材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南晶锐超硬材料有限公司 filed Critical 河南晶锐超硬材料有限公司
Publication of WO2011029350A1 publication Critical patent/WO2011029350A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P5/00Setting gems or the like on metal parts, e.g. diamonds on tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2204/00End product comprising different layers, coatings or parts of cermet

Definitions

  • the invention belongs to the technical field of superhard composite materials, and in particular relates to a polycrystalline diamond composite sheet base.
  • the polycrystalline diamond composite sheet is a super-hard composite material formed by sintering a diamond layer and a cemented carbide substrate under ultra-high temperature and high pressure, and the cemented carbide substrate is a matrix. It not only has high hardness and wear resistance, but also has strong impact toughness. It is suitable for the manufacture of drilling tools such as petroleum and geological drill bits and process drill bits.
  • the polycrystalline diamond compact is divided into a standard composite sheet and a grooved composite sheet.
  • the diamond layer of the standard composite sheet and the cemented carbide substrate are planarly bonded, and the bonding strength is low, the wear resistance and the toughness are poor; and the diamond layer of the grooved composite sheet and the cemented carbide substrate are non-planar, that is, hard.
  • the bonding surface of the alloy substrate with the diamond layer is a non-planar groove type, and the bonding mode has higher strength, wear resistance and toughness.
  • the groove shape of the substrate appears in the form of small holes or pits, and the groove type of the small holes or the pits has a wave shape, a cylindrical shape and Concentric circles, rectangular troughs and corresponding variants have recently emerged.
  • the above-mentioned base groove type has the following defects: when the cemented carbide substrate is combined with the diamond powder, the flowability of the diamond powder is poor, which is disadvantageous for compacting the diamond powder, resulting in inconsistent compaction density of the diamond powder; grooves in the form of small holes or pits on the substrate
  • the type is not conducive to the upward diffusion of cobalt in the matrix, which tends to cause cobalt aggregation, so that the catalytic action of cobalt is not fully exerted; the foreign grooved composite sheet is expensive and the use cost is too high; the groove in the form of small holes or pits on the substrate When combined with diamond, it will be filled with diamond.
  • the amount of diamond powder is large and the manufacturing cost is high.
  • the diamond layer extends into the groove of the base body, which increases the stress concentration of the diamond layer, reduces the strength and toughness and impact strength of the diamond layer, and has a short service life and poor competitiveness.
  • An object of the present invention is to provide a polycrystalline diamond compact substrate which is excellent in overall performance and low in manufacturing cost.
  • the technical solution of the present invention is: a polycrystalline diamond composite sheet substrate, and a plurality of protrusions are provided on the bonding surface of the substrate.
  • the protrusion is conical, pyramidal, frustum or truncated.
  • the protrusion is centered on the center of the bonding surface of the cemented carbide substrate and uniformly distributed on a plurality of concentric circles.
  • the adjacent protrusions are connected by a transitional arc surface.
  • a chamfer is provided at the edge of the joint surface of the cemented carbide substrate.
  • the top surface of the frustum shape or the truncated cone shape is a circular arc surface.
  • a plurality of protrusions are provided on the bonding surface of the cemented carbide substrate, firstly, the bonding area with the diamond layer is increased, and the bonding strength between the substrate and the diamond layer is increased; secondly, the substrate is formed under high temperature and high pressure conditions.
  • the protrusion is favorable for the flow of the diamond powder, which is favorable for compacting the diamond powder, achieving the compaction density of the diamond powder, improving the impact resistance and wear resistance of the product; the third is that the protrusion is favorable for the hard
  • the cobalt in the matrix of the alloy is diffused upward, so that the cobalt can diffuse into the diamond powder more fully under the high temperature liquid phase, and it is difficult to form the aggregate of the cobalt, so that the catalytic effect of the cobalt is better and more fully exerted. Improve product performance.
  • the protrusion on the substrate penetrates into the diamond layer to form a cemented carbide skeleton, which is beneficial to improve the toughness and impact strength of the diamond layer, and also reduces the amount of diamond powder used and reduces manufacturing cost.
  • the protrusions are evenly distributed on a plurality of concentric circles centered on the center of the bonding surface of the cemented carbide substrate.
  • the chamfer is provided at the edge of the bonding surface of the cemented carbide substrate, which increases the bonding area between the substrate and the diamond layer, and increases the strength and impact resistance.
  • the two adjacent protrusions are connected by a transitional arc surface to reduce stress concentration and enhance the strength of the cemented carbide substrate.
  • the top surface of the frustum-shaped or round-shaped convex is designed as a circular arc surface, which can increase the contact area and bonding strength between the diamond layer and the protrusion.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Embodiment 2 of the present invention is a schematic structural view of Embodiment 2 of the present invention.
  • Embodiment 3 of the present invention is a schematic structural view of Embodiment 3 of the present invention.
  • Fig. 5 is a cross-sectional view taken along line B-B of Fig. 4;
  • Embodiment 1 The polycrystalline diamond composite sheet substrate shown in FIG. 1 and FIG. 2 includes a cemented carbide substrate 1 , and a plurality of protrusions 3 are provided on the joint surface 2 of the cemented carbide substrate 1 , and the protrusions 3 are provided.
  • the height of the truncated cone-shaped projection 3 is 2-4 mm.
  • the cemented carbide substrate 1 is cylindrical, centered on the center of the circular joint surface 2 of the cemented carbide substrate 1, and the truncated cone-shaped projections 3 are evenly distributed on a plurality of concentric circles concentric with the joint surface 2, on the substrate
  • a chamfer 4 is provided at the edge of the bonding face 2 of the cemented carbide substrate 1, which can increase the bonding area of the substrate 1 and the diamond layer, and increase the strength and impact resistance.
  • the two adjacent protrusions 3 are connected by a transitional arc surface 5, which can reduce stress concentration and enhance the strength of the cemented carbide substrate.
  • the top surface of the truncated cone-shaped projection 3 is designed as a circular arc surface 6, wherein the circular arc surface 6 is designed as a concave curved surface, which can increase the contact area and bonding strength between the diamond layer and the projection 3.
  • Embodiment 2 The polycrystalline diamond composite sheet substrate shown in FIG. 3 is different from the first embodiment in that a transitional fillet 7 is provided between the conical surface of the protrusion 3 and the circular arc surface 6 to make the protrusion
  • the upper portion of 3 has no stress concentration, which further increases the strength of the cemented carbide substrate 1.
  • Embodiment 3 The polycrystalline diamond composite sheet substrate shown in FIGS. 4 and 5 includes a cemented carbide substrate 1 , and a plurality of protrusions 3 are provided on the bonding surface 2 of the cemented carbide substrate 1 , and the protrusions 3 are In the shape of a quadrangular pyramid, the height of the quadrangular pyramidal projection 3 is 2-4 mm.
  • the cemented carbide substrate 1 is cylindrical, and the quadrangular pyramidal protrusions 3 are evenly distributed on a plurality of concentric circles centered on the center of the cemented carbide substrate 1, when the protrusions 3 on the substrate are concentric circular and diamond layers. When combined, it can effectively eliminate stress concentration and enhance structural strength.
  • a chamfer 4 is provided at the edge of the bonding face 2 of the cemented carbide substrate 1, which increases the bonding area of the substrate 1 and the diamond layer, and increases strength and impact resistance.
  • the protrusion 3 of the present invention may also be a conical shape or a polygonal pyramid shape, such as a triangular pyramid, a pentagonal pyramid or a hexagonal pyramid, or the like, or may be a truncated cone shape or a truncated cone shape.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Description

聚晶金刚石复合片基体
技术领域
本发明属于超硬复合材料技术领域,特别涉及一种聚晶金刚石复合片基体。
背景技术
聚晶金刚石复合片是由金刚石层与硬质合金衬底在超高温高压下烧结而成的超硬复合材料,硬质合金衬底为基体。它不仅具有很高的硬度和耐磨性,还具有很强的抗冲击韧性,适用于制造石油与地质钻头、过程钻头等钻探工具。聚晶金刚石复合片分为标准型复合片和槽型复合片。标准型复合片的金刚石层与硬质合金衬底为平面结合,其结合强度低、耐磨性和韧性差;而槽型复合片的金刚石层与硬质合金衬底为非平面结合,即硬质合金基体上与金刚石层的结合面为非平面槽型,该种结合方式具有更高的强度、耐磨性和韧性。
目前,在槽型复合片的金刚石层与硬质合金基体的结合面上,基体的槽型出现了采用小孔或者凹坑形式的,小孔或者凹坑的槽型有波浪型、圆柱型和同心圆型,最近也出现了矩形槽型及相应的变种。上述的基体槽型存在以下缺陷:硬质合金基体与金刚石粉末结合时,金刚石粉末的流动性差,不利于压实金刚石粉末,导致金刚石粉末压实密度不一致;基体上小孔或者凹坑形式的槽型不利于基体中的钴向上扩散,易导致钴聚集,使钴的催化作用得不到充分的发挥;国外槽型复合片价格昂贵,使用成本过高;基体上小孔或者凹坑形式的槽型与金刚石结合后,会充满金刚石,金刚石粉末用量大,制造成本高。另外,金刚石层伸入基体槽型内,增加了金刚石层的应力集中,降低了金刚石层的强度和韧性及抗冲击强度,使用寿命短,竞争力差。
发明内容
本发明的目的是提供一种综合性能优良、制造成本低的聚晶金刚石复合片基体。
为实现上述目的,本发明的技术方案是:聚晶金刚石复合片基体,所述基体的结合面上设有多个凸起。
所述的凸起为圆锥形、棱锥形、锥台形或者圆台形。
所述的凸起以硬质合金基体的结合面的中心为圆心,均匀分布在多个同心圆上。
所述相邻凸起之间由过渡弧面相连。
所述硬质合金基体的结合面边缘处设有倒角。
所述锥台形或者圆台形凸起的顶面为圆弧面。
本发明中,在硬质合金基体的结合面上设有多个凸起,首先是增大了与金刚石层的结合面积,增加了基体与金刚石层的结合强度;其次是高温高压条件下在基体上形成金刚石层时,凸起有利于金刚石粉末流动,有利于压实金刚石粉末,使金刚石粉末的压实密度达到一致,提高产品的抗冲击性和耐磨度;第三是凸起有利于硬质合金基体中的钴向上扩散,使钴在高温液相状态下更能充分的扩散到金刚石粉末当中,不易使钴形成聚集,从而使钴的催化作用更好、更充分的发挥出来,以充分提高产品性能。另外,金刚石层与硬质合金基体结合后,基体上的凸起深入到金刚石层中形成硬质合金骨架,有利于提高金刚石层的韧性和抗冲击强度,同时也降低金刚石粉末的使用量,降低制造成本。凸起均匀分布在以硬质合金基体的结合面的中心为圆心的多个同心圆上,当基体与金刚石层结合时,能有效消除应力集中,增强结构强度。在硬质合金基体的结合面的边缘处设有倒角,增加了基体与金刚石层的结合面积,增加强度和抗冲击性能。两两相邻的凸起之间由过渡弧面相连,能减小应力集中,增强硬质合金基体的强度。锥台形或者圆台形凸起的顶面设计为圆弧面,可增加金刚石层与凸起的接触面积和结合强度。
附图说明
图1为本发明实施例一的结构示意图;
图2为图1的A-A剖视图;
图3为本发明实施例二的结构示意图;
图4为本发明实施例三的结构示意图;
图5为图4的B-B剖视图。
具体实施方式
实施例一:如图1、图2所示的聚晶金刚石复合片基体,其包括硬质合金基体1,在硬质合金基体1的结合面2上设有多个凸起3,凸起3为圆锥台形,圆锥台形凸起3的高度为2-4mm。硬质合金基体1为圆柱形,以硬质合金基体1的圆形结合面2的圆心为圆心,圆锥台形凸起3均匀分布在与结合面2同心的多个同心圆上,当基体上的凸起3呈同心圆形式与金刚石层结合时,能有效消除应力集中,增强结构强度。在硬质合金基体1的结合面2的边缘处设有倒角4,能增加基体1与金刚石层的结合面积,增加强度和抗冲击性能。两两相邻的凸起3之间由过渡弧面5相连,能减小应力集中,增强硬质合金基体的强度。圆锥台形凸起3的顶面设计为圆弧面6,此处圆弧面6设计为凹弧面,可增加金刚石层与凸起3的接触面积和结合强度。
实施例二:如图3所示的聚晶金刚石复合片基体,与实施例一的不同之处在于:凸起3的圆锥面与圆弧面6之间设有过渡圆角7,使凸起3的上部无应力集中,进一步提高硬质合金基体1的强度。
实施例三:如图4、5所示的聚晶金刚石复合片基体,其包括硬质合金基体1,在硬质合金基体1的结合面2上设有多个凸起3,凸起3为四棱锥形状,四棱锥形凸起3的高度为2-4mm。硬质合金基体1为圆柱形,四棱锥形的凸起3均匀分布在以硬质合金基体1的圆心为圆心的多个同心圆上,当基体上的凸起3呈同心圆形式与金刚石层结合时,能有效消除应力集中,增强结构强度。在硬质合金基体1的结合面2的边缘处设有倒角4,增加了基体1与金刚石层的结合面积,增加强度和抗冲击性能。
不限于上述实施方式:本发明的凸起3也可以是圆锥形、多棱锥形,如三棱锥、五棱锥或者六棱锥等,还可以是圆台形或者棱锥台形。

Claims (8)

  1. 聚晶金刚石复合片基体,其特征在于:所述基体的结合面上设有多个凸起。
  2. 如权利要求1所述的聚晶金刚石复合片基体,其特征在于:所述的凸起为圆锥形、棱锥形、锥台形或者圆台形。
  3. 如权利要求1或2所述的聚晶金刚石复合片基体,其特征在于:所述的凸起以硬质合金基体的结合面的中心为圆心,均匀分布在多个同心圆上。
  4. 如权利要求3所述的聚晶金刚石复合片基体,其特征在于:所述相邻凸起之间由过渡弧面相连。
  5. 如权利要求1所述的聚晶金刚石复合片基体,其特征在于:所述相邻凸起之间由过渡弧面相连。
  6. 如权利要求4所述的聚晶金刚石复合片基体,其特征在于:所述硬质合金基体的结合面边缘处设有倒角。
  7. 如权利要求1所述的聚晶金刚石复合片基体,其特征在于:所述硬质合金基体的结合面边缘处设有倒角。
  8. 如权利要求2所述的聚晶金刚石复合片基体,其特征在于:所述锥台形或者圆台形凸起的顶面为圆弧面。
PCT/CN2010/075459 2009-09-14 2010-07-26 聚晶金刚石复合片基体 WO2011029350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910066136.1 2009-09-14
CN200910066136A CN101658937A (zh) 2009-09-14 2009-09-14 聚晶金刚石复合片基体

Publications (1)

Publication Number Publication Date
WO2011029350A1 true WO2011029350A1 (zh) 2011-03-17

Family

ID=41787308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075459 WO2011029350A1 (zh) 2009-09-14 2010-07-26 聚晶金刚石复合片基体

Country Status (2)

Country Link
CN (1) CN101658937A (zh)
WO (1) WO2011029350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681530A (zh) * 2019-02-28 2019-04-26 桂林星钻超硬材料有限公司 一种滚动轴承

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101658937A (zh) * 2009-09-14 2010-03-03 河南晶锐超硬材料有限公司 聚晶金刚石复合片基体
CN101852065B (zh) * 2010-05-14 2012-08-29 苏州新锐硬质合金有限公司 金刚石复合片基体
CN102409981A (zh) * 2010-09-25 2012-04-11 中国石油集团渤海石油装备制造有限公司 集合式金刚石复合片
CN102678057B (zh) * 2012-05-22 2015-01-21 株洲西迪硬质合金科技有限公司 一种金刚石复合片及其制备方法
CN103526095A (zh) * 2013-10-30 2014-01-22 河南晶锐超硬材料有限公司 一种合成聚晶金刚石复合片的硬质合金基体
CN104399990B (zh) * 2014-10-23 2017-07-11 金华中烨超硬材料有限公司 一种表面带花纹的硬质合金‑聚晶金刚石复合片及其制备方法
CN110116212A (zh) * 2019-05-28 2019-08-13 河南四方达超硬材料股份有限公司 一种聚晶金刚石复合片的密封烧结装置
CN112832688A (zh) * 2020-11-25 2021-05-25 中石化江钻石油机械有限公司 一种减震复合片

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2726791Y (zh) * 2004-09-15 2005-09-21 金瑞新材料科技股份有限公司 一种金刚石复合片
CN101658937A (zh) * 2009-09-14 2010-03-03 河南晶锐超硬材料有限公司 聚晶金刚石复合片基体
CN201521249U (zh) * 2009-09-14 2010-07-07 河南晶锐超硬材料有限公司 一种聚晶金刚石复合片基体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2726791Y (zh) * 2004-09-15 2005-09-21 金瑞新材料科技股份有限公司 一种金刚石复合片
CN101658937A (zh) * 2009-09-14 2010-03-03 河南晶锐超硬材料有限公司 聚晶金刚石复合片基体
CN201521249U (zh) * 2009-09-14 2010-07-07 河南晶锐超硬材料有限公司 一种聚晶金刚石复合片基体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681530A (zh) * 2019-02-28 2019-04-26 桂林星钻超硬材料有限公司 一种滚动轴承

Also Published As

Publication number Publication date
CN101658937A (zh) 2010-03-03

Similar Documents

Publication Publication Date Title
WO2011029350A1 (zh) 聚晶金刚石复合片基体
KR100963710B1 (ko) 복합 연마재 컴팩트
US5645617A (en) Composite polycrystalline diamond compact with improved impact and thermal stability
US6042463A (en) Polycrystalline diamond compact cutter with reduced failure during brazing
CN101823164A (zh) 切割元件
CN104879066B (zh) 钻探用金刚石复合片基体制备方法及复合片基体
CN210146140U (zh) 一种用于球磨机的高抗磨衬板
CN103797214B (zh) 用于挖掘工具的尖头和包括该尖头的挖掘工具
CN201521249U (zh) 一种聚晶金刚石复合片基体
CN104001746B (zh) 一种钛合金镀锡拉丝模及其制备方法
CN204094170U (zh) 一种超硬材料复合片及其基体
CN112780273A (zh) 高抗冲击抗脱落聚晶金刚石硬质合金截齿头及其制造方法
CN206356052U (zh) 一种复合挤压辊
CN204075223U (zh) 一种金刚石复合片基体
CN203879388U (zh) 复合片基体、使用该基体的复合片及使用该复合片的钻头
NO20045456L (no) Fischer-Tropsch-katalysator fremstilt med et preforstadium av hoy renhet
CN206091881U (zh) 一种多边形金刚石复合片基体
CN201693011U (zh) 一种复合结构的cvd金刚石拉丝模芯
CN204326974U (zh) 一种金刚石复合片基体
CN209025614U (zh) 用于异形结构金刚石复合片的硬质合金基体
CN217632274U (zh) 一种聚晶金刚石复合片基体
CN202467669U (zh) 用于构成聚晶金刚石复合片的基体
CN219570026U (zh) 一种用于聚晶金刚石复合片的硬质合金基体
CN204386482U (zh) 一种超硬材料复合片基体
CN204485946U (zh) 蜂窝zta陶瓷复合高铬铸铁碾底结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10814952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10814952

Country of ref document: EP

Kind code of ref document: A1