WO2011028011A2 - 저온 수계 ci(g)s 나노입자의 제조방법 - Google Patents

저온 수계 ci(g)s 나노입자의 제조방법 Download PDF

Info

Publication number
WO2011028011A2
WO2011028011A2 PCT/KR2010/005898 KR2010005898W WO2011028011A2 WO 2011028011 A2 WO2011028011 A2 WO 2011028011A2 KR 2010005898 W KR2010005898 W KR 2010005898W WO 2011028011 A2 WO2011028011 A2 WO 2011028011A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
nanoparticles
copper
compound
indium
Prior art date
Application number
PCT/KR2010/005898
Other languages
English (en)
French (fr)
Other versions
WO2011028011A3 (ko
Inventor
이두형
김창균
정택모
이선숙
안기석
정선호
최영민
류병환
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090082061A external-priority patent/KR101116404B1/ko
Priority claimed from KR1020090082043A external-priority patent/KR101164797B1/ko
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2011028011A2 publication Critical patent/WO2011028011A2/ko
Publication of WO2011028011A3 publication Critical patent/WO2011028011A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention provides an environmentally friendly aqueous solution when preparing nanoparticles of CI (G) S (CuIn x Ga 1-x Se 2 0 ⁇ x ⁇ 1), which is widely used as a light absorption layer material of thin film solar cells using sunlight. It is a manufacturing method based on the present invention, and does not require high temperature heat treatment, thereby minimizing the manufacturing cost and providing a method for producing CI (G) S nanoparticles suitable for mass production.
  • Compound thin film solar cell using CI (G) S which has high light absorption and electro-optical chromcopyrite structure among compound thin film solar cells, has a solar conversion efficiency of ⁇ 20% so far even with thin film of 1-2 micron. It is shown. Therefore, many researchers are speeding up the development of solar cells using this material and are expected to occupy 30% of the solar cell market in the future.
  • the present invention unlike the other process that requires the use of harmful organic solvents and expensive waste facility costs in the production of nanoparticles of CuIn (Ga) Se 2 as the light absorption layer material of the compound thin film solar cell. It is an object to produce in an economical and environmentally friendly manner by carrying out the reaction at a low temperature using an aqueous solvent.
  • the present inventors have conducted a number of studies, and at least a copper compound, a carboxylic acid derivative of Formula 1 or a polyelectrolyte of Formula 2 is reacted in an aqueous solvent to form a complex, and the prepared solution Low-temperature water-based CI (G) S (CuIn x Ga 1-x Se 2 0 ⁇ , comprising the steps of generating CI (G) S nanoparticles under low temperature by adding at least one hetero-element compound selected from indium compounds and selenium compounds. x ⁇ 1) has been proposed a method for producing nanoparticles.
  • R 1 is hydrogen, hydroxy group, carboxy group, (C1-C6) alkyl group, (C1-C6) alkoxy group, (C1-C6) alkylthio group, (C1-C6) hydroxyalkyl group, (C1-C6) hydroxyalkoxy group, (C1-C6) hydroxyalkylthio group, (C1-C6) aminoalkyl group, (C1-C6) aminoalkoxy group, (C1-C6) aminoalkylthio group, (C1 -C6) alkoxyalkyl group, (C2-C12) alkoxyalkoxy group, (C2-C12) alkoxyalkylthio group, (C3-C7) cycloalkyl group, (C3-C7) cycloalkyloxy group, (C3-C8) cycloalkyl (C1-C6) alkyloxy group, (C3-C7) cycloalkylthio group, (C2-C6) alkenyl group
  • R 4 is a (C6-C30) aryl group, (C1-C18) alkyl group, (C2-C18) alkenyl group or (C3-C18) cycloalkyl group, wherein the aryl group, alkyl group, alkenyl group and cyclo
  • the alkyl group may further include a (C1-C18) alkyl group, a (C6-C30) aryl group, a halogen, an amino group, a nitrile group or a nitro group
  • R 5 is a carboxylic acid, sulfonate, sulphate, sulfate ester, phosphate, or the like.
  • M 1 is selected from sodium, ammonium, potassium and amine, n is an integer from 1 to 1000, m is an integer from 1 to 1000.
  • a1 reacting a copper compound with a carboxylic acid derivative of Chemical Formula 1 in an aqueous solvent to form a copper complex;
  • (b1) forming a copper-selenium complex by injecting a selenium compound into the complex aqueous solution of step (a1);
  • (c1) generating CI (G) S nanoparticles under low temperature by injecting an indium compound into the copper-selenium complex aqueous solution of step (b1).
  • step (a2) reacting a copper compound, an indium compound, and the polymer electrolyte represented by Chemical Formula 1 in an aqueous solvent to form a complex including copper and indium; And (b2) adding selenium compounds to the complex aqueous solution of step (a2) to produce CI (G) S nanoparticles at low temperature.
  • a copper compound is added to an aqueous solution containing a carboxylic acid derivative represented by Chemical Formula 1 to form a copper complex.
  • the carboxylic acid derivative of Formula 1 may specifically include one or more selected from mono-carboxylic acid derivatives, di-carboxylic acid derivatives, tri-carboxylic acid derivatives, tetracarboxylic acid derivatives and amino acid derivatives.
  • the carboxylic acid derivative of Formula 1 is more specifically trisodium citric acid, triammonium citric acid, citric acid, alanine, arginine, asparagine, aspartic acid, benzyl aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isolecin, leucine,
  • One or more carboxylic acid derivatives selected from lysine, methionine, ornithine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine and the like can be used, but not limited thereto.
  • the present invention provides a low-temperature aqueous CI (G) S nanoparticles using the carboxylic acid derivative of the formula (1), the copper precursor is added to the aqueous solution containing the carboxylic acid derivative of the formula (1) for about 10 minutes to 2 hours By stirring, a blue ionic copper complex aqueous solution is formed through a reaction between the copper divalent ion and the carboxylic acid derivative of Chemical Formula 1.
  • the selenium compound is added thereto to reduce the copper of the copper complex aqueous solution composed of the copper divalent formed first from divalent to monovalent to form an aqueous solution of copper and selenium complex containing green copper selenium.
  • the amount of the carboxylic acid derivative used in the preparation of the low temperature water-based CI (G) S nanoparticles using the carboxylic acid derivative of Chemical Formula 1 of the present invention is [carboxylic acid source (raw material) weight] / [copper source (raw material) weight] x100 ( %) And preferably 0.01 to 80% by weight relative to the weight of the copper source (raw material), more preferably 1 to 70% by weight.
  • the amount of carboxylic acid derivatives required for complex formation between copper metal and indium metal is insufficient, so that after preparation, it is generally separated into copper compound and indium compound. .
  • CI (G) S particles of the present invention had a different size of the produced CI (G) S particles according to the type of the carboxylic acid derivative of Formula 1, for example, in case of trisodium citrate, ⁇ 20 nm, sodium tartrate showed an average particle size of CI (G) S of ⁇ 100 nm.
  • the carboxylic acid derivative of Formula 1 in the production of CI (G) S of the present invention, it was confirmed that the average particle size of CI (G) S is 20 to 400 nm, depending on the type and amount of the carboxylic acid derivative It can vary in size.
  • the present invention provides a CuInSe 2 material by injecting a selenium compound and an indium compound so that the molar ratio of [Cu]: [In]: [Se] is 1: 1: 2 to the complex-formed solution, or to the indium compound.
  • CIGS CuIn x Ga 1-x Se 2 0 ⁇ x ⁇ 1
  • the addition of gallium also makes the sum of the moles of indium and gallium equal to the moles of copper.
  • the termination of the reaction can be distinguished by the color of the solution, and the greenish solution gradually turns black as it reacts.
  • the gallium compound is selected from nitrates, sulfates, and chlorides.
  • All of the above reaction of the present invention is particularly advantageous in the present invention in that it is prepared by reacting at 0 ⁇ 80 °C, preferably room temperature.
  • Impurities in the CI (G) S-formed solution are dissolved by adding distilled water, followed by repeating the process of separating the supernatant by centrifugation 2-3 times to prepare desired nanoparticles.
  • the present invention is a method for producing a low-temperature water-based CI (G) S nanoparticles, using a source material containing a copper or indium element to form a complex containing a chelate in the aqueous solution of the polymer electrolyte represented by the following formula (2) .
  • a source material containing a copper or indium element to form a complex containing a chelate in the aqueous solution of the polymer electrolyte represented by the following formula (2) .
  • R 4 is a (C6-C30) aryl group, (C1-C18) alkyl group, (C2-C18) alkenyl group or (C3-C18) cycloalkyl group, wherein the aryl group, alkyl group, alkenyl group and cyclo
  • the alkyl group may further include a (C1-C18) alkyl group, a (C6-C30) aryl group, a halogen, an amino group, a nitrile group or a nitro group
  • R 5 is a carboxylic acid, sulfonate, sulphate, sulfate ester, phosphate, or the like.
  • M 1 is selected from sodium, ammonium, potassium and amine, n is an integer from 1 to 1000, m is an integer from 1 to 1000.
  • Formula 2 of the present invention is a specific example, for example, carboxylates such as fatty acid alkali salts, acrylic amino acid salts, alkyl ether carbonate salts, acylated peptide salts, such as alkyl sulfonate salts, alkylbenzene sulfonate salts, alkyl naphthalene sulfonate salts, and the like.
  • carboxylates such as fatty acid alkali salts, acrylic amino acid salts, alkyl ether carbonate salts, acylated peptide salts, such as alkyl sulfonate salts, alkylbenzene sulfonate salts, alkyl naphthalene sulfonate salts, and the like.
  • phosphate ester salts such as alkyl phosphates, alkyl ether phosphates, alkylaryl ether phosphates
  • An electrolyte may be used, and the carboxylate, sulfonate, sulfate ester salt and phosphate ester salt include those selected from sodium, amine, ammonium and potassium.
  • the amount of the polymer electrolyte used in the production of CI (G) S of the present invention is defined as [polymer electrolyte source (raw material) weight] / ⁇ [copper source (raw material) weight] + [indium source (raw material) weight] ⁇ .
  • the amount of the polyelectrolyte added is preferably added in an amount of 1.0 wt% to 80 wt%, more preferably 10 wt% to 50 wt%, based on the total weight of copper and indium.
  • the amount of the polymer electrolyte required to form a complex between copper metal and indium metal is insufficient, and after manufacture, it tends to be separated into a copper compound and an indium compound.
  • an excessive amount of more than 80% by weight is not only involved in complex formation, but also directly participates in the reaction, it may be produced by separating copper and indium and selenium into unwanted compounds.
  • by leaving a relatively large amount of residual polymer after the reaction it may cause a disadvantage that must be removed after completion of the manufacturing process.
  • the CI (G) S particles of the present invention had different sizes of the produced CI (G) S particles depending on the amount of the polymer electrolyte to be used.
  • the poly (Ethylenimine, PEI) polyelectrolyte may be used.
  • the average particle size of CI (G) S was 10 nm at 5 wt%, 25 nm at 10 wt%, 40 nm at 30 wt%, and 70 nm at 50 wt%.
  • the average particle size of CI (G) S is 10 nm at 5% by weight, 20nm at 10% by weight, 40nm, 50% at 30% by weight. In the case of% it was 60 nm.
  • a selenium compound is added to a solution in which the complex is formed so that a molar ratio of [Cu]: [In]: [Se] is 1: 1: 2, or CuInSe 2 material is prepared, or gallium nitrate or chloride is added to the indium acetate.
  • CIGS CuIn x Ga 1-x Se 2 0 ⁇ x ⁇ 1
  • All of the above reaction of the present invention is particularly advantageous in the present invention in that it is prepared by reacting at 0 ⁇ 80 °C, preferably room temperature.
  • Impurities in the solution in which the CI (G) S is formed are dissolved by adding distilled water, followed by removing the supernatant 2-3 times by centrifugation to remove the supernatant, thereby preparing desired nanoparticles.
  • the copper compound or indium compound may be any compound as long as it has a high solubility in an aqueous solvent, but preferably acetate, nitrate, Carbonate, sulfate, chloride, iodide, bromide, oxide, hydroxide, perchlorate and the like can be selected, and at least one compound can be used for each of the copper compound or indium compound.
  • the source material containing gallium element further added to the indium compound may be selected from nitrates, sulfates, chlorides and the like having solubility in an aqueous solvent.
  • the source material containing the above copper or indium element of the present invention may be any compound having a high solubility in an aqueous solvent, but preferably acetate, nitrate and carbonate. , Sulfate, chloride, iodide, bromide, oxide, hydroxide, perchlorate and the like can be used, and the copper compound or indium compound may be used one or more compounds for each.
  • the source material containing gallium element further added to the indium compound may be selected from nitrates, sulfates, chlorides and the like having solubility in an aqueous solvent.
  • the selenium compound of the present invention is a selenium compound including sodium, ammonium, and a linear or branched alkyl group, or selenium further comprising sulfate (SO 3 2- ).
  • Na 2 SeSO 3 of the present invention may be prepared and used, Na 2 SO 3 and selenium powder (Selenium power) by mixing in an aqueous solution at 80 to 100 °C, preferably 90 to 95 °C, 1 hour to 12 hours , Preferably it is prepared by mixing for 2 to 4 hours.
  • the aqueous solvent of the present invention (including the first aspect and the second aspect) preferably uses water, an alcohol, or a mixture thereof, and water is preferably deionized water.
  • the manufacturing process according to the present invention can ensure the stability of the working environment because all processes are carried out in an aqueous state, unlike other processes that require harmful organic solvents and treatment of other waste solvents by using harmful organic solvents. It has a very good advantage
  • the present invention is very economical compared to the conventional manufacturing method requiring a high temperature because it is manufactured at a low manufacturing reaction temperature ( ⁇ 25 °C), and by increasing the capacity of the batch without the need for additional equipment to increase the batch It has the advantage of ensuring productivity.
  • the particles of the finally prepared CI (G) S can be controlled in the nano size dimension. There is an advantage that it can.
  • FIG. 1 is XRD crystallinity data of CIS particles prepared in Example 1.
  • Figure 2 is XRD crystallinity data of the CIS particles prepared in Example 2.
  • Example 3 is XRD crystallinity data of CIS particles prepared in Example 10.
  • FIG. 4 is XRD crystallinity data of CIS particles prepared in Example 11.
  • di-water is prepared based on 20 ml, and then dissolved in 1.25 mmol (0.256 g) of citric acid to form a complex. After stirring for 10 minutes to fully dissolve, 3 mmol (0.598 g) of copper acetate is added and stirred for 20 minutes to form a complex. The next step, the addition of selenium and indium was performed in the same manner as in Example 1 described above
  • 2-theta values confirmed typical CuInSe 2 (JCPDS-97-004-9933) peaks of 26 °, 44 °, and 52 °, respectively.
  • TSC trisodium citrate
  • Example 2 The experiment was performed in the same manner as in Example 1, and the reaction temperature was changed to 25 ° C., 50 ° C., and 80 ° C., respectively, to finally prepare a CIS material.
  • the particle size of the reaction temperature of 25 °C room temperature, the average of 100 nm and 200 nm particle size for the reaction temperature of 50 °C and 80 °C, respectively.
  • typical CuInSe 2 JCPDS-97-004-9933
  • di-water is prepared on the basis of 20 ml, and then 3 mmol (0.598 g) of copper acetate is added without addition of a carboxylic acid derivative and stirred for 5 minutes.
  • the next step was carried out in the same manner as in Example 1 described above.
  • di-water is prepared based on 20 ml, and 1.25 mmol (0.271 g) of gluconic acid is dissolved. After stirring for 10 minutes to fully dissolve, 3 mmol (0.598 g) of acetonitrile raw material was added thereto, followed by stirring for 20 minutes to form a complex.
  • 0.1 mol (12.6 g) Na 2 SO 3 and selenium powder (7.89 g) were mixed in 1000 ml of DI water and reacted at 95 ° C. for 3 hours to prepare 60 ml of Na 2 SeSO 3 aqueous solution. Add to aqueous copper solution. The following steps were performed identically to Example 1 described above
  • di-water is prepared based on 20 ml, and then dissolved in 1.25 mmol (0.075 g) of ethylene glycol (Ethylene Glycol). After stirring for 10 minutes to fully dissolve, 3 mmol (0.598 g) of copper acetate is added and stirred for 20 minutes to form a complex. The next step was performed in the same manner as in Example 1 described above.
  • PEI polyethylenimine
  • 0.554g (2.5mmol) of copper carbonate, a cationic raw material, and 0.731g (2.5mmol) of indium acetate were added thereto, and then reacted for 1 hour to form a complex. It was.
  • poly ammonium salt of polyacrylic acid salt (35% aqueous solution) for complex formation was dissolved (for 50% by weight, PAA equivalent of 1.835 g in 35% aqueous solution). After stirring for about 10 minutes to fully dissolve, 0.554g (2.5mmol) of cation raw material and 0.731g (2.5mmol) of indium acetate are added thereto, followed by reaction for at least 1 hour to form a complex.
  • PEI polyethyleneimine
  • the amount of PEI used was prepared by adding 5% by weight, 10% by weight, 30% by weight and 50% by weight relative to the sum of the weights of the copper metal and the indium metal used.
  • the surfactant was stirred for about 10 minutes to completely dissolve, and then 0.554 g of a cationic raw material, copper carbonate, and 0.731 g of indium acetate were added thereto, followed by reaction for at least 1 hour for complex formation.
  • sodium polyacrylate salt (35% aqueous solution) for complex formation was dissolved in various ratios with respect to the number of moles of copper and indium metal.
  • the amount of sodium polyacrylate salt used was prepared by adding 1% by weight, 5% by weight, 10% by weight, 20% by weight, 30% by weight, 50% by weight, and 80% by weight, based on the total weight of copper metal and indium metal used. It was.
  • the surfactant was stirred for about 10 minutes to completely dissolve, and then 0.554 g of a cationic raw material, copper carbonate, and 0.731 g of indium acetate were added thereto, followed by reaction for at least 1 hour for complex formation.
  • PEI polyethylenimine
  • PEI polyethylenimine
  • PEI polyethylenimine
  • 0.554g of copper carbonate (Copper carbonate) and 0.731g of indium acetate (Indium acetate) were added and reacted for at least 1 hour to form a complex.
  • 50 ml of 0.1 mol Na 2 SeSO 3 aqueous solution prepared by reacting Na 2 SO 3 + Se with a molar ratio of [Cu] and [Se] to [Se] of 1: 1: 2 was added to the solution.
  • the sample used was a solution, and the solution was dried at 150 ° C., and the impurities in the prepared CIS solution were dissolved by adding distilled water, followed by centrifugation to separate the supernatant 2-3 times. After the removal process was performed, the obtained powder was analyzed using a powder.
  • Example 6 A solution of 0.2 mol Na 2 SeSO 3 was prepared by reacting Na 2 SO 3 + Se with a molar ratio of [Se] to [Cu] and [In] in a solution of 1: 4. Stir enough for 1 hour to finally produce the CIS material. The next step was performed identically to Example 15 described above

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 박막형 화합물 태양전지의 광 흡수층 물질인 CI(G)S(CuInxGa1-xSe2 0<x≤1)의 나노입자를 저온 하에서 수계 반응하여 제조하는 방법에 관한 것이다. 자세하게는 적어도 구리 화합물과, 카르복시산 유도체 또는 고분자전해질을 수계용매하에서 반응하여 착물을 형성하고, 제조된 용액에 인듐 화합물 및 셀레늄화합물에서 하나 이상 선택된 이종원소 화합물을 투입하여 저온 하에서 CI(G)S 나노입자를 생성하는 단계를 포함하는 저온 수계 CI(G)S 나노입자의 제조방법에 관한 것이다.

Description

저온 수계 CI(G)S 나노입자의 제조방법
본 발명은 태양광을 이용한 박막형 태양전지의 광흡수층 물질로 널리 사용 되고 있는 CI(G)S(CuInxGa1-xSe2 0<x≤1)의 나노입자 제조 시, 환경친화적인 수용액을 기초로 하는 제조방법이며, 고온열처리를 필요로 하지 않으므로 제조단가를 최저로 할 수 있으며, 대량생산에 적합한CI(G)S 나노입자의 제조방법을 제공하는 것이다.
화합물 박막형 태양전지 중에서 높은 광 흡수와 전기적 광학적으로 우수한 Chalcopyrite 구조를 가지는 CI(G)S를 이용한 화합물 박막형 태양전지는 1-2마이크론 정도의 박막으로도 지금까지 ~20% 정도의 태양광변환 효율을 나타내고 있다. 따라서 많은 연구자들이 이를 이용한 태양전지개발에 박차를 가하고 있으며 향후 태양전지 시장의 30% 정도를 차지할 것으로 기대가 되고 있는 물질이다.
지금까지 CIS 또는 CI(G)S의 제조방법으로는 일반적으로 기상증착방법을 이용하고 막의 치밀화를 위하여 기상법으로 셀레늄화하는 공정들이 많이 보고 되고 있다. 이는 상대적으로 높은 광변환 효율을 기대할 수는 있으나 고가의 장비 및 대량생산의 어려움 등의 문제점이 초래되고 있다 [R.Noufi, K. Zweibel(NREL), 2006 IEEE 4thWorld Conference on Photovoltaic Energy Conversion, vol.1, 317-320,(2006)].
또한 David B. Mitzi(IBM) 등은 구리셀레늄 화합물과 인듐셀레늄 화합물을 미리 합성한 다음 강력한 환원성 물질인 하이드라진에 장시간 용해시킨 후 스핀코팅을 이용하여 CIGS박막을 제조한 방법을 보고 하였다. 비록 IBM에서 제조된 태양전지는13% 이상의 높은 광변환 효율을 나타내고 있지만, 전 공정이 장갑상자 내에서 행해지고 일주일 이상의 장시간 반응 그리고 상대적으로 취급이 용이하지 않은 하이드라진을 사용한다는 문제점이 있다[Advanced Materials, vol.20, 3657-3662,(2008)].
그리고 Brian A. Korgel 등이 구리아세테이트(Copper acetate)와 인듐아세테이트(Indium acetate) 그리고 셀레늄분말(selenium powder)을 올레일아민(Oleylamine) 용매를 이용하여 제조하는 방법을 보고하였다. 알려져 있다. 그러나 이 방법은 상대적으로 입자를 빠르게 제조할 수 있지만, 높은 반응온도(240??)에서 독성이 강한 클로로포름을 이용하여 반응속도를 조절 하여야 하고 또한 진공장치 내에서 행해져야 한다는 문제점이 있다[J. Am. Chem. Soc., vol.130, 16770-16777,(2008)].
또한 CIGS분말 제조 시 용매열로 마이크로웨이브(Microwave)를 이용한 방식이 보고되어[Inorg. Chem., 42, 7148-7155, (2003)], 용매열로 사용되는 마이크로웨이브가 짧은 시간 내에 순도 높은 물질을 제조한다는 장점은 있으나, 낮은 생산성, 연속식 공정의 어려움, 그리고 많은 에너지 사용으로 인하여 공정단가의 상승을 초래할 수 있다는 단점이 있다.
따라서, 열악한 제조 조건을 개선하고 생산성을 확보하기 위하여 더욱 간단하고 경제적인 제조방법에 대한 필요성이 더욱 증가하고 있으며, 특히 CI(G)S의 제조에서 고온의 열을 부가하는 수단 없이 저온에서 전 공정을 수행할 수 있으며, 수계반응을 통한 친환경적인 생산적인 방법에 대한 발명이 향후 CI(G)S 태양전지의 폭넓은 공급을 위해서는 반드시 개발되어야 하는 과제이다.
상기의 문제점을 해결하기 위하여 본 발명은 화합물 박막형 태양전지의 광흡수층 물질인 CuIn(Ga)Se2의 나노입자를 제조함에 있어서 유해한 유기용제 사용 및 고가의 폐기시설비를 필요로 하는 타공정과는 달리 수계용매를 이용하여 낮은 온도에서 반응을 수행함으로써 경제적이고, 환경친화적 방법으로 제조하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위해 본 발명자들은 수많은 연구를 수행한 결과, 적어도 구리 화합물과, 하기 화학식 1의 카르복시산 유도체 또는 하기 화학식 2의 고분자전해질을 수계용매하에서 반응하여 착물을 형성하고, 제조된 용액에 인듐 화합물 및 셀레늄화합물에서 하나 이상 선택된 이종원소 화합물을 투입하여 저온 하에서 CI(G)S 나노입자를 생성하는 단계를 포함하는 저온 수계 CI(G)S(CuInxGa1-xSe2 0<x≤1) 나노입자의 제조방법을 제안하게 되었다.
[화학식 1]
Figure PCTKR2010005898-appb-I000001
[화학식 2]
Figure PCTKR2010005898-appb-I000002
(상기 화학식 1에서, R1은 수소, 하이드록시기, 카르복시기, (C1-C6)알킬기, (C1-C6)알콕시기, (C1-C6)알킬티오기, (C1-C6)하이드록시알킬기, (C1-C6)하이드록시알콕시기, (C1-C6)하이드록시알킬티오기, (C1-C6)아미노알킬기, (C1-C6)아미노알콕시기, (C1-C6)아미노알킬티오기, (C1-C6)알콕시알킬기, (C2-C12)알콕시알콕시기, (C2-C12)알콕시알킬티오기, (C3-C7)사이클로알킬기, (C3-C7)사이클로알킬옥시기, (C3-C8)사이클로알킬(C1-C6)알킬옥시기, (C3-C7)사이클로알킬티오기, (C2-C6)알케닐기, (C2-C6)알케닐옥시기, (C2-C6)알케닐티오기, (C2-C6)알키닐기, (C2-C6)알키닐옥시기, (C2-C6)알키닐티오기, (C6-C12)아릴기, (C6-C12)아릴옥시기, (C6-C12)아릴티오기, (C1-C6)알킬(C6-C12)아릴기, (C1-C6)알킬(C6-C12)아릴옥시기, (C1-C6)알킬(C6-C12)아릴티오기, (C6-C12)아릴(C1-C6)알킬기, (C6-C12)아릴(C1-C6)알킬옥시기 및 (C6-C12)아릴(C1-C6)알킬티오기로부터 선택되며, R2 및 R3은 서로 독립적으로 수소, 아민 및 카르복시기로부터 선택되고,
상기 화학식 2에서, R4는 (C6-C30)아릴기, (C1-C18)알킬기, (C2-C18)알케닐기 또는 (C3-C18)시클로알킬기이며, 상기 아릴기, 알킬기, 알케닐기 및 시클로알킬기는(C1-C18)알킬기, (C6-C30)아릴기, 할로겐, 아미노기, 니트릴기 또는 니트로기를 더 포함할 수 있으며, R5는 카르복실산, 설포네이트, 셀페이트, 황산에스테르, 포스페이트 등으로부터 선택되는 것이며, M1은 나트륨, 암모늄, 칼륨 및 아민으로부터 선택되는 것이며, n은 1~1000의 정수이고, m은 1~1000의 정수이다.)
상세한 본 발명에 따른 제1양태는 (a1) 구리 화합물과, 상기 화학식 1의 카르복시산 유도체를 수계용매 하에서 반응하여 구리착물을 형성하는 단계; (b1) 상기 (a1) 단계의 착물 수용액에 셀레늄화합물을 투입하여 구리-셀레늄 착물을 형성하는 단계; 및 (c1) 상기 (b1) 단계의 구리-셀레늄 착물 수용액에 인듐화합물을 투입하여 저온 하에서 CI(G)S 나노입자를 생성하는 단계;를 포함한다.
상세한 본 발명에 따른 제1양태는 (a2) 구리화합물, 인듐화합물 및 상기 화학식 1로 표시되는 고분자전해질을 수계 용매하에 반응하여 구리 및 인듐을 포함한 착물을 형성하는 단계; 및 (b2) 상기 (a2) 단계의 착물수용액에 셀레늄화합물을 투입하여 저온하에서 CI(G)S 나노입자를 생성하는 단계;를 포함한다.
이하, 본 발명의 제1양태를 상세하게 설명한다.
본 발명의 제1양태는 카르복시산 유도체를 이용한 저온 수계CI(G)S 나노입자를 제조하는 방법에 있어서, 상기 화학식 1로 표현되는 카르복시산 유도체를 포함한 수용액에 구리화합물을 투입하여 구리 착물을 형성한다. 여기에 셀레늄화합물 및 인듐화합물 혼합하고 저온 하에서 최종 반응함으로써 저온 수계 CI(G)S 나노입자의 제조방법을 제공할 수 있으며, 셀레늄화합물 및 인듐화합물과 함께 갈륨화합물이 더 투입될 수 있다.
상기 화학식 1의 카르복시산 유도체는 구체적으로 모노-카르복시산 유도체, 디-카르복시산 유도체, 트리-카르복시산 유도체, 테트라카르복시산유도체 및 아미노산 유도체로부터 선택되는 1종 이상을 포함할 수 있다.
상기 화학식 1의 카르복시산 유도체는 보다 구체적으로 트리나트륨시트르산, 트리암모늄시트르산, 시트르산, 알라닌, 아르기닌, 아스파라긴, 아스파트산, 벤질아스파르트산, 시스테인, 글루탐산, 글루타민, 글리신, 히스티딘, 이솔루신, 루신, 리신, 메티오닌, 오르니틴, 페닐알라닌, 프롤린, 세린, 트레오닌, 트립토판, 티로신 및 발린 등으로부터 선택되는 1종 이상의 카르복시산 유도체를 이용할 수 있으며, 이들로 한정하는 것은 아니다.
본 발명은 상기 화학식 1의 카르복시산 유도체를 이용한 저온 수계CI(G)S 나노입자를 제조하는 방법에 있어서, 상기 화학식 1의 카르복시산 유도체를 포함한 수용액에 구리 전구물질을 투입하고 10분 내지 2시간 정도 충분히 교반하여 구리2가의 이온과, 상기 화학식 1의 카르복시산 유도체와의 반응을 통해 푸른색의 이온상태의 구리착물 수용액을 형성시킨다. 여기에 상기 셀레늄화합물을 투입하여 먼저 생성된 구리2가로 구성된 구리착물 수용액의 구리를 2가에서 1가로 환원시켜 초록색의 구리셀레늄을 포함한 구리와 셀레늄착물 수용액을 형성한다. 상기 용액을 충분히 1시간 이내의 범위에서 충분히 교반한 후, 상기 인듐화합물을 투입하여 1시간 이상 반응시켜 수계 CI(G)S(CuInxGa1-xSe2 0<x≤1) 나노입자를 제조한다. 상기 반응은 모든 공정이 0 내지 80℃의 저온 분위기 하에서 수행된다.
본 발명의 상기 화학식 1의 카르복시산 유도체를 이용한 저온 수계 CI(G)S 나노입자의 제조에 사용된 상기 카르복시산 유도체의 투입양은 [카르복시산소스(원료) 중량]/[구리소스(원료) 중량]x100(%)으로 정의 되고 구리소스(원료) 중량에 대하여 0.01 내지 80 중량%로 투입하는 것이 바람직하고, 1 내지 70 중량%로 투입하는 것이 더 바람직하다. 0.01 중량% 미만을 투입할 경우, 본 발명에서 제안하고 있듯이 구리금속과 인듐금속과의 착체 형성에 필요한 카르복시산 유도체의 양이 부족하여 제조 후 대체적으로 구리화합물 및 인듐화합물로 분리되어 제조되는 경향을 보인다. 또한 80 중량%를 초과하여 과다한 양을 투입하게 되면 착체 형성에 관계 하는것 뿐 만 아니라 반응에 직접적으로 참여할 수도 있어 구리 및 인듐과, 셀레늄과의 반응을 방해하여 원하지 않은 화합물로 분리되어 생성될 수 있으며, 또한 반응 후 상대적으로 많은 잔여 카르복시산 유도체를 남김으로써, 제조공정 완료 후, 제거해야 하는 단점을 초래할 수도 있다.
본 발명의 CI(G)S 입자는 투입된 상기 화학식 1의 카르복시산 유도체의 종류에 따라 생성된 CI(G)S 입자의 크기가 달랐으며, 예를 들어, 트리나트륨시트르산(Trisodiumcitrate)의 경우, ~20 nm, 나트륨타르타르산(Sodium tartrate)인 경우 ~100 nm 의 CI(G)S 평균 입자크기를 나타내었다. 본 발명의 CI(G)S의 제조에서 상기 화학식 1의 카르복시산 유도체를 사용함으로써, CI(G)S의 평균 입자크기는 20 내지 400 nm임을 확인하였으며, 상기 카르복시산 유도체의 종류와 사용 양에 따라 입자크기를 다양하게 변화할 수 있다.
본 발명은 상기 착물이 형성된 용액에 [Cu]:[In]:[Se]의 몰비가 1:1:2가 되도록 셀레늄화합물과, 인듐화합물을 투입하여 CuInSe2 물질을 제조하거나, 상기 인듐화합물에 갈륨화합물을 더 첨가하여 CIGS(CuInxGa1-xSe2 0<x<1)를 제조할 수 있으며, 0 내지 80℃의 저온, 바람직하게는 상온 하에서 제조할 수 있다. 또한 상기 갈륨의 첨가는 인듐과 갈륨의 몰수의 합이 구리의 몰수와 동일하게 한다. 반응의 종결은 용액의 색상으로 구분할 수 있으며, 초록색을 띄는 용액은 반응함에 따라 점차적으로 검은색으로 변한다.
본 발명에서 상기 갈륨화합물은 질산염, 황산염, 및 염화물로부터 선택된다.
본 발명의 상기 모든 반응은 0~80℃, 좋게는 상온에서 반응하여 제조하는 것에서 특별히 본 발명의 장점이 더 있다.
상기 CI(G)S 가 형성된 용액 중 불순물은 증류수를 첨가하여 녹인 후 원심분리를 이용하여 상등액을 분리하는 과정을 2-3회씩 반복하여 수행한 후 원하는 나노입자를 제조한다.
이하, 본 발명의 제2양태를 상세하게 설명한다.
본 발명은 저온 수계CI(G)S 나노입자를 제조하는 방법에 있어서, 구리 또는 인듐원소를 포함한 소스 물질을 이용하여 하기 화학식 2로 표현되는 고분자전해질을 수용액 상태에서 킬레이트가 포함된 착물을 형성한다. 여기에 셀레늄 또는 셀레늄 화합물과의 최종반응을 통해 저온 수계 CI(G)S(CuInxGa1-xSe2 0<x≤1) 나노입자의 제조 방법을 제공한다.
[화학식 2]
Figure PCTKR2010005898-appb-I000003
상기 화학식 2에서, R4는 (C6-C30)아릴기, (C1-C18)알킬기, (C2-C18)알케닐기 또는 (C3-C18)시클로알킬기이며, 상기 아릴기, 알킬기, 알케닐기 및 시클로알킬기는 (C1-C18)알킬기, (C6-C30)아릴기, 할로겐, 아미노기, 니트릴기 또는 니트로기를 더 포함할 수 있으며, R5는 카르복실산, 설포네이트, 셀페이트, 황산에스테르, 포스페이트 등으로부터 선택되는 것이며, M1은 나트륨, 암모늄, 칼륨 및 아민으로부터 선택되는 것이며, n은 1~1000의 정수이고, m은 1~1000의 정수이다.
본 발명의 상기 화학식 2는 구체적인 예시를 들면, 지방산알칼리염, 아크릴아미노산염, 알킬에테르카본산염, 아실화펩티드염 등의 카르복실산염류 알킬설폰산염, 알킬벤젠설폰산염, 알킬나프탈렌설폰산염 등의 설폰산염류 황산화유, 알킬황산염, 알킬에테르황산염, 알킬아릴에테르황산염, 알킬아미드황산염 등의 황산에스테르염류 및 알킬인산염, 알킬에테르인산염, 알킬아릴에테르인산염 등의 인산에스테르염류로부터 선택되는 1종 이상의 고분자전해질을 이용할 수 있으며, 상기 카르복실산염, 설폰산염, 황산에스테르염 및 인산에스테르염은 나트륨, 아민, 암모늄 및 칼륨으로부터 선택되는 것을 포함한다.
본 발명의 CI(G)S제조에 사용되는 고분자전해질의 투입량은 [고분자전해질소스(원료) 중량]/{[구리소스(원료) 중량]+[인듐소스(원료) 중량]}로 정의되고, 상기 고분자전해질의 투입양은 구리와 인듐의 중량 합에 대하여 1.0 중량% 내지 80 중량%로 투입하는 것이 바람직하고, 10 중량% 내지 50 중량%로 투입하는 것이 더 바람직하다. 1 중량% 미만을 투입할 경우, 본 발명에서 제안하고 있듯이 구리금속과 인듐금속과의 착체 형성에 필요한 고분자전해질의 양이 부족하여 제조 후 대체적으로 구리화합물 및 인듐화합물로 분리되어 제조되는 경향을 보인다. 또한 80 중량%를 초과하여 과다한 양을 투입하게 되면 착체 형성에 관계하는것 뿐 만 아니라 반응에 직접적으로 참여할 수도 있어 구리 및 인듐과, 셀레늄과의 반응을 방해하여 원하지 않은 화합물로 분리되어 생성될 수 있으며, 또한 반응 후 상대적으로 많은 잔여 고분자를 남김으로써, 제조공정 완료 후, 제거해야 하는 단점을 초래할 수도 있다.
본 발명의 CI(G)S 입자는 투입되는 고분자전해질의 사용량에 따라 생성된 CI(G)S입자의 크기가 달랐으며, 예를 들어, 폴리에틸렌이민(Poly Ethylenimine, PEI)의 고분자전해질을 사용하였을 때, CI(G)S의 평균 입자크기는 5 중량%인 경우 10nm, 10 중량%인 경우 25nm, 30 중량%인 경우 40nm, 50 중량%인 경우 70nm이었다. 또한 폴리아크릴산(Polyacrylic acid; PAA)의 고분자전해질을 사용하였을 경우, CI(G)S의 평균 입자크기는 5 중량%인 경우 10nm, 10 중량%인 경우 20nm, 30 중량%인 경우 40nm, 50 중량%인 경우 60nm이었다.
본 발명은 상기 착물이 형성된 용액에 [Cu]:[In]:[Se]의 몰비가 1:1:2가 되도록 셀레늄화합물을 투입하여 CuInSe2 물질을 제조하거나, 상기 인듐아세테이트에 질산갈륨 또는 염화갈륨을 더 첨가하여 CIGS(CuInxGa1-xSe2 0<x<1)를 제조할 수 있으며, 저온인 상온 하에서도 제조할 수 있다. 상기 갈륨의 첨가는 인듐과 갈륨의 몰수의 합이 구리의 몰수와 동일하게 한다.
본 발명의 상기 모든 반응은 0~80℃, 좋게는 상온에서 반응하여 제조하는 것에서 특별히 본 발명의 장점이 더 있다.
상기 CI(G)S 가 형성된 용액 중 불순물은 증류수를 첨가하여 녹인 후 원심분리를 이용하여 상등액을 분리하는 과정을 2-3회씩 반복하여 제거과정을 수행한 후 원하는 나노입자를 제조한다.
상술한 제1양태 및 제2양태를 포함하는 본 발명의 제조방법에 있어, 상기 구리화합물 또는 인듐화합물은 수계 용매에 높은 용해도를 갖는 화합물이면 어떠한 것이든 가능하지만, 바람직하게는 아세트산염, 질산염, 탄산염, 황산염, 염화물, 요오드화물, 브롬화물, 산화물, 수산화물, 과염소산염 등으로부터 선택하여 이용할 수 있으며, 구리화합물 또는 인듐화합물 각각에 대하여 1종 이상의 화합물을 이용할 수 있다. 또한 인듐화합물에 더 첨가되는 갈륨 원소를 포함하는 소스 물질로는 수계용매에 용해도를 갖는 질산염, 황산염, 염화물 등으로부터 선택하여 이용할 수 있다.
본 발명(제1양태 및 제2양태를 포함)의 상기 구리 또는 인듐 원소를 포함하는 소스 물질로는 수계 용매에 높은 용해도를 갖는 화합물이면 어떠한 것이든 가능하지만, 바람직하게는 아세트산염, 질산염, 탄산염, 황산염, 염화물, 요오드화물, 브롬화물, 산화물, 수산화물, 과염소산염 등으로부터 선택하여 이용할 수 있으며, 구리화합물 또는 인듐화합물은 각각에 대하여 1종 이상의 화합물을 이용할 수 있다. 또한 인듐화합물에 더 첨가되어지는 갈륨 원소를 포함하는 소스 물질로는 수계용매에 용해도를 갖는 질산염, 황산염, 염화물 등으로부터 선택하여 이용할 수 있다.
본 발명(제1양태 및 제2양태를 포함)의 상기 셀레늄화합물은 나트륨, 암모늄, 및 직쇄 또는 분지쇄의 알킬기를 포함하는 셀레늄화합물이거나, 여기에 설페이트(SO3 2-)를 더 포함하는 셀레늄화합물일 수 있으며, 바람직하게는 나트륨셀레나이드, 암모늄셀레나이드, 알킬셀레나이드(알킬=메틸 또는 에틸), 셀레노아황산나트륨(Na2SeSO3) 등이 좋으며, 가장 바람직하게는 셀레노아황산나트륨이 가장 좋다.
본 발명의 상기 Na2SeSO3는 제조하여 사용할 수도 있는데, Na2SO3와 셀레늄분말(Selenium power)을 수용액 상에서 혼합하여 80 내지 100℃, 바람직하게는 90 내지 95℃로, 1시간 내지 12시간, 바람직하게는 2시간 내지 4시간 혼합하여 제조된다.
본 발명(제1양태 및 제2양태를 포함)의 상기 수계 용매는 물, 알코올, 또는 이들의 혼합물을 이용하는 것이 바람직하며, 물은 탈이온수(Deionized water)를 사용하는 것이 좋다.
제조된 생성물의 조성에 대한 정성, 정량분석과 형성된 입자들의 입도 분포를 알아보기 위해 입도분석기(ELS-800, Otsuka, Japan)를 통해 확인하였다.
그리고 결정구조와 배향성을 알아보기 위해X-ray Diffraction(XRD; D/max-A, Rigaku Japan, CuKα: λ=1.54178Å)을 사용하였다.
본 발명에 따른 제조공정은 유해한 유기용제를 사용함으로써 작업환경의 유해성 유발 및 기타 폐기용제의 처리를 필요로 하는 타 공정과는 달리 모든 공정이 수계상태에서 진행되므로 작업환경의 안정성을 확보할 수 있다는 매우 우수한 장점을 가지고 있다고 할 수 있다
또한, 제조공정 시 취급이 용이하며 상대적으로 환경유해물질을 생산하지 않는 카르복시산 유도체를 이용하여 수계상태의 공정을 진행하므로 별도의 폐기시설이 필요하지 않아서 매우 경제적이며, 환경친화적인 공정이라는 장점을 가지고 있다.
본 발명은 낮은 제조반응온도(~25℃)에서 제조되므로 고온을 필요로 하는 종래의 제조방법에 비해 매우 경제적이며, 또한, 부수적인 장치의 증설 없이 batch의 용량을 쉽게 증대시켜 제조를 수행함으로써 높은 생산성을 확보할 수 있다는 장점을 가지고 있다.
또한, 착물 형성으로 사용되는 카르복시산 유도체 또는 고분자전해질의 비와 첨가되는 전구물질의 농도 비를 달리 함으로서 중간착체의 크기를 제어하여 최종적으로 제조되는 CI(G)S의 입자를 나노 크기 차원에서 제어할 수 있다는 장점이 있다.
도 1은 실시예 1에서 제조된 CIS입자의 XRD 결정성 data 이다.
도 2는 실시예 2에서 제조된 CIS입자의 XRD 결정성 data 이다.
도 3은 실시예 10에서 제조된 CIS입자의 XRD 결정성 data 이다.
도 4는 실시예 11에서 제조된 CIS입자의 XRD 결정성 data 이다.
도 5는 비교예 4에서 제조된 입자의 XRD 결정성 data 이다.
이하, 본 발명을 하기의 실시예에 의거하여 좀 더 상세히 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않는다.
실시예 1
우선 초정제수(DI-water) 20 ml를 기준으로 하여 준비한 후, 착물 형성을 위해 트리나트륨시트르산(Trisodium Citrate TSC) 1.25mmol(0.367g)에 용해시킨다. 10분 동안 교반하여 충분히 용해시킨 후 구리아세테이트(Copper acetate)를 3mmol(0.598g)을 첨가하여 착물 형성을 위해 20분 정도 교반한다. 이 준비된 용액에 12.6g Na2SO3과 7.89g 셀레늄분말(Selenium power)을 DI water 1000ml에 섞은 후 3시간, 95℃에서 반응시켜 제조한 0.1mol Na2SeSO3 수용액에서 60ml를 취해 먼저 제조된 구리수용액에 첨가한다. 이 용액은 30분 동안 충분히 반응한다. 3 mmol(0.876g) 인듐아세테이트를 DI water 20ml에 첨가한 용액을 서서히 위 용액에 투입한다. 이로써 총 용액의 부피는 100ml가 되게 하였다. 1시간이 지나면 용액은 점차 초록색에서 검은색으로 변하여 CuInSe2입자를 포함한 용액을 형성하게 된다. 구조분석은 XRD(X-선회절분석기)를 사용하여 분석하였다. 사용된 샘플은 용액상으로, 그리고 용액을 150℃로 건조 후 사용하였으며, 상기 제조한 CIS용액 중 불순물은 증류수를 첨가하여 녹인 후 원심분리를 이용하여 상등액을 분리하는 과정을 2-3회씩 반복하여 제거하는 과정을 수행한 후 취득된 분말을 사용하여 분석하였다.
그 결과 도 1와 같이 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인하였다.
실시예 2
우선 초정제수(DI-water) 20ml를 기준으로 하여 준비한 후, 착물 형성을 위해 트리암묘늄시트르산(Triammonium citrate) 1.25mmol(0.306g)에 용해시킨다. 10분 동안 교반하여 충분히 용해시킨 후 구리아세테이트3mmol(0.598g)을 첨가하여 착물 형성을 위해 20분 동안 교반한다. 다음 단계인 셀레늄과 인듐의 첨가 실험은 상기 설명된 실시예 1과 동일하게 수행하였다
그 결과, 도 2와 같이 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인하였다.
실시예 3
우선 초정제수(DI-water) 20ml를 기준으로 하여 준비한 후, 착물 형성을 위해 타르트르산나트륨(Sodium Tartrate) 1.25mmol(0.287g)에 용해시킨다. 10분 동안 교반하여 충분히 용해시킨 후 구리아세테이트 3mmol(0.598g)을 첨가하여 착물 형성을 위해 20분 동안 교반한다. 다음 단계인 셀레늄과 인듐의 첨가 실험은 상기 설명된 실시예 1과 동일하게 수행하였다
그 결과, 도 2와 같이 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인하였다.
실시예 4
우선 초정제수(DI-water)를 20ml를 기준으로 하여 준비한 후, 착물 형성을 위해 시트르산(Citric Acid) 1.25mmol(0.256g)에 용해시킨다. 10분 동안 교반하여 충분히 용해시킨 후 구리아세테이트 3mmol(0.598g)을 첨가하여 착물 형성을 위해 20분 동안 충분히 교반한다. 다음 단계인 셀레늄과 인듐의 첨가 실험은 상기 설명된 실시예 1과 동일하게 수행 하였다
그 결과, 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인하였다.
실시예 5
우선 초정제수(DI-water) 20 ml를 기준으로 하여 준비한 후, 착물 형성을 위해 투입되는 트리나트륨시트르산(Trisodium Citrate; TSC) 염의 투입양은 R(중량%)=[카르복시산염소스(원료)중량]/[구리소스(원료)중량]x100(%)로 정의되게 R=1중량%(0.0059g), R=5중량%(0.0295g), R=10중량%(0.059g), R=50중량%(0.295g), R=80중량%(0.472g)로 선택하여 각각 투입하여 실험을 진행 하였다. 다음 단계인 셀레늄과 인듐의 첨가 실험은 상기 설명된 실시예 1과 동일하게 수행 하였다
그 결과 20nm, 30nm, 50nm, 80nm, 100nm, 110nm정도의 평균입자크기를 각각 나태내었으며, 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인하였다.
실시예 6
우선 초정제수(DI-water) 20 ml를 기준으로 하여 준비한 후, 착물 형성을 위해 트리나트륨시트르산(Trisodium Citrate; TSC) 1.25mmol(0.367g)에 용해시킨다. 10분 동안 교반하여 충분히 용해시킨 후 구리아세테이트(Copper acetate)를 3mmol(0.598g)을 첨가하여 착물 형성을 위해 20분 정도 교반한다. 상기 용액에 [Cu]와[In]에 대한 [Se]의 몰비가 1:1, 1:2, 그리고 1:3이 되도록, Na2SO3 + Se 를 반응시켜 Na2SeSO3수용액을 각각 0.05mol(1:1:1경우), 0.1mol(1:1:2경우), 0.15mol(1:1:3경우)로 제조하여 60ml를 각각의 몰비에 맞게 투입하여 1시간 동안 충분히 교반하여 최종적으로 CIS 물질을 제조하였다. 다음 단계는 상기 설명된 실시예 1과 동일하게 수행 하였다
그 결과 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인하였다.
실시예 7
실시예 1과 동일하게 수행하였으며, 구리 및 셀레늄의 착물이 형성된 수용액에 투입되는 인듐아세테이트(Indium acetate) 그리고 질산갈륨(Gallium nitrate)의 양은 (CI(G)S(CuInxGa1-xSe2 0<x≤1)을 상기식에 의거하여,각각 x=0.95(인듐: 0.83g, 갈륨:0.038g), x=0.7(인듐: 0.613g, 갈륨:0.23g), x=0.4(인듐: 0.35g, 갈륨:0.46g)을 투입한 후 착체 형성을 위해 최소 1시간 동안 반응을 시킨다. 다음 단계는 상기 설명된 실시예 1과 동일하게 수행 하였다
그 결과, theta값이 각각 27°, 45°, 53°의 전형적인 CuInGaSe2(JCPDS-40-1488) 피크를 확인할 수 있었다.
실시예 8
실시예 1과 동일하게 수행하였으며, 반응 온도를 25℃, 50℃, 그리고 80℃로 각각 달리하여 실험을 수행하여 최종적으로 CIS 물질을 제조하였다. 그 결과, 25℃ 상온 반응의 경우 입자 크기가 약 20nm, 50℃와 80℃의 반응 온도의 경우는 평균 100nm및 200nm 입자 크기를 각각 나타내었다. 또한, 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인하였다.
실시예 9 (대용량증가)
우선 초정제수(DI-water) 200 ml를 기준으로 하여 준비한 후, 착물 형성을 위해 트리나트륨시트르산(Trisodium Citrate; TSC) 12.5mmol(3.67g)에 용해시킨다. 10분 동안 교반하여 충분히 용해시킨 후 구리아세테이트(Copper acetate)를 30mmol(5.98g)을 첨가하여 착물 형성을 위해 20분 정도 교반한다. 이 준비된 용액에 12.6g Na2SO3과 7.89g 셀레늄분말(Selenium power)을 DI water 1000ml에 섞은 후 3시간, 95℃에서 반응시켜 제조한 0.1mol Na2SeSO3 수용액에서 600ml를 취해 먼저 제조된 구리수용액에 첨가한다. 이 용액은 30분 동안 충분히 반응한다. 30mmol(8.76g) 인듐아세테이트를 DI water 200ml에 첨가한 용액을 서서히 위 용액에 투입한다. 이로써 총 용액의 부피는 1000ml가 되게 하였다. 다음 단계는 상기 설명된 실시예 1과 동일하게 수행 하였다
그 결과 도 1와 같이 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인하였다.
비교예 1
우선 초정제수(DI-water)를 20ml를 기준으로 하여 준비한 후 카르복시산 유도체의 첨가 없이 구리아세테이트 3mmol(0.598g)을 첨가하여 5분 동안 교반한다. 다음 단계는 상기 설명된 실시예 1과 동일하게 수행하였다.
그 결과 CIS 단일상이 생성되지 않고 각각Cu2Se(JCPDS-97-004-3224) 와 In2Se3(JCPDS-00-040-1408) 그리고 Na2SO4(JCPDS-00-022-1399)피크를 확인하였다.
비교예 2
우선 초정제수(DI-water)를 20ml를 기준으로 하여 준비한 후, 글루콘산(Gluconic Acid) 1.25mmol(0.271g)를 용해시킨다. 10분 동안 교반하여 충분히 용해시킨 후 양이온 원료물질인 구리아세테이트 3mmol(0.598g)을 첨가하여 착물 형성을 위해 20분 동안 충분히 교반한다. 이 준비된 용액에 0.1mol(12.6g) Na2SO3과 셀레늄 분말(7.89g)을 DI water 1000ml에 섞은 후 3시간, 95℃에서 반응시켜 제조한 Na2SeSO3 수용액에서 60ml를 취해 먼저 제조된 구리수용액에 첨가한다. 다음 단계는 상기 설명된 실시예 1과 동일하게 수행 하였다
그 결과 CIS 단일상이 생성되지 않고 각각Cu2Se(JCPDS-97-004-3224) 와 In2Se3(JCPDS-00-040-1408) 그리고 Na2SO4(JCPDS-00-022-1399) 피크를 확인하였다.
비교예 3
우선 초정제수(DI-water)를 20ml를 기준으로 하여 준비한 후, 에틸렌글리콜(Ethylene Glycol) 1.25mmol(0.075g)l에 용해시킨다. 10분 동안 교반하여 충분히 용해시킨 후 구리아세테이트 3mmol(0.598g)을 첨가하여 착물 형성을 위해 20분 동안 충분히 교반한다. 다음 단계는 상기 설명된 실시예 1과 동일하게 수행하였다
그 결과 CIS 단일상이 생성되지 않고 각각Cu2Se(JCPDS-97-004-3224) 와 In2Se3(JCPDS-00-040-1408) 그리고 Na2SO4(JCPDS-00-022-1399) 피크를 확인하였다.
실시예 10
우선 초정제수(DI-water)를 50ml 기준으로 하여 준비한 후, 착물 형성을 위한 폴리에틸렌이민(PEI, 40%수용액)를 용해시킨다(50 중량% 경우 40% PEI수용액=1.60g). 10분 정도 교반하여 충분히 용해시킨 후 양이온 원료물질인 구리카보네이트(Copper carbonate) 0.554g(2.5mmol)과 인듐아세테이트(Indium acetate) 0.731g(2.5mmol) 투입한 후 착체 형성을 위해 1시간 동안 반응을 하였다. 상기 용액에 [Cu]:[In]:[Se]의 몰비가 1:1:2가 되도록 Na2SO3 + Se 를 반응시켜 제조한 0.1mol Na2SeSO3 수용액 50ml를 투입하여 다시 1시간 동안 충분히 교반하여 최종적으로 CIS 물질을 제조하였다. 이 모든 공정은 상온(25℃)에서 수행하였다. 반응 후 취득한 용액은 검은색을 띄고 있으며, 구조분석은 X선회절분석기(XRD)를 사용하여 분석하였다. 사용된 샘플은 용액상으로, 그리고 용액을 150℃로 건조 후 사용하였으며, 상기 제조한 CIS용액 중 불순물은 증류수를 첨가하여 녹인 후 원심분리를 이용하여 상등액을 분리하는 과정을 2-3회씩 반복하여 제거하는 과정을 수행한 후 취득된 분말(powder)를 사용하여 분석하였다.
그 결과, 도 3과 같이 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인할 수 있었다.
실시예 11
초정제수(DI-water)를 50ml 기준으로 하여 준비한 후, 착물 형성을 위한 폴리아크릴산 나트륨염(35%수용액)를 용해시킨다(50 중량%의 경우, 35%수용액 중 PAA 환산 = 1.835g). 10분 정도 교반하여 충분히 용해시킨 후 양이온 원료물질인 구리카보네이트 0.554g(2.5mmol)과 인듐아세테이트(Indium acetate) 0.731g(2.5mmol) 투입한 후 착체 형성을 위해 최소 1시간 동안 반응을 시킨다.
다음 단계는 상기 설명된 실시예 1과 동일하게 수행 하였다.
그 결과, 도 4와 같이, 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933)피크를 확인할 수 있었다.
실시예 12
초정제수(DI-water)를 50ml 기준으로 하여 준비한 후, 착물 형성을 위한 폴리아크릴산 암모늄염(35%수용액)를 용해시킨다(50 중량%의 경우, 35%수용액 중 PAA 환산 = 1.835g). 10분 정도 교반하여 충분히 용해시킨 후 양이온 원료물질인 구리카보네이트 0.554g(2.5mmol)과 인듐아세테이트(Indium acetate) 0.731g(2.5mmol) 투입한 후 착체 형성을 위해 최소 1시간 동안 반응을 시킨다.
다음 단계는 상기 설명된 실시예 10과 동일하게 수행 하였다.
그 결과, 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933)피크를 확인할 수 있었다.
실시예 13
초정제수(DI-water)를 50ml 기준으로 하여 준비한 후, 착물 형성을 위한 폴리에틸렌이민(PEI, 40%수용액)을 각각의 구리금속과 인듐금속의 중량 합에 대하여 다양한 비로 달리하여 용해하였다. 사용한 PEI의 양은 사용된 구리금속과 인듐금속의 중량 합에 대하여 각각 5 중량%, 10 중량%, 30 중량%, 50 중량%로 투입하여 제조하였다. 각각의 실험에 대하여 계면활성제를 10분 정도 교반하여 충분히 용해시킨 후 양이온 원료물질인 구리카보네이트 0.554g과 인듐아세테이트 0.731g을 각각 투입한 후 착체형성을 위해 최소 1시간 동안 반응한다.
다음 단계는 상기 설명된 실시예 10과 동일하게 수행 하였다
그 결과, 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933)피크를 확인할 수 있었다.
실시예 14
초정제수(DI-water)를 50ml 기준으로 하여 준비한 후, 착물 형성을 위한 폴리아크릴산 나트륨염(35%수용액)를 각각의 구리금속과 인듐금속의 몰수에 대하여 다양한 비로 달리하여 용해하였다. 사용한 폴리아크릴산나트륨염의 양은 사용된 구리금속과 인듐금속의 중량합에 대하여 각각 1 중량%, 5 중량%, 10 중량%, 20 중량%, 30 중량%, 50 중량%, 80 중량%로 투입하여 제조하였다. 각각의 실험에 대하여 계면활성제를 10분 정도 교반하여 충분히 용해시킨 후 양이온 원료물질인 구리카보네이트 0.554g과 인듐아세테이트 0.731g을 각각 투입한 후 착체형성을 위해 최소 1시간 동안 반응한다.
다음 단계는 상기 설명된 실시예 10과 동일하게 수행 하였다
그 결과, 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933)피크를 확인할 수 있었다.
실시예 15
우선 초정제수(DI-water)를 50ml 기준으로 하여 준비한 후, 착물 형성을 위한 폴리에틸렌이민(PEI, 40%수용액)을 용해시킨다(50 중량%의 경우 40%수용액 중 PEI 환산 = 1.6g). 10분 정도 교반하여 충분히 용해시킨 후 양이온 원료물질인 구리카보네이트(Copper carbonate) 0.554g과 투입되는 인듐아세테이트(Indium acetate) 그리고 질산갈륨(Gallium nitrate)의 양은 (CI(G)S(CuInxGa1-xSe2 0<x≤1)을 상기식에 의거하여,각각 x=0.95(인듐: 0.693g, 갈륨:0.0319g), x=0.7(인듐: 0.510g, 갈륨:0.192g), x=0.4(인듐: 0.291g, 갈륨:0.383g)을 투입한 후 착체 형성을 위해 최소 1시간 동안 반응을 시킨다.
다음 단계는 상기 설명된 실시예 10과 동일하게 수행 하였다
그 결과, theta값이 각각 27°, 45°, 53°의 전형적인 CuInGaSe2(JCPDS-40-1488) 피크를 확인할 수 있었다.
실시예 16
우선 초정제수(DI-water)를 50ml 기준으로 하여 준비한 후, 착물 형성을 위한 폴리에틸렌이민(PEI, 40%수용액)를 용해시킨다(50 중량%의 경우, 40%수용액 중 PEI 환산 = 1.6g). 10분 정도 교반하여 충분히 용해시킨 후 양이온 원료물질인 구리카보네이트(Copper carbonate) 0.554g과 인듐아세테이트(Indium acetate) 0.731g 투입한 후 착체형성을 위해 최소 1시간 이상 반응을 시킨다. 상기 용액에 [Cu]와[In]에 대한 [Se]의 몰비가 1:1, 1:2, 그리고 1:3이 되도록, Na2SO3 + Se 를 반응시켜 Na2SeSO3수용액을 각각 0.5mol(1:1:1경우), 0.1mol(1:1:2경우), 0.15mol(1:1:3경우)로 제조하여 50ml를 각각의 몰비에 맞게 투입하여 1시간 동안 충분히 교반하여 최종적으로 CIS 물질을 제조하였다. 다음 단계는 상기 설명된 실시예 10과 동일하게 수행 하였다
그 결과, 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인할 수 있었다.
실시예 17
우선 초정제수(DI-water)를 50ml 기준으로 하여 준비한 후, 착물 형성을 위한 폴리에틸렌이민(PEI, 40%수용액)를 용해시킨다(50 중량%의 경우, 40%수용액 중 PEI 환산 = 1.6g). 10분 정도 교반하여 충분히 용해시킨 후 양이온 원료물질인 구리카보네이트(Copper carbonate) 0.554g과 인듐아세테이트(Indium acetate) 0.731g 투입한 후 착체형성을 위해 최소 1시간 동안 반응을 시킨다. 상기 용액에 [Cu]와[In]에 대한 [Se]의 몰비가 1:1:2가 되도록 Na2SO3 + Se 를 반응시켜 제조한 0.1mol Na2SeSO3 수용액 50ml를 투입하여 반응 온도를 25ㅀC, 50ㅀC, 그리고 80ㅀC로 각각 달리하여 실험을 수행하여 최종적으로 CIS 물질을 제조하였다. 그 결과, 2-theta값이 각각 26°, 44°, 52°의 전형적인 CuInSe2(JCPDS-97-004-9933) 피크를 확인할 수 있었으며, 반응온도에 따른 입자크기는, 25℃상온 반응의 경우 입자 크기가 약 70nm(실시예10과 동일), 50℃와 80℃ 의 반응 온도의 경우는 100nm 이상의 평균 입자크기를 나타내었다.
비교예 4
초정제수(DI-water)를 50ml 기준으로 하여 양이온 원료물질인 구리카보네이트 0.554g과 인듐아세테이트 0.731g 용해시킨다. 상기 용액에 [Cu]:[In]:[Se]의 몰비가 1:1:2가 되도록 Na2SO3 + Se 를 반응시켜 제조한 0.1mol Na2SeSO3 수용액 50ml를 투입하여 다시 1시간 동안 충분히 교반하여 최종적으로 반응을 종결하였다. 이 모든 공정은 상온(25℃)에서 수행되어졌다. 구조분석은 XRD를 사용하여 분석하였다. 사용된 샘플은 용액상으로, 그리고 용액을 150℃로 건조 후 사용하였으며, 상기 제조한 CIS용액중 불순물은 증류수를 첨가하여 녹인 후 원심분리를 이용하여 상등액을 분리하는 과정을 2-3회씩 반복하여 제거하는 과정을 수행한 후 취득된 분말(powder)를 사용하여 분석하였다.
그 결과, 도 3과 같이 CI(G)S단일상 보다는Cu2Se(JCPDS-97-004-3224) 와 In2Se3(JCPDS-00-040-1408)가 분리되어 관찰되었으며, 그리고 Na2SO4(JCPDS-00-022-1399)피크를 확인할 수 있었다.
비교예 5
초정제수(DI-water)를 50ml 기준으로 하여 양이온 원료물질인 염화구리(Copper chloride) 0.336g과 염화인듐(Indium chloride) 0.55g 용해시킨다. 상기 용액에 [Cu]:[In]:[Se]의 몰비가 1:1:2가 되도록 Na2SO3+Se를 반응시켜 제조한 0.1mol Na2SeSO3 수용액 50ml를 투입하여 다시 1시간 동안 충분히 교반하여 최종적으로 반응을 종결하였다.
다음 단계는 상기 설명된 비교예 4와 동일하게 수행하였다
그 결과 CI(G)S단일상보다는Cu2Se(JCPDS-97-004-3224) 와 In2Se3(JCPDS-00-040-1408)가 분리되어 관찰되었으며, 그리고 Na2SO4(JCPDS-00-022-1399)피크를 확인할 수 있었다.
비교예 6
초정제수(DI-water)를 50ml 기준으로 하여 양이온 원료물질인 구리아세테이트 0.554g과 인듐아세테이트 0.731g 용해시킨다. 상기 용액에 [Cu]:[In]:[Se]의 몰비가 1:1:2가 되도록 Na2SO3+Se를 반응시켜 제조한 0.1mol Na2SeSO3 수용액 50ml를 투입하여 다시 1시간 동안 충분히 교반하여 최종적으로 반응을 종결하였다.
다음 단계는 상기 설명된 비교예 4와 동일하게 진행 되었다.
그 결과 CI(G)S단일상 보다는Cu2Se(JCPDS-97-004-3224) 와 In2Se3(JCPDS-00-040-1408)가 분리되어 관찰되었으며, 그리고 Na2SO4(JCPDS-00-022-1399)피크를 확인할 수 있었다.
비교예 7(몰비변화)
실시예 6과 동일하게 진행 하였으며. 상기 용액에 [Cu]와[In]에 대한 [Se]의 몰비가 1:4가 되도록, Na2SO3 + Se 를 반응시켜 0.2mol Na2SeSO3수용액을 제조하여 50ml를 몰비에 맞게 투입하여 1시간 동안 충분히 교반하여 최종적으로 CIS 물질을 제조하였다. 다음 단계는 상기 설명된 실시예 15와 동일하게 수행 하였다
그 결과 CI(G)S단일상 보다는Cu2Se(JCPDS-97-004-3224)와 In2Se3(JCPDS-00-040-1408)가 분리되어 관찰되었으며, 그리고 Na2SO4(JCPDS-00-022-1399)피크를 확인할 수 있었다.

Claims (16)

  1. 적어도 구리 화합물과, 하기 화학식 1의 카르복시산 유도체 또는 하기 화학식 2의 고분자전해질을 수계용매하에서 반응하여 착물을 형성하고, 제조된 착물 수용액에 인듐 화합물 및 셀레늄화합물에서 하나 이상 선택된 이종원소 화합물을 투입하여 저온 하에서 CI(G)S 나노입자를 생성하는 단계를 포함하는 저온 수계 CI(G)S 나노입자의 제조방법.
    [화학식 1]
    Figure PCTKR2010005898-appb-I000004
    [화학식 2]
    Figure PCTKR2010005898-appb-I000005
    (상기 화학식 1에서, R1은 수소, 하이드록시기, 카르복시기, (C1-C6)알킬기, (C1-C6)알콕시기, (C1-C6)알킬티오기, (C1-C6)하이드록시알킬기, (C1-C6)하이드록시알콕시기, (C1-C6)하이드록시알킬티오기, (C1-C6)아미노알킬기, (C1-C6)아미노알콕시기, (C1-C6)아미노알킬티오기, (C1-C6)알콕시알킬기, (C2-C12)알콕시알콕시기, (C2-C12)알콕시알킬티오기, (C3-C7)사이클로알킬기, (C3-C7)사이클로알킬옥시기, (C3-C8)사이클로알킬(C1-C6)알킬옥시기, (C3-C7)사이클로알킬티오기, (C2-C6)알케닐기, (C2-C6)알케닐옥시기, (C2-C6)알케닐티오기, (C2-C6)알키닐기, (C2-C6)알키닐옥시기, (C2-C6)알키닐티오기, (C6-C12)아릴기, (C6-C12)아릴옥시기, (C6-C12)아릴티오기, (C1-C6)알킬(C6-C12)아릴기, (C1-C6)알킬(C6-C12)아릴옥시기, (C1-C6)알킬(C6-C12)아릴티오기, (C6-C12)아릴(C1-C6)알킬기, (C6-C12)아릴(C1-C6)알킬옥시기 및 (C6-C12)아릴(C1-C6)알킬티오기로부터 선택되며, R2 및 R3은 서로 독립적으로 수소, 아민 및 카르복시기로부터 선택되고,
    상기 화학식 2에서, R4는 (C6-C30)아릴기, (C1-C18)알킬기, (C2-C18)알케닐기 또는 (C3-C18)시클로알킬기이며, 상기 아릴기, 알킬기, 알케닐기 및 시클로알킬기는(C1-C18)알킬기, (C6-C30)아릴기, 할로겐, 아미노기, 니트릴기 또는 니트로기를 더 포함할 수 있으며, R5는 카르복실산, 설포네이트, 셀페이트, 황산에스테르, 포스페이트 등으로부터 선택되는 것이며, M1은 나트륨, 암모늄, 칼륨 및 아민으로부터 선택되는 것이며, n은 1~1000의 정수이고, m은 1~1000의 정수이다.)
  2. 제 1항에 있어서,
    (a1) 구리 화합물과, 상기 화학식 1의 카르복시산 유도체를 수계용매 하에서 반응하여 구리착물을 형성하는 단계;
    (b1) 상기 (a1) 단계의 착물 수용액에 셀레늄화합물을 투입하여 구리-셀레늄 착물을 형성하는 단계; 및
    (c1) 상기 (b1) 단계의 구리-셀레늄 착물 수용액에 인듐화합물을 투입하여 저온 하에서 CI(G)S 나노입자를 생성하는 단계;
    를 포함하는 저온 수계 CI(G)S 나노입자의 제조방법.
  3. 제 1항에 있어서,
    (a2) 구리화합물, 인듐화합물 및 상기 화학식 2로 표시되는 고분자전해질을 수계 용매하에 반응하여 구리 및 인듐을 포함한 착물을 형성하는 단계; 및
    (b2) 상기 (a2) 단계의 착물 수용액에 셀레늄화합물을 투입하여 저온하에서 CI(G)S 나노입자를 생성하는 단계;
    를 포함하는 저온 수계 CI(G)S 나노입자의 제조방법.
  4. 제 2 항에 있어서,
    상기 화학식 1의 카르복시산 유도체는 모노-카르복시산 유도체, 디-카르복시산 유도체, 트리-카르복시산 유도체, 테트라카르복시산 유도체 및 아미노산 유도체로부터 선택되는 1종 이상인 것을 특징으로 하는 저온 수계 CI(G)S 나노입자의 제조방법.
  5. 제 4 항에 있어서,
    상기 카르복시산 유도체는 트리나트륨시트르산, 트리암모늄시트르산, 시트르산, 알라닌, 아르기닌, 아스파라긴, 아스파트산, 벤질아스파르트산, 시스테인, 글루탐산, 글루타민, 글리신, 히스티딘, 이솔루신, 루신, 리신, 메티오닌, 오르니틴, 페닐알라닌, 프롤린, 세린, 트레오닌, 트립토판, 티로신 및 발린으로부터 선택되는 1종 이상의 카르복시산 유도체로부터 선택되는 1종 이상인 것을 특징으로 하는 저온 수계 CI(G)S 나노입자의 제조방법.
  6. 제 2 항에 있어서,
    상기 (a1) 단계에서 화학식 1의 카르복시산 유도체의 투입량은 구리화합물의 투입량에 대하여, 0.01 내지 80중량%로 투입되는 것을 특징으로 하는 저온 수계 CI(G)S 나노입자의 제조방법.
  7. 제 3 항에 있어서,
    상기 고분자전해질은, 지방산알칼리염, 아크릴아미노산염, 알킬에테르카본산염, 아실화펩티드염 등의 카르복실산염류 알킬설폰산염, 알킬벤젠설폰산염, 알킬나프탈렌설폰산염 등의 설폰산염류 황산화유, 알킬황산염, 알킬에테르황산염, 알킬아릴에테르황산염, 알킬아미드황산염 등의 황산에스테르염류 및 알킬인산염, 알킬에테르인산염, 알킬아릴에테르인산염 등의 인산에스테르염류로부터 선택되는 1종 이상인 것을 특징으로 하는 저온 수계 CI(G)S 나노입자의 제조방법.
  8. 제 2 항에 있어서,
    상기 화학식 2의 고분자전해질은 구리화합물 및 인듐화합물의 합에 대하여, 0.1 내지 80중량%로 투입되는 것을 특징으로 하는 저온 수계 CI(G)S 나노입자의 제조방법.
  9. 제 1 항에 있어서,
    상기 셀레늄화합물은 셀레노아황산나트륨(Na2SeSO3), 알킬셀레나이드(알킬=메틸 또는 에틸), 나트륨셀레나이드 및 암모늄셀레나이드 로부터 선택되는 저온 수계 CI(G)S 나노입자의 제조방법.
  10. 제 9 항에 있어서,
    상기 셀레늄화합물은 셀레노아황산나트륨인 것을 특징으로 하는 저온 수계 CI(G)S 나노입자의 제조방법.
  11. 제 1 항에 있어서,
    상기 수계용매는 물, 알코올, 또는 이들의 혼합물을 포함하는 저온 수계 CI(G)S 나노입자의 제조방법.
  12. 제 1 항에 있어서,
    상기 구리화합물 또는 상기 인듐화합물은 구리 또는 인듐을 포함하는 아세트산염, 질산염, 탄산염, 황산염, 염화물, 요오드화물, 브롬화물, 산화물, 수산화물 및 과염소산염으로부터 선택되는 1종 이상인 저온 수계 CI(G)S 나노입자의 제조방법.
  13. 제 1 항에 있어서,
    상기 구리화합물, 인듐화합물 및 셀레늄화합물은 금속환산으로 구리, 인듐, 및 셀레늄의 몰비가 1:1:2 가 되도록 공급하는 것을 특징으로 하는 저온 수계 CI(G)S 나노입자의 제조방법.
  14. 제 2 항에 있어서,
    상기 (c1) 단계에서 구리 1몰에 대하여 인듐과 갈륨이 x:1-x (0<x<1)가 되도록 갈륨을 더 투입하는 것을 포함하는 저온 수계 CI(G)S 나노입자의 제조방법.
  15. 제 3 항에 있어서,
    상기 (a2) 단계에서 구리 1몰에 대하여 인듐과 갈륨이 x:1-x (0<x<1)가 되도록 갈륨을 더 투입하는 것을 포함하는 저온 수계 CI(G)S 나노입자의 제조방법.
  16. 제 1 항 내지 제 15 항에서 선택되는 어느 한 항에 있어서,
    상기 저온은 0 내지 80℃인 것을 특징으로 하는 저온 수계 CI(G)S 나노입자의 제조방법.
PCT/KR2010/005898 2009-09-01 2010-09-01 저온 수계 ci(g)s 나노입자의 제조방법 WO2011028011A2 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020090082061A KR101116404B1 (ko) 2009-09-01 2009-09-01 고분자전해질을 이용한 저온 수계 CI(G)S(CuInxGa1?xSe2) 나노입자의 제조방법
KR10-2009-0082043 2009-09-01
KR1020090082043A KR101164797B1 (ko) 2009-09-01 2009-09-01 카르복시산 유도체를 이용한 저온 수계 CI(G)S(CuInxGa1?xSe2) 나노입자의 제조방법
KR10-2009-0082061 2009-09-01

Publications (2)

Publication Number Publication Date
WO2011028011A2 true WO2011028011A2 (ko) 2011-03-10
WO2011028011A3 WO2011028011A3 (ko) 2011-08-25

Family

ID=43649771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005898 WO2011028011A2 (ko) 2009-09-01 2010-09-01 저온 수계 ci(g)s 나노입자의 제조방법

Country Status (1)

Country Link
WO (1) WO2011028011A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897723A (zh) * 2012-08-29 2013-01-30 江苏大学 一种水热法制备硒化铜基纳米晶的方法
US20150214400A1 (en) * 2014-01-30 2015-07-30 Nanoco Technologies, Ltd. Metal-doped Cu(In,Ga) (S,Se)2 nanoparticles
CN108706558A (zh) * 2018-06-12 2018-10-26 桂林理工大学 一种在铜基上生长八硒四铜一钾微米线阵列的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139574A1 (en) * 2007-11-30 2009-06-04 Nanoco Technologies Limited Preparation of nanoparticle material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139574A1 (en) * 2007-11-30 2009-06-04 Nanoco Technologies Limited Preparation of nanoparticle material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANG TANG ET AL.: 'Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles' CHEM. MATER. vol. 20, 2008, pages 6906 - 6910 *
R. H. BARI ET AL.: 'Studies on chemically deposited CulnSe2 thin films' MATERIALS LETTERS vol. 61, no. 10, April 2007, pages 2058 - 2061, XP022000128 *
SEJIN AHN ET AL.: 'Nucleation and growth of Cu(In,Ga)Se2 nanoparticles in low temperature colloidal process' THIN SOLID FILMS vol. 515, no. 7/8, February 2007, pages 4036 - 4040, XP005890834 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897723A (zh) * 2012-08-29 2013-01-30 江苏大学 一种水热法制备硒化铜基纳米晶的方法
US20150214400A1 (en) * 2014-01-30 2015-07-30 Nanoco Technologies, Ltd. Metal-doped Cu(In,Ga) (S,Se)2 nanoparticles
US10170651B2 (en) * 2014-01-30 2019-01-01 Nanoco Technologies Ltd. Metal-doped cu(In,Ga) (S,Se)2 nanoparticles
CN108706558A (zh) * 2018-06-12 2018-10-26 桂林理工大学 一种在铜基上生长八硒四铜一钾微米线阵列的制备方法

Also Published As

Publication number Publication date
WO2011028011A3 (ko) 2011-08-25

Similar Documents

Publication Publication Date Title
KR101633388B1 (ko) 구리-인듐-갈륨-황-셀레늄 박막 태양전지의 광 흡수층의 제조 방법
WO2014119868A1 (ko) 태양전지용 금속 나노 입자의 제조 방법, 그 금속 나노 입자를 포함하는 잉크 조성물 및 이를 사용한 박막의 제조 방법
KR20120043050A (ko) Caigas 알루미늄-함유 광기전체를 위한 중합체성 전구체
US9117964B2 (en) Preparation of semiconductor films
KR20140009975A (ko) 광기전체를 위한 침착 방법 및 장치
WO2011017235A9 (en) Methods for photovoltaic absorbers with controlled stoichiometry
KR20140053962A (ko) 광기전체를 위한 침착 방법
EP2462150A2 (en) Polymeric precursors for caigs and aigs silver-containing photovoltaics
US9324901B2 (en) Precursor solution for forming a semiconductor thin film on the basis of CIS, CIGS or CZTS
WO2011028011A2 (ko) 저온 수계 ci(g)s 나노입자의 제조방법
WO2017176038A1 (ko) Basno3 박막 및 이의 저온 제조 방법
CN113929586B (zh) 一种半导体材料及其制备方法
US9887305B2 (en) Agglomerated precursor for manufacturing light absorption layer of solar cells and method of manufacturing the same
WO2014148830A1 (ko) 산화아연 전구체의 제조방법, 이로부터 수득되는 산화아연 전구체 및 산화아연 박막
Yang et al. Perovskite Colloidal Nanocrystal Solar Cells: Current Advances, Challenges and Future Perspectives
KR101164797B1 (ko) 카르복시산 유도체를 이용한 저온 수계 CI(G)S(CuInxGa1?xSe2) 나노입자의 제조방법
Hou et al. A one-pot method for controlled synthesis and selective etching of organic-inorganic hybrid perovskite crystals
WO2013115582A1 (ko) 저온의 녹는점을 갖는 플럭스를 이용한 태양전지용 ci(g)s계 박막의 제조방법 및 그 제조방법에 의해 제조된 ci(g)s계 박막
WO2021133085A2 (ko) 페로브스카이트 제조용 유기 할라이드의 제조 방법, 이에 의해 제조된 페로브스카이트, 및 태양 전지
WO2022010327A1 (ko) 페로브스카이트 복합체
KR101116404B1 (ko) 고분자전해질을 이용한 저온 수계 CI(G)S(CuInxGa1?xSe2) 나노입자의 제조방법
WO2021006554A2 (en) Perovskite compound containing divalent organic cation and device containing the same
WO2011102584A1 (ko) 신규의 금속 디알킬글리신 화합물 및 그 제조 방법
WO2014027747A1 (ko) Cis계 또는 cigs계 태양전지용 광흡수층의 제조방법 및 cis계 또는 cigs계 태양전지용 광흡수 잉크
WO2020139043A2 (ko) 페로브스카이트 기반 청색 발광 디바이스 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813920

Country of ref document: EP

Kind code of ref document: A2