WO2011027890A1 - Hydraulic cement composition for injection into soil, and method for improvement in soil using same - Google Patents

Hydraulic cement composition for injection into soil, and method for improvement in soil using same Download PDF

Info

Publication number
WO2011027890A1
WO2011027890A1 PCT/JP2010/065278 JP2010065278W WO2011027890A1 WO 2011027890 A1 WO2011027890 A1 WO 2011027890A1 JP 2010065278 W JP2010065278 W JP 2010065278W WO 2011027890 A1 WO2011027890 A1 WO 2011027890A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
parts
dispersant
ground
classified
Prior art date
Application number
PCT/JP2010/065278
Other languages
French (fr)
Japanese (ja)
Inventor
秀弘 田中
昭俊 荒木
一行 水島
英哉 西野
浩 小野寺
康年 大野
Original Assignee
電気化学工業株式会社
富士化学株式会社
東亜建設工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社, 富士化学株式会社, 東亜建設工業株式会社 filed Critical 電気化学工業株式会社
Priority to SG2012015756A priority Critical patent/SG179010A1/en
Priority to KR1020127008784A priority patent/KR101816936B1/en
Priority to CN201080050151.8A priority patent/CN102597165B/en
Priority to JP2011529973A priority patent/JP5769197B2/en
Publication of WO2011027890A1 publication Critical patent/WO2011027890A1/en
Priority to HK12109854.2A priority patent/HK1169435A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • C09K17/42Inorganic compounds mixed with organic active ingredients, e.g. accelerators
    • C09K17/44Inorganic compounds mixed with organic active ingredients, e.g. accelerators the inorganic compound being cement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/40Soil-conditioning materials or soil-stabilising materials containing mixtures of inorganic and organic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a hydraulic cement composition for ground injection and a ground improvement method using the same.
  • a curable chemical is injected into the ground through a rod in order to strengthen the soft ground
  • many chemical injection materials are known.
  • water glass type injection materials, special silica type injection materials, polymer type injection materials, and suspension type injection materials such as cement, clay, and slag can be used.
  • the chemical injection method using the above chemical injection material is characterized in that it can be improved without disturbing the ground as much as possible, and the equipment is compact, unlike the method of improving the ground while disturbing the ground with a high-pressure jet like the jet grout method. So there are many achievements.
  • the solution-type chemical solution injection material has high permeability, but the strength of the obtained cured body itself is small, and the shrinkage of the cured body is also large, so that there is a case where long-term durability is problematic.
  • suspension-type chemical injection material which has hydraulic cement or slag as a component, can be expected to exhibit relatively high strength and has the advantage that long-term durability is easy to ensure, There was a problem that the permeability was low.
  • the suspension type since it is a chemical solution having particles, the particles immediately settled when left standing, and troubles such as blockage in the injection hose may occur during the construction.
  • an injection material composition containing a polycarboxylic acid-based dispersant as an essential component in a finely divided cement clinker and blast furnace slag is known.
  • Patent Documents 1, 2, and 3 These techniques provide an injectable material composition having improved permeability by using a specific polycarboxylic acid-based dispersant, but there is a description about the content of calcium carbonate or calcium carbonate in cement. In addition, there is no description about the anti-settling performance when the pouring composition is allowed to stand, and there is no example regarding durability.
  • an injection material having a gelation time an injection material containing water glass, a solidifying agent, and fine powder blast furnace slag of 8000 cm 2 / g or more is known (for example, Patent Document 4, 5 and 6).
  • Patent document 4 shows that a hardened body with high gel strength can be obtained at a level of several tens of seconds to several minutes by using fine powder slag in combination, but it is only an evaluation of compressive strength, and the blending amount of water glass is also Many are mainly water glass. In addition, there is no description of particle sedimentation prevention performance and permeability.
  • Patent Document 5 discloses water glass having a molar ratio in the range of 2.8 to 4.0, fine particle slag having an average particle diameter of 10 ⁇ m or less and a specific surface area of 5000 cm 2 / g or more, preferably 8000 cm 2 / g or more. This is a technique related to an injection material further containing cement as required. In this document, the amount of water glass used is large, and there is a description regarding compressive strength and permeability, but there is no description regarding the particle sedimentation preventing performance.
  • Patent Document 6 is composed of a suspension type grout containing a mixture of fine particle slag and fine particle cement, each of which has an average particle size of 10 ⁇ m or less and a specific surface area of 5000 cm 2 / g or more, respectively. Is a technique characterized in that the suspension grout further contains water glass and / or an alkali material. In this document as well, as in document 5, the amount of water glass used is large and there is a description regarding permeability, but only the compression strength is evaluated as the evaluation of the cured product.
  • Patent Document 7 contains water, finely divided granulated slag, an alkali stimulant, a dispersant, a high molecular substance that dissolves or disperses in water to give viscosity, and, if necessary, a caking property improver.
  • the technique regarding the suspension type ground improvement material characterized by this is shown. In this document, there is a description about permeability and anti-settling performance, but there is no disclosure about the characteristics of the cured body, and the reinforcement performance when injected into the ground and consolidated is not known.
  • the present invention is a ground-injecting water that has high sedimentation resistance even when the suspension solution (cement milk) that has been mixed is allowed to stand, and that the infusate component does not easily flow even under running water, and has excellent permeability and durability. It is an object of the present invention to provide a hard cement composition and a ground improvement method using the same.
  • the present invention employs the means of the present invention 1 to 7 described below.
  • the present invention 1 has the following conditions (1) to (3) for 100 parts of blast furnace slag fine powder and 100 parts of blast furnace slag fine powder having a Blaine specific surface area of 7000 to 16000 cm 2 / g and a median diameter of 1 to 7 ⁇ m. 5 to 30 parts of classification cement satisfying all of the above, and further containing a dispersant containing 0.1 to 3 parts of a polyacrylic acid-based dispersant with respect to 100 parts in total of the blast furnace slag fine powder and the classification cement
  • This is a hydraulic cement composition for ground injection.
  • the present invention 2 is the hydraulic cement composition for ground injection according to the present invention 1, wherein the dispersant further contains a melamine-based dispersant.
  • the present invention 3 is the hydraulic cement composition for ground injection according to the present invention 1 or 2, wherein the polyacrylic acid dispersant is a copolymer containing a monomer represented by the following general formula (I): .
  • the present invention 4 is a cement milk characterized in that water is added to the hydraulic cement composition for ground injection according to any one of the present inventions 1 to 3 and kneaded.
  • the present invention 5 is the cement milk according to the present invention 4, wherein the bleeding rate of the cement milk prepared by adding water to the hydraulic cement composition and kneaded after standing for 60 minutes is 2% or less.
  • the present invention 6 is a ground improvement method for injecting the cement milk of the present invention 4 or 5 into the ground.
  • This invention 7 is the ground improvement construction method of this invention 6 used for the ground improvement aiming at liquefaction countermeasures.
  • “parts” and “%” mean “parts by mass” and “mass%” unless otherwise specified.
  • the hydraulic cement composition for ground injection according to the present invention is excellent in permeability and can exert effects such as ground improvement.
  • the blast furnace slag fine powder used in the present invention has a Blaine specific surface area of 7000 to 16000 cm 2 / g and a median diameter of 1 to 7 ⁇ m, and is produced by pulverizing steel slag generated when producing pig iron. It is used as a general blast furnace cement and concrete admixture.
  • the specific surface area of the brane is a value measured with a brane air permeation apparatus of JIS R 5201, and is 7000 to 16000 cm 2 / g. If the blast furnace slag fine powder is less than 7000 cm 2 / g, the bleeding rate increases, and sufficient permeability may not be obtained. If it exceeds 16000 cm 2 / g, the production cost is too high to be practical. .
  • the median diameter of the blast furnace slag fine powder is preferably 1 to 7 ⁇ m.
  • the median diameter can be measured by a laser diffraction particle size distribution measuring machine. If the manufacturing cost is less than 1 ⁇ m, the production cost is too high and it is not practical, and if it exceeds 7 ⁇ m, the bleeding rate increases and the permeability may be impaired.
  • the classified cement used in the present invention is a cement whose particle size is adjusted using a classification facility.
  • 6 to 20 parts of calcium carbonate are contained, preferably 10 to 15 parts.
  • compatibility such as anti-settling performance and durability. If it is less than 6 parts, sufficient anti-settling performance cannot be obtained, and if it exceeds 20 parts, the viscosity increases and the strength decreases. Since the calcium carbonate contained in the classification cement exists as fine particles by classification, the reactivity is good. Calcium carbonate is usually used as a part of sand when producing cement filler and concrete.
  • the fineness of commonly used calcium carbonate is 4000 to 6000 cm 2 / g, so that it has a finer reaction activity and can be expected to increase strength. Moreover, it reacts with calcium aluminate (3CaO ⁇ Al 2 O 3 ) contained in the cement to produce monocarbonate or hemicarbonate.
  • gypsum reacts with calcium aluminate (3CaO ⁇ Al 2 O 3 ) contained in the cement to produce ettringite, but when a certain amount of calcium carbonate is present, the reaction of monocarbonate and hemicarbonate is excellent, so the produced ettringite It is considered that the reaction of converting to monosulfate is suppressed, and the durability is easily secured.
  • any of Portland cements such as ordinary Portland cement, early-strength Portland cement, low heat Portland cement, moderately heated Portland cement, sulfate resistant cement, and the like can be used. It can be used under the condition of 2).
  • the fineness of the classified cement is 7000 to 16000 cm 2 / g, preferably 9000 to 16000 cm 2 / g, like the blast furnace slag fine powder. If it is less than 7000 cm 2 / g, the bleeding rate increases, and sufficient permeability may not be obtained.
  • the median diameter of the classified cement is preferably 1 to 7 ⁇ m.
  • the median diameter can be measured by a laser diffraction particle size distribution measuring machine. If the manufacturing cost is less than 1 ⁇ m, the production cost is too high and it is not practical, and if it exceeds 7 ⁇ m, the bleeding rate increases and the permeability may be impaired.
  • the proportion of classified cement is 5 to 30 parts, preferably 10 to 25 parts, per 100 parts of blast furnace slag fine powder. If the amount is less than 5 parts by weight, sufficient strength development may not be obtained, and if it exceeds 30 parts by weight, the permeability may be impaired.
  • the dispersant of the present invention contains a polyacrylic acid type dispersant.
  • the polyacrylic acid-based dispersant of the present invention exhibits the effect of suppressing the sedimentation of particles when used as a suspension solution and the effect of imparting permeability. It is a copolymer containing the monomer of the following general formula (I).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 O represents an oxyalkylene group having 2 to 4 carbon atoms, such as —CH 2 CH 2 O—, —CH 2 CH 2 CH 2 O—, —CH 2 CH (CH 3 ) O—, —CH 2 CH (CH 2 CH 3 ) O—, —CH 2 CH 2 CH 2 CH 2 O— and the like can be mentioned.
  • n represents the number of added moles of the oxyalkylene group, and is an integer of 5 to 40, preferably 7 to 35, more preferably 9 to 30.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the monomer include polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polybutylene glycol mono (meth) acrylate, methoxypolyethylene glycol (meth) acrylate having 5 to 40 moles of added alkylene oxide.
  • the dispersant of the present invention may contain a melamine dispersant in addition to the polyacrylic acid dispersant.
  • the melamine dispersant of the present invention is a dispersant obtained by, for example, a method in which melamine is sulfonated with sulfite and formaldehyde and then further condensed with formaldehyde.
  • Alkali metal salts such as sodium and potassium of melamine sulfonic acid formaldehyde condensate, and alkaline earth metal salts such as calcium and magnesium can also be used.
  • the melamine dispersant of the present invention is used in combination with a polyacrylic acid dispersant.
  • the proportion of the melamine dispersant is preferably 10 to 1000 parts, more preferably 30 to 600 parts, relative to 100 parts of the polycarboxylic acid dispersant. If the amount is less than 10 parts, the effect of synergistically improving the particle settling prevention performance may not be obtained. If the amount exceeds 1000 parts, the settling prevention performance may be inhibited. It has been found that when used in combination with a melamine-based dispersant, the effect of reducing the bleeding rate immediately after kneading is greater than when a polyacrylic acid-based dispersant is used alone.
  • the permeability to the simulated ground is also improved, and the particles that are uniformly hydraulic are dispersed in the ground, thereby obtaining a stronger and more uniform improved body. be able to.
  • the amount of the dispersing agent used is 0.1 to 3 parts, preferably 0.3 to 2 parts, with respect to 100 parts in total of the blast furnace slag fine powder and the classified cement. If it is less than 0.1 part, sufficient anti-settling performance and permeability cannot be obtained, and if it exceeds 3 parts, the effect reaches its peak.
  • a known cement admixture (material) can be used in combination with the hydraulic cement composition for ground injection of the present invention as long as the original performance is not adversely affected.
  • AE agent AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, fluidizing agent, setting retarding agent, early strengthening agent, antifoaming agent, thickener, waterproofing agent (material), swelling agent (material) , Rapid hardening materials, shrinkage reducing agents (materials), rust preventives, cement emulsion polymer emulsions, clay minerals, and the like.
  • the hydraulic cement composition for ground injection according to the present invention is applied in the form of milk by adding water.
  • the optimum range of water to be used is preferably 400 to 1500 parts, more preferably 700 to 1200 parts, with respect to 100 parts in total of blast furnace slag fine powder, classified cement, and dispersant. When the amount of water used is within the above range, the bleeding rate after 60 minutes of cement milk can be reduced to 2% or less by the method of the Japan Society of Civil Engineers (JSCE F-522).
  • the pumping of the injected material is stopped for 60 minutes or more, and may be blocked when restarted.
  • the time for adding water and kneading to the hydraulic cement composition for ground injection of the present invention is not particularly limited, but a predetermined amount of water is added to a grout mixer and the hydraulic cement composition for ground injection of the present invention is charged. Then knead for 1-3 minutes.
  • the injection location is not particularly limited as long as the soft ground is improved.
  • there are structures such as harbors, revetments, airports, and other structures such as bad urban areas and mountainous areas. It can be applied to the ground, and can be used for purposes such as water-stopping and water-blocking grout, heaving prevention grout, subsidence prevention grout, blow prevention grout, earth pressure reduction grout, increased bearing capacity grout, and suction prevention grout. Since it has good permeability, it can be applied to sandy ground including gravel, and effectively functions as a liquefaction prevention measure.
  • the construction method of the present invention is not particularly limited, and construction equipment used for normal chemical solution injection can be used, and it is only necessary to comply with the injection design and the construction method that are normally performed.
  • a method of pumping cement milk adjusted by a mixer through a hose with a pump and injecting an injection material through a rod arranged in the ground can be mentioned.
  • the rod used in this case is not particularly limited, and a single tube rod, a single tube strainer rod, a double tube rod, a double tube double packer rod, and the like can be used.
  • the hydraulic cement composition for ground injection according to the present invention is basically injected in one shot. Depending on the condition and purpose of the ground, a commercially available setting accelerator and other various admixtures are separately pumped. It is also possible to construct by 1.5 shot or 2 shot method.
  • the classified cement is changed as shown in Table 1 with respect to 100 parts of the blast furnace slag fine powder, and 1.0 part of the dispersant shown in Table 1 is added to 100 parts of the total blast furnace slag fine powder and the classified cement.
  • a cement composition was prepared. Water was added to 850 parts with respect to 100 parts of the hydraulic cement composition for ground injection, and the mixture was kneaded with a grout mixer for 2 minutes. The viscosity, bleeding rate, permeability, and compressive strength of the obtained cement milk were measured. The results are shown in Table 1.
  • Blast furnace slag fine powder a Commercially available blast furnace slag fine powder, Blaine specific surface area 10500 cm 2 / g, median diameter 3.6 ⁇ m
  • Classification cement e Classification cement obtained by mixing ordinary Portland cement and calcium carbonate, and classified, brane specific surface area 9700 cm 2 / g, median diameter 4.1 ⁇ m, calcium carbonate content 11.3%
  • Dispersant A Commercially available polyacrylic acid type dispersant (methoxypolyethylene glycol methacrylate type), in the general formula (I), R 1 is a methyl group, R 2 O is a C 2 oxyethylene group, and R 3 is a methyl group .
  • Dispersant B Dispersant in which 300 parts of melamine dispersant manufactured by Nippon Seika Co., Ltd. is blended with 100 parts of dispersant A
  • Viscosity measured using a B-type rotational viscometer Viscosity was measured immediately after kneading, after 3 hours and after 6 hours. The temperature during measurement is 25 ° C.
  • Bleeding rate Compliant with JSCE-F522-1999 prepacked concrete poured mortar bleeding rate and expansion rate test method (polyethylene bag method). The measurement was performed 0.5 hour later, 1 hour later, and 2 hours later. Measurement temperature is 25 ° C
  • Permeability Conforms to the method for preparing specimens of stabilized soil by chemical solution injection shown in JGS0831-2000.
  • the state of penetration was observed when cement milk was injected at an injection pressure of 0.05 MPa into a simulated ground that was filled with Toyoura sand and water-tightened into an acrylic pipe having a diameter of 50 mm and a height of 1000 mm.
  • Compressive strength The acrylic pipe subjected to the permeability test was cut to a height of 100 mm, the cured sand gel was taken out from the acrylic pipe, and the compressive strength was measured. Measurement material age is 28 days.
  • Blast furnace slag fine powder b Blaine specific surface area 6100 cm 2 / g, median diameter 7.4 ⁇ m
  • Blast furnace slag fine powder c Blaine specific surface area 8200 cm 2 / g, median diameter: 4.8 ⁇ m
  • Blast furnace slag fine powder d Blaine specific surface area 15500 cm 2 / g, median diameter: 1.6 ⁇ m
  • Classification cement f Classification cement classified after mixing ordinary Portland cement and calcium carbonate, Blaine specific surface area 6050 cm 2 / g, median diameter 8.6 ⁇ m, calcium carbonate content 9.9%
  • Classification cement g Classification cement obtained by mixing ordinary Portland cement and calcium carbonate, classified cement, Blaine specific surface area 8300 cm 2 / g, median diameter 6.1 ⁇ m, calcium carbonate content 9.5%
  • Classification cement h Classification cement classified after mixing ordinary Portland cement and calcium carbonate, Blaine specific surface area 15800 cm 2 / g, median diameter 2.5 ⁇ m, calcium carbonate content 13.2%
  • blast furnace slag fine powder having a specific surface area of 7000 cm 2 / g and a median diameter of 7 ⁇ m or less and classified cement. I understand that. If either or both of the blast furnace slag fine powder and the classified cement have a Blaine specific surface area of less than 7000 cm 2 / g or a median diameter of more than 7 ⁇ m, the bleeding rate increases, the permeability deteriorates, and the compressive strength Also decreases.
  • Table 3 shows that when calcium carbonate is 6 to 20 parts (within the scope of the present invention) of 100 parts of classified cement, the bleeding rate is small and the strength development is large.
  • the calcium carbonate is less than 6 parts in 100 parts of the classified cement, or when the calcium carbonate content is added to the classified cement without being classified even within the scope of the present invention, the bleeding rate is large and the strength is high.
  • the tendency for the expression to decrease is also recognized, indicating that the reaction activity is small. Therefore, it is considered that long-term durability is improved because a hardened body is formed by containing a specific amount of calcium carbonate having fine particles.
  • a hydraulic cement composition for ground injection was prepared by adding 15 parts of classified cement e to 100 parts of blast furnace slag fine powder a, and adding a dispersant as shown in Table 4 to a total of 100 parts of blast furnace slag fine powder and classified cement. .
  • Water was added to 850 parts with respect to 100 parts of the hydraulic cement composition for ground injection, and the mixture was kneaded with a grout mixer for 2 minutes. The viscosity, bleeding rate, permeability, and compressive strength of the obtained cement milk were measured. The results are shown in Table 4.
  • Dispersant C Dispersant A in which 10 parts of a melamine dispersant manufactured by Nippon Seika Co., Ltd. was blended with 100 parts of Dispersant A.
  • Dispersant D 30 parts of a melamine dispersant manufactured by Nihon Seeka Co., Ltd. was blended in 100 parts of Dispersant A.
  • Dispersant Dispersant E Dispersant Dispersant F in which 100 parts of Melamine Dispersant manufactured by Nippon Seika Co., Ltd. is added to 100 parts of Dispersant A Dispersant F: 600 parts of Melamine Dispersant manufactured by Nihon Seeka Co., Ltd.
  • Dispersant A Dispersant Dispersant G: Dispersant Dispersant H: Naphthalenesulfonate Dispersant, Daiichi Kogyo Seiyaku Co., Ltd.
  • Cellflow 110P Dispersant I: Lignin sulfonate-based dispersant Vanillex N manufactured by Nippon Paper Industries Co., Ltd.
  • Dispersant J Melamine-based dispersant Seekament FF manufactured by Nippon Seika Co., Ltd.
  • a hydraulic cement composition for ground injection was prepared, and water shown in the table was further added to 100 parts of the composition to prepare cement milk.
  • An osmotic flow test was conducted using the cement milk, and a cement milk spill test was performed assuming a simulated ground with water flow.
  • the evaluation items were the presence or absence of cement milk spill, and the cured body was taken out from the simulated ground after 7 days. The test results are shown in Table 6.
  • Osmotic flow test Performed according to the soil permeability test method shown in JGS0311-2000. As test conditions, a transparent acrylic container of ⁇ 10 ⁇ 23 cm was filled with No. 5 silica sand so as to have a porosity of 40.5% to prepare a simulated ground. In addition, a filter was set on the bottom of the acrylic container that produced the simulated ground so that water and cement milk would flow out. A pipe was set so that cement milk was injected near the center of the prepared simulated ground, and the prepared simulated ground container was immersed in a container filled with water.
  • the simulated ground container soaked was adjusted so that the water level difference between the upper end of the simulated ground container and the container filled with water was 0.7 cm, and the water was always replaced by supplying water. 120 cc of cement milk was injected and the outflow situation of cement milk from the simulated ground was observed. In addition, the state of the cement milk cured body staying in the simulated ground is that the simulated ground container is disassembled after 7 days of age and the cured body is taken out from the inside. confirmed. The bleeding rate of the injected material before injection was also measured.
  • the implementation work using the cement composition for ground injection of the present invention was performed.
  • the cement milk of Experiment Nos. 5-9, 5-11 and 5-16 was adjusted with a grout mixer and injected into the ground.
  • Each cement milk was kneaded for 2 minutes, once transferred to a storage tank, and pumped and injected by a grout pump through a hose and an injection tube (single tube rod).
  • the pressure control during the injection was maximized at 0.5 MPa, the injection rate was 40%, and the injection amount was 1 m 3 . All of the injected cement milk could be injected below the control of the injection pressure.
  • the cement composition for ground injection of the present invention is mixed and pumped inside the hose, and the pumping is interrupted for 60 minutes in the hose. The injection material was retained. Then, the starting state when starting operation again was confirmed. The composition confirmed was the injection cement milk of Experiment Nos. 5-9, 5-11, 5-13, 5-14, 5-18 (mixed water amount is different). 1, 5-2, 5-3, 5-4 and 5-6 were carried out in the same manner. As a result, the injection materials of Experiment Nos. 5-9, 5-11, 5-13, 5-14, and 5-18 have almost no settling of particles in the hose, and no pressure is applied at the start.
  • Experiment Nos. 5-1, 5-2, 5-3, 5-4, and 5-6 which are comparative examples, sedimentation of particles in the hose was confirmed.
  • Experiment Nos. 5-4 and 5-5 about half of the cross section of the hose was covered with settled particles and could not be restarted.
  • Experiments No. 5-1, 5-2, and 5-3 were able to start, but the pressure at the start was large, and after a few minutes after the start, massive particles that did not disperse flowed in the hose, resulting in blockage of the hose. .
  • the hydraulic cement composition for ground injection according to the present invention has small material separation, excellent permeability, and can be quickly improved in workability and extensive improvement.
  • the hardened body formed with characteristic classified cement, fine powder slag, and dispersant exhibits sufficient strength development and excellent long-term durability, so various soft ground such as liquefaction countermeasures for sandy ground It can be applied to reinforcement work.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Paleontology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

Disclosed are: a hydraulic cement composition for injecting into soil, which can exhibit high sinking resistance when prepared into a suspension (a cement milk), of which an injecting component cannot be swept under running water, and which has excellent penetrability and durability; and a method for improving soil using the hydraulic cement composition. Specifically disclosed are: a hydraulic cement composition for injecting into soil, which is characterized by comprising 100 parts of a blast furnace slug micropowder having a Blaine specific surface area of 7000 to 16000 cm2/g and a median diameter of 1 to 7 μm, a classified cement that meets all of the requirements (1) to (3) mentioned below in an amount of 5 to 30 parts relative to 100 parts of the blast furnace slug micropowder, and a dispersant comprising a polyacrilic acid dispersant (which may additionally contain a melamine dispersant) in an amount of 0.1 to 3 parts relative to the total amount (100 parts) of the blast furnace slug micropowder and the classified cement: (1) the classified cement is characterized by containing calcium carbonate in an amount of 6 to 20 parts relative to 100 parts of the classified cement; (2) the classified cement is characterized by having a Blaine specific surface area of 7000 to 16000 cm2/g; and (3) the classified cement is characterized by having a median diameter of 1 to 7 μm; and a method for improving soil, comprising injecting a cement milk into soil, wherein the cement milk is prepared by adding water to the hydraulic cement composition for injecting and kneading the mixture.

Description

地盤注入用水硬性セメント組成物およびそれを用いた地盤改良工法Hydraulic cement composition for ground injection and ground improvement method using the same
 本発明は地盤注入用水硬性セメント組成物およびそれを用いた地盤改良工法に関する。 The present invention relates to a hydraulic cement composition for ground injection and a ground improvement method using the same.
 地盤改良方法の一種として、軟弱な地盤を強固にするためにロッドを介して地中に硬化性を有する薬剤を注入する薬液注入工法があり、数多くの薬液注入材が知られている。たとえば、水ガラス系注入材、特殊シリカ系注入材、高分子系注入材、およびセメント、粘土、スラグなどの懸濁型注入材などが挙げられる。上記薬液注入材を用いた薬液注入工法では、ジェットグラウト工法のような高圧の噴流によって地盤を乱しながら改良する工法と異なり、極力地盤を乱さないで改良できること、設備がコンパクトであることが特徴であることから多くの実績がある。薬液注入材には、溶液型と懸濁型があり、高い浸透性が要求される場合は溶液型を用いる場合がある。しかし、溶液型の薬液注入材は、浸透性は高いが、得られる硬化体自体の強度が小さく、硬化体の収縮も大きいことから長期的な耐久性に課題が生じる場合があった。一方、懸濁型の薬液注入材は、水硬性を示すセメントやスラグなどを成分とするものは、比較的高い強度発現が期待でき、長期的な耐久性も確保しやすいという利点はあるが、浸透性が低いといった課題が生じていた。また、懸濁型の場合は、粒子をもった薬液であるため、静置すると直ぐに粒子が沈降し、実施工中に注入ホース内の閉塞等のトラブルが発生する場合があった。 As a kind of ground improvement method, there is a chemical injection method in which a curable chemical is injected into the ground through a rod in order to strengthen the soft ground, and many chemical injection materials are known. For example, water glass type injection materials, special silica type injection materials, polymer type injection materials, and suspension type injection materials such as cement, clay, and slag can be used. The chemical injection method using the above chemical injection material is characterized in that it can be improved without disturbing the ground as much as possible, and the equipment is compact, unlike the method of improving the ground while disturbing the ground with a high-pressure jet like the jet grout method. So there are many achievements. There are two types of chemical solution injection materials, a solution type and a suspension type. When high permeability is required, a solution type may be used. However, the solution-type chemical solution injection material has high permeability, but the strength of the obtained cured body itself is small, and the shrinkage of the cured body is also large, so that there is a case where long-term durability is problematic. On the other hand, suspension-type chemical injection material, which has hydraulic cement or slag as a component, can be expected to exhibit relatively high strength and has the advantage that long-term durability is easy to ensure, There was a problem that the permeability was low. In the case of the suspension type, since it is a chemical solution having particles, the particles immediately settled when left standing, and troubles such as blockage in the injection hose may occur during the construction.
 懸濁型の薬液注入材としては、微粉末化したセメントクリンカーと高炉スラグにポリカルボン酸系分散剤を必須成分とする注入材組成物が知られている。(例えば、特許文献1、2、3参照)。これら技術は、特定のポリカルボン酸系分散剤を用いることで、浸透性を向上させた注入材組成物を提供するものであるが、セメント中の炭酸カルシウムや炭酸カルシウムの含有割合についての記載がなく、注入材組成物を静置したときの沈降防止性能についての記載がなく、耐久性に関する実施例がない。 As a suspension type chemical solution injection material, an injection material composition containing a polycarboxylic acid-based dispersant as an essential component in a finely divided cement clinker and blast furnace slag is known. (For example, see Patent Documents 1, 2, and 3). These techniques provide an injectable material composition having improved permeability by using a specific polycarboxylic acid-based dispersant, but there is a description about the content of calcium carbonate or calcium carbonate in cement. In addition, there is no description about the anti-settling performance when the pouring composition is allowed to stand, and there is no example regarding durability.
 一方、ゲル化時間を有する注入材料としては水ガラス、固化剤、及びブレーン8,000cm2/g以上の微粉末高炉スラグを含有してなる注入材料等も知られている(例えば、特許文献4、5、6参照)。 On the other hand, as an injection material having a gelation time, an injection material containing water glass, a solidifying agent, and fine powder blast furnace slag of 8000 cm 2 / g or more is known (for example, Patent Document 4, 5 and 6).
 特許文献4は、微粉スラグを併用することでゲル強度の高い硬化体が数十秒から数分レベルで得られることを示しているが、圧縮強度のみの評価であり、水ガラスの配合量も多く、水ガラスを主体とするものである。また、粒子の沈降防止性能や浸透性についての記述もない。 Patent document 4 shows that a hardened body with high gel strength can be obtained at a level of several tens of seconds to several minutes by using fine powder slag in combination, but it is only an evaluation of compressive strength, and the blending amount of water glass is also Many are mainly water glass. In addition, there is no description of particle sedimentation prevention performance and permeability.
 特許文献5は、モル比が2.8~4.0の範囲にある水ガラスと、平均粒子径が10μm以下で比表面積が5000cm2/g以上、好ましくは8000cm2/g以上の微粒子スラグと、必要に応じて、さらにセメントを含有させた注入材に関する技術である。この文献では、水ガラスの使用量が多く、圧縮強度と浸透性に関する記載はあるが、粒子の沈降防止性能に関する記述はない。 Patent Document 5 discloses water glass having a molar ratio in the range of 2.8 to 4.0, fine particle slag having an average particle diameter of 10 μm or less and a specific surface area of 5000 cm 2 / g or more, preferably 8000 cm 2 / g or more. This is a technique related to an injection material further containing cement as required. In this document, the amount of water glass used is large, and there is a description regarding compressive strength and permeability, but there is no description regarding the particle sedimentation preventing performance.
 特許文献6は、微粒子スラグおよび微粒子セメントの混合物を含む懸濁型グラウトからなり、これらスラグおよびセメントの平均粒径がそれぞれ10μm以下、比表面積がそれぞれ5000cm2/g 以上であり、セメントの混合比率が50%以下であることを特徴とするもので、さらに前記懸濁型グラウトに水ガラスおよび/またはアルカリ材を含有することを特徴とする技術である。この文献でも、文献5と同様に、水ガラスの使用量が多く、浸透性に関する記載はあるが、硬化体の評価として圧縮強度のみの評価である。 Patent Document 6 is composed of a suspension type grout containing a mixture of fine particle slag and fine particle cement, each of which has an average particle size of 10 μm or less and a specific surface area of 5000 cm 2 / g or more, respectively. Is a technique characterized in that the suspension grout further contains water glass and / or an alkali material. In this document as well, as in document 5, the amount of water glass used is large and there is a description regarding permeability, but only the compression strength is evaluated as the evaluation of the cured product.
 さらに、特許文献7には、水、微粒子水砕スラグ、アルカリ刺激剤、分散剤、水に溶解又は分散して粘性を与える高分子物質、及び必要により固結性改良剤を含有してなることを特徴とする懸濁型地盤改良材に関する技術が示されている。この文献では、浸透性や沈降防止性能についての記載はあるが、硬化体の特性に関する開示がなされておらず、地盤に注入し固結したときの補強性能がわからない。 Furthermore, Patent Document 7 contains water, finely divided granulated slag, an alkali stimulant, a dispersant, a high molecular substance that dissolves or disperses in water to give viscosity, and, if necessary, a caking property improver. The technique regarding the suspension type ground improvement material characterized by this is shown. In this document, there is a description about permeability and anti-settling performance, but there is no disclosure about the characteristics of the cured body, and the reinforcement performance when injected into the ground and consolidated is not known.
特開2007-238428号公報JP 2007-238428 A 特開2007-238925号公報JP 2007-389925 A 特開2004-175989号公報Japanese Patent Laid-Open No. 2004-175989 特開平02-167848号公報Japanese Patent Laid-Open No. 02-167848 特開平07-229137号公報Japanese Patent Application Laid-Open No. 07-229137 特開平07-286173号公報JP 07-286173 A 特開2005-344078号公報JP 2005-344078 A
 本発明は、練り混ぜた懸濁溶液(セメントミルク)を静置しても粒子の沈降抵抗性が高く、流水下でも注入材成分が流されにくく、浸透性と耐久性に優れた地盤注入用水硬性セメント組成物およびそれを用いた地盤改良工法を提供することを課題とする。 The present invention is a ground-injecting water that has high sedimentation resistance even when the suspension solution (cement milk) that has been mixed is allowed to stand, and that the infusate component does not easily flow even under running water, and has excellent permeability and durability. It is an object of the present invention to provide a hard cement composition and a ground improvement method using the same.
 本発明は、上記の課題を解決するために、以下に述べる本発明1~7の手段を採用する。
 本発明1は、ブレーン比表面積で7000~16000cm/g、メジアン径で1~7μmの高炉スラグ微粉末100部、高炉スラグ微粉末100部に対して、下記(1)から(3)の条件をすべて満たす分級セメント5~30部、さらに、前記高炉スラグ微粉末と分級セメントの合計100部に対して0.1~3部のポリアクリル酸系分散剤を含有してなる分散剤を含有することを特徴とする地盤注入用水硬性セメント組成物である。
(1)炭酸カルシウムを分級セメント100部中6~20部含有することを特徴とする分級セメント
(2)ブレーン比表面積が7000~16000cm/gであることを特徴とする分級セメント
(3)メジアン径が1~7μmであることを特徴とする分級セメント
 本発明2は、さらに、前記分散剤がメラミン系分散剤を含有することを特徴とする本発明1の地盤注入用水硬性セメント組成物である。
 本発明3は、前記ポリアクリル酸系分散剤が下記一般式(I)の単量体を含む共重合体であることを特徴とする本発明1又は2の地盤注入用水硬性セメント組成物である。
        CH2=C(R1)COO(R2O)nR3      (I)
(式中、R1は水素原子又はメチル基、R2Oは炭素数2~4のオキシアルキレン基、nは5~40の整数、R3は水素原子又は炭素数1~5のアルキル基を示す。)
 本発明4は、本発明1~3のいずれかの地盤注入用水硬性セメント組成物に水を加え練り混ぜたことを特徴とするセメントミルクである。
 本発明5は、前記水硬性セメント組成物に水を加え練り混ぜたセメントミルクの60分静置後のブリーディング率が2%以下を示すことを特徴とする本発明4のセメントミルクである。
 本発明6は、本発明4又は5のセメントミルクを地盤内に注入する地盤改良工法である。
 本発明7は、液状化対策を目的とした地盤改良に用いることを特徴とする本発明6の地盤改良工法である。
 なお、本明細書中の部や%は、特記しない限り、質量部や質量%をいう。
In order to solve the above problems, the present invention employs the means of the present invention 1 to 7 described below.
The present invention 1 has the following conditions (1) to (3) for 100 parts of blast furnace slag fine powder and 100 parts of blast furnace slag fine powder having a Blaine specific surface area of 7000 to 16000 cm 2 / g and a median diameter of 1 to 7 μm. 5 to 30 parts of classification cement satisfying all of the above, and further containing a dispersant containing 0.1 to 3 parts of a polyacrylic acid-based dispersant with respect to 100 parts in total of the blast furnace slag fine powder and the classification cement This is a hydraulic cement composition for ground injection.
(1) Classification cement characterized by containing 6 to 20 parts of calcium carbonate in 100 parts of classification cement (2) Classification cement characterized by having a Blaine specific surface area of 7000 to 16000 cm 2 / g (3) Median Classifying cement characterized by having a diameter of 1 to 7 μm. The present invention 2 is the hydraulic cement composition for ground injection according to the present invention 1, wherein the dispersant further contains a melamine-based dispersant. .
The present invention 3 is the hydraulic cement composition for ground injection according to the present invention 1 or 2, wherein the polyacrylic acid dispersant is a copolymer containing a monomer represented by the following general formula (I): .
CH 2 = C (R 1) COO (R 2 O) nR 3 (I)
Wherein R 1 is a hydrogen atom or a methyl group, R 2 O is an oxyalkylene group having 2 to 4 carbon atoms, n is an integer of 5 to 40, and R 3 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Show.)
The present invention 4 is a cement milk characterized in that water is added to the hydraulic cement composition for ground injection according to any one of the present inventions 1 to 3 and kneaded.
The present invention 5 is the cement milk according to the present invention 4, wherein the bleeding rate of the cement milk prepared by adding water to the hydraulic cement composition and kneaded after standing for 60 minutes is 2% or less.
The present invention 6 is a ground improvement method for injecting the cement milk of the present invention 4 or 5 into the ground.
This invention 7 is the ground improvement construction method of this invention 6 used for the ground improvement aiming at liquefaction countermeasures.
In the present specification, “parts” and “%” mean “parts by mass” and “mass%” unless otherwise specified.
 本発明の地盤注入用水硬性セメント組成物は浸透性に優れ、地盤改良等の効果を奏することができる。 The hydraulic cement composition for ground injection according to the present invention is excellent in permeability and can exert effects such as ground improvement.
 本発明において使用する高炉スラグ微粉末は、ブレーン比表面積で7000~16000cm/g、メジアン径で1~7μmであり、銑鉄を製造するときに発生する鉄鋼スラグを粉砕して製造される。一般的な高炉セメントやコンクリート用混和材として用いられているものである。ブレーン比表面積はJIS R 5201のブレーン空気透過装置で測定した値であり、7000~16000cm/gであ。
 高炉スラグ微粉末は、7000cm/g未満であると、ブリーディング率が大きくなり、十分な浸透性を得ることができない場合があり、16000cm/gを越えると製造コストがかかり過ぎて実用的でない。
 高炉スラグ微粉末のメジアン径は、1~7μmが好ましい。たとえば、メジアン径はレーザー回折式粒度分布測定機により測定できる。1μm未満である製造コストがかかりすぎ実用的でなく、7μmを越えると、ブリーディング率が大きくなり、浸透性を阻害するおそれがある。
The blast furnace slag fine powder used in the present invention has a Blaine specific surface area of 7000 to 16000 cm 2 / g and a median diameter of 1 to 7 μm, and is produced by pulverizing steel slag generated when producing pig iron. It is used as a general blast furnace cement and concrete admixture. The specific surface area of the brane is a value measured with a brane air permeation apparatus of JIS R 5201, and is 7000 to 16000 cm 2 / g.
If the blast furnace slag fine powder is less than 7000 cm 2 / g, the bleeding rate increases, and sufficient permeability may not be obtained. If it exceeds 16000 cm 2 / g, the production cost is too high to be practical. .
The median diameter of the blast furnace slag fine powder is preferably 1 to 7 μm. For example, the median diameter can be measured by a laser diffraction particle size distribution measuring machine. If the manufacturing cost is less than 1 μm, the production cost is too high and it is not practical, and if it exceeds 7 μm, the bleeding rate increases and the permeability may be impaired.
 本発明において使用する分級セメントは、セメントを分級設備を用いて粒度調整したものである。分級セメント100部中、炭酸カルシウムを6~20部含有するものであり、10~15部含有することが好ましい。
 本発明は、分級セメント100部中、炭酸カルシウムを6~20部含有することにより、沈降防止性能と耐久性といった、一見両立し難い特性を具備する。6部未満では、十分な沈降防止性能が得られず、20部を超えると粘度が大きくなり、強度が小さくなる。
 分級セメントに含有する炭酸カルシウムは、分級によって細かい粒子となって存在するために、反応性が良好となる。炭酸カルシウムは、通常セメントのフィラーやコンクリートを製造するときの砂の一部として利用されている。通常利用されている炭酸カルシウム(石灰石微粉末)の粉末度は4000~6000cm/gであるのでそれよりも細かく反応活性が高く強度増進の効果も期待できる。また、セメントに含まれるカルシウムアルミネート(3CaO・Al)と反応しモノカーボネートやヘミカーボネートを生成する。セッコウも同様にセメントに含まれるカルシウムアルミネート(3CaO・Al)と反応しエトリンガイトを生成するが、炭酸カルシウムが特定量存在するとモノカーボネートやヘミカーボネートの反応が卓越するため、生成したエトリンガイトがモノサルフェートへ転化する反応が抑制され耐久性が確保されやすくなる効果も付与されると考えられる。
The classified cement used in the present invention is a cement whose particle size is adjusted using a classification facility. In 100 parts of classified cement, 6 to 20 parts of calcium carbonate are contained, preferably 10 to 15 parts.
According to the present invention, by including 6 to 20 parts of calcium carbonate in 100 parts of classified cement, it is difficult to achieve compatibility such as anti-settling performance and durability. If it is less than 6 parts, sufficient anti-settling performance cannot be obtained, and if it exceeds 20 parts, the viscosity increases and the strength decreases.
Since the calcium carbonate contained in the classification cement exists as fine particles by classification, the reactivity is good. Calcium carbonate is usually used as a part of sand when producing cement filler and concrete. The fineness of commonly used calcium carbonate (fine limestone powder) is 4000 to 6000 cm 2 / g, so that it has a finer reaction activity and can be expected to increase strength. Moreover, it reacts with calcium aluminate (3CaO · Al 2 O 3 ) contained in the cement to produce monocarbonate or hemicarbonate. Similarly, gypsum reacts with calcium aluminate (3CaO · Al 2 O 3 ) contained in the cement to produce ettringite, but when a certain amount of calcium carbonate is present, the reaction of monocarbonate and hemicarbonate is excellent, so the produced ettringite It is considered that the reaction of converting to monosulfate is suppressed, and the durability is easily secured.
 分級セメントは、普通ポルトランドセメント、早強ポルトランドセメント、低熱ポルトランドセメント、中庸熱ポルトランドセメント、耐硫酸塩セメントなどのポルトランドセメントいずれも使用可能であり、分級によって上記本発明1に示す(1)および(2)の条件にあえば使用可能である。また、フライアッシュセメントやシリカセメントなどの混合セメントも同様であり、アルミナセメントなどの耐火セメントも同様である。
 分級セメントの粉末度は、高炉スラグ微粉末と同様に7000~16000cm/gであり、9000~16000cm/gが好ましい。7000cm/g未満では、ブリーディング率が大きくなり、十分な浸透性を得ることができない場合があり、16000cm/gを越えると製造コストがかかり過ぎて実用的でない。
 分級セメントのメジアン径は、1~7μmが好ましい。たとえば、メジアン径はレーザー回折式粒度分布測定機により測定できる。1μm未満である製造コストがかかりすぎ実用的でなく、7μmを越えると、ブリーディング率が大きくなり、浸透性を阻害するおそれがある。
As the classified cement, any of Portland cements such as ordinary Portland cement, early-strength Portland cement, low heat Portland cement, moderately heated Portland cement, sulfate resistant cement, and the like can be used. It can be used under the condition of 2). The same applies to mixed cements such as fly ash cement and silica cement, and the same applies to refractory cements such as alumina cement.
The fineness of the classified cement is 7000 to 16000 cm 2 / g, preferably 9000 to 16000 cm 2 / g, like the blast furnace slag fine powder. If it is less than 7000 cm 2 / g, the bleeding rate increases, and sufficient permeability may not be obtained. If it exceeds 16000 cm 2 / g, the production cost is excessive and it is not practical.
The median diameter of the classified cement is preferably 1 to 7 μm. For example, the median diameter can be measured by a laser diffraction particle size distribution measuring machine. If the manufacturing cost is less than 1 μm, the production cost is too high and it is not practical, and if it exceeds 7 μm, the bleeding rate increases and the permeability may be impaired.
 分級セメントの割合は高炉スラグ微粉末100部に対して5~30部であり、10~25部が好ましい。5重量部未満であると十分な強度発現性を得ることができない場合があり、30重量部を越えると浸透性を阻害するおそれがある。 The proportion of classified cement is 5 to 30 parts, preferably 10 to 25 parts, per 100 parts of blast furnace slag fine powder. If the amount is less than 5 parts by weight, sufficient strength development may not be obtained, and if it exceeds 30 parts by weight, the permeability may be impaired.
 本発明の分散剤は、ポリアクリル酸系分散剤を含有する。
 本発明のポリアクリル酸系分散剤とは、懸濁溶液としたときの粒子の沈降を抑制する効果と、浸透性を付与する効果を発揮するものである。下記一般式(I)の単量体を含む共重合体であることを特徴とするものである。
        CH2=C(R1)COO(R2O)nR3      (I)
 ここで、式(I)中、Rは水素原子又はメチル基を示し、ROは炭素数2~4のオキシアルキレン基、例えば、-CHCHO-、-CHCHCHO-、-CHCH(CH)O-、-CHCH(CHCH)O-、-CHCHCHCHO-等が挙げられる。nはオキシアルキレン基の付加モル数を示し、5~40の整数であり、好ましくは7~35、より好ましくは9~30である。付加モル数(n)が小さすぎると分散力が不十分となる。一方、大きすぎると高融点の固体となり、ハンドリングが困難となる。
 また、R3は水素原子又は炭素数1~5のアルキル基を示し、例えばメチル基、エチル基、プロピル基、ブチル基などが挙げられる。
 単量体の例としては、アルキレンオキサイドの付加モル数が5~40モルのポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリブチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、メトキシポリブチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリブチレングリコール(メタ)アクリレート、プロポキシポリエチレングリコール(メタ)アクリレートなどが挙げられ、これらの1種を単独で又は2種以上を組み合わせて用いることができる。一般式(I)で示される単量体が含まれていれば、他の化学構造を有する単量体成分と組み合わせた共重合体を使用してもよい。
 これらの中では、沈降防止性能や浸透性能の面で、メトキシポリエチレングリコール(メタ)アクリレートやメトキシポリプロピレングリコール(メタ)アクリレートを含む共重合体が好ましい。
The dispersant of the present invention contains a polyacrylic acid type dispersant.
The polyacrylic acid-based dispersant of the present invention exhibits the effect of suppressing the sedimentation of particles when used as a suspension solution and the effect of imparting permeability. It is a copolymer containing the monomer of the following general formula (I).
CH 2 = C (R 1) COO (R 2 O) nR 3 (I)
In the formula (I), R 1 represents a hydrogen atom or a methyl group, and R 2 O represents an oxyalkylene group having 2 to 4 carbon atoms, such as —CH 2 CH 2 O—, —CH 2 CH 2 CH 2 O—, —CH 2 CH (CH 3 ) O—, —CH 2 CH (CH 2 CH 3 ) O—, —CH 2 CH 2 CH 2 CH 2 O— and the like can be mentioned. n represents the number of added moles of the oxyalkylene group, and is an integer of 5 to 40, preferably 7 to 35, more preferably 9 to 30. If the added mole number (n) is too small, the dispersion force becomes insufficient. On the other hand, if it is too large, it becomes a solid with a high melting point, making handling difficult.
R 3 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, and a butyl group.
Examples of the monomer include polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polybutylene glycol mono (meth) acrylate, methoxypolyethylene glycol (meth) acrylate having 5 to 40 moles of added alkylene oxide. ) Acrylate, methoxy polypropylene glycol (meth) acrylate, methoxy polybutylene glycol (meth) acrylate, ethoxy polyethylene glycol (meth) acrylate, ethoxy polypropylene glycol (meth) acrylate, ethoxy polybutylene glycol (meth) acrylate, propoxy polyethylene glycol (meth) ) Acrylate, etc., and one of these may be used alone or in combination of two or more. As long as the monomer represented by the general formula (I) is contained, a copolymer combined with a monomer component having another chemical structure may be used.
Among these, a copolymer containing methoxypolyethylene glycol (meth) acrylate or methoxypolypropylene glycol (meth) acrylate is preferable in terms of anti-settling performance and permeation performance.
 本発明の分散剤は、ポリアクリル酸系分散剤の他に、メラミン系分散剤を含有してもよい。
 本発明のメラミン系分散剤とは、たとえば、メラミンを亜硫酸塩及びホルムアルデヒドでスルホン化した後、更にホルムアルデヒドで縮合させる方法などによって得られる分散剤である。メラミンスルホン酸ホルムアルデド縮合物のナトリウム、カリウム等のアルカリ金属塩、カルシウム、マグネシウム等のアルカリ土類金属塩等を用いることもできる。
 本発明のメラミン系分散剤はポリアクリル酸系分散剤と併用して使用する。併用する場合、メラミン系分散剤の割合は、ポリカルボン酸系分散剤100部に対して、10~1000部が好ましく、30~600部がより好ましい。10部未満であると、粒子の沈降防止性能が相乗的に向上する効果が得られない場合があり、1000部を越えると、沈降防止性能を阻害する場合がある。
 メラミン系分散剤と併用することで、ポリアクリル酸系分散剤単独で使用するよりも、練混ぜ直後からのブリーディング率を低減する効果が大きくなる作用を見出している。よって、粒子の分散性能が長時間に渡って向上するため、模擬地盤に対する浸透性も良好となり、均一に水硬性を示す粒子が地盤内に分散することから、より強固で均一な改良体を得ることができる。
The dispersant of the present invention may contain a melamine dispersant in addition to the polyacrylic acid dispersant.
The melamine dispersant of the present invention is a dispersant obtained by, for example, a method in which melamine is sulfonated with sulfite and formaldehyde and then further condensed with formaldehyde. Alkali metal salts such as sodium and potassium of melamine sulfonic acid formaldehyde condensate, and alkaline earth metal salts such as calcium and magnesium can also be used.
The melamine dispersant of the present invention is used in combination with a polyacrylic acid dispersant. When used in combination, the proportion of the melamine dispersant is preferably 10 to 1000 parts, more preferably 30 to 600 parts, relative to 100 parts of the polycarboxylic acid dispersant. If the amount is less than 10 parts, the effect of synergistically improving the particle settling prevention performance may not be obtained. If the amount exceeds 1000 parts, the settling prevention performance may be inhibited.
It has been found that when used in combination with a melamine-based dispersant, the effect of reducing the bleeding rate immediately after kneading is greater than when a polyacrylic acid-based dispersant is used alone. Therefore, since the dispersion performance of the particles is improved over a long period of time, the permeability to the simulated ground is also improved, and the particles that are uniformly hydraulic are dispersed in the ground, thereby obtaining a stronger and more uniform improved body. be able to.
 分散剤の使用量は、高炉スラグ微粉末と分級セメントの合計100部に対して0.1~3部であり、0.3~2部が好ましい。0.1部未満であると十分な沈降防止性能と浸透性が得られず、3部を越えても効果が頭打ちとなる。 The amount of the dispersing agent used is 0.1 to 3 parts, preferably 0.3 to 2 parts, with respect to 100 parts in total of the blast furnace slag fine powder and the classified cement. If it is less than 0.1 part, sufficient anti-settling performance and permeability cannot be obtained, and if it exceeds 3 parts, the effect reaches its peak.
 なお、本発明の地盤注入用水硬性セメント組成物には、公知のセメント混和剤(材)を本来の性能に悪影響を与えない範囲で併用することができる。例えばAE剤、AE減水剤、高性能減水剤、高性能AE減水剤、流動化剤、凝結遅延剤、早強剤、消泡剤、増粘剤、防水剤(材)、膨張剤(材)、急硬材、収縮低減剤(材)、防錆剤、セメント混和用ポリマーエマルジョン、粘土鉱物などが挙げられる。 It should be noted that a known cement admixture (material) can be used in combination with the hydraulic cement composition for ground injection of the present invention as long as the original performance is not adversely affected. For example, AE agent, AE water reducing agent, high performance water reducing agent, high performance AE water reducing agent, fluidizing agent, setting retarding agent, early strengthening agent, antifoaming agent, thickener, waterproofing agent (material), swelling agent (material) , Rapid hardening materials, shrinkage reducing agents (materials), rust preventives, cement emulsion polymer emulsions, clay minerals, and the like.
 本発明の地盤注入用水硬性セメント組成物は、水を加えてミルク状にして施工する。加える水の量が多くなるほど浸透性が良くなるが材料分離が助長され圧送ホース内で閉塞するおそれがあり、少なければ、セメントミルクの粘度が大きくなりすぎて浸透性を阻害する。使用する水の最適範囲は、高炉スラグ微粉末、分級セメント、および分散剤の合計100部に対して、400~1500部が好ましく、700~1200部がより好ましい。使用する水量が上記の範囲であると、土木学会基準(JSCE F-522)の方法で、セメントミルクの60分後のブリーディング率が2%以下とすることが可能となる。ブリーディング率が2%を越えると、注入材の圧送を60分以上停止し、再始動を行なった場合に閉塞を起こす場合がある。
 本発明の地盤注入用水硬性セメント組成物に水を加えて練混ぜる時間は、特に限定するものではないが、グラウトミキサーに所定量の水を加え本発明の地盤注入用水硬性セメント組成物を投入してから1~3分間練り混ぜればよい。
The hydraulic cement composition for ground injection according to the present invention is applied in the form of milk by adding water. The greater the amount of water added, the better the permeability, but the material separation is encouraged and there is a risk of clogging in the pumping hose. If it is less, the viscosity of the cement milk becomes too high and impairs the permeability. The optimum range of water to be used is preferably 400 to 1500 parts, more preferably 700 to 1200 parts, with respect to 100 parts in total of blast furnace slag fine powder, classified cement, and dispersant. When the amount of water used is within the above range, the bleeding rate after 60 minutes of cement milk can be reduced to 2% or less by the method of the Japan Society of Civil Engineers (JSCE F-522). When the bleeding rate exceeds 2%, the pumping of the injected material is stopped for 60 minutes or more, and may be blocked when restarted.
The time for adding water and kneading to the hydraulic cement composition for ground injection of the present invention is not particularly limited, but a predetermined amount of water is added to a grout mixer and the hydraulic cement composition for ground injection of the present invention is charged. Then knead for 1-3 minutes.
 注入箇所としては、軟弱な地盤の改良であれば特に限定するものではなく、たとえば、港湾、護岸、空港などの構造物、地盤の悪い都市部や山間部などの各種構造物が立地している地盤に適用でき、止水や遮水グラウト、ヒービング防止グラウト、沈下防止グラウト、ブロー防止グラウト、土圧軽減グラウト、支持力増加グラウト、吸出し防止グラウトなどを目的として使用できる。浸透性が良好であるため、礫を含むような砂質土地盤への適用も可能であり、液状化防止対策としても有効に機能する。 The injection location is not particularly limited as long as the soft ground is improved. For example, there are structures such as harbors, revetments, airports, and other structures such as bad urban areas and mountainous areas. It can be applied to the ground, and can be used for purposes such as water-stopping and water-blocking grout, heaving prevention grout, subsidence prevention grout, blow prevention grout, earth pressure reduction grout, increased bearing capacity grout, and suction prevention grout. Since it has good permeability, it can be applied to sandy ground including gravel, and effectively functions as a liquefaction prevention measure.
 本発明の施工方法は、特に限定するものではなく、通常の薬液注入で使用している施工設備を用いることができ、通常実施している注入設計と施工方法に準拠すればよい。たとえば、ミキサーで調整したセメントミルクをポンプでホースを介して圧送し、地中に配置したロッドを介して注入材を注入する方法が挙げられる。その際に使用するロッドは、特に限定するものではないが、単管ロッド、単管ストレーナロッド、二重管ロッド、二重管のダブルパッカー方式ロッドなどが使用できる。
 本発明の地盤注入用水硬性セメント組成物は、基本的には1ショットで注入を行なうが、地盤の状態や目的に応じて、市販されている凝結促進剤や他の各種混和材を別に圧送して1.5ショットや2ショット方式で施工することもできる。
The construction method of the present invention is not particularly limited, and construction equipment used for normal chemical solution injection can be used, and it is only necessary to comply with the injection design and the construction method that are normally performed. For example, a method of pumping cement milk adjusted by a mixer through a hose with a pump and injecting an injection material through a rod arranged in the ground can be mentioned. The rod used in this case is not particularly limited, and a single tube rod, a single tube strainer rod, a double tube rod, a double tube double packer rod, and the like can be used.
The hydraulic cement composition for ground injection according to the present invention is basically injected in one shot. Depending on the condition and purpose of the ground, a commercially available setting accelerator and other various admixtures are separately pumped. It is also possible to construct by 1.5 shot or 2 shot method.
 高炉スラグ微粉末100部に対して分級セメントを表1に示すように変え、高炉スラグ微粉末と分級セメントの合計100部に対して表1に示す分散剤を1.0部加え地盤注入用水硬性セメント組成物を調整した。この地盤注入用水硬性セメント組成物100部に対して850部となるように水を加え2分間グラウトミキサーで練り混ぜた。得られたセメントミルクの粘度、ブリーディング率、浸透性、圧縮強度を測定した。結果を表1に示す。 The classified cement is changed as shown in Table 1 with respect to 100 parts of the blast furnace slag fine powder, and 1.0 part of the dispersant shown in Table 1 is added to 100 parts of the total blast furnace slag fine powder and the classified cement. A cement composition was prepared. Water was added to 850 parts with respect to 100 parts of the hydraulic cement composition for ground injection, and the mixture was kneaded with a grout mixer for 2 minutes. The viscosity, bleeding rate, permeability, and compressive strength of the obtained cement milk were measured. The results are shown in Table 1.
<使用材料>
高炉スラグ微粉末a:市販の高炉スラグ微粉末、ブレーン比表面積10500cm/g、メジアン径3.6μm
分級セメントe:普通ポルトランドセメントと炭酸カルシウムを混合後、分級した分級セメント、ブレーン比表面積9700cm/g、メジアン径4.1μm、炭酸カルシウム含有量11.3%
分散剤A:市販のポリアクリル酸系分散剤(メトキシポリエチレングリコールメタクリレート系)、一般式(I)において、Rはメチル基、ROは炭素数2のオキシエチレン基、Rはメチル基。
分散剤B:分散剤A100部に対して日本シーカ社製のメラミン系分散剤300部配合した分散剤
<Materials used>
Blast furnace slag fine powder a: Commercially available blast furnace slag fine powder, Blaine specific surface area 10500 cm 2 / g, median diameter 3.6 μm
Classification cement e: Classification cement obtained by mixing ordinary Portland cement and calcium carbonate, and classified, brane specific surface area 9700 cm 2 / g, median diameter 4.1 μm, calcium carbonate content 11.3%
Dispersant A: Commercially available polyacrylic acid type dispersant (methoxypolyethylene glycol methacrylate type), in the general formula (I), R 1 is a methyl group, R 2 O is a C 2 oxyethylene group, and R 3 is a methyl group .
Dispersant B: Dispersant in which 300 parts of melamine dispersant manufactured by Nippon Seika Co., Ltd. is blended with 100 parts of dispersant A
<測定方法>
粘度:B型回転粘度計を用いて測定 粘度は練り上がり直後、3時間後、6時間後に測定した。測定時の温度は25℃。
ブリーディング率:JSCE-F522-1999プレパックドコンクリートの注入モルタルのブリ-ディング率および膨張率試験方法(ポリエチレン袋方法)に準拠した。測定は0.5時間後、1時間後、2時間後とした。測定時の温度は25℃
浸透性:JGS0831-2000に示す薬液注入による安定処理土の供試体作成方法に準拠した。直径50mm高さ1000mmのアクリルパイプに豊浦砂を充填して水締めした模擬地盤に0.05MPaの注入圧でセメントミルクを注入したときの浸透状況を観察した。
圧縮強度:浸透性試験を行ったアクリルパイプを高さ100mmになるように切断し、アクリルパイプ内から硬化したサンドゲルを取り出し圧縮強度を測定した。測定材齢は28日。
<Measurement method>
Viscosity: measured using a B-type rotational viscometer Viscosity was measured immediately after kneading, after 3 hours and after 6 hours. The temperature during measurement is 25 ° C.
Bleeding rate: Compliant with JSCE-F522-1999 prepacked concrete poured mortar bleeding rate and expansion rate test method (polyethylene bag method). The measurement was performed 0.5 hour later, 1 hour later, and 2 hours later. Measurement temperature is 25 ° C
Permeability: Conforms to the method for preparing specimens of stabilized soil by chemical solution injection shown in JGS0831-2000. The state of penetration was observed when cement milk was injected at an injection pressure of 0.05 MPa into a simulated ground that was filled with Toyoura sand and water-tightened into an acrylic pipe having a diameter of 50 mm and a height of 1000 mm.
Compressive strength: The acrylic pipe subjected to the permeability test was cut to a height of 100 mm, the cured sand gel was taken out from the acrylic pipe, and the compressive strength was measured. Measurement material age is 28 days.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の高炉スラグ微粉末に分級セメントを特定量配合し、ポリアクリル酸系分散剤を併用することで、ブリーディング率が小さい注入材セメントミルクを製造することができ、優れた浸透性を示し、浸透後のサンドゲルの圧縮強度も良好に発現することがわかる。特に、ポリアクリル酸系分散剤とメラミン系分散剤を含有する分散剤Bを用いることで、よりブリーディング率が低減し、強度発現性も向上していることがわかる。 From Table 1, it is possible to produce an injection cement milk having a low bleeding rate by blending a specific amount of classified cement into the blast furnace slag fine powder of the present invention and using a polyacrylic acid dispersant in combination with excellent penetration. It can be seen that the compressive strength of the sand gel after permeation is well expressed. In particular, it can be seen that by using Dispersant B containing a polyacrylic acid-based dispersant and a melamine-based dispersant, the bleeding rate is further reduced and the strength development is also improved.
 ブレーン比表面積の異なる高炉スラグ微粉末100部に対してブレーン比表面積の異なる分級セメントを15部、高炉スラグ微粉末と分級セメントの合計100部に対して分散剤Aを1.0部加え地盤注入用水硬性セメント組成物を調整した。この地盤注入用水硬性セメント組成物100部に対して850部となるように水を加え2分間グラウトミキサーで練り混ぜた。得られたセメントミルクの粘度、ブリーディング率、浸透性、圧縮強度を測定した。結果を表2に示す。 15 parts of classified cement with different Blain specific surface area for 100 parts of ground granulated blast furnace slag and 1.0 part of dispersant A for 100 parts of blast furnace slag fine powder and classified cement are injected into the ground. A hydraulic cement composition was prepared. Water was added to 850 parts with respect to 100 parts of the hydraulic cement composition for ground injection, and the mixture was kneaded with a grout mixer for 2 minutes. The viscosity, bleeding rate, permeability, and compressive strength of the obtained cement milk were measured. The results are shown in Table 2.
<使用材料>
高炉スラグ微粉末b:ブレーン比表面積6100cm/g、メジアン径7.4μm
高炉スラグ微粉末c:ブレーン比表面積8200cm/g、メジアン径:4.8μm
高炉スラグ微粉末d:ブレーン比表面積15500cm/g、メジアン径:1.6μm
分級セメントf:普通ポルトランドセメントと炭酸カルシウムを混合後、分級した分級セメント、ブレーン比表面積6050cm/g、メジアン径8.6μm、炭酸カルシウム含有率9.9%
分級セメントg:普通ポルトランドセメントと炭酸カルシウムを混合後、分級した分級セメント、ブレーン比表面積8300cm/g、メジアン径6.1μm、炭酸カルシウム含有率9.5%
分級セメントh:普通ポルトランドセメントと炭酸カルシウムを混合後、分級した分級セメント、ブレーン比表面積15800cm/g、メジアン径2.5μm、炭酸カルシウム含有率13.2%
<Materials used>
Blast furnace slag fine powder b: Blaine specific surface area 6100 cm 2 / g, median diameter 7.4 μm
Blast furnace slag fine powder c: Blaine specific surface area 8200 cm 2 / g, median diameter: 4.8 μm
Blast furnace slag fine powder d: Blaine specific surface area 15500 cm 2 / g, median diameter: 1.6 μm
Classification cement f: Classification cement classified after mixing ordinary Portland cement and calcium carbonate, Blaine specific surface area 6050 cm 2 / g, median diameter 8.6 μm, calcium carbonate content 9.9%
Classification cement g: Classification cement obtained by mixing ordinary Portland cement and calcium carbonate, classified cement, Blaine specific surface area 8300 cm 2 / g, median diameter 6.1 μm, calcium carbonate content 9.5%
Classification cement h: Classification cement classified after mixing ordinary Portland cement and calcium carbonate, Blaine specific surface area 15800 cm 2 / g, median diameter 2.5 μm, calcium carbonate content 13.2%
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、7000cm/g以上のブレーン比表面積を持ち、メジアン径が7μm以下である高炉スラグ微粉末と分級セメントを用いることで、小さなブリーディング率と良好な浸透性と優れた圧縮強度を示すことがわかる。高炉スラグ微粉末と分級セメントの両者又はいずれかがブレーン比表面積で7000cm/g未満であるか、メジアン径で7μmを超える場合には、ブリーディング率が大きくなり、浸透性が悪くなり、圧縮強度も低下する。 From Table 2, a small bleeding rate, good permeability, and excellent compressive strength are exhibited by using blast furnace slag fine powder having a specific surface area of 7000 cm 2 / g and a median diameter of 7 μm or less and classified cement. I understand that. If either or both of the blast furnace slag fine powder and the classified cement have a Blaine specific surface area of less than 7000 cm 2 / g or a median diameter of more than 7 μm, the bleeding rate increases, the permeability deteriorates, and the compressive strength Also decreases.
 高炉スラグ微粉末a100部に対して炭酸カルシウムの含有量が異なる分級セメントを表3に示すように加え、高炉スラグ微粉末と分級セメントの合計100部に対して分散剤Aを1.0部加え地盤注入用水硬性セメント組成物を調整した。この地盤注入用水硬性セメント組成物100部に対して850部となるように水を加え2分間グラウトミキサーで練り混ぜた。尚、比較のために、炭酸カルシウムを含有しない普通ポルトランドセメントを分級し、その後、ブレーン比表面積5500cm/gの炭酸カルシウムを所定量加え同様に評価した。得られたセメントミルクの粘度、ブリーディング率、浸透性、圧縮強度を測定した。結果を表3に示す。 As shown in Table 3, classified cements with different calcium carbonate contents are added to 100 parts of blast furnace slag fine powder a, and 1.0 part of dispersant A is added to 100 parts of the total blast furnace slag fine powder and classified cement. A hydraulic cement composition for ground injection was prepared. Water was added to 850 parts with respect to 100 parts of the hydraulic cement composition for ground injection, and the mixture was kneaded with a grout mixer for 2 minutes. For comparison, ordinary Portland cement containing no calcium carbonate was classified, and then a predetermined amount of calcium carbonate having a Blaine specific surface area of 5500 cm 2 / g was added and similarly evaluated. The viscosity, bleeding rate, permeability, and compressive strength of the obtained cement milk were measured. The results are shown in Table 3.
<使用材料>
炭酸カルシウム:上越鉱業社製、ブレーン比表面積5500cm/g 市販品
<Materials used>
Calcium carbonate: Joetsu Mining Co., Ltd., Blaine specific surface area 5500 cm 2 / g Commercial product
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、炭酸カルシウムが分級セメント100部中6~20部(本発明の範囲)である場合、ブリーディング率が小さく、強度発現性も大きいことがわかる。これに対して、炭酸カルシウムが分級セメント100部中6部未満の場合や、炭酸カルシウムの含有量が本発明の範囲内でも分級しないで分級セメントに添加した場合には、ブリーディング率が大きく、強度発現性も小さくなる傾向が認められ、反応活性が小さいことがわかる。よって、粒子が細かい炭酸カルシウムを特定量含有することで強固な硬化体を形成するので長期的な耐久性も向上すると考えられる。 Table 3 shows that when calcium carbonate is 6 to 20 parts (within the scope of the present invention) of 100 parts of classified cement, the bleeding rate is small and the strength development is large. On the other hand, when the calcium carbonate is less than 6 parts in 100 parts of the classified cement, or when the calcium carbonate content is added to the classified cement without being classified even within the scope of the present invention, the bleeding rate is large and the strength is high. The tendency for the expression to decrease is also recognized, indicating that the reaction activity is small. Therefore, it is considered that long-term durability is improved because a hardened body is formed by containing a specific amount of calcium carbonate having fine particles.
 高炉スラグ微粉末a100部に対して分級セメントeを15部、高炉スラグ微粉末と分級セメントの合計100部に対して分散剤を表4に示すように加え地盤注入用水硬性セメント組成物を調整した。この地盤注入用水硬性セメント組成物100部に対して850部となるように水を加え2分間グラウトミキサーで練り混ぜた。得られたセメントミルクの粘度、ブリーディング率、浸透性、圧縮強度を測定した。結果を表4に示す。 As shown in Table 4, a hydraulic cement composition for ground injection was prepared by adding 15 parts of classified cement e to 100 parts of blast furnace slag fine powder a, and adding a dispersant as shown in Table 4 to a total of 100 parts of blast furnace slag fine powder and classified cement. . Water was added to 850 parts with respect to 100 parts of the hydraulic cement composition for ground injection, and the mixture was kneaded with a grout mixer for 2 minutes. The viscosity, bleeding rate, permeability, and compressive strength of the obtained cement milk were measured. The results are shown in Table 4.
<使用材料>
分散剤C:分散剤A100部に対して日本シーカ社製のメラミン系分散剤10部配合した分散剤
分散剤D:分散剤A100部に対して日本シーカ社製のメラミン系分散剤30部配合した分散剤
分散剤E:分散剤A100部に対して日本シーカ社製のメラミン系分散剤100部配合した分散剤
分散剤F:分散剤A100部に対して日本シーカ社製のメラミン系分散剤600部配合した分散剤
分散剤G:分散剤A100部に対して日本シーカ社製のメラミン系分散剤1000部配合した分散剤
分散剤H:ナフタレンスルホン酸塩系分散剤 第一工業製薬社製 セルフロー110P
分散剤I:リグニンスルホン酸塩系分散剤 日本製紙社製 バニレックスN
分散剤J:メラミン系分散剤 日本シーカ社製 シーカメントFF
<Materials used>
Dispersant C: Dispersant A in which 10 parts of a melamine dispersant manufactured by Nippon Seika Co., Ltd. was blended with 100 parts of Dispersant A. Dispersant D: 30 parts of a melamine dispersant manufactured by Nihon Seeka Co., Ltd. was blended in 100 parts of Dispersant A. Dispersant Dispersant E: Dispersant Dispersant F in which 100 parts of Melamine Dispersant manufactured by Nippon Seika Co., Ltd. is added to 100 parts of Dispersant A Dispersant F: 600 parts of Melamine Dispersant manufactured by Nihon Seeka Co., Ltd. per 100 parts of Dispersant A Dispersant Dispersant G: Dispersant Dispersant H: Naphthalenesulfonate Dispersant, Daiichi Kogyo Seiyaku Co., Ltd. Cellflow 110P
Dispersant I: Lignin sulfonate-based dispersant Vanillex N manufactured by Nippon Paper Industries Co., Ltd.
Dispersant J: Melamine-based dispersant Seekament FF manufactured by Nippon Seika Co., Ltd.
<測定方法>
圧縮強度のばらつき:1000mのアクリルパイプ内を浸透させ硬化したサンドゲルを100mmの長さになるように切断し10個の圧縮強度試験体を作製し、それぞれの圧縮強度を測定したときの変動係数を求めた。
<Measurement method>
Dispersion of compressive strength: The sand gel cured by penetrating the 1000 m acrylic pipe was cut to a length of 100 mm to produce 10 compressive strength test specimens, and the coefficient of variation when each compressive strength was measured was Asked.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、ポリアクリル酸系分散剤を用いることでブリーディング率を小さくでき良好な浸透性を確保することができることがわかる。特に、メラミン系分散剤との併用は好ましく、浸透距離の違いによる圧縮強度差が小さくなることから、より均一な改良固化体を得ることが可能と考えられる。ポリアクリル酸系分散剤以外の分散剤(ナフタレンスルホン酸塩系分散剤、リグニンスルホン酸塩系分散剤、メラミン系分散剤)を単独で用いた場合には、良好な浸透性を確保できない。 From Table 4, it can be seen that the bleeding rate can be reduced and good permeability can be ensured by using a polyacrylic acid-based dispersant. In particular, the combined use with a melamine dispersant is preferable, and the difference in compressive strength due to the difference in permeation distance is reduced, so that it is considered possible to obtain a more uniform improved solidified body. When a dispersant (a naphthalene sulfonate dispersant, a lignin sulfonate dispersant, or a melamine dispersant) other than the polyacrylic dispersant is used alone, good permeability cannot be secured.
 表5に示すように地盤注入用水硬性セメント組成物を調整し、さらにその組成物100部に対して表に示す水を加えてセメントミルクを調整した。そのセメントミルクを用いて浸透流下試験を行い、水流がある模擬地盤を想定したセメントミルクの流出試験を行なった。評価項目は、セメントミルクの流出の有無、7日後に模擬地盤内から硬化体を取り出し、その形状とほぼ球形に硬化していた場合は直径を確認した。試験結果を表6に示す。 As shown in Table 5, a hydraulic cement composition for ground injection was prepared, and water shown in the table was further added to 100 parts of the composition to prepare cement milk. An osmotic flow test was conducted using the cement milk, and a cement milk spill test was performed assuming a simulated ground with water flow. The evaluation items were the presence or absence of cement milk spill, and the cured body was taken out from the simulated ground after 7 days. The test results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
<試験方法>
 浸透流下試験:JGS0311-2000に示す土の透水試験方法に準拠して行なった。試験条件は、φ10×23cmの透明なアクリル容器に5号珪砂を間隙率40.5%になるように充填し模擬地盤を作製した。なお、模擬地盤を作製するアクリル容器の底面はフィルターをセットし、水やセメントミルクが流れ出るようにした。作製した模擬地盤の中心付近にセメントミルクが注入されるようにパイプをセットし、作製した模擬地盤容器ごと水を満たした容器に浸漬した。浸漬した模擬地盤容器は、模擬地盤容器上端部と水を満たした容器の水位差を0.7cmになるようにし、常に水を供給することで水が入れ替わるような条件とし、パイプより練り混ぜたセメントミルクを120cc注入し、模擬地盤からのセメントミルクの流出状況を観察した。また、模擬地盤内に留まったセメントミルク硬化体の状態は、材齢7日後に模擬地盤容器を解体し、内部から硬化体を取り出し、その形状と、ほぼ球形に硬化していた場合は直径を確認した。注入する前の注入材のブリーディング率も測定した。
<Test method>
Osmotic flow test: Performed according to the soil permeability test method shown in JGS0311-2000. As test conditions, a transparent acrylic container of φ10 × 23 cm was filled with No. 5 silica sand so as to have a porosity of 40.5% to prepare a simulated ground. In addition, a filter was set on the bottom of the acrylic container that produced the simulated ground so that water and cement milk would flow out. A pipe was set so that cement milk was injected near the center of the prepared simulated ground, and the prepared simulated ground container was immersed in a container filled with water. The simulated ground container soaked was adjusted so that the water level difference between the upper end of the simulated ground container and the container filled with water was 0.7 cm, and the water was always replaced by supplying water. 120 cc of cement milk was injected and the outflow situation of cement milk from the simulated ground was observed. In addition, the state of the cement milk cured body staying in the simulated ground is that the simulated ground container is disassembled after 7 days of age and the cured body is taken out from the inside. confirmed. The bleeding rate of the injected material before injection was also measured.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6より、本発明の地盤注入用セメント組成物を用いることで、流水下で地盤内に注入しても流出せずに地盤内に留まり、ほぼ理論どおりの硬化体を形成することがわかる。また、硬化体がほぼ球形の状態で地盤内で硬化していることから、均一な浸透注入もなされている。また、使用水量が、地盤注入用水硬性セメント組成物100部に対して、400~1500部の範囲内であれば、ブリーディング率の変化も小さいことがわかる。 From Table 6, it can be seen that by using the cement composition for ground injection according to the present invention, even if it is injected into the ground under running water, it remains in the ground without flowing out and forms a hardened body almost as theoretically. Further, since the cured body is cured in the ground in a substantially spherical state, uniform infiltration is also performed. It can also be seen that if the amount of water used is in the range of 400 to 1500 parts with respect to 100 parts of the hydraulic cement composition for ground injection, the change in bleeding rate is small.
 防波堤基礎地盤の液状化対策工事において、本発明の地盤注入用セメント組成物を用いた実施工を行なった。施工方法は、グラウトミキサーで実験No.5-9、5-11、5-16の注入材セメントミルクを調整して地盤内に注入した。それぞれのセメントミルクは2分間練混ぜ、一旦、貯留槽に移し、グラウトポンプでホース、注入管(単管ロッド)を介して圧送注入した。注入中の圧力管理は0.5MPaを最大とし、注入率は40%、注入量は1mとした。いずれの注入材セメントミルクともに、注入圧力の管理以下で注入することができた。1ヶ月後、注入したセメントミルクの硬化状況を確認するために地盤を掘り返したところ、注入材セメントミルクが地盤に浸透し硬化した状況を観察できた。いずれの硬化体も直径が45~65cmの球形に近い形状であった。その硬化体からサンプルを切り出し圧縮強度を測定したところ、実験No.5-9に相当する注入材硬化体は3.5N/mm2、実験No.5-11は1.4N/mm2、実験No.5-16は0.4N/mm2であり、十分な改良効果があることを確認できた。 In the liquefaction countermeasure construction of the breakwater foundation ground, the implementation work using the cement composition for ground injection of the present invention was performed. For the construction method, the cement milk of Experiment Nos. 5-9, 5-11 and 5-16 was adjusted with a grout mixer and injected into the ground. Each cement milk was kneaded for 2 minutes, once transferred to a storage tank, and pumped and injected by a grout pump through a hose and an injection tube (single tube rod). The pressure control during the injection was maximized at 0.5 MPa, the injection rate was 40%, and the injection amount was 1 m 3 . All of the injected cement milk could be injected below the control of the injection pressure. One month later, when the ground was dug up to confirm the state of hardening of the injected cement milk, it was possible to observe the state where the injected cement milk penetrated the ground and hardened. Each of the cured bodies had a nearly spherical shape with a diameter of 45 to 65 cm. Measurement of the compressive strength were cut out samples from the cured product, injected material cured product corresponding to the experiments No.5-9 is 3.5 N / mm 2, the experiment No.5-11 is 1.4 N / mm @ 2, Experiment No.5 -16 was 0.4 N / mm 2 , confirming that there was a sufficient improvement effect.
 実施例6に示す防波堤基礎地盤の液状化対策工事において使用した設備を用いて、本発明の地盤注入用セメント組成物を練り混ぜてホース内を圧送し、圧送を中断して60分間ホース内に注入材を滞留させた。その後、再度運転を開始したときの始動状態を確認した。確認した配合は、実験No.5-9、5-11、5-13、5-14、5-18(練混ぜ水量が異なる)の注入材セメントミルクであり、比較として、実験No.5-1、5-2、5-3、5-4、5-6も同様に実施した。その結果、実験No.5-9、5-11、5-13、5-14、5-18の注入材は、ホース内での粒子の沈降はほとんどなく、始動時の圧力もかからずスムーズに圧送を再開できた。一方、比較例である実験No.5-1、5-2、5-3、5-4、5-6の注入材は、ホース内での粒子の沈降が確認された。特に、実験No.5-4、5-5はホース断面の半分程度が沈降した粒子で覆われており、再始動できなかった。実験No.5-1、5-2、5-3は、始動できたが、始動時の圧力が大きく始動後数分程度で分散しない塊状の粒子がホース内を流れたためホースの閉塞が生じた。 Using the equipment used in the liquefaction countermeasure construction of the breakwater foundation ground shown in Example 6, the cement composition for ground injection of the present invention is mixed and pumped inside the hose, and the pumping is interrupted for 60 minutes in the hose. The injection material was retained. Then, the starting state when starting operation again was confirmed. The composition confirmed was the injection cement milk of Experiment Nos. 5-9, 5-11, 5-13, 5-14, 5-18 (mixed water amount is different). 1, 5-2, 5-3, 5-4 and 5-6 were carried out in the same manner. As a result, the injection materials of Experiment Nos. 5-9, 5-11, 5-13, 5-14, and 5-18 have almost no settling of particles in the hose, and no pressure is applied at the start. We were able to resume pumping. On the other hand, in the injection materials of Experiment Nos. 5-1, 5-2, 5-3, 5-4, and 5-6, which are comparative examples, sedimentation of particles in the hose was confirmed. In particular, in Experiment Nos. 5-4 and 5-5, about half of the cross section of the hose was covered with settled particles and could not be restarted. Experiments No. 5-1, 5-2, and 5-3 were able to start, but the pressure at the start was large, and after a few minutes after the start, massive particles that did not disperse flowed in the hose, resulting in blockage of the hose. .
 本発明の地盤注入用水硬性セメント組成物は材料分離が小さく、浸透性に優れ、施工性および広範の改良を迅速に行なうことが可能となる。また、特性の分級セメント、微粉スラグ、分散剤により形成した硬化体は、十分な強度発現性を示し、長期的な耐久性に優れることから、砂質土地盤の液状化対策などの各種軟弱地盤の補強工事に適用できる。 The hydraulic cement composition for ground injection according to the present invention has small material separation, excellent permeability, and can be quickly improved in workability and extensive improvement. In addition, the hardened body formed with characteristic classified cement, fine powder slag, and dispersant exhibits sufficient strength development and excellent long-term durability, so various soft ground such as liquefaction countermeasures for sandy ground It can be applied to reinforcement work.

Claims (7)

  1.  ブレーン比表面積で7000~16000cm/g、メジアン径で1~7μmの高炉スラグ微粉末100部、高炉スラグ微粉末100部に対して、下記(1)から(3)の条件をすべて満たす分級セメント5~30部、さらに、前記高炉スラグ微粉末と分級セメントの合計100部に対して0.1~3部のポリアクリル酸系分散剤を含有してなる分散剤を含有することを特徴とする地盤注入用水硬性セメント組成物。
    (1)炭酸カルシウムを分級セメント100部中6~20部含有することを特徴とする分級セメント
    (2)ブレーン比表面積が7000~16000cm/gであることを特徴とする分級セメント
    (3)メジアン径が1~7μmであることを特徴とする分級セメント
    A classified cement that satisfies all the following conditions (1) to (3) for 100 parts of blast furnace slag fine powder and 100 parts of blast furnace slag fine powder having a Blaine specific surface area of 7000 to 16000 cm 2 / g and a median diameter of 1 to 7 μm. 5 to 30 parts, and further containing a dispersant containing 0.1 to 3 parts of a polyacrylic acid-based dispersant with respect to a total of 100 parts of the blast furnace slag fine powder and the classified cement. Hydraulic cement composition for ground injection.
    (1) Classification cement characterized by containing 6 to 20 parts of calcium carbonate in 100 parts of classification cement (2) Classification cement characterized by a Blaine specific surface area of 7000 to 16000 cm 2 / g (3) Median Classifying cement having a diameter of 1 to 7 μm
  2.  さらに、前記分散剤がメラミン系分散剤を含有することを特徴とする請求項1記載の地盤注入用水硬性セメント組成物。 Furthermore, the hydraulic cement composition for ground injection according to claim 1, wherein the dispersant contains a melamine dispersant.
  3.  前記ポリアクリル酸系分散剤が下記一般式(I)の単量体を含む共重合体であることを特徴とする請求項1記載の地盤注入用水硬性セメント組成物。
            CH2=C(R1)COO(R2O)nR3      (I)
    (式中、R1は水素原子又はメチル基、R2Oは炭素数2~4のオキシアルキレン基、nは5~40の整数、R3は水素原子又は炭素数1~5のアルキル基を示す。)
    The hydraulic cement composition for ground injection according to claim 1, wherein the polyacrylic acid-based dispersant is a copolymer containing a monomer represented by the following general formula (I).
    CH 2 = C (R 1) COO (R 2 O) nR 3 (I)
    Wherein R 1 is a hydrogen atom or a methyl group, R 2 O is an oxyalkylene group having 2 to 4 carbon atoms, n is an integer of 5 to 40, and R 3 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Show.)
  4.  請求項1~3のいずれか1項記載の地盤注入用水硬性セメント組成物に水を加え練り混ぜたことを特徴とするセメントミルク。 Cement milk, wherein water is added to the hydraulic cement composition for ground injection according to any one of claims 1 to 3 and kneaded.
  5.  前記地盤注入用水硬性セメント組成物に水を加え練り混ぜたセメントミルクの60分静置後のブリーディング率が2%以下を示すことを特徴とする請求項4記載のセメントミルク。 The cement milk according to claim 4, wherein the bleeding rate after 60 minutes of standing of the cement milk obtained by adding water to the ground cement hydraulic cement composition and kneading is 2% or less.
  6.  請求項4記載のセメントミルクを地盤内に注入する地盤改良工法。 A ground improvement method for injecting the cement milk according to claim 4 into the ground.
  7.  液状化対策を目的とした地盤改良に用いることを特徴とする請求項6記載の地盤改良工法。 7. The ground improvement method according to claim 6, which is used for ground improvement for the purpose of liquefaction countermeasures.
PCT/JP2010/065278 2009-09-07 2010-09-07 Hydraulic cement composition for injection into soil, and method for improvement in soil using same WO2011027890A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
SG2012015756A SG179010A1 (en) 2009-09-07 2010-09-07 Hydraulic cement composition for soil injection, and soil improvement method using the same
KR1020127008784A KR101816936B1 (en) 2009-09-07 2010-09-07 Hydraulic cement composition for injection into soil, and method for improvement in soil using same
CN201080050151.8A CN102597165B (en) 2009-09-07 2010-09-07 Hydraulic cement composition for injection into soil, and method for improvement in soil using same
JP2011529973A JP5769197B2 (en) 2009-09-07 2010-09-07 Hydraulic cement composition for ground injection and ground improvement method using the same
HK12109854.2A HK1169435A1 (en) 2009-09-07 2012-10-08 Hydraulic cement composition for injection into soil, and method for improvement in soil using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-205954 2009-09-07
JP2009205954 2009-09-07

Publications (1)

Publication Number Publication Date
WO2011027890A1 true WO2011027890A1 (en) 2011-03-10

Family

ID=43649423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065278 WO2011027890A1 (en) 2009-09-07 2010-09-07 Hydraulic cement composition for injection into soil, and method for improvement in soil using same

Country Status (7)

Country Link
JP (1) JP5769197B2 (en)
KR (1) KR101816936B1 (en)
CN (1) CN102597165B (en)
HK (1) HK1169435A1 (en)
MY (1) MY161510A (en)
SG (1) SG179010A1 (en)
WO (1) WO2011027890A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086326A (en) * 2013-10-31 2015-05-07 太平洋マテリアル株式会社 Foundation injection material
US20170152178A1 (en) * 2014-06-20 2017-06-01 Lafarge Novel ultra-high performance concrete
JP2019172900A (en) * 2018-03-29 2019-10-10 株式会社大林組 Cement slurry and ground improvement method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102247720B1 (en) 2020-12-28 2021-05-03 (주)태창기초 Method for wall collapse preventing and water-repellency improving
KR102649017B1 (en) 2021-09-06 2024-03-20 전북대학교산학협력단 Covering material using mixture of solid refuse fuel and coal ash for stabilizing ground

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155277A (en) * 2000-11-22 2002-05-28 Sumitomo Osaka Cement Co Ltd One-part plastic grout
JP2006272286A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Grouting material for soil improvement and insolubilization method of soil contaminant using the same
JP2007106961A (en) * 2005-10-17 2007-04-26 Mitsubishi Materials Corp Grouting material
JP2009062444A (en) * 2007-09-05 2009-03-26 Denki Kagaku Kogyo Kk Grouting material and grouting method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1105959A (en) * 1994-01-31 1995-08-02 冯正洋 Anti-crack concrete
KR100804807B1 (en) * 2007-08-30 2008-02-20 케이에스씨 엔지니어링 주식회사 Environment-friendly composition for injection into a ground and earth natural grouting method thereof
KR100876222B1 (en) * 2007-09-06 2008-12-29 주식회사 동아지질 The solidifying agent composition for softground improvement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002155277A (en) * 2000-11-22 2002-05-28 Sumitomo Osaka Cement Co Ltd One-part plastic grout
JP2006272286A (en) * 2005-03-30 2006-10-12 Sumitomo Osaka Cement Co Ltd Grouting material for soil improvement and insolubilization method of soil contaminant using the same
JP2007106961A (en) * 2005-10-17 2007-04-26 Mitsubishi Materials Corp Grouting material
JP2009062444A (en) * 2007-09-05 2009-03-26 Denki Kagaku Kogyo Kk Grouting material and grouting method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Concrete Konwa Zairyo Handbook", 2004, NTS INC., pages: 389 - 391 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086326A (en) * 2013-10-31 2015-05-07 太平洋マテリアル株式会社 Foundation injection material
US20170152178A1 (en) * 2014-06-20 2017-06-01 Lafarge Novel ultra-high performance concrete
US10011529B2 (en) * 2014-06-20 2018-07-03 Lafarge Ultra-high performance concrete
JP2019172900A (en) * 2018-03-29 2019-10-10 株式会社大林組 Cement slurry and ground improvement method
JP7124386B2 (en) 2018-03-29 2022-08-24 株式会社大林組 Cement slurry and ground improvement method

Also Published As

Publication number Publication date
SG179010A1 (en) 2012-04-27
HK1169435A1 (en) 2013-01-25
MY161510A (en) 2017-04-28
CN102597165A (en) 2012-07-18
JPWO2011027890A1 (en) 2013-02-04
JP5769197B2 (en) 2015-08-26
KR20120109472A (en) 2012-10-08
KR101816936B1 (en) 2018-01-09
CN102597165B (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5399573B2 (en) Cement-based deep-mixing additive and method for constructing improved cement-based deep-mixing treatment using this additive
JP5769197B2 (en) Hydraulic cement composition for ground injection and ground improvement method using the same
JP5591483B2 (en) Injection method
US20110082265A1 (en) Cement Additives
JP2017007928A (en) Dispersant composition for hydraulic composition
JP2017214251A (en) Dispersant composition for hydraulic compositions
JP5769198B2 (en) Hydraulic cement composition for ground injection and ground improvement method using the same
JP5689224B2 (en) Injection material and injection method
JP4270903B2 (en) Soil for ground improvement method, ground improvement body formed by the slurry, and slurry dispersant for ground improvement method
JP6040424B2 (en) Chemical solution for ground injection and ground improvement method using it
JP6252851B2 (en) Dry shrinkage reducing agent composition for improving workability of premix mortar, premix mortar and hardened cement using the same
JP2019085280A (en) Blast furnace slag containing-cement slurry composition and preparation method for soil cement slurry using the same
JP2011195398A (en) Self-leveling hydraulic composition
JP7098582B2 (en) Additives for compositions containing inorganic particles
JP6804492B2 (en) Dispersant composition for hydraulic composition
JP2020158710A (en) Ground improvement material, cement milk, and ground improvement method
JP6887739B2 (en) Surface aesthetic improver composition for hydraulic composition
JP7018043B2 (en) Additives for hydraulic compositions
JP7044535B2 (en) Hydraulic composition for pile construction method
JP2022032663A (en) Admixture for hydraulic composition
JP2006182625A (en) Cement-based grout composition
JP2023059354A (en) Ash mortar, and method for constructing underwater structure using the same
JP6491569B2 (en) Hydraulic material composition
JP2024146318A (en) Admixture for cement-based solidification materials
JP4366675B2 (en) Re-excavated concrete and method for producing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050151.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813836

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529973

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127008784

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10813836

Country of ref document: EP

Kind code of ref document: A1