JP2015086326A - Foundation injection material - Google Patents

Foundation injection material Download PDF

Info

Publication number
JP2015086326A
JP2015086326A JP2013227633A JP2013227633A JP2015086326A JP 2015086326 A JP2015086326 A JP 2015086326A JP 2013227633 A JP2013227633 A JP 2013227633A JP 2013227633 A JP2013227633 A JP 2013227633A JP 2015086326 A JP2015086326 A JP 2015086326A
Authority
JP
Japan
Prior art keywords
slurry
cement
mass
ground
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013227633A
Other languages
Japanese (ja)
Other versions
JP6278442B2 (en
Inventor
了三 吉田
Ryozo Yoshida
了三 吉田
則雄 高橋
Norio Takahashi
則雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2013227633A priority Critical patent/JP6278442B2/en
Publication of JP2015086326A publication Critical patent/JP2015086326A/en
Application granted granted Critical
Publication of JP6278442B2 publication Critical patent/JP6278442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foundation injection material with high permeability hardly generating reduction of foundation modification effects by material separation without increasing the amount of a dispersant.SOLUTION: There is provided a foundation injection material consisting of an aqueous slurry of a hydraulic composition having a Blaine specific area of 5000 cm/g or more and containing (A) cement, (B) slag and (C) a dispersant with mass ratio of the cement and the slag (B/A)=1 to 100 and a ratio of total mass of the slag and the cement and mass of the dispersant (solid content conversion) (C/(A+B))=0.0001 to 0.1 where a rate of change of density just after manufacturing (ρ0) and density after 1 hour standing from manufacturing (ρf) by viscosity floating of slurry at 20°C manufactured by adding water to the hydraulic composition at 3.0 times amount, represented by the following formula of 50% or less (including 0). Rate of change (%)=(1-(ρf-1)/(ρO-1)×100.

Description

本発明は、地盤や岩盤等を強固なものに改質したり、建設物の基礎強化等に用いられるセメント系の地盤注入材に関する。   The present invention relates to a cement-based ground injecting material used for reforming the ground, bedrock, or the like to be strong or for strengthening the foundation of a construction.

地盤や岩盤等を不透水・強固なものに改質したり、液状化を防ぐために、セメント等の水硬性物質を結合成分にしたスラリー状の地盤注入材が用いられている。セメント系地盤注入材には配合成分を全て加えた水性のスラリーからなる一剤タイプのものと、セメントを有効成分とするスラリーと急硬剤を有効成分とするスラリーを注入時に混合させる二剤タイプのものがある。一剤タイプのセメント系地盤注入材として、セメント及びスラグを粉砕して最大粒径をかなり小さくすることで地盤への浸透性を向上させた、所謂超微粒子系の注入材が知られている。(例えば、特許文献1参照。)また、スラリー注入時の浸透性を改善するために、セメントクリンカ粉砕物、スラグ、石膏および可溶性硫酸塩等を含有し、含有粒子を特定の粒径以下の粒度構成にした注入材も知られている。(特許文献2参照。)   In order to modify the ground and rocks to be impervious and strong, and to prevent liquefaction, a slurry-like ground injection material containing a hydraulic substance such as cement as a binding component is used. Cement-based ground injection material is a one-component type consisting of an aqueous slurry with all the ingredients added, and a two-component type that mixes a slurry containing cement as an active ingredient and a slurry containing a hardener as an active ingredient at the time of injection. There are things. As a one-agent type cement-based ground injection material, a so-called ultrafine particle-based injection material is known in which the cement and slag are pulverized to reduce the maximum particle size considerably to improve the permeability to the ground. (For example, refer to Patent Document 1.) In addition, in order to improve the permeability at the time of slurry injection, cement clinker pulverized material, slag, gypsum, soluble sulfate, etc. Also known are structured injection materials. (See Patent Document 2.)

これらのセメント系地盤注入材は含有成分の微細化によって浸透し易くはなるが、例えば造り置き等による静置時間の経過に伴って材料分離が発生・進行し易く、施工浸透性の経時低下や注入地盤の強度が低迷する等、地盤改質性に支障を及ぼすことがあった。分散剤を使用すれば固型粒子の凝集を抑制できるので固液分離が起き難くなり材料分離抵抗性を向上することができる。しかし、分散されたセメント粒子は粒子径が小さいために水和反応活性が非常に高く、水和物を早期に生成し易く、地盤等へ十分浸透する前に固化したり、浸透経路中で水和物塊の目詰まりが起こり易く、逆に浸透性が低下するという問題が生じる。水和物自体の凝集防止のため、分散剤の配合量を増やし過ぎると水硬性物質の凝結時間が遅延化し、注入した地盤中に留まらずに地下水や湧水等によって流冒し易く、止水作用も弱く、また初期強度発現性が不足するなどの問題も起こる。   These cement-based soil injection materials can be easily penetrated by miniaturization of the components, but for example, material separation is likely to occur and progress with the elapse of the standing time due to, for example, laying, etc. In some cases, the strength of the injected ground was sluggish, which had an adverse effect on ground improvement. If a dispersant is used, solid particles can be prevented from aggregating, so that solid-liquid separation hardly occurs and material separation resistance can be improved. However, since the dispersed cement particles have a small particle size, the hydration reaction activity is very high, and it is easy to form hydrates at an early stage, solidify before sufficiently penetrating into the ground, etc. The Japanese lump is easily clogged, and conversely, the permeability is lowered. To prevent aggregation of the hydrate itself, if the amount of the dispersant is increased too much, the setting time of the hydraulic substance will be delayed, and it will not stay in the injected ground, but will be easily spilled by groundwater or spring water, etc. However, problems such as insufficient initial strength development occur.

特開平9−255378号公報Japanese Patent Laid-Open No. 9-255378 特開2004−231884号公報Japanese Patent Laid-Open No. 2004-231884

高浸透性のセメント系の地盤注入材において材料分離抵抗性を高めるには、分散剤配合量を増やすことが有効ではあるが、一方で前記のような問題があった。本発明は、このような問題を解決することを課題とするものであり、セメント系の地盤注入材であって、良好な注入浸透性と強度発現性を具備し、分散剤の配合量を増やさずとも材料分離による地盤改質性低下が起こらない地盤注入材を提供する。   In order to increase material separation resistance in a highly permeable cement-based ground injection material, it is effective to increase the blending amount of the dispersant, but there is a problem as described above. An object of the present invention is to solve such a problem, and is a cement-based ground injection material, which has good injection permeability and strength development, and increases the blending amount of the dispersant. Provided is a ground injecting material that does not cause degradation of ground reformability due to material separation.

本発明者は、前記課題解決のため検討した結果、セメント並びにスラグ及び分散剤を含む特定の粉末度の水硬性組成物であって、この質量の3.0倍の水を加えたものの密度変化が特定の変化率になるようにせしめた水硬性組成物を含む水性スラリーからなる地盤注入材が、良好な注入浸透性や強度発現性を具備できることを見出し、しかも凝結性や硬化性状に支障を及ぼすほどの量の分散剤を配合せずとも材料分離による地盤改質性低下を防げたことから本発明を完成させた。   As a result of studying to solve the above problems, the present inventor is a hydraulic composition having a specific fineness containing cement, slag and a dispersant, and the density change of water having 3.0 times the mass added thereto. Found that a ground injection material made of an aqueous slurry containing a hydraulic composition that has a specific rate of change can have good injection permeability and strength development, and also has a hindrance to coagulation and curing properties. The present invention was completed because it was possible to prevent deterioration of the ground reforming property due to material separation without blending an amount of a dispersant sufficient to affect.

即ち、本発明は、(A)セメント、(B)スラグ及び(C)分散剤を、セメントとスラグの質量比(B/A)=1〜100且つスラグとセメントの合計質量と分散剤質量(固型分換算)の比(C/(A+B))=0.0001〜0.1で含有するブレーン比表面積5000cm2/g以上の水硬性組成物の水性スラリーからなる地盤注入材であって、前記水硬性組成物にその質量(固型分換算)の3.0倍量の水を加えて作製した20℃のスラリーの密度浮ひょうによる作製直後の密度と作製から1時間静置後の密度の次式に表す変化率が50%以下(0を含む。)であることを特徴とする地盤注入材である。
変化率(%)=(1−(ρf−1)/(ρ0−1))×100
ここで、ρ0;スラリー作製直後の密度浮ひょうの示度、ρf;スラリー作製1時間静置後の密度浮ひょうの示度。
That is, the present invention relates to (A) cement, (B) slag, and (C) dispersant, mass ratio of cement to slag (B / A) = 1 to 100, and total mass of slag and cement and dispersant mass ( The ratio of the solid component) (C / (A + B)) = 0.0001 to 0.1 is a ground injection material made of an aqueous slurry of a hydraulic composition having a specific surface area of 5000 cm 2 / g of branes, Density immediately after production by density levitation of a slurry at 20 ° C. produced by adding 3.0 times the mass (in terms of solid content) of water to the hydraulic composition, and density after standing for 1 hour from production The ground injection material is characterized in that the rate of change expressed by the following formula is 50% or less (including 0).
Rate of change (%) = (1− (ρf−1) / (ρ0−1)) × 100
Here, ρ0: an indication of density buoyancy immediately after slurry production, ρf: an indication of density buoyancy after standing for 1 hour in slurry production.

また、本発明は、水硬性組成物の固型分濃度が3.2〜40質量%の水性スラリーからなることを特徴とする前記の地盤注入材である。   Moreover, this invention consists of an aqueous | water-based slurry whose solid content concentration of a hydraulic composition is 3.2-40 mass%, It is the said ground injection material characterized by the above-mentioned.

本発明によれば、少なくとも従来に勝るとも劣らない注入浸透性や強度発現性を具備しつつ、材料分離による地盤改質作用の低下を十分防いだ地盤注入材を常に安定して得ることができるため、強固な地盤・岩盤への改質が容易に行える。さらに、本発明の地盤注入材は注入した地盤の透水性も抑制でき、止水作用もあるため、液状化対策や止水工事にも十分適用できる。   According to the present invention, it is possible to always stably obtain a ground injection material that has at least infusion permeability and strength development that are not inferior to those of conventional ones, and sufficiently prevents a decrease in ground modification effect due to material separation. Therefore, it can be easily modified to a solid ground or bedrock. Furthermore, since the ground injecting material of the present invention can suppress the water permeability of the injected ground and has a water-stopping action, it can be sufficiently applied to liquefaction countermeasures and water-stopping work.

本発明の地盤注入材は、セメントとスラグと分散剤を特定の割合で含有する水硬性組成物を水性スラリー化したものである。前記水硬性組成物に含有使用するセメントは、水硬性のセメントなら何れのものでも良い。具体的には、例えば普通、早強、超早強、中庸熱、低熱等の各種ポルトランドセメント、フライアッシュセメントやシリカセメント等の混合セメント、白色セメント、アルミナセメントやエコセメント等の特殊セメントなどが挙げられ、2種以上を併用しても良い。好ましくは、普通又は早強ポルトランドセメントを使用する。またアルミナセメントを使用する際は何れかのポルトランドセメントと併用し、急硬性を調整するのが望ましい。また、高炉セメントを使用する際は、高炉セメント中のスラグ量を地盤注入材中のスラグ量として考慮する必要がある。また、注入浸透性を高めるため、好ましくはブレーン比表面積で5000cm2/g以上のセメントを使用する。より好ましくはブレーン比表面積で7000cm2/g〜20000cm2/gのセメントを使用する。以上は推奨される使用セメントの粉末度であって、ブレーン比表面積で5000cm2/g未満のセメント粒子の使用や混在を不可とするものではない。 The ground injection material of the present invention is an aqueous slurry of a hydraulic composition containing cement, slag, and a dispersant in a specific ratio. The cement used for the hydraulic composition may be any hydraulic cement. Specifically, there are various portland cements such as normal, early strength, super early strength, moderate heat, low heat, mixed cements such as fly ash cement and silica cement, white cement, special cements such as alumina cement and eco-cement. 2 or more may be used in combination. Preferably ordinary or early strength Portland cement is used. In addition, when using alumina cement, it is desirable to use it together with any Portland cement to adjust the rapid hardening. When using blast furnace cement, it is necessary to consider the amount of slag in the blast furnace cement as the amount of slag in the ground injection material. Further, in order to improve the injection permeability, a cement having a Blaine specific surface area of 5000 cm 2 / g or more is preferably used. More preferably to use a cement of 7000cm 2 / g~20000cm 2 / g in Blaine specific surface area. The above is the recommended fineness of the cement used, and does not preclude the use or mixing of cement particles having a specific surface area of less than 5000 cm 2 / g.

また、前記水硬性組成物に含有使用するスラグは、具体的には、例えば高炉スラグ、製鋼スラグ、転炉スラグ、脱珪スラグ等の金属資材製造過程で発生するような鉱滓が挙げられるが、掲示例に限定されるものではない。下水汚泥や都市ゴミ、ペーパースラッジ等の廃棄物を発生起源とする溶融スラグなどは有害物質が濃縮含有されている可能性が払拭できない場合は使用を避けるのが望ましい。好ましくは、初期強度発現性が高くなることから高ガラス化率のスラグが良く、例えば高炉水砕スラグなどが適当である。スラグの潜在水硬性挙動によって地盤を強固に改質できると共に、注入材が注入中に早期固結して浸透経路を閉塞し、浸透性が低下するのを防ぐことができる。スラグの粒度は微小化されたものほど地盤の微細な粒子間を通り易く、また反応活性も高くなる。含有するスラグは好ましくはブレーン比表面積で5000cm2/g以上とする。より好ましくはブレーン比表面積で7000cm2/g〜20000cm2/gとする。以上は推奨される使用スラグの粉末度であって、ブレーン比表面積で5000cm2/g未満のスラグ粒子の使用や混在を不可とするものではない。スラグを含有使用すると、凝結時間を遅延させずに地盤や岩盤でのスラリー浸透経路中での固結による目詰まりと、注入管や輸送管中での閉塞を抑制できる。水性スラリー中のスラグ含有量はセメント含有量1質量部に対し、1〜100質量部とする。好ましくは1.5〜50質量部とする。1質量部未満では浸透性が著しく低下することがあるので好ましくなく、また100質量部を超えると初期強度が低下するので好ましくない。 The slag used in the hydraulic composition specifically includes, for example, iron ore such as blast furnace slag, steelmaking slag, converter slag, desiliconized slag, etc. that is generated in the metal material manufacturing process. It is not limited to the posting example. It is desirable to avoid the use of molten slag, etc. originating from waste such as sewage sludge, municipal waste, and paper sludge, when the possibility of concentration of harmful substances cannot be eliminated. Preferably, slag with a high vitrification rate is good because initial strength development is high, and for example, blast furnace granulated slag is suitable. The ground can be strongly modified by the latent hydraulic behavior of the slag, and the injection material can be solidified early during injection to block the infiltration path and prevent the permeability from decreasing. The smaller the particle size of the slag, the easier it is to pass between the fine particles of the ground and the higher the reaction activity. The slag contained is preferably 5000 cm 2 / g or more in terms of the specific surface area of Blaine. More preferably from 7000cm 2 / g~20000cm 2 / g in Blaine specific surface area. The above is the recommended fineness of the used slag, and does not prohibit the use or mixing of slag particles having a brain specific surface area of less than 5000 cm 2 / g. When slag is contained and used, clogging due to consolidation in the slurry infiltration path in the ground or rock and clogging in the injection pipe and transport pipe can be suppressed without delaying the setting time. The slag content in the aqueous slurry is 1 to 100 parts by mass with respect to 1 part by mass of the cement content. Preferably it is 1.5-50 mass parts. If the amount is less than 1 part by mass, the permeability may be remarkably lowered, and if it exceeds 100 parts by mass, the initial strength is lowered, which is not preferred.

また、前記水硬性組成物に含有使用する分散剤は、モルタルやコンクリートなどのセメント系水硬性組成物で使用できるものなら何れのものでも良く、特に制限されない。また、減水剤、高性能減水剤、高性能AE減水剤、AE減水剤又は流動化剤等と称されているものも分散剤として使用でき、液状のものでも粉末状のものでも良い。分散剤の使用で、微小なセメント粒子やスラグ粒子の凝集を抑制でき、微細な地盤や岩盤間隙でも凝集体形成による目詰まりが発生しない。分散剤の含有量は固型分換算でセメントとスラグの合計含有量1質量部に対し、0.0001〜0.1質量部にする。好ましくは0.001〜0.05質量部にする。0.0001質量部未満では含有効果が得られず浸透性が低下するので好ましくない。また、0.1質量部を超えると、凝結遅延や硬化不良を起こす虞があり、注入材の流冒や十分な改質強度が得られないことがあるので好ましくない。   Moreover, the dispersing agent contained and used in the hydraulic composition may be any as long as it can be used in a cement-based hydraulic composition such as mortar or concrete, and is not particularly limited. Moreover, what is called a water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, an AE water reducing agent, a fluidizing agent, or the like can also be used as a dispersant, and it may be liquid or powdered. By using a dispersant, aggregation of fine cement particles and slag particles can be suppressed, and clogging due to formation of aggregates does not occur even in fine ground or rock gaps. Content of a dispersing agent shall be 0.0001-0.1 mass part with respect to 1 mass part of total contents of cement and slag in conversion of a solid part. Preferably it is 0.001-0.05 mass part. If it is less than 0.0001 part by mass, the inclusion effect cannot be obtained and the permeability is lowered, which is not preferable. On the other hand, if the amount exceeds 0.1 parts by mass, there is a possibility of causing a setting delay or poor curing, which is not preferable because the cold of the injection material or sufficient reforming strength may not be obtained.

また、前記水硬性組成物には本発明の効果を実質喪失させるものでない限り、セメント、スラグ及び分散剤以外の成分も含有することができる。このような成分が水性スラリーに実質溶解しない固型粒子の場合は、好ましくは使用するセメントと概ね同程度かそれより高いブレーン比表面積のものを使用すると、高い浸透性を確保し易くなる。含有可能な成分例として、何れもモルタルやコンクリートなどのセメント系水硬性組成物に使用できる凝結促進剤、増粘剤、ポゾラン反応性物質、急硬剤、石膏、増量剤などが挙げられるが、掲示例に限定されるものではない。   In addition, the hydraulic composition may contain components other than cement, slag, and a dispersant, as long as the effects of the present invention are not substantially lost. In the case of solid particles in which such a component does not substantially dissolve in the aqueous slurry, it is easy to ensure high permeability by using a grain having a specific surface area that is approximately the same as or higher than that of the cement to be used. Examples of components that can be included include setting accelerators, thickeners, pozzolanic reactive materials, rapid hardening agents, gypsum, and bulking agents that can be used in cement-based hydraulic compositions such as mortar and concrete. It is not limited to the posting example.

また、前記水硬性組成物は、高い注入浸透性を具備させる上で、ブレーン比表面積5000cm2/g以上とする。好ましくはブレーン比表面積7000cm2/g〜20000cm2/gとする。前記水硬性組成物が水性スラリー作製の際に実質溶解してしまう粒子や液状減水剤等の液状混和物を含む場合は、これらを除いた含有粒子全体に対するブレーン比表面積をもって水硬性組成物のブレーン比表面積とする。従って、個々の含有粒子が全てブレーン比表面積5000cm2/g以上の粒子である必要はない。ブレーン比表面積5000cm2/g未満の水硬性組成物では、これを水性スラリー化した地盤注入材は、粒子間隙が狭い低浸透性の地盤や岩盤等への注入が困難になるので好ましくない。 The hydraulic composition has a specific surface area of 5000 cm 2 / g or more for providing high injection permeability. Preferably the Blaine specific surface area of 7000cm 2 / g~20000cm 2 / g. When the hydraulic composition contains a liquid admixture such as particles or a liquid water reducing agent that are substantially dissolved during the preparation of the aqueous slurry, the hydraulic composition has a brain specific surface area with respect to the entire contained particles excluding these. Specific surface area. Therefore, it is not necessary that all the contained particles are particles having a Blaine specific surface area of 5000 cm 2 / g or more. In the case of a hydraulic composition having a specific surface area of less than 5000 cm 2 / g, the ground injection material obtained by forming an aqueous slurry is not preferable because it becomes difficult to inject into a low-permeability ground or rock having a narrow particle gap.

また、本発明の地盤注入材は前記水硬性組成物を水性スラリー化したものである。水性スラリー化に要す前記水硬性組成物に添加する水の量は、所望する改質性状や対象地盤の状態等の施工状況に応じて適宜決定することができる。好ましくは、地盤等への注入施工に適した施工性と良好な強度発現性を得易くするため、前記水硬性組成物100質量部に対し150〜3000質量部の水を添加する。即ち、水硬性組成物のスラリー濃度が3.2〜40質量%の水性スラリーにする。より好ましくはスラリー濃度が4.7〜33質量%の水性スラリーにする。ここで、例えば水硬性組成物に液状の混和剤類を用いる場合は、水硬性組成物のスラリー濃度には、液状の混和剤類の固型分換算質量を含むものの濃度とするが、固型分換算質量を差し引いた溶媒分の質量は含まない。尚、前記溶媒分の質量が添加する水の質量の概ね1%以下であれば、添加水の量は前記溶媒分の質量を考慮しなくても実質的な支障はないが、概ね1%を超えると、溶媒質量を考慮するのが望ましく、水硬性組成物に添加する水の質量は前記溶媒分質量を差し引いた値とする。水硬性組成物の固型分濃度が40質量%を超える水性スラリーは流動性が低過ぎて注入装置へのスラリー輸送を円滑に行うに支障が生じる虞があり、均一に注入し難いことがあるので適当でなく、また、水硬性組成物の固型分濃度が3.2質量%未満の水性スラリーでは、地盤浸透性が高いものの、十分な改質強度が得られないことがあるため、適当ではない。   The ground injection material of the present invention is an aqueous slurry of the hydraulic composition. The amount of water to be added to the hydraulic composition required for aqueous slurrying can be appropriately determined according to the construction conditions such as desired reforming properties and the state of the target ground. Preferably, 150 to 3000 parts by mass of water is added to 100 parts by mass of the hydraulic composition in order to easily obtain a workability suitable for injection into the ground or the like and good strength development. That is, it is set as the aqueous slurry whose slurry density | concentration of a hydraulic composition is 3.2-40 mass%. More preferably, an aqueous slurry having a slurry concentration of 4.7 to 33% by mass is used. Here, for example, when liquid admixtures are used for the hydraulic composition, the slurry concentration of the hydraulic composition is the concentration of the liquid admixture containing the solid component equivalent mass. Does not include the mass of the solvent after subtracting the mass equivalent mass. In addition, if the mass of the solvent component is approximately 1% or less of the mass of water to be added, the amount of added water is not substantially hindered even if the mass of the solvent component is not considered, but approximately 1%. When it exceeds, it is desirable to consider the mass of the solvent, and the mass of water added to the hydraulic composition is a value obtained by subtracting the mass of the solvent. An aqueous slurry in which the solid content concentration of the hydraulic composition exceeds 40% by mass is too low in fluidity, which may cause trouble in smoothly transporting the slurry to the injection apparatus, and may be difficult to inject uniformly. Therefore, an aqueous slurry having a solid content concentration of less than 3.2% by mass of the hydraulic composition has high ground permeability but may not have sufficient modified strength. is not.

また、本発明の地盤注入材は、前記水硬性組成物にその質量(固型分換算)の3.0倍量の水を加えて作製した20℃のスラリーの、スラリー作製直後の密度浮ひょうで測定した密度とスラリー作製から1時間静置後の密度浮ひょうで測定した密度の次式に表す変化率が50%以下(0を含む。)であることを必須とする地盤注入材である。好ましくは次式に基づく変化率が30%以下(0を含む。)にする。
変化率(%)=(1−(ρf−1)/(ρ0−1))×100
ここで、ρ0;スラリー作製直後の密度浮ひょうの示度、ρf;スラリー作製1時間静置後の密度浮ひょうの示度。
In addition, the ground injection material of the present invention is a 20% hydrolyzed slurry immediately after slurry preparation, which is prepared by adding 3.0 times the mass (in terms of solid content) of water to the hydraulic composition. It is a ground injection material that requires that the change rate represented by the following formula of the density measured in step 1 and the density measured by density floating after standing for 1 hour after slurry preparation be 50% or less (including 0). . Preferably, the rate of change based on the following formula is 30% or less (including 0).
Rate of change (%) = (1− (ρf−1) / (ρ0−1)) × 100
Here, ρ0: an indication of density buoyancy immediately after slurry production, ρf: an indication of density buoyancy after standing for 1 hour in slurry production.

また、使用する密度浮ひょうは、JIS B 7525;1997密度浮ひょうの付属書4(規定)比重浮ひょうの表3に定める番号3のものが推奨される。密度浮ひょうの20℃での示度の前記式に基づく変化率を50%以内にしたものは、材料分離が進行し難く、材料分離が生じても注入浸透性や改質強度などの地盤改質性に支障をきたすことなく地盤注入材を得ることができる。また、変化率が50%を超えるものは材料分離が進行し易く、過度に不均質状態の濃度のバラつきのある地盤注入剤になって、所望の地盤改質を安定して行うことが困難になるので好ましくない。この変化率は、水硬性組成物の成分組成に大きく依存することから、材料分離を起こしても高い強度発現性と良好な浸透性を具備できる地盤注入材の有効成分の選定と配合組成の決定に関し必要である。本発明では、このような浮ひょうによる密度変化率にすべく、前記の含有範囲内で水硬性組成物中の含有各成分の配合割合を調整することで、より最適な地盤改質作用を有する地盤注入材が得られる。好適にはスラリー濃度が3.2〜40質量%の水性スラリーからなる地盤注入材に対し、より最適な地盤改質作用を有する地盤注入材を見出すことができる。また、本発明の地盤注入材は1剤タイプの地盤注入材、即ち所謂1ショット型の注入施工法に好適な地盤注入材ではあるが、1.5ショットや2ショット型の施工法の地盤注入材として使用することもできる。   The density float used is number 3 as defined in Table 3 of Annex 4 (normative) specific gravity float of JIS B 7525; 1997 density float. When the rate of change in density buoyancy based on the above formula is within 50%, material separation is difficult to proceed, and even if material separation occurs, ground improvement such as injection permeability and improved strength can be achieved. The ground injection material can be obtained without affecting the quality. In addition, if the rate of change exceeds 50%, material separation is likely to proceed, and it becomes a ground injecting agent with an uneven concentration in an inhomogeneous state, making it difficult to stably perform desired ground reforming. This is not preferable. Since this rate of change greatly depends on the component composition of the hydraulic composition, the selection of the effective component of the ground injection material and determination of the blending composition that can have high strength development and good permeability even when material separation occurs. Is necessary. In the present invention, in order to achieve the density change rate due to such floating, by adjusting the blending ratio of each component contained in the hydraulic composition within the above-mentioned content range, it has a more optimal ground reforming action. A ground injection material is obtained. Preferably, a ground injection material having a more optimal ground reforming action can be found for a ground injection material composed of an aqueous slurry having a slurry concentration of 3.2 to 40% by mass. Further, the ground injection material of the present invention is a one-agent type ground injection material, that is, a ground injection material suitable for a so-called one-shot type injection method, but a 1.5-shot or two-shot type method is used. It can also be used as a material.

密度浮ひょうの示度の変化率を求める具体的な手順の一例を示すと、使用する前記水硬性組成物の質量を測定し、当該水硬性組成物が液体分散剤や他の液状配合物を含む場合はこれらの質量は固型分換算した質量を用いて測定質量を補正する。次いで、必要により補正した水硬性組成物の質量の3.0倍の質量の水を加え、例えば市販の高速グラウトミキサ等を用いて混合し、20℃の恒温に保たれた水性スラリーを作製する。このスラリー温度は以後の密度計測時まで維持する。温度誤差の許容範囲は可能な限り±1℃以内にする。また、混合時間は混合量や混合装置の能力にもよるが、概ね1〜2分程度とする。得られたスラリーは直ちに約1000mlのメスシリンダー2本にそれぞれ1リットル程度入れ、そのうちの1本は直ぐに前記の推奨密度浮ひょうを用いてその示度(ρ0)を計測する。示度は、使用した浮ひょうの密度目盛の値とする。また、別のメスシリンダーに入れた水性スラリーは20℃に温度調整した室内に静置し、1時間経過後に同様に密度浮ひょうによる示度(ρf)を計測する。これら2つの示度の値から前記式を用いて変化率(%)を算出する。以上は推奨される例ではあるが、これに限定されるものではない。   An example of a specific procedure for determining the rate of change in density buoyancy is as follows: the mass of the hydraulic composition used is measured, and the hydraulic composition is used as a liquid dispersant or other liquid formulation. When it contains, these mass correct | amends measured mass using the mass converted into the solid part. Next, water having a mass 3.0 times the mass of the hydraulic composition corrected as necessary is added and mixed using, for example, a commercially available high-speed grout mixer to prepare an aqueous slurry kept at a constant temperature of 20 ° C. . This slurry temperature is maintained until the subsequent density measurement. The allowable range of temperature error should be within ± 1 ° C as much as possible. Moreover, although mixing time is based on the amount of mixing and the capability of a mixing apparatus, it will be about 1-2 minutes in general. The obtained slurry is immediately put into about 2 liters of about 1000 ml graduated cylinders, and one of them immediately measures its reading (ρ0) using the recommended density float. The reading is the value of the density scale of the used hail. Moreover, the aqueous slurry put in another measuring cylinder is left still in the room | chamber temperature adjusted to 20 degreeC, and the reading ((rho) f) by density floating is similarly measured after 1 hour progress. The rate of change (%) is calculated from these two readings using the above formula. Although the above is a recommended example, it is not limited to this.

以下、本発明を実施例によって詳しく説明するが、本発明は記載した実施例に限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to the described Example.

[水硬性組成物の作製]
以下に示すA1〜D2から選定される材料を使用し、表1で表す配合量(但し、C1は固型分換算質量)の水硬性組成物を作製した。作製に際し、液状分散剤(C1)以外の材料はヘンシェルミキサーに一括投入して混合し、液状分散剤の配合は後述する水性スラリー作製時に水と共に加えるようにした。また、液状材料や水溶性材料であるC1、C2及びD2を除いた水硬性組成物のブレーン比表面積をJIS R5201の規定に基づいたブレーン空気透過装置を用いて測定した。その結果も併せて表1に示す。
A1;普通ポルトランドセメント(粉末度;3200cm2/g、太平洋セメント社製)
A2;普通ポルトランドセメント(粉末度;7500cm2/g、太平洋セメント社製)
A3;普通ポルトランドセメント(粉末度;9200cm2/g、太平洋セメント社製)
B1;高炉水砕スラグ(粉末度;4100cm2/g、市販品)
B2;高炉水砕スラグ(粉末度;7200cm2/g、市販品)
B3;高炉水砕スラグ(粉末度;9000cm2/g、市販品)
C1;ナフタレンスルホン酸ホルマリン縮合物を有効成分とする液状分散剤(固型分濃度40質量%、市販品)
C2;ポリカルボン酸を有効成分とする粉末分散剤(太平洋マテリアル社製「コアフローNF−100」)
D1;II型無水石膏(粉末度;7200cm2/g、市販品)
D2;可溶性硫酸塩(硫酸ナトリウム;市販試薬)
[Preparation of hydraulic composition]
A material selected from A1 to D2 shown below was used to prepare a hydraulic composition having a blending amount shown in Table 1 (where C1 is a solid component equivalent mass). At the time of production, materials other than the liquid dispersant (C1) were put in a Henschel mixer and mixed together, and the liquid dispersant was added together with water when preparing an aqueous slurry to be described later. In addition, the specific surface area of the hydraulic composition excluding C1, C2, and D2, which are liquid materials and water-soluble materials, was measured using a brain air permeation device based on the provisions of JIS R5201. The results are also shown in Table 1.
A1: normal Portland cement (fineness: 3200 cm 2 / g, manufactured by Taiheiyo Cement)
A2: Ordinary Portland cement (fineness: 7500 cm 2 / g, manufactured by Taiheiyo Cement)
A3: Ordinary Portland cement (fineness: 9200 cm 2 / g, manufactured by Taiheiyo Cement)
B1; granulated blast furnace slag (fineness: 4100 cm 2 / g, commercially available)
B2: Granulated blast furnace slag (fineness: 7200 cm 2 / g, commercially available)
B3; granulated blast furnace slag (fineness: 9000 cm 2 / g, commercially available)
C1: Liquid dispersant containing naphthalenesulfonic acid formalin condensate as an active ingredient (solid component concentration 40% by mass, commercially available product)
C2: Powder dispersant containing polycarboxylic acid as an active ingredient ("Core Flow NF-100" manufactured by Taiheiyo Materials Co., Ltd.)
D1; type II anhydrous gypsum (fineness: 7200 cm 2 / g, commercially available product)
D2; soluble sulfate (sodium sulfate; commercially available reagent)

Figure 2015086326
Figure 2015086326

[浮ひょうによる水硬性組成物のスラリー密度の測定]
前記の水硬性組成物100質量部に対し、20℃の水300質量部を加え、ハンドミキサーで約90秒間混合してスラリーを得た。得られたスラリー1リットルを容量1リットルのメスシリンダーに直ぐに移し、JIS B 7525;1997密度浮ひょうの付属書4(規定)比重浮ひょうの表3に定める有効目盛範囲1.000〜1.200の浮ひょう(株式会社横田計器製作所製)を前記メスシリンダー内のスラリーに浮かべ、その密度を測定した。この密度として計測された浮ひょうの目盛をスラリー作製直後の示度;ρ0とした。また、同様に得られたスラリー1リットルを容量1リットルのメスシリンダーに直ぐに移し、これを20℃の恒温室で静置させ、1時間経過後のスラリー密度を同様の浮ひょうを用いて測定した。ここでの密度として計測された浮ひょうの目盛をスラリー作製1時間経過後の示度;ρfとした。各示度の値から1時間における20℃でのスラリー密度の変化率を次式で求めた。
変化率(%)=(1−(ρf−1)/(ρ0−1))×100
各示度と算出した変化率を表2に表す。
[Measurement of slurry density of hydraulic composition by floating]
To 100 parts by mass of the hydraulic composition, 300 parts by mass of 20 ° C. water was added and mixed with a hand mixer for about 90 seconds to obtain a slurry. Immediately transfer 1 liter of the obtained slurry to a measuring cylinder of 1 liter in capacity, and JIS B 7525; 1997 density levitation appendix 4 (normative) specific gravity levitation range of 1.000 to 1.200 Was floated on the slurry in the graduated cylinder and the density was measured. The scale of levitation measured as this density was taken as an indication immediately after slurry production; ρ0. Similarly, 1 liter of the obtained slurry was immediately transferred to a graduated cylinder having a capacity of 1 liter, and allowed to stand in a constant temperature room at 20 ° C., and the slurry density after 1 hour was measured using the same float. . The scale of buoyancy measured as the density here was indicated as the reading after 1 hour of slurry preparation; ρf. From the value of each reading, the change rate of the slurry density at 20 ° C. in 1 hour was obtained by the following equation.
Rate of change (%) = (1− (ρf−1) / (ρ0−1)) × 100
Table 2 shows each reading and the calculated rate of change.

Figure 2015086326
Figure 2015086326

[スラリーの浸透性と浸透模擬地盤の強度に関する評価]
直径約0.5mmの脱気穴を無作為に100個程設けた底面を具備する内径50mm、高さ500mmの円筒状のポリエチレン製管を該底面が地面と接するように垂直に設置し、この管内に6号珪砂を高さが150mmになるよう流し込み、模擬地盤を作製した。この模擬地盤に、スラリー作製から1時間経過後の密度を測定した前記スラリーのメスシリンダー内のスラリーを上面から上部200mlを慎重に採取し、これを模擬地盤に上面から静かに流し込んだ。そのまま7日間20℃の恒温室に放置した後、ポリエチレン製管内の硬化した部分(硬化物)を取り出し、その長さを測定してスラリー浸透長さとした。また、該硬化物を直径50mm、長さ100mmの円柱形状に加工して供試体とした。この供試体の材齢28日における一軸圧縮強度を、JIS A 1216で規定する「土の一軸圧縮試験方法」に準じて測定した。スラリー浸透長さと硬化物の一軸圧縮強度の値を表3に表す。また、スラリー浸透長さが100mm以上、かつ一軸圧縮強度が1N/mm2以上となったものを地盤改質効果が良好と判断し、それ以外の値又は硬化不良となったものは全て地盤改質作用が不良と判断した。前記良好と判断したものについては○、その中で特に優れていたものには◎、また前記不良と判断されたものは×を付し、評価結果を表2に併せて表す。
[Evaluation on the permeability of slurry and the strength of simulated ground]
A cylindrical polyethylene pipe having an inner diameter of 50 mm and a height of 500 mm having a bottom surface provided with about 100 random deaeration holes having a diameter of about 0.5 mm is vertically installed so that the bottom surface is in contact with the ground. No. 6 silica sand was poured into the tube to a height of 150 mm to prepare a simulated ground. On the simulated ground, 200 ml of the slurry in the graduated cylinder of the slurry whose density was measured after 1 hour from the preparation of the slurry was carefully collected from the upper surface, and this was gently poured into the simulated ground from the upper surface. After leaving it in a constant temperature room at 20 ° C. for 7 days, a cured portion (cured product) in the polyethylene pipe was taken out, and its length was measured to obtain a slurry penetration length. The cured product was processed into a cylindrical shape having a diameter of 50 mm and a length of 100 mm to obtain a specimen. The uniaxial compressive strength at the age of 28 days of this specimen was measured according to the “soil uniaxial compressive test method” defined in JIS A1216. Table 3 shows the slurry penetration length and the uniaxial compressive strength value of the cured product. Also, if the slurry penetration length is 100 mm or more and the uniaxial compressive strength is 1 N / mm 2 or more, it is judged that the ground reforming effect is good. The quality effect was judged to be poor. Those evaluated as good are marked with ◯, particularly excellent among them are marked with ◎, and those judged as defective are marked with ×, and the evaluation results are also shown in Table 2.

[スラリー濃度と浸透性等に関する評価]
表1の水硬性組成物No.1及びNo.9に対し、表3に表すスラリー濃度となるよう20℃の水を添加し、ハンドミキサーで約90秒間混合して水性スラリーを作製した。得られた水性スラリー1リットルを容量1リットルのメスシリンダーに直ぐに移し、これを20℃の恒温室で1時間静置させた。次いで、メスシリンダー内のスラリーを上面から上部200mlを慎重に採取し、これを模擬地盤に上面から静かに流し込んだ。そのまま7日間20℃の恒温室に放置した後、ポリエチレン製管内の硬化した部分(硬化物)を取り出し、その長さを測定してスラリー浸透長さとした。また、該硬化物を直径50mm、長さ100mmの円柱形状に加工して供試体とし、材齢28日における一軸圧縮強度を、前記と同様の方法で測定した。以上の結果と前記と同様の基準で判断した地盤改質効果の評価結果を表3に表す。
[Evaluation of slurry concentration and permeability]
Hydraulic composition No. 1 in Table 1 1 and no. With respect to 9, water at 20 ° C. was added so as to achieve the slurry concentration shown in Table 3, and mixed with a hand mixer for about 90 seconds to prepare an aqueous slurry. 1 liter of the aqueous slurry obtained was immediately transferred to a graduated cylinder having a capacity of 1 liter, and allowed to stand in a constant temperature room at 20 ° C. for 1 hour. Next, the upper 200 ml of the slurry in the graduated cylinder was carefully collected from the upper surface, and this was gently poured into the simulated ground from the upper surface. After leaving it in a constant temperature room at 20 ° C. for 7 days, a cured portion (cured product) in the polyethylene pipe was taken out, and its length was measured to obtain a slurry penetration length. Further, the cured product was processed into a cylindrical shape having a diameter of 50 mm and a length of 100 mm to obtain a specimen, and the uniaxial compressive strength at the age of 28 days was measured by the same method as described above. Table 3 shows the above results and the evaluation results of the ground improvement effect determined based on the same criteria as described above.

Figure 2015086326
Figure 2015086326

目視観察の結果、スラリー作製から静置1時間後には、何れの水硬性組成物(但し、No.23を除く。)のスラリーも程度の差はあるものの沈降物と上澄み液を概ね識別でき、多少の材料分離が見られた。しかし、表2の結果から、本発明の地盤注入材は、全て模擬地盤末端まで浸透し(浸透長さ15cm)、深い場所まで浸透し易いことがわかる。また、その浸透部の硬化物の一軸圧縮強度も比較的高く、強固な硬化物が形成され、優れた地盤改質性を具備することがわかる。これに対し本発明外の水硬性組成物の水性スラリーからなる地盤注入材は模擬地盤の末端まで浸透できないものが多く、また模擬地盤末端まで注入浸透できたものでも浸透部の強度発現性は低いものとなった。尚、水硬性組成物No.23のスラリーは模擬地盤下端まで容易に浸透できたものの、全く硬化しなかったため模擬地盤を固められなかった。さらに、表3の結果から、本発明の地盤注入材は対象地盤等の施工環境に応じてスラリー濃度を変化させても、良好な浸透性と改質強度が安定して得られることもわかる。   As a result of visual observation, after 1 hour of standing after slurry production, the slurry of any hydraulic composition (excluding No. 23) can be generally discriminated from the sediment and the supernatant liquid although there is a difference in degree, Some material separation was observed. However, it can be seen from the results in Table 2 that all of the ground injection material of the present invention penetrates to the simulated ground end (penetration length 15 cm) and easily penetrates to a deep place. Moreover, the uniaxial compressive strength of the hardened | cured material of the osmosis | permeation part is also comparatively high, and it turns out that a strong hardened | cured material is formed and it has the outstanding ground modification property. On the other hand, many ground injection materials made of an aqueous slurry of a hydraulic composition outside the present invention cannot penetrate to the end of the simulated ground. It became a thing. In addition, hydraulic composition No. Although the slurry of No. 23 could easily penetrate to the bottom of the simulated ground, it did not harden at all, so the simulated ground could not be hardened. Furthermore, it can be seen from the results in Table 3 that the ground injection material of the present invention can stably obtain good permeability and modified strength even when the slurry concentration is changed according to the construction environment of the target ground or the like.

Claims (2)

(A)セメント、(B)スラグ及び(C)分散剤を、セメントとスラグの質量比(B/A)=1〜100且つスラグとセメントの合計質量と分散剤質量(固型分換算)の比(C/(A+B))=0.0001〜0.1で含有するブレーン比表面積5000cm2/g以上の水硬性組成物の水性スラリーからなる地盤注入材であって、前記水硬性組成物にその質量(固型分換算)の3.0倍量の水を加えて作製した20℃のスラリーの密度浮ひょうによる作製直後の密度と作製から1時間静置後の密度の次式に表す変化率が50%以下(0を含む。)であることを特徴とする地盤注入材。
変化率(%)=(1−(ρf−1)/(ρ0−1))×100
ここで、ρ0;スラリー作製直後の密度浮ひょうの示度、ρf;スラリー作製1時間静置後の密度浮ひょうの示度。
(A) Cement, (B) slag, and (C) dispersing agent, the mass ratio of cement and slag (B / A) = 1 to 100, and the total mass of slag and cement and the mass of dispersing agent (in terms of solid content) A ground injecting material comprising an aqueous slurry of a hydraulic composition having a specific surface area of 5000 cm 2 / g of Blaine contained in a ratio (C / (A + B)) = 0.0001 to 0.1, The change expressed by the following equation of the density immediately after production by density levitation of the slurry at 20 ° C. produced by adding 3.0 times the amount of water (in terms of solid content) and the density after standing for 1 hour from production. A ground injection material characterized in that the rate is 50% or less (including 0).
Rate of change (%) = (1− (ρf−1) / (ρ0−1)) × 100
Here, ρ0: an indication of density buoyancy immediately after slurry production, ρf: an indication of density buoyancy after standing for 1 hour in slurry production.
水硬性組成物の固型分濃度が3.2〜40質量%の水性スラリーからなることを特徴とする請求項1記載の地盤注入材。 The ground injection material according to claim 1, wherein the hydraulic composition is an aqueous slurry having a solid component concentration of 3.2 to 40% by mass.
JP2013227633A 2013-10-31 2013-10-31 Ground injection material Active JP6278442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013227633A JP6278442B2 (en) 2013-10-31 2013-10-31 Ground injection material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013227633A JP6278442B2 (en) 2013-10-31 2013-10-31 Ground injection material

Publications (2)

Publication Number Publication Date
JP2015086326A true JP2015086326A (en) 2015-05-07
JP6278442B2 JP6278442B2 (en) 2018-02-14

Family

ID=53049490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013227633A Active JP6278442B2 (en) 2013-10-31 2013-10-31 Ground injection material

Country Status (1)

Country Link
JP (1) JP6278442B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106961A (en) * 2005-10-17 2007-04-26 Mitsubishi Materials Corp Grouting material
JP2007137745A (en) * 2005-11-22 2007-06-07 Taiheiyo Material Kk Quick hardening material and high-penetrating grout
WO2011027890A1 (en) * 2009-09-07 2011-03-10 電気化学工業株式会社 Hydraulic cement composition for injection into soil, and method for improvement in soil using same
JP2013159697A (en) * 2012-02-03 2013-08-19 Fuji Kagaku Kk Chemical for injection into ground and ground improvement method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007106961A (en) * 2005-10-17 2007-04-26 Mitsubishi Materials Corp Grouting material
JP2007137745A (en) * 2005-11-22 2007-06-07 Taiheiyo Material Kk Quick hardening material and high-penetrating grout
WO2011027890A1 (en) * 2009-09-07 2011-03-10 電気化学工業株式会社 Hydraulic cement composition for injection into soil, and method for improvement in soil using same
JP2013159697A (en) * 2012-02-03 2013-08-19 Fuji Kagaku Kk Chemical for injection into ground and ground improvement method using the same

Also Published As

Publication number Publication date
JP6278442B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP4533190B2 (en) Injection material
TW200938515A (en) Concrete optimized for high workability and high strength to cement ratio
JP2015124141A (en) Quick hardening burying material
JP6032830B2 (en) Cement-based injection material
TW201934518A (en) High strength grout composition and high strength grout mortar using same
JP5697228B2 (en) Plastic grout material
JP2008088040A (en) Cement composition for fixing bolt and continuous construction method for the same
JP6713736B2 (en) PH adjuster for cement composition, concrete composition, cement composition, and method of using pH adjuster for cement composition
JP2020164396A (en) Acid resistant lock bolt fixing material
JP6278442B2 (en) Ground injection material
JP7299869B2 (en) Ground improvement method
KR101816937B1 (en) Hydraulic cement composition for injection into soil, and method for improvement in soil using same
JP2010155758A (en) Cement admixture and cement composition
JPWO2019138538A1 (en) Ground improvement method
JP6482861B2 (en) Inseparable mortar composition in water
JP2012136403A (en) Grout composition for concrete placing joint
JP5810602B2 (en) Method for producing suspension grout chemical
JP2022124243A (en) concrete composition
CN107162516B (en) A kind of curing agent and its application method for curing process discarded slurry
JP2016102031A (en) Cavity filler
JP5656139B2 (en) Ground improvement soil and ground improvement method
JP2015189634A (en) Manufacturing method of grout filler material of post-foaming type
JP6580441B2 (en) High flow mortar composition
JP2006282442A (en) Quick-setting and high-fluidity mortar
JP5051825B2 (en) Water stop material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180111

R150 Certificate of patent or registration of utility model

Ref document number: 6278442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250