WO2011027736A1 - リニア電動式圧縮機 - Google Patents

リニア電動式圧縮機 Download PDF

Info

Publication number
WO2011027736A1
WO2011027736A1 PCT/JP2010/064751 JP2010064751W WO2011027736A1 WO 2011027736 A1 WO2011027736 A1 WO 2011027736A1 JP 2010064751 W JP2010064751 W JP 2010064751W WO 2011027736 A1 WO2011027736 A1 WO 2011027736A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cylinder block
central axis
cylinder
piston rod
Prior art date
Application number
PCT/JP2010/064751
Other languages
English (en)
French (fr)
Inventor
徹 大西
真広 川口
雅樹 太田
伸明 星野
良夫 木本
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2011027736A1 publication Critical patent/WO2011027736A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/14Provisions for readily assembling or disassembling

Definitions

  • the present invention relates to a linear electric compressor.
  • FIG. 1 A conventional linear electric compressor is disclosed in FIG.
  • This linear electric compressor includes a center housing and a pair of end housings joined to both ends of the center housing.
  • a receiving bore extending along the axial direction of the center housing is provided through the center housing, and a cylinder bore communicating with the receiving bore is formed in each end housing.
  • Pistons are housed in the housing bores and the cylinder bores so as to be able to reciprocate.
  • the piston is a double-headed type, and includes a piston rod extending through the receiving bore and a pair of piston heads provided at both ends of the piston rod and sliding within the corresponding cylinder bores.
  • the linear electric compressor also cooperates with the spring so as to reciprocate the piston by a spring having a biasing force for reciprocating the piston within the cylinder bore, a coil provided in the center housing, and an electromagnetic force generated by the coil. It has a permanent magnet that works.
  • the linear electric compressor In this linear electric compressor, an electromagnetic force that periodically changes around the coil is generated by periodically feeding the coil, and the permanent magnet of the piston is attracted to the coil by the electromagnetic force or pulled away from the coil. Or for this reason, the piston reciprocates in the cylinder bore. At this time, the piston reciprocates also by resonance due to the natural frequency of the spring. By the reciprocating motion of the piston, the refrigerant is sucked, compressed and discharged.
  • the linear electric compressor can be suitably used as an air conditioner for an electric vehicle or the like because it can perform a refrigerant compression action by electric control. Further, in this linear electric compressor, since the refrigerant can be compressed twice while the double-headed piston makes one reciprocation, compared to the linear electric compressor having a compression chamber only at one end of the piston, The refrigerant compression capacity per unit time can be increased.
  • the double-headed piston is not integrally molded, and a piston head is assembled to each end of the piston rod. For this reason, radial displacement is inevitable between each piston head and the piston rod. If there is a radial misalignment between the two piston heads at both ends of the piston rod, the piston heads will not easily slide in the corresponding cylinder bores. Loss, durability deterioration due to wear, etc. will occur.
  • An object of the present invention is to provide a linear electric compressor capable of suppressing problems caused by a positional deviation in the radial direction between the central axis of each piston head and the central axis of a piston rod while employing a double-headed piston. There is.
  • a linear electric compressor including a housing, a pair of end plates, a pair of valve units, a piston, a coil, and a permanent magnet.
  • the housing includes a first cylinder block and a second cylinder block.
  • the first cylinder block has a first cylinder bore
  • the second cylinder block has a second cylinder bore.
  • the end plate is joined to both ends of the housing.
  • the valve unit is provided between each cylinder bore and each end plate.
  • a discharge chamber and / or a suction chamber is formed between each valve unit and each end plate.
  • the piston can reciprocate.
  • Each cylinder bore forms a compression chamber between the piston and each valve unit.
  • the piston is provided with a piston rod, a first piston head provided at a first end of the piston rod and sliding in the first cylinder bore, and provided at a second end of the piston rod within the second cylinder bore. And a second piston head that slides on the second piston head.
  • the coil is provided in the housing.
  • the permanent magnet is provided on the piston and reciprocates the piston by electromagnetic force generated by the coil.
  • the first cylinder block and the second cylinder block include a radial displacement between a central axis of the piston rod and the first piston head, a central axis of the piston rod, and a central axis of the second piston head. The relative displacement in the radial direction is allowed so that the displacement in the radial direction is absorbed when the housing is assembled.
  • the linear electric compressor of the present invention is a double-headed type in which the piston has first and second piston heads. Therefore, since the refrigerant can be compressed twice while the piston makes one reciprocation, the refrigerant compression capacity per unit time can be increased.
  • the linear electric compressor has first and second cylinder blocks respectively corresponding to the first and second piston heads, a first cylinder bore is provided through the first cylinder block, and a second cylinder block is provided with a second cylinder block.
  • a cylinder bore is provided.
  • the first piston head slides in the first cylinder bore
  • the second piston head slides in the second cylinder bore.
  • the position shift of the central axis between the first and second piston heads is absorbed by the first and second cylinder blocks moving in the radial direction.
  • the first and second cylinder blocks move relative to each other in the radial direction at the time of assembly, and absorb the positional deviation in the radial direction between the central axis of the piston rod and the central axis of the first and second piston heads.
  • the first cylinder block and the second cylinder block are restricted from relative movement in the radial direction after assembly. For this reason, the first and second piston heads slide appropriately in the first and second cylinder bores, and are unlikely to cause power loss due to frictional heat, deterioration in durability due to wear, and the like.
  • this linear electric compressor uses a double-headed piston to maintain a high refrigerant compression capacity per unit time, while maintaining a high power loss due to radial displacement between each piston head and piston rod. It is possible to solve problems such as a decrease in durability.
  • the dimensional accuracy of the first and second cylinder blocks, the piston rod and the first and second piston heads can be made equal to those of the conventional dimensional accuracy to prevent an increase in manufacturing cost. it can.
  • the housing includes a shell that is provided on a radially outer side of the first and second cylinder blocks and holds the coil between the first and second cylinder blocks.
  • the shell and the first cylinder block are moved relative to each other in the radial direction so that a radial displacement between the central axis of the piston rod and the central axis of the first piston head can be absorbed when the housing is assembled. Is configured to be acceptable.
  • the shell and the second cylinder block are moved relative to each other in the radial direction so that a radial displacement between the central axis of the piston rod and the central axis of the second piston head can be absorbed when the housing is assembled. Is configured to be allowed.
  • the shell and the first and second cylinder blocks move relative to each other in the radial direction when assembled, thereby absorbing the radial displacement between the central axis of the piston rod and the central axis of the first and second piston heads. can do.
  • the relative movement in the radial direction with respect to the shell 5 is restricted after the shell and the first and second cylinder blocks are assembled.
  • a first gap is secured between the shell and the first cylinder block to absorb a radial displacement between the central axis of the piston rod and the central axis of the first piston head.
  • a second gap is secured between the shell and the second cylinder block to absorb radial displacement between the central axis of the piston rod and the central axis of the second piston head.
  • first and second gaps radial displacement between the central axis of the piston rod and the central axis of the first and second piston heads can be absorbed by the first and second gaps.
  • the shell and the first and second cylinder blocks are allowed to move in the radial direction within the first and second gaps when assembled. For this reason, the range in which the shell and the first and second cylinder blocks can move relative to each other can be easily adjusted by changing the size of the first and second gaps.
  • the first and second gaps may be configured to remain after absorbing each positional shift, or may be configured not to remain.
  • the first cylinder block and the second cylinder block are fixed so that relative rotation is restricted with respect to the shell.
  • the piston is prevented from rolling, and the first and second piston heads can be stably slid in the first and second cylinder bores.
  • the first cylinder block is formed with a first bolt hole extending along the axial direction of the housing
  • the second cylinder block is formed with a second bolt hole extending along the axial direction.
  • Bolts for fastening the first cylinder block and the second cylinder block are inserted into the first bolt hole and the second bolt hole.
  • a first gap is secured between the first bolt hole and the bolt to absorb radial displacement between the central axis of the piston rod and the central axis of the first piston head.
  • a second gap is secured between the second bolt hole and the bolt to absorb a radial displacement between the central axis of the piston rod and the central axis of the second piston head.
  • first and second cylinder blocks are fastened with bolts.
  • the first and second cylinder blocks are allowed to move in the radial direction within the range of the first and second gaps, which are gaps between the first and second bolt holes.
  • the range in which the first and second cylinder blocks can be relatively moved can be easily adjusted by changing the sizes of the first and second bolt holes and the bolts.
  • the first and second gaps may be configured to remain after absorbing each positional shift, or may be configured not to remain.
  • the first gap is larger than a radial positional deviation between the central axis of the piston rod and the central axis of the first piston head.
  • the second gap is larger than the radial positional deviation between the central axis of the piston rod and the central axis of the second piston head.
  • the first gap completely absorbs the positional deviation between the central axis of the piston rod and the central axis of the first piston head
  • the second gap is a position between the central axis of the piston rod and the central axis of the second piston head.
  • the first and second piston heads slide most suitably in the first and second cylinder bores. For this reason, power loss due to frictional heat, durability deterioration due to wear, and the like are less likely to occur.
  • the compressor further includes a pair of coil springs having a biasing force for reciprocating the piston.
  • the housing includes a center housing having a spring seat positioned between the first cylinder block and the second cylinder block and extending around the piston rod.
  • the coil spring is provided between the spring seat and each of the pair of piston heads.
  • the piston in addition to the electromagnetic force generated by the coil, the piston can be reciprocated also by resonance due to the natural frequency of the biasing member.
  • a coil spring as an urging member is provided in the piston, a large compression chamber or the like can be secured. For this reason, even if the linear electric compressor is downsized, the compression efficiency of the refrigerant can be maintained high.
  • the present invention can be mounted on an electric vehicle using an electric motor in addition to a hybrid vehicle. Moreover, it cannot be overemphasized that it can mount in the motor vehicle using an engine.
  • FIG. 2 is a schematic structural diagram showing a vehicle air conditioner using the compression of FIG. 1.
  • Sectional drawing which expands and shows a part of compressor of FIG.
  • Explanatory drawing which shows the coil and permanent magnet in the compressor of FIG.
  • the schematic cross section which shows the positional relationship of a piston and each cylinder block in the compressor of FIG.
  • the schematic cross section which shows the positional relationship of a piston and each cylinder block.
  • the linear electric compressor 100 according to the first embodiment shown in FIG. 1 can be employed as an air conditioner for a hybrid vehicle or an electric vehicle.
  • the linear electric compressor 100 includes a housing 9 including first and second cylinder blocks 1 and 3, a shell 5 and a center housing 7.
  • First and second end plates 11 and 13 are joined to both ends of the shell 5 via first and second gaskets 10 and 12.
  • the first and second cylinder blocks 1, 3, the shell 5, the center housing 7, and the first and second end plates 11, 13 are coupled to each other by fastening means such as bolts.
  • first and second cylinder blocks 1 and 3, the shell 5, the center housing 7, and the first and second end plates 11 and 13 are connected by bolts that pass through the shell 5 and the first and second end plates 11 and 13 in the axial direction. Can be combined with each other.
  • a recess or the like that allows the passage of bolts is formed on the outer periphery of the first and second cylinder blocks 1 and 3 so that the bolts are avoided from the first and second cylinder blocks 1 and 3.
  • the first and second cylinder blocks 1 and 3, the shell 5, the center housing 7, and the first and second end plates 11 and 13 can also be fastened by passing through the two end plates 11 and 13 in the axial direction.
  • a first cylinder bore 1 a is provided through the first cylinder block 1 along the axial direction of the first cylinder block 1, and a second cylinder bore is provided along the axial direction of the second cylinder block 3 in the second cylinder block 3. 3a is penetrated.
  • the first and second cylinder bores 1a and 3a are designed to be coaxial and have the same diameter.
  • the first and second cylinder blocks 1 and 3 have flanges 1b and 3b located on the radially outer sides of the first and second cylinder bores 1a and 3a, and the inside of the shell 5 so that the flanges 1b and 3b are located at both ends. It is stored in. As shown in FIGS. 3 and 5, the first cylinder block 1 is accommodated in the shell 5 such that a first gap 1 c is secured between the flange 1 b and the shell 5. Similarly, the second cylinder block 3 is accommodated in the shell 5 such that a second gap 3c is secured between the flange 3b and the shell 5. Since the gaps 1c and 3c are actually small, the gaps 1c and 3c are not shown to be visible in FIG. In FIG. 5, the gaps 1c and 3c are exaggerated.
  • a center housing 7 is provided between the first and second cylinder blocks 1 and 3 in the shell 5.
  • the center housing 7 is provided with a receiving hole 7a that is coaxial with and has the same diameter as the first and second cylinder bores 1a and 3a.
  • a space is formed in the first and second end plates 11 and 13, a first valve plate 15 is sandwiched between the first gasket 10 and the first end plate 11, and the second gasket 12 and the second end plate 11 are A second valve plate 17 is sandwiched between the end plate 13.
  • the first and second end plates 11 and 13 are defined by first and second valve plates 15 and 17 as first and second discharge chambers 11a and 13a.
  • the first and second end plates 11 and 13 are provided with first and second discharge ports 11b and 13b.
  • the first discharge chamber 11a is connected to the pipe 101 shown in FIG. 2 by the first discharge port 11b
  • the second discharge chamber 13a is connected to the pipe 102 by the second discharge port 13b.
  • the first valve plate 15 is provided with a discharge port 15a. Also, on the surface of the first valve plate 15 facing the first discharge port 11b, a lead type discharge valve 19 capable of opening and closing the discharge port 15a and a retainer 21 for regulating the opening degree of the discharge valve 19 are rivets 23. Is attached by.
  • the first valve plate 15, the discharge valve 19, the retainer 21, and the rivet 23 constitute a first valve unit 25.
  • the second valve unit including the second valve plate 17 also has the same configuration as the first valve unit 25.
  • a piston 27 is accommodated in the first and second cylinder bores 1a, 3a and the accommodation hole 7a so as to be able to reciprocate.
  • the piston 27 is attached to a piston rod 29 and one end of the piston rod 29, and is attached to the other end of the piston rod 29 and the first piston head 31 sliding in the first cylinder bore 1a.
  • a second piston head 33 that slides on the second piston head 33.
  • the piston 27 is not an integral part composed of a single part. Therefore, as shown in FIG.
  • a radial displacement G1 is inevitably generated between the center axis of the first piston head 31 and the center axis of the piston rod 29, and the center axis of the second piston head 33
  • a displacement G2 in the radial direction inevitably occurs between the central axis of the piston rod 29.
  • the first gap 1c is larger than the positional deviation G1
  • the second gap 3c is larger than the positional deviation G2.
  • the first piston head 31 is provided integrally with the head main body 39, the permanent magnets 35 and 37 being fixed to the outer peripheral surface, and the head main body 39, and the inner surface of the first cylinder bore 1 a.
  • the first and second spacers 41 and 43 that separate the outer peripheral surfaces of the permanent magnets 35 and 37 are provided.
  • Permanent magnets 35 and 37 are cylindrical.
  • the permanent magnets 35 and 37 are made of rare earth magnets.
  • the permanent magnet 35 has an outer part that functions as an N pole and an inner part that functions as an S pole
  • the permanent magnet 37 has an outer part that functions as an S pole and an inner part that functions as an N pole.
  • the permanent magnet 35 may have an outer portion that functions as an S pole and an inner portion that functions as an N pole
  • the permanent magnet 37 has an outer portion that functions as an N pole and an inner portion that functions as an S pole. And may have a portion.
  • the second spacer 43 is press-fitted into the head main body 39, then the permanent magnets 37 and 35 are inserted into the head main body 39, and then the first spacer 41 is press-fitted into the head main body 39, so that Magnets 35 and 37 are sandwiched between first and second spacers 41 and 43 on head body 39.
  • a compression chamber 45 is formed between the first spacer 41 of the first piston head 31 and the first valve plate 15 in the first cylinder bore 1a.
  • the head body 39 is provided with a suction port 39 a that opens from the inside toward the compression chamber 45.
  • the first spacer 41 is formed with a valve port 41a communicating with the suction port 39a, and a float type suction valve 47 is accommodated in the valve port 41a.
  • the valve port 41a has a locking piece 41b on the compression chamber 45 side.
  • On the outer peripheral edge of the suction valve 47 there are formed a plurality of locking pieces 47a that come into contact with the locking pieces 41b when the suction valve 47 opens the suction port 39a, and notches are formed between the locking pieces 47a. 47b is formed.
  • the first piston head 31 and the second piston head 33 are press-fitted into both ends of the piston rod 29.
  • the piston rod 29 has a smaller diameter than the first and second piston heads 31 and 33.
  • the piston rod 29 is formed with a suction passage 29a that opens in the radial direction at the center in the axial direction and extends in the axial direction.
  • the suction passage 29 a communicates with the suction port 39 a of the first piston head 31.
  • the suction passage 29a, the suction port 39a, the suction valve 47, and the first spacer 41 constitute a suction valve mechanism 50.
  • the second piston head 33 side is similarly configured.
  • a spring seat 7b is formed in the center housing 7 in a shape protruding from the end face of the first and second cylinder blocks 1 and 3 at a central position that is the same distance from each other. ing.
  • a space between the inner surface of the housing 9 forming the housing hole 7a and the outer peripheral surface of the piston rod 29 functions as a spring chamber 7c.
  • First and second coil springs 49 and 51 as urging members are accommodated in the spring chamber 7c.
  • the first coil spring 49 has one end in contact with the spring seat 7 b and the other end in contact with the second spacer 43 of the first piston head 31.
  • the second coil spring 51 is in a pre-compressed state, and has one end abutting against the spring seat 7 b and the other end abutting against a second spacer (no symbol) of the second piston head 33.
  • An intermediate chamber 53 is formed between the center housing 7 and the shell 5.
  • the center housing 7 has a communication hole 7d penetrating the intermediate chamber 53 and the spring chamber 7c.
  • the intermediate chamber 53 and the spring chamber 7 c constitute the suction chamber 55.
  • the shell 5 is provided with a suction port 5a.
  • the suction chamber 55 is connected to the pipe 103 shown in FIG. 2 by a suction port 5a.
  • a cover 57 for closing the intermediate chamber 53 is also fixed to the shell 5, and terminals (not shown) connected to coils 63 a, 63 b, 65 a, 65 b described later are fixed to the cover 57.
  • first and second cylinder blocks 1, 3 and the shell 5 Between the first and second cylinder blocks 1, 3 and the shell 5, coils 63a, 63b, 65a, 65b are provided while being held by the first and second holding members 59, 61.
  • the coils 63a, 63b, 65a, 65b are provided around the first and second piston heads 31, 33.
  • the first and second cylinder blocks 1 and 3 and the first and second holding members 59 and 61 are made of a magnetic material.
  • the first and second gaps 1c and 3c are also secured between the first and second holding members 59 and 61 (and the coils 63a, 63b, 65a and 65b) and the shell 5.
  • the first and second cylinder blocks 1 and 3 can also be made of a nonmagnetic material.
  • the pipe 101 and the pipe 102 are connected to the pipe 104, and the pipe 104 is connected to the condenser 105.
  • the condenser 105 is connected to the expansion valve 107 and the evaporator 108 by a pipe 106, and the evaporator 108 is connected to the pipe 103.
  • the terminal in the intermediate chamber 53 is connected to the power feeding device 110 by a lead wire 109.
  • the power feeding apparatus 110 is electrically controlled.
  • the power supply device 110 periodically supplies power to the coils 63a, 63b, 65a, and 65b, thereby periodically changing around the coils 63a, 63b, 65a, and 65b. Electromagnetic force is generated. At this time, as shown in FIG. 4, if the coil 63 a attracts the permanent magnet 35, the coil 63 b attempts to separate the permanent magnet 37. Conversely, when the coil 63a pulls the permanent magnet 35 away, the coil 63b tries to attract the permanent magnet 37. For this reason, in this linear electric compressor 100, it is possible to reciprocate the piston 27 with a large thrust. In particular, in the linear electric compressor 100, since the permanent magnets 35 and 37 are rare earth magnets, the thrust is large while being small.
  • the permanent magnets 35 and 37 of the piston 27 (only the permanent magnet of the first piston head 31 is indicated by a symbol) have an attractive force and a repulsive force based on the electromagnetic force generated by the coils 63a, 63b, 65a, and 65b. Receive alternately. For this reason, the piston 27 reciprocates in the first and second cylinder bores 1a and 3a. At this time, the piston 27 reciprocates also by resonance due to the natural frequency of the first and second coil springs 49 and 51.
  • the reciprocating motion of the piston 27 performs the respective steps of refrigerant suction, compression, and discharge.
  • the first piston head 31 side will be described in detail as an example.
  • the pressure in the compression chamber 45 becomes low, the suction valve 47 moves in the valve port 41a, and the suction port 39a is opened.
  • the refrigerant in the suction chamber 55 passes through the gap between the notch 47b of the suction valve 47 and the locking piece 41b from the suction port 39a and is sucked into the compression chamber 45.
  • the discharge port 15 a is closed by the discharge valve 19.
  • the suction valve 47 moves in the valve port 41a by the pressure in the compression chamber 45, and the suction port 39a is closed. And when the pressure in the compression chamber 45 rises, the discharge valve 19 is opened. That is, the first piston head 31 moves to the discharge stroke.
  • the compressed refrigerant is discharged to the discharge chamber 11a through the discharge port 15a.
  • the gasket 10 exists between the first end plate 11 and the first cylinder block 1, and the piston 27 is not in direct contact with the discharge chamber 11a. For this reason, the piston 27 is hardly heated by the refrigerant in the discharge chambers 11a and 13a.
  • the second piston head 33 side operates in the same manner.
  • the refrigerant circulates as follows to air-condition the passenger compartment. That is, the refrigerant discharged from the evaporator 108 to the pipe 103 is sucked into the compression chamber 45 from the suction chamber 55, compressed in the compression chamber 45, and then discharged into the first and second discharge chambers 11a and 13a.
  • the refrigerant in the first and second discharge chambers 11 a and 13 a reaches the condenser 105, the expansion valve 107 and the evaporator 108 through the pipes 101 and 102. Since these linear electric compressors 100 can perform a refrigerant compression action by electric control, they can be suitably used for an air conditioner such as an electric vehicle. For example, even if the vehicle is equipped with a hybrid engine and the engine is stopped while the vehicle is stopped, the linear electric compressor 100 can provide suitable air conditioning.
  • the linear electric compressor 100 includes first and second cylinder blocks 1 and 3 corresponding to first and second piston heads 31 and 33, respectively, and a first cylinder bore 1a is provided through the first cylinder block 1, A second cylinder bore 3 a is provided through the second cylinder block 3.
  • the first piston head 31 slides in the first cylinder bore 1a, and the second piston head 33 slides in the second cylinder bore 3a.
  • the radial displacement (G1 + G2) between the central axis of the first piston head 31 and the central axis of the second piston head 33 causes the first and second cylinder blocks 1 and 3 to move in the radial direction. Can be absorbed.
  • FIG. 5 is a schematic cross-sectional view showing the relationship among the piston 27, the first and second cylinder blocks 1, 3 and the shell 5.
  • the first and second cylinders are arranged so that relative movement in the radial direction is allowed when the shell 5 and the first and second cylinder blocks 1 and 3 are assembled.
  • First and second gaps 1 c and 3 c are secured between the blocks 1 and 3 and the shell 5. For this reason, the radial displacement G1 between the central axis of the piston rod 29 and the central axis of the first piston head 31 is absorbed by the first gap 1c when the shell 5 and the first cylinder block 1 are assembled.
  • the radial displacement G2 between the central axis of the piston rod 29 and the central axis of the second piston head 33 is absorbed by the second gap 3c when the shell 5 and the second cylinder block 3 are assembled.
  • the first and second piston heads 31 and 33 can suitably slide in the first and second cylinder bores 1a and 3a.
  • the shell 5 and the first and second cylinder blocks 1 and 3 are allowed to move in the radial direction within the first and second gaps 1c and 3c during assembly. For this reason, by changing the size of the first and second gaps 1c and 3c, it is possible to easily adjust the range in which the shell 5 and the first and second cylinder blocks 1 and 3 can relatively move when assembled. Further, since the first gap 1c is larger than the positional deviation G1, and the second gap 3c is larger than the positional deviation G2, the first gap 1c completely absorbs the positional deviation G1, and the second gap 3c eliminates the positional deviation G2. Absorb completely.
  • the first and second piston heads 31 and 33 slide in the first and second cylinder bores 1a and 3a most preferably.
  • the linear electric compressor 100 is less likely to cause power loss due to frictional heat, deterioration in durability due to wear, and the like.
  • the linear electric compressor 100 employs the double-headed piston 27 to maintain the refrigerant compression capacity per unit time high, while maintaining the central axes of the first and second piston heads 31 and 33 and the piston rod. It is possible to solve problems such as power loss and deterioration in durability due to radial displacement between the center axis 29.
  • the dimensional accuracy of the shell 5, the first and second cylinder blocks 1, 3, the piston rod 29 and the first and second piston heads 31, 33 is made equal to those of the conventional dimensional accuracy. And increase in manufacturing cost can be prevented.
  • the first and second cylinder blocks 1, 3 are fixed so that relative rotation with respect to the shell 5 is restricted. For this reason, the rolling of the piston 27 is prevented, and the first and second piston heads 31 and 33 can be stably slid in the first and second cylinder bores 1a and 3a.
  • the housing 9 includes a center housing 7 having a spring seat 7b that is positioned between the first cylinder block 1 and the second cylinder block 3 and extends around the piston rod 29.
  • first and second coil springs 49 and 51 as urging members are provided between the spring seat 7b and the first and second piston heads, respectively.
  • the compression chamber 45 can be ensured large.
  • FIG. 6 is a schematic cross-sectional view showing the relationship between the piston 27 and the first and second cylinder blocks 1 and 3.
  • the linear electric compressor 200 according to the second embodiment is configured such that the first and second cylinder blocks 1e and 3e are allowed to move in the radial direction.
  • illustration of the shell 5 is omitted.
  • first cylinder block 1e and the first end plate 11 are formed with a plurality of first bolt holes 71 extending in the axial direction.
  • a plurality of second bolt holes 73 extending in the axial direction are formed in the second cylinder block 3 e and the second end plate 13.
  • a through bolt 67 is inserted into each of the first and second bolt holes 71 and 73.
  • the first and second cylinder blocks 1e and 3e and the first and second end plates 11 and 13 are fastened by a through bolt 67 and assembled as a linear electric compressor 200. After the first and second cylinder blocks 1e and 3e are fastened, that is, after being assembled as the linear electric compressor 200, relative movement in the radial direction is restricted.
  • a first gap 1 f is secured between each first bolt hole 71 and each through bolt 67.
  • a second gap 3 f is secured between each second bolt hole 73 and each through bolt 67.
  • the first gap 1f is larger than the radial displacement G1 between the center axis of the piston rod 29 and the center axis of the first piston head 31, and the second gap 3f is the center axis of the piston rod 29 and the center of the second piston head 33. It is larger than the positional deviation G2 in the radial direction from the shaft.
  • Other configurations are the same as those of the first embodiment, and the same components are denoted by the same reference numerals, and detailed description of the configurations is omitted.
  • the first cylinder block 1e is formed with the first bolt hole 71
  • the second cylinder block 3e is formed with the second bolt hole 73.
  • a through bolt 67 is inserted through the first and second bolt holes 71 and 73.
  • a first gap 1 f is secured between the first bolt hole 71 and the through bolt 67
  • a second gap 3 f is secured between the second bolt hole 73 and the through bolt 67.
  • the second cylinder block 3e is allowed to move in the radial direction within the range of the second gap 3f. Therefore, when the first cylinder block 1e and the second cylinder block 3e are fastened, the radial position shifts G1 and G2 between the central axis of the piston rod 29 and the central axes of the first and second piston heads 31 and 33, respectively. Are absorbed by the first and second gaps 1f and 3f, respectively. As a result, the first and second piston heads 31 and 33 preferably slide in the first and second cylinder bores 1a and 3a.
  • the first and second cylinder blocks 1e and 3e have a diameter within a range of first and second gaps 1f and 3f which are gaps between the first and second bolt holes 71 and 73 and the through bolt 67. Relative movement in the direction is allowed. Therefore, by changing the sizes of the first and second bolt holes 71 and 73 and the through bolt 67, the range in which the first and second cylinder blocks 1e and 3e can be relatively moved can be easily adjusted. Further, since the first gap 1f is larger than the positional deviation G1, and the second gap 3f is larger than the positional deviation G2, the first gap 1f completely absorbs the positional deviation G1, and the second gap 3f completely eliminates the positional deviation G2. Absorb.
  • first and second piston heads 31 and 33 slide in the first and second cylinder bores 1a and 3a most preferably. Since the first and second gaps 1f and 3f are larger than the positional deviations G1 and G2, some of the first and second gaps 1f and 3f remain even after the positional deviations G1 and G2 are absorbed. Other functions and effects are the same as those of the first embodiment.
  • the linear electric compressor of the present invention may be used in combination with another compressor in addition to the case where the linear electric compressor is used alone.
  • the first and second spacers 41 and 43 can also be formed of a fluororesin such as PTFE.
  • the piston 27 preferably slides in the first and second cylinder bores 1a and 3a.
  • the intake valve mechanism 50 may employ a lead type intake valve.
  • Each of the end plates 11 and 13 may be configured to form a suction chamber in addition to the discharge chambers 11a and 13a. Or each end plate 11 and 13 may be comprised so that only a suction chamber may be formed instead of the discharge chambers 11a and 13a. That is, each end plate 11, 13 may be configured to form at least one of the discharge chambers 11 a, 13 a and the suction chamber with the valve unit 25.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Compressor (AREA)

Abstract

 ハウジングと、一対のエンドプレートと、一対の弁ユニットと、ピストンと、コイルと、永久磁石と、を含むリニア電動式圧縮機が開示される。ハウジングは、第1シリンダブロックと第2シリンダブロックとを含む。ピストンは、ピストンロッドと第1ピストンヘッドと第2ピストンヘッドとを含む。永久磁石はコイルによって生じる電磁力によってピストンを往復動させる。第1シリンダブロックと第2シリンダブロックとは、ピストンロッドの中心軸と第1ピストンヘッドとの径方向の位置ずれ及びピストンロッドの中心軸と第2ピストンヘッドの中心軸との径方向の位置ずれがハウジングの組み付け時に吸収されるよう、径方向への相対移動が許容されるように構成されている。

Description

リニア電動式圧縮機
 本発明は、リニア電動式圧縮機に関する。
 特許文献1の図7等に従来のリニア電動式圧縮機が開示されている。このリニア電動式圧縮機は、センターハウジングと、センターハウジングの両端に接合される一対のエンドハウジングとを備えている。前記センターハウジングには同センターハウジングの軸方向に沿って延びる収容ボアが貫設され、各エンドハウジングには収容ボアに連通するシリンダボアが形成される。前記収容ボア及び両シリンダボアにはピストンが往復動可能に収容される。ピストンは両頭型であって、収容ボア内を延びるピストンロッドと、ピストンロッドの両端に設けられてそれぞれ対応するシリンダボア内を摺動する一対のピストンヘッドとを含む。前記リニア電動式圧縮機はまた、シリンダボア内でピストンを往復動させる付勢力を有するばねと、センターハウジングに設けられたコイルと、コイルによって生じる電磁力によってピストンを往復動させるように前記ばねと協働する永久磁石とを備えている。
 このリニア電動式圧縮機では、コイルに周期的な給電を行うことでコイルの周囲に周期的に変化する電磁力が生じ、ピストンの永久磁石がその電磁力によってコイルに引き付けられたり、コイルから引き離されたりする。このため、ピストンはシリンダボア内で往復動する。この際、ばねの固有振動数による共振によってもピストンが往復動する。このピストンの往復動により、冷媒の吸入、圧縮及び吐出が行われる。このように、リニア電動式圧縮機は、電気制御によって冷媒の圧縮作用を行うことができることから、電気自動車等の空調装置として好適に採用可能である。また、このリニア電動式圧縮機では、両頭型のピストンが一往復する間に冷媒を2回圧縮することが可能であるため、ピストンの一端のみに圧縮室を有するリニア電動式圧縮機に比べ、単位時間当たりの冷媒の圧縮能力を高くすることができる。
特許第3953735号公報
 しかし、上記リニア電動式圧縮機では、両頭型のピストンが一体で成形されておらず、ピストンロッドの両端の各々にピストンヘッドが組み付けられている。そのため、各ピストンヘッドとピストンロッドとの間で径方向の位置ずれが不可避的に生じる。ピストンロッドの両端の2つのピストンヘッドの間に径方向の位置ずれが生じていると、それらピストンヘッドは対応するシリンダボア内を好適に摺動し難く、リニア電動式圧縮機には摩擦熱による動力損失、摩耗による耐久性の低下等が生じてしまう。
 本発明の目的は、両頭ピストンを採用しながら、各ピストンヘッドの中心軸とピストンロッドの中心軸との間の径方向の位置ずれに起因する不具合を抑制可能なリニア電動式圧縮機を提供することにある。
 上記目的を達成するため、本発明の一態様では、ハウジングと、一対のエンドプレートと、一対の弁ユニットと、ピストンと、コイルと、永久磁石と、を含むリニア電動式圧縮機が提供される。前記ハウジングは、第1シリンダブロックと第2シリンダブロックとを含む。前記第1シリンダブロックは第1シリンダボアを有し、前記第2シリンダブロックは第2シリンダボアを有する。前記エンドプレートは前記ハウジングの両端部に接合される。前記弁ユニットは前記各シリンダボアと前記各エンドプレートとの間にそれぞれ設けられる。吐出室及び/又は吸入室が前記各弁ユニットと前記各エンドプレートとの間に形成される。前記ピストンは往復動可能である。前記各シリンダボアはピストンと前記各弁ユニットとの間に圧縮室を形成する。前記ピストンは、ピストンロッドと、該ピストンロッドの第1端に設けられて前記第1シリンダボア内を摺動する第1ピストンヘッドと、前記ピストンロッドの第2端に設けられて前記第2シリンダボア内を摺動する第2ピストンヘッドと、を含む。前記コイルは前記ハウジングに設けられる。前記永久磁石は前記ピストンに設けられ、前記コイルによって生じる電磁力によって前記ピストンを往復動させる。前記第1シリンダブロックと前記第2シリンダブロックとは、前記ピストンロッドの中心軸と前記第1ピストンヘッドとの径方向の位置ずれ及び前記ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれが前記ハウジングの組み付け時に吸収されるよう、径方向への相対移動が許容されるように構成されている。
 本発明のリニア電動式圧縮機は、ピストンが第1、2ピストンヘッドを有する両頭型である。そのためピストンが一往復する間に冷媒を2回圧縮することが可能であるため、単位時間当たりの冷媒の圧縮能力を高くすることができる。
 また、このリニア電動式圧縮機は、第1、2ピストンヘッドにそれぞれ対応する第1、2シリンダブロックを有し、第1シリンダブロックに第1シリンダボアが貫設され、第2シリンダブロックに第2シリンダボアが貫設されている。このため、第1ピストンヘッドが第1シリンダボア内を摺動し、第2ピストンヘッドが第2シリンダボア内を摺動する。このため、第1、2ピストンヘッド間の中心軸の位置ずれは第1、2シリンダブロックが互いに径方向に移動することで吸収される。そして、第1、2シリンダブロックは、組み付け時に径方向に相対移動し、ピストンロッドの中心軸と第1、2ピストンヘッドの中心軸との径方向の位置ずれを吸収する。なお、第1シリンダブロックと第2シリンダブロックとは、組み付け後には径方向への相対移動が規制される。このため、第1、2ピストンヘッドは第1、2シリンダボア内を好適に摺動し、摩擦熱による動力損失、摩耗による耐久性の低下等を生じ難い。
 したがって、このリニア電動式圧縮機は、両頭のピストンを採用することによって単位時間当たりの冷媒の圧縮能力を高く維持しながら、各ピストンヘッドとピストンロッドとの間の径方向の位置ずれによる動力損失、耐久性の低下等の不具合を解決可能である。
 また、このリニア電動式圧縮機では、第1、2シリンダブロック、ピストンロッド及び第1、2ピストンヘッドの寸法精度を従来のそれらの寸法精度と同等にすることができ、製造コストの上昇を防止できる。
 好ましくは、前記ハウジングは、前記第1及び第2シリンダブロックの径方向外側に設けられて該第1及び第2シリンダブロックとの間に前記コイルを保持するシェルを有する。前記シェルと前記第1シリンダブロックとは、前記ピストンロッドの中心軸と前記第1ピストンヘッドの中心軸との径方向の位置ずれを前記ハウジングの組み付け時に吸収し得るよう、径方向への相対移動が許容されるように構成される。前記シェルと前記第2シリンダブロックとは、前記ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれを前記ハウジングの組み付け時に吸収し得るよう、径方向への相対移動が許容されるように構成されている。
 この場合には、シェルと第1、2シリンダブロックとが組み付け時に径方向に相対移動することで、ピストンロッドの中心軸と第1、2ピストンヘッドの中心軸との径方向の位置ずれを吸収することができる。なお、シェルと第1、2シリンダブロックとは組み付け後にはシェル5に対して径方向への相対移動が規制される。
 好ましくは、前記シェルと前記第1シリンダブロックとの間には、前記ピストンロッドの中心軸と前記第1ピストンヘッドの中心軸との径方向の位置ずれを吸収する第1間隙が確保されている。前記シェルと前記第2シリンダブロックとの間には、前記ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれを吸収する第2間隙が確保されている。
 この場合には、第1、2間隙によって、ピストンロッドの中心軸と第1、2ピストンヘッドの中心軸との径方向の位置ずれを吸収することができる。そして、シェルと第1、2シリンダブロックとは、組み付け時に第1、2間隙の範囲で径方向への相対移動が許容される。このため、第1、2間隙の大きさを変更することにより、シェルと第1、2シリンダブロックとが相対移動できる範囲を容易に調整することができる。なお、第1、2間隙は各位置ずれを吸収後に残存するように構成してもよく、残存しないように構成してもよい。
 好ましくは、前記第1シリンダブロック及び前記第2シリンダブロックは前記シェルに対して相対回転が規制されるように固定されている。
 この場合には、ピストンのローリングが防止され、第1、2ピストンヘッドを第1、2シリンダボア内で安定して摺動させることが可能になる。
 好ましくは、前記第1シリンダブロックには前記ハウジングの軸方向に沿って延びる第1ボルト穴が形成され、前記第2シリンダブロックには前記軸方向に沿って延びる第2ボルト穴が形成されている。前記第1ボルト穴及び前記第2ボルト穴には前記第1シリンダブロック及び前記第2シリンダブロックを締結するボルトが挿通されている。前記第1ボルト穴と前記ボルトとの間には、前記ピストンロッドの中心軸と前記第1ピストンヘッドの中心軸との径方向の位置ずれを吸収する第1間隙が確保されている。前記第2ボルト穴と前記ボルトとの間には、前記ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれを吸収する第2間隙が確保されている。
 この場合、第1、2シリンダブロックはボルトによって締結される。そして、第1、2シリンダブロックは、第1、2ボルト穴とボルトとの隙間である第1、2間隙の範囲で径方向への相対移動が許容される。このため、第1、2ボルト穴とボルトとの大きさを変更することで第1、2シリンダブロックが相対移動できる範囲を容易に調整できる。なお、第1、2間隙は各位置ずれを吸収後に残存するように構成してもよく、残存しないように構成してもよい。
 好ましくは、前記第1間隙は前記ピストンロッドの中心軸と前記第1ピストンヘッドの中心軸との径方向の位置ずれよりも大きい。前記第2間隙は該ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれよりも大きい。
 この場合、第1間隙がピストンロッドの中心軸と第1ピストンヘッドの中心軸との位置ずれを完全に吸収し、第2間隙がピストンロッドの中心軸と第2ピストンヘッドの中心軸との位置ずれを完全に吸収する。このため、第1、2ピストンヘッドは第1、2シリンダボア内を最も好適に摺動する。このため、摩擦熱による動力損失、摩耗による耐久性の低下等がより生じ難い。
 好ましくは、前記圧縮機は、前記ピストンを往復動させる付勢力を有する一対のコイルばねをさらに含む。前記ハウジングは、前記第1シリンダブロックと前記第2シリンダブロックとの間に位置して前記ピストンロッド周りに延びるばね座を有するセンターハウジングを含む。前記ばね座と前記一対のピストンヘッドの各々との間に前記コイルばねがそれぞれ設けられている。
 この場合には、コイルによって生じた電磁力に加えて、付勢部材の固有振動数による共振によってもピストンを往復動させることが可能である。また、ピストン内に付勢部材としてのコイルばねを設けるため、圧縮室等を大きく確保することができる。このため、リニア電動式圧縮機を小型化しても冷媒の圧縮効率を高く維持することができる。
 本発明は、ハイブリッド車の他、電動モータを用いた電気自動車等に搭載可能である。また、エンジンを用いた自動車に搭載可能であることはいうまでもない。
本発明の実施例1に係るリニア電動式圧縮機を示す断面図。 図1の圧縮を用いた車両用空調装置を示す摸式構造図。 図1の圧縮機の一部を拡大して示す断面図。 図1の圧縮機におけるコイル及び永久磁石を示す説明図。 図1の圧縮機において、ピストンと各シリンダブロックとの位置関係を示す模式断面図。 本発明の実施例2に係るリニア電動式圧縮機において、ピストンと各シリンダブロックとの位置関係を示す模式断面図。
 以下、本発明を具体化した実施例1、2を図面を参照しつつ説明する。
(実施例1)
 図1に示す実施例1のリニア電動式圧縮機100は、ハイブリッド車や電気自動車等の空調装置として採用し得る。このリニア電動式圧縮機100は、第1、2シリンダブロック1、3、シェル5及びセンターハウジング7を含むハウジング9を備えている。シェル5の両端には第1、2ガスケット10、12を介して第1、2エンドプレート11、13が接合されている。第1、2シリンダブロック1、3、シェル5、センターハウジング7及び第1、2エンドプレート11、13は、ボルト等の締結手段等により相互に結合される。例えば、シェル5及び第1、2エンドプレート11、13を軸方向に貫通するボルトによって、第1、2シリンダブロック1、3、シェル5、センターハウジング7及び第1、2エンドプレート11、13を相互に結合することができる。或いは、第1、2シリンダブロック1、3の外周部にボルトの通過を許容する凹部等を形成し、ボルトを第1、2シリンダブロック1、3を避けるようにしてセンターハウジング7及び第1、2エンドプレート11,13に軸方向に貫通させることによっても、第1、2シリンダブロック1、3、シェル5、センターハウジング7及び第1、2エンドプレート11、13を締結することができる。第1シリンダブロック1には同第1シリンダブロック1の軸方向に沿って第1シリンダボア1aが貫設され、第2シリンダブロック3には同第2シリンダブロック3の軸方向に沿って第2シリンダボア3aが貫設されている。第1、2シリンダボア1a、3aは設計上は互いに同軸かつ同径である。
 第1、2シリンダブロック1、3は、第1、2シリンダボア1a、3aの径方向外側に位置するフランジ1b、3bを有しており、フランジ1b、3bが両端に位置するようにシェル5内に収納されている。第1シリンダブロック1は、図3及び図5に示すように、フランジ1bとシェル5との間に第1間隙1cが確保されるようにしてシェル5内に収容されている。同様に、第2シリンダブロック3は、フランジ3bとシェル5との間に第2間隙3cが確保されるようにしてシェル5内に収容されている。なお、間隙1c、3cは実際には小さいので、図3では間隙1c、3cは目視可能なようには示されていない。図5では、間隙1c、3cは誇張して示されている。
 シェル5と第1、2シリンダブロック1、3とは、リニア電動式圧縮機100として組み付けられる際には、前記間隙1c、3cの範囲で径方向への相対移動が許容される。また、第1、2シリンダブロック1、3は、リニア電動式圧縮機100として組み付けられる際にはシェル5に対して相対回転が許容される。一方、シェル5と第1、2シリンダブロック1、3とは、リニア電動式圧縮機100として組み付けられた後には、ボルト等の締結手段等によって軸方向に押圧されて相互に圧接されることにより、径方向への相対移動が規制される。また、第1、2シリンダブロック1、3は、リニア電動式圧縮機100として組み付けられた後には、シェル5に対して相対回転が規制される。
 図1に示すように、シェル5内では、第1、2シリンダブロック1、3間にセンターハウジング7が設けられている。センターハウジング7には第1、2シリンダボア1a、3aと設計上同軸かつ同径の収納孔7aが貫設されている。
 前記第1、2エンドプレート11、13には空間が形成されており、第1ガスケット10と第1エンドプレート11との間には第1弁板15が挟持され、第2ガスケット12と第2エンドプレート13との間には第2弁板17が挟持されている。第1、2エンドプレート11、13の空間は第1、2弁板15、17によって第1、2吐出室11a、13aとして画定される。第1、2エンドプレート11、13には第1、2吐出ポート11b、13bが貫設されている。第1吐出室11aは第1吐出ポート11bによって図2に示す配管101に接続され、第2吐出室13aは第2吐出ポート13bによって配管102に接続されている。
 図1に示すように、第1弁板15には吐出口15aが貫設されている。また、第1弁板15の第1吐出ポート11bに対向する面には、吐出口15aを開閉可能なリード式の吐出弁19と、吐出弁19の開度を規制するリテーナ21とがリベット23によって取り付けられている。第1弁板15、吐出弁19、リテーナ21及びリベット23が第1弁ユニット25を構成する。第2弁板17を含む第2弁ユニットも第1弁ユニット25と同様の構成を有する。
 図1に示すように、第1、2シリンダボア1a、3a及び収納孔7a内には往復動可能にピストン27が収納されている。ピストン27は、ピストンロッド29と、このピストンロッド29の一端に取り付けられ、第1シリンダボア1a内を摺動する第1ピストンヘッド31と、ピストンロッド29の他端に取り付けられ、第2シリンダボア3a内を摺動する第2ピストンヘッド33とを含む。このようにピストン27は、単一の部品よりなる一体品ではない。そのため、図5に示すように、第1ピストンヘッド31の中心軸とピストンロッド29の中心軸との間で径方向の位置ずれG1が不可避的に生じ、かつ第2ピストンヘッド33の中心軸とピストンロッド29の中心軸との間で径方向の位置ずれG2が不可避的に生じる。第1間隙1cは位置ずれG1よりも大きく、第2間隙3cは位置ずれG2よりも大きい。
 第1ピストンヘッド31は、図3及び図4に示すように、外周面に永久磁石35、37が固定されるヘッド本体39と、ヘッド本体39と一体的に設けられ、第1シリンダボア1aの内面に対して永久磁石35、37の外周面を離間する第1、2スペーサ41、43とを有している。
 永久磁石35、37は筒状をなしている。永久磁石35、37は希土類磁石からなる。永久磁石35はN極として機能する外側部分と、S極として機能する内側部分とを有し、永久磁石37はS極として機能する外側部分と、N極として機能する内側部分とを有する。なお、永久磁石35はS極として機能する外側部分と、N極として機能する内側部分とを有していてもよく、永久磁石37はN極として機能する外側部分と、S極として機能する内側部分とを有していてもよい。
 図3に示すように、ヘッド本体39に第2スペーサ43が圧入され、次いで永久磁石37、35がヘッド本体39に挿入され、次いでヘッド本体39に第1スペーサ41が圧入されることにより、永久磁石35、37はヘッド本体39上で第1、2スペーサ41、43に挟持されている。第1シリンダボア1a内において、第1ピストンヘッド31の第1スペーサ41と第1弁板15との間に圧縮室45が形成される。
 ヘッド本体39にはその内部から圧縮室45に向かって開く吸入口39aが貫設されている。第1スペーサ41には吸入口39aと連通する弁口41aが形成されており、弁口41a内にはフロート式の吸入弁47が収納されている。弁口41aは圧縮室45側に係止片41bを有している。吸入弁47の外周縁には、同吸入弁47が吸入口39aを開いた時に係止片41bと当接する複数の係止片47aが形成されており、各係止片47a間には切欠き47bが形成されている。
 図1に示すように、ピストンロッド29の両端に第1ピストンヘッド31と第2ピストンヘッド33とが圧入されている。ピストンロッド29は第1、2ピストンヘッド31、33よりも小径である。ピストンロッド29には、軸方向中央で径方向に開くとともに、軸方向に延びる吸入通路29aが形成されている。吸入通路29aは、図4に示すように、第1ピストンヘッド31の吸入口39aと連通している。吸入通路29a、吸入口39a、吸入弁47及び第1スペーサ41が吸入弁機構50を構成する。第2ピストンヘッド33側も同様に構成されている。
 図1に示すように、センターハウジング7には、第1、2シリンダブロック1、3の端面から互いに同一の距離をなす中央位置に、ばね座7bが収納孔7a内に突出する形状で形成されている。収納孔7aを形成するハウジング9の内面とピストンロッド29の外周面との間の空間はばね室7cとして機能する。ばね室7c内には付勢部材としての第1、2コイルばね49、51が収納されている。
 第1コイルばね49は、予圧縮された状態で、一端がばね座7bに当接し、他端が第1ピストンヘッド31の第2スペーサ43に当接している。第2コイルばね51は、同様に予圧縮された状態で、一端がばね座7bに当接し、他端が第2ピストンヘッド33の第2スペーサ(符号なし)に当接している。
 センターハウジング7とシェル5との間には中間室53が形成されている。センターハウジング7には、中間室53とばね室7cとを連通する連通孔7dが貫設されている。中間室53及びばね室7cが吸入室55を構成する。シェル5には吸入ポート5aが貫設されている。吸入室55は吸入ポート5aによって図2に示す配管103に接続されている。シェル5には中間室53を閉鎖するカバー57も固定されており、カバー57には後述するコイル63a、63b、65a、65bと接続される図示しない端子が固定されている。
 第1、2シリンダブロック1、3とシェル5との間には第1、2保持部材59、61に保持された状態でコイル63a、63b、65a、65bが設けられている。コイル63a、63b、65a、65bは第1、2ピストンヘッド31、33の周りに設けられている。第1、2シリンダブロック1、3及び第1、2保持部材59、61は磁性体からなる。第1、2保持部材59、61(及びコイル63a、63b、65a、65b)とシェル5との間においても、上記の第1、2間隙1c、3cが確保されている。なお、第1、2シリンダブロック1、3を非磁性体で構成することもできる。
 図2に示すように、配管101及び配管102は配管104に接続され、配管104は凝縮器105に接続されている。凝縮器105は配管106によって膨張弁107及び蒸発器108に接続され、蒸発器108は配管103に接続されている。また、中間室53内の端子はリード線109によって給電装置110に接続されている。給電装置110は電気制御される。
 以上のように構成されたリニア電動式圧縮機100では、給電装置110によってコイル63a、63b、65a、65bに周期的な給電を行うことでコイル63a、63b、65a、65b周りに周期的に変化する電磁力が生じる。この際、図4に示すように、コイル63aが永久磁石35を引き付ければ、コイル63bが永久磁石37を引き離そうとする。逆に、コイル63aが永久磁石35を引き離せば、コイル63bが永久磁石37を引き付けようとする。このため、このリニア電動式圧縮機100では、大きな推力でピストン27を往復動させることが可能になっている。特に、このリニア電動式圧縮機100では、永久磁石35、37が希土類磁石であるため、小型でありながら推力が大きい。
 このように、ピストン27の永久磁石35、37(第1ピストンヘッド31の永久磁石のみ符号で示す。)は、コイル63a、63b、65a、65bによって生じる電磁力に基づく吸引力と反発力とを交互に受ける。このため、ピストン27は第1、2シリンダボア1a、3a内で往復動する。この際、第1、2コイルばね49、51の固有振動数による共振によってもピストン27は往復動する。
 このピストン27の往復動により、冷媒の吸入、圧縮及び吐出のそれぞれの行程が行われる。第1ピストンヘッド31側を例に詳細に説明する。図3に示すように、第1ピストンヘッド31が吸入行程にあるとき、圧縮室45内が低圧となり、吸入弁47が弁口41a内を移動し、吸入口39aが開かれる。このため、吸入室55内の冷媒は、吸入口39aから吸入弁47の切欠き47bと係止片41bとの間隙を通過して圧縮室45内へ吸入される。この時、吐出口15aは吐出弁19によって閉じられている。
 第1ピストンヘッド31が圧縮行程に移行すると、圧縮室45内の圧力により吸入弁47が弁口41a内を移動し、吸入口39aが閉じられる。そして、圧縮室45内の圧力が上昇することにより、吐出弁19が開かれる。すなわち、第1ピストンヘッド31が吐出行程に移行する。こうして、圧縮された冷媒は、吐出口15aを経て吐出室11aへ吐出される。吐出室11a内の冷媒は高温であるが、第1エンドプレート11と第1シリンダブロック1との間にはガスケット10が存在し、ピストン27は吐出室11aとは直接接触していない。このため、ピストン27は吐出室11a、13a内の冷媒によっては加熱され難い。なお、第2ピストンヘッド33側も同様に作用する。
 冷媒は以下のように循環して車室内の空調を行う。すなわち、蒸発器108から配管103に出た冷媒は、吸入室55から圧縮室45に吸入され、圧縮室45で圧縮された後、第1、2吐出室11a、13aへ吐出される。第1、2吐出室11a、13a内の冷媒は配管101、102を経て凝縮器105、膨張弁107及び蒸発器108に至る。これらのリニア電動式圧縮機100は、電気制御によって冷媒の圧縮作用を行うことができることから、電気自動車等の空調装置に好適に利用し得る。例えば、車両がハイブリッドエンジンを搭載しており、停車している間にそのエンジンが停止していても、このリニア電動式圧縮機100によって好適な空調が可能である。
 また、このリニア電動式圧縮機100では、ピストン27が一往復する間に冷媒を2回圧縮することが可能であるため、ピストンの一端のみに圧縮室を形成するリニア電動式圧縮機に比べ、単位時間当たりの冷媒の圧縮能力を高くすることができる。
 このリニア電動式圧縮機100は、第1、2ピストンヘッド31、33にそれぞれ対応する第1、2シリンダブロック1、3を有し、第1シリンダブロック1に第1シリンダボア1aが貫設され、第2シリンダブロック3に第2シリンダボア3aが貫設されている。第1ピストンヘッド31が第1シリンダボア1a内を摺動し、第2ピストンヘッド33が第2シリンダボア3a内を摺動する。このため、第1ピストンヘッド31の中心軸と第2ピストンヘッド33の中心軸との間の径方向の位置ずれ(G1+G2)は第1、2シリンダブロック1、3が互いに径方向に移動することで吸収可能である。
 図5は、ピストン27と、第1、2シリンダブロック1、3と、シェル5との関係を示す模式断面図である。図5に示すように、このリニア電動式圧縮機100では、シェル5と第1、2シリンダブロック1、3とが組み付け時に径方向への相対移動が許容されるように、第1、2シリンダブロック1、3とシェル5との間に第1、2間隙1c、3cが確保されている。このため、ピストンロッド29の中心軸と第1ピストンヘッド31の中心軸との径方向の位置ずれG1は、シェル5と第1シリンダブロック1との組み付け時に、第1間隙1cによって吸収される。また、ピストンロッド29の中心軸と第2ピストンヘッド33の中心軸との径方向の位置ずれG2は、シェル5と第2シリンダブロック3との組み付け時に、第2間隙3cによって吸収される。その結果、第1、2ピストンヘッド31、33は第1、2シリンダボア1a、3a内を好適に摺動することができる。
 特に、このリニア電動式圧縮機100では、シェル5と第1、2シリンダブロック1、3とは、組み付け時に第1、2間隙1c、3cの範囲で径方向への相対移動が許容される。このため、第1、2間隙1c、3cの大きさを変更することにより、シェル5と第1、2シリンダブロック1、3とが組み付け時に相対移動できる範囲を容易に調整することができる。また、第1間隙1cが位置ずれG1よりも大きく、第2間隙3cが位置ずれG2よりも大きいため、第1間隙1cが位置ずれG1を完全に吸収し、第2間隙3cが位置ずれG2を完全に吸収する。このため、第1、2ピストンヘッド31、33は第1、2シリンダボア1a、3a内を最も好適に摺動する。このため、このリニア電動式圧縮機100は、摩擦熱による動力損失、摩耗による耐久性の低下等を生じ難い。
 したがって、このリニア電動式圧縮機100は、両頭型のピストン27を採用することによって単位時間当たりの冷媒の圧縮能力を高く維持しながら、第1、2ピストンヘッド31、33の中心軸とピストンロッド29の中心軸との間の径方向の位置ずれによる動力損失、耐久性の低下等の不具合を解決可能である。
 また、このリニア電動式圧縮機100では、シェル5、第1、2シリンダブロック1、3、ピストンロッド29及び第1、2ピストンヘッド31、33の寸法精度を従来のそれらの寸法精度と同等にすることができ、製造コストの上昇を防止できる。
 さらに、このリニア電動式圧縮機100では、第1、2シリンダブロック1、3がシェル5に対して相対回転が規制されるように固定されている。このため、ピストン27のローリングが防止され、第1、2ピストンヘッド31、33を第1、2シリンダボア1a、3a内で安定して摺動させることが可能になる。
 また、ハウジング9は、第1シリンダブロック1と第2シリンダブロック3との間に位置してピストンロッド29周りに延びるばね座7bを有するセンターハウジング7を備えている。そして、ばね座7bと第1、2ピストンヘッドの各々との間に付勢部材としての第1、2コイルばね49、51がそれぞれ設けられている。このため、ピストン27内に付勢部材としての第1、2コイルばね49、51を設けることができるため、圧縮室45を大きく確保することができる。その結果、リニア電動式圧縮機100を小型化しても冷媒の圧縮効率を高く維持することができる。
(実施例2)
 図6は、ピストン27と、第1,2シリンダブロック1,3との関係を示す模式断面図である。図6に示すように、実施例2のリニア電動式圧縮機200は、第1、2シリンダブロック1e、3eが径方向への相対移動を許容されるように構成されている。なお、図6では、シェル5の図示を省略している。
 より詳細に説明すると、第1シリンダブロック1e及び第1エンドプレート11には、軸方向に延びる第1ボルト穴71が複数箇所形成されている。第2シリンダブロック3e及び第2エンドプレート13には、軸方向に延びる第2ボルト穴73が複数箇所形成されている。第1、2ボルト穴71、73の各々には通しボルト67が挿通されている。第1、2シリンダブロック1e、3e及び第1、2エンドプレート11、13は通しボルト67によって締結されてリニア電動式圧縮機200として組み付けられる。第1、2シリンダブロック1e、3eは、締結後、すなわち、リニア電動式圧縮機200として組み付けられた後は、径方向への相対移動が規制される。
 各第1ボルト穴71と各通しボルト67との間には第1間隙1fが確保されている。各第2ボルト穴73と各通しボルト67との間には第2間隙3fが確保されている。第1間隙1fはピストンロッド29の中心軸と第1ピストンヘッド31の中心軸との径方向の位置ずれG1より大きく、第2間隙3fはピストンロッド29の中心軸と第2ピストンヘッド33の中心軸との径方向の位置ずれG2より大きい。他の構成は実施例1と同様であり、同一の構成については同一符号を付して構成の詳細な説明は省略する。
 このリニア電動式圧縮機200では、第1、2シリンダブロック1e、3eの締結時に、第1ピストンヘッド31の中心軸と第2ピストンヘッド33の中心軸との間の径方向の位置ずれ(G1+G2)が吸収される。このため、第1、2ピストンヘッド31、33は第1、2シリンダボア1a、3a内を好適に摺動する。
 特に、このリニア電動式圧縮機200では、第1シリンダブロック1eに第1ボルト穴71が形成されており、第2シリンダブロック3eに第2ボルト穴73が形成されている。そして、第1、2ボルト穴71、73に通しボルト67が挿通されている。また、第1ボルト穴71と通しボルト67との間には第1間隙1fが確保され、第2ボルト穴73と通しボルト67との間には第2間隙3fが確保されている。このため、第1、2シリンダブロック1e、3eが通しボルト67によって締結される際に、第1シリンダブロック1eは第1間隙1fの範囲で径方向への相対移動が許容される。同様に、第2シリンダブロック3eは第2間隙3fの範囲で径方向への相対移動が許容される。このため、第1シリンダブロック1eと第2シリンダブロック3eとを締結する際、ピストンロッド29の中心軸と第1、2ピストンヘッド31、33の中心軸との径方向の各位置ずれG1、G2は、それぞれ第1、2間隙1f、3fによって吸収される。その結果、第1、2ピストンヘッド31、33は第1、2シリンダボア1a、3a内を好適に摺動する。
 このリニア電動式圧縮機200では、第1、2シリンダブロック1e、3eは、第1、2ボルト穴71、73と通しボルト67との隙間である第1、2間隙1f、3fの範囲で径方向への相対移動が許容される。このため、第1、2ボルト穴71、73及び通しボルト67の大きさを変更することで、第1、2シリンダブロック1e、3eが相対移動できる範囲を容易に調整できる。また、第1間隙1fは位置ずれG1より大きく、第2間隙3fは位置ずれG2より大きいため、第1間隙1fが位置ずれG1を完全に吸収し、第2間隙3fが位置ずれG2を完全に吸収する。このため、第1、2ピストンヘッド31、33は第1、2シリンダボア1a、3a内を最も好適に摺動する。なお、第1、2間隙1f、3fが位置ずれG1、G2よりも大きいため、位置ずれG1、G2を吸収した後も第1、2間隙1f、3fの一部が残存する。他の作用効果は実施例1と同様である。
 以上において、本発明を実施例1、2に即して説明したが、本発明は上記実施例に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。
 例えば、本発明のリニア電動式圧縮機は、単体で用いられる場合の他、他の圧縮機と組み合わせて用いられてもよい。
 また、第1、2スペーサ41、43はPTFE等のフッ素樹脂から形成されることも可能である。この場合には、ピストン27が第1、2シリンダボア1a、3a内で好適に摺動する。
 また、吸入弁機構50は、リード式の吸入弁を採用することも可能である。
 各エンドプレート11,13は、吐出室11a,13aに加えて吸入室を形成するように構成されてもよい。或いは、各エンドプレート11,13は、吐出室11a,13aの代わりに吸入室のみを形成するように構成されてもよい。すなわち、各エンドプレート11,13は、吐出室11a,13a及び吸入室の少なくとも一方を弁ユニット25との間に形成するように構成されればよい。

Claims (7)

  1.  第1シリンダブロックと第2シリンダブロックとを含むハウジングであって、前記第1シリンダブロックは第1シリンダボアを有し、前記第2シリンダブロックは第2シリンダボアを有する、前記ハウジングと、
     前記ハウジングの両端部に接合される一対のエンドプレートと、
     前記各シリンダボアと前記各エンドプレートとの間にそれぞれ設けられる一対の弁ユニットであって、吐出室及び/又は吸入室が前記各弁ユニットと前記各エンドプレートとの間に形成される前記一対の弁ユニットと、
     往復動可能なピストンであって、前記各シリンダボアはピストンと前記各弁ユニットとの間に圧縮室を形成し、前記ピストンは、ピストンロッドと、該ピストンロッドの第1端に設けられて前記第1シリンダボア内を摺動する第1ピストンヘッドと、前記ピストンロッドの第2端に設けられて前記第2シリンダボア内を摺動する第2ピストンヘッドと、を含む、前記ピストンと、
     前記ハウジングに設けられたコイルと、
     前記ピストンに設けられ、前記コイルによって生じる電磁力によって前記ピストンを往復動させる永久磁石と、を備えるリニア電動式圧縮機であって、
     前記第1シリンダブロックと前記第2シリンダブロックとは、前記ピストンロッドの中心軸と前記第1ピストンヘッドとの径方向の位置ずれ及び前記ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれが前記ハウジングの組み付け時に吸収されるよう、径方向への相対移動が許容されるように構成されている圧縮機。
  2.  前記ハウジングは、前記第1及び第2シリンダブロックの径方向外側に設けられて該第1及び第2シリンダブロックとの間に前記コイルを保持するシェルを有し、
     前記シェルと前記第1シリンダブロックとは、前記ピストンロッドの中心軸と前記第1ピストンヘッドの中心軸との径方向の位置ずれを前記ハウジングの組み付け時に吸収し得るよう、径方向への相対移動が許容されるように構成され、
     前記シェルと前記第2シリンダブロックとは、前記ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれを前記ハウジングの組み付け時に吸収し得るよう、径方向への相対移動が許容されるように構成されている、請求項1に記載の圧縮機。
  3.  前記シェルと前記第1シリンダブロックとの間には、前記ピストンロッドの中心軸と前記第1ピストンヘッドの中心軸との径方向の位置ずれを吸収する第1間隙が確保され、前記シェルと前記第2シリンダブロックとの間には、前記ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれを吸収する第2間隙が確保されている、請求項2に記載の圧縮機。
  4.  前記第1シリンダブロック及び前記第2シリンダブロックは前記シェルに対して相対回転が規制されるように固定されている、請求項2又は3に記載の圧縮機。
  5.  前記第1シリンダブロックには前記ハウジングの軸方向に沿って延びる第1ボルト穴が形成され、前記第2シリンダブロックには前記軸方向に沿って延びる第2ボルト穴が形成され、前記第1ボルト穴及び前記第2ボルト穴には前記第1シリンダブロック及び前記第2シリンダブロックを締結するボルトが挿通され、
     前記第1ボルト穴と前記ボルトとの間には、前記ピストンロッドの中心軸と前記第1ピストンヘッドの中心軸との径方向の位置ずれを吸収する第1間隙が確保され、前記第2ボルト穴と前記ボルトとの間には、前記ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれを吸収する第2間隙が確保されている、請求項1に記載の圧縮機。
  6.  前記第1間隙は前記ピストンロッドの中心軸と前記第1ピストンヘッドの中心軸との径方向の位置ずれよりも大きく、前記第2間隙は該ピストンロッドの中心軸と前記第2ピストンヘッドの中心軸との径方向の位置ずれよりも大きい、請求項3又は5に記載の圧縮機。
  7.  前記ピストンを往復動させる付勢力を有する一対のコイルばねをさらに備え、
     前記ハウジングは、前記第1シリンダブロックと前記第2シリンダブロックとの間に位置して前記ピストンロッド周りに延びるばね座を有するセンターハウジングを含み、
     前記ばね座と前記一対のピストンヘッドの各々との間に前記コイルばねがそれぞれ設けられている、請求項1乃至6のいずれか1項に記載の圧縮機。
PCT/JP2010/064751 2009-09-04 2010-08-30 リニア電動式圧縮機 WO2011027736A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-204296 2009-09-04
JP2009204296A JP2011052650A (ja) 2009-09-04 2009-09-04 リニア電動式圧縮機

Publications (1)

Publication Number Publication Date
WO2011027736A1 true WO2011027736A1 (ja) 2011-03-10

Family

ID=43649272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064751 WO2011027736A1 (ja) 2009-09-04 2010-08-30 リニア電動式圧縮機

Country Status (2)

Country Link
JP (1) JP2011052650A (ja)
WO (1) WO2011027736A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113123940B (zh) * 2020-01-16 2022-12-02 中科力函(深圳)热声技术有限公司 直线式无油压缩机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551452A (en) * 1978-06-20 1980-01-08 Tokuji Kariya Electromagnetic air pump
JPH11343970A (ja) * 1998-06-02 1999-12-14 Toyota Autom Loom Works Ltd 電動圧縮機
JP2000145631A (ja) * 1998-11-12 2000-05-26 Sumitomo Heavy Ind Ltd ガス圧縮機
JP2001090660A (ja) * 1999-09-28 2001-04-03 Matsushita Electric Ind Co Ltd リニア圧縮機
JP2006144568A (ja) * 2004-11-16 2006-06-08 Fuji Electric Holdings Co Ltd 振動型圧縮機
WO2007007721A1 (ja) * 2005-07-11 2007-01-18 Nitto Kohki Co., Ltd. 電磁往復動流体装置
JP2008002452A (ja) * 2006-05-25 2008-01-10 Aisin Seiki Co Ltd リニア圧縮機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551452A (en) * 1978-06-20 1980-01-08 Tokuji Kariya Electromagnetic air pump
JPH11343970A (ja) * 1998-06-02 1999-12-14 Toyota Autom Loom Works Ltd 電動圧縮機
JP2000145631A (ja) * 1998-11-12 2000-05-26 Sumitomo Heavy Ind Ltd ガス圧縮機
JP2001090660A (ja) * 1999-09-28 2001-04-03 Matsushita Electric Ind Co Ltd リニア圧縮機
JP2006144568A (ja) * 2004-11-16 2006-06-08 Fuji Electric Holdings Co Ltd 振動型圧縮機
WO2007007721A1 (ja) * 2005-07-11 2007-01-18 Nitto Kohki Co., Ltd. 電磁往復動流体装置
JP2008002452A (ja) * 2006-05-25 2008-01-10 Aisin Seiki Co Ltd リニア圧縮機

Also Published As

Publication number Publication date
JP2011052650A (ja) 2011-03-17

Similar Documents

Publication Publication Date Title
US6565332B2 (en) Linear compressor
KR101307688B1 (ko) 리니어 압축기
JP2011074910A (ja) リニア電動式圧縮機及び冷凍回路
KR101386486B1 (ko) 왕복동식 압축기
US9353737B2 (en) Reciprocating motor having inner and outer stators integrally formed and reciprocating compressor having a reciprocating motor
KR102240032B1 (ko) 리니어 압축기
CN102985692A (zh) 线性压缩机
KR102178065B1 (ko) 리니어 압축기
KR101484325B1 (ko) 리니어 압축기
US10903732B2 (en) Moveable core-type reciprocating motor and reciprocating compressor having a moveable core-type reciprocating motor
WO2018090813A1 (zh) 永磁线性双缸压缩机
WO2018131255A1 (ja) リニアモータ及び圧縮機
WO2011027700A1 (ja) リニア電動式圧縮機
WO2011027736A1 (ja) リニア電動式圧縮機
CN108518332B (zh) 一种线性压缩机
KR101499992B1 (ko) 리니어 압축기
JP2011144988A (ja) 冷凍回路
US20230332588A1 (en) Linear compressor
KR100748546B1 (ko) 2-실린더 리니어 압축기
WO2011027713A1 (ja) リニア電動式圧縮機
KR101487031B1 (ko) 리니어 압축기
KR20090053130A (ko) 리니어 압축기
JPH11343970A (ja) 電動圧縮機
JP4109250B2 (ja) 往復動式圧縮機の固定子固定装置
US20110058962A1 (en) Compressor for use in a vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813685

Country of ref document: EP

Kind code of ref document: A1