WO2011026979A1 - San-extrusionsschaumstoffe - Google Patents

San-extrusionsschaumstoffe Download PDF

Info

Publication number
WO2011026979A1
WO2011026979A1 PCT/EP2010/063049 EP2010063049W WO2011026979A1 WO 2011026979 A1 WO2011026979 A1 WO 2011026979A1 EP 2010063049 W EP2010063049 W EP 2010063049W WO 2011026979 A1 WO2011026979 A1 WO 2011026979A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
carbon dioxide
blowing agent
component
san
Prior art date
Application number
PCT/EP2010/063049
Other languages
English (en)
French (fr)
Inventor
Klaus Hahn
Holger RUCKDÄSCHEL
Ingo Bellin
Peter Merkel
Markus Hartenstein
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to EP10752336.7A priority Critical patent/EP2475711B1/de
Priority to ES10752336.7T priority patent/ES2471492T3/es
Priority to CN2010800444727A priority patent/CN102575043B/zh
Priority to RU2012113365/05A priority patent/RU2012113365A/ru
Priority to CA2773246A priority patent/CA2773246A1/en
Priority to US13/394,477 priority patent/US20120161061A1/en
Priority to JP2012528334A priority patent/JP2013503956A/ja
Publication of WO2011026979A1 publication Critical patent/WO2011026979A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/127Mixtures of organic and inorganic blowing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/22Thermoplastic resins

Definitions

  • the invention relates to extruded foams obtainable by heating a styrene-acrylonitrile copolymer (SAN) to form a polymer melt, introducing a blowing agent component into the polymer melt, optionally adding auxiliaries and additives and foaming the polymer melt.
  • SAN styrene-acrylonitrile copolymer
  • the invention further relates to a process for producing the extrusion foams and to the use of the extrusion foams as insulating material and as structural foam.
  • Polystyrene-based extrusion foams are widely used in the construction industry to insulate building parts such as foundations, walls, floors and roofs.
  • extrusion foams are needed, which have the lowest possible thermal conductivity and thus a high insulation capacity.
  • closed-cell extruded foams In order to achieve good insulation properties, it is preferred to use closed-cell extruded foams, since these have significantly better insulating properties compared to open-celled extrusion foams.
  • good heat resistance at low density is expected of them.
  • the heat resistance is very important, otherwise it can lead to deformation of the extrusion foams and thus to damage the insulation. Components in which a good heat resistance plays a special role, for example, roof insulation and wall insulation, which are exposed to direct sunlight.
  • extrusion foams should also have good resistance to solvents, especially to oil and mineral oil. This is especially necessary for components used in the lower wall, foundation and floor areas.
  • DE 10 2004 057 602 A1 describes extruded foam boards based on styrene polymers which have a reduced thermal conductivity.
  • Polystyrolpoly- merisate in addition to polystyrene also copolymers are disclosed, in addition to at least 50 wt .-% of copolymerized styrene other comonomers from the group o methylstyrene, ring halogenated styrenes, alkylated styrenes, acrylonitrile, esters of (meth) acrylic acid of alcohols having 1 to 8 C. Atoms, N-vinyl compounds, maleic anhydride and small amounts of compounds having two polymerizable double bonds.
  • the propellant used is preferably a propellant mixture of 95 to 20% by weight of carbon dioxide, 5 to 80% by weight of water and 0 to 75% by weight.
  • DE-A 103 21 787 discloses a process for the production of foam sheets based on styrene-acrylonitrile copolymers which have improved solvent resistance. Water is used as blowing agent or blowing agent component. The foam boards obtainable by this process have good solvent resistance. However, there is room for improvement in terms of heat distortion resistance and insulation properties.
  • the object of the invention is accordingly to provide extrusion foams which have good insulating properties and good solvent and heat resistance.
  • the extrusion foams should have a homogeneous cell structure and be accessible without the use of environmentally harmful blowing agents such as CFCs or easily combustible blowing agents such as alkanes.
  • the object is achieved by a closed-cell extrusion foam with a density in the range of 20 to 150 g / l and a cell number in the range of 1 to 30 cells per mm, available through
  • SAN styrene-acrylonitrile copolymers
  • thermoplastic polymers from the group consisting of styrene copolymers, polyolefins, polyacrylates, polycarbonates (PC), polyesters, polyamides, polyethersulfones (PES), polyether ketones (PEK ) and polyether sulfides, Formation of a polymer melt,
  • blowing agent component T containing less than 0.2% by weight of water (based on P), containing b1) from 15 to 95% by weight (relative to to T) carbon dioxide and b2) from 5 to 85% by weight (based on T) of one or more co-blowing agents selected from the group consisting of C 1 -C 4 alcohols and C 1 -C 4 carbonyl compounds, in the polymer melt to form a foamable melt,
  • the invention further relates to the described process for producing the extruded foams according to the invention and to the use of this foam as insulating material and as structural foam.
  • the extrusion foam according to the invention has good insulation properties, good solvent resistance and good heat resistance. It thus combines three important properties in one material and thus makes it possible to use this material universally in a wide variety of applications where it was previously necessary to use different and specially adapted materials for the respective application.
  • the extrusion foam according to the invention is accessible without the use of blowing agents that are problematic from an environmental point of view or with respect to the fire protection regulations. In addition, it offers good insulation and mechanical properties while maintaining high solvent and heat resistance in spite of low density compared to the prior art extruded foams.
  • closed-cell extruded foam means that the cells, measured in accordance with DIN ISO 4590, are at least 90% closed.
  • the SAN (P1) and the thermoplastic polymers (P2) used according to the invention as polymer component (P) can be prepared by methods known to those skilled in the art, for example by free-radical, anionic or cationic polymerization in bulk, solution, dispersion or emulsion. Preference is given to the preparation by free-radical polymerization.
  • the SAN generally contains from 18 to 40% by weight, preferably from 25 to 35% by weight and in particular from 30 to 35% by weight of copolymerized acrylonitrile and generally from 60 to 82% by weight, preferably from 65 to 75% by weight. % and particularly preferably 65 to 70 wt .-% of copolymerized styrene (in each case based on SAN).
  • the SAN consists of the components a1) and a2) and optionally a3).
  • the SAN may optionally contain from 0 to 22% by weight (based on P) of at least one copolymerized monomer selected from the group consisting of alkyl (meth) acrylates, (meth) acrylic acid, maleic anhydride and maleimides (component a3)).
  • alkyl (meth) acrylates are to be understood as meaning both alkyl acrylates and alkyl methacrylates.
  • (meth) acrylic acid is meant both acrylic acid and methacrylic acid.
  • Preferred alkyl (meth) acrylates are formed from (meth) acrylic acid and CrC 6 - alcohols such as methanol, ethanol, 1-propanol, 2-propanol, n-butanol, sec-butanol, isobutanol, tert-butanol, pentanol and its derivatives, hexanol and its derivatives, and cyclohexanol.
  • Preferred maleimides are maleimide itself, N-alkyl substituted maleimides and N-phenyl substituted maleimides.
  • the SAN does not contain a monomer of component a3), so that the SAN as the monomer component consists exclusively of acrylonitrile and styrene.
  • the SAN can be used in the inventive process (P1) generally have a melt volume rate MVR (220 ° C / 1 0 kg) according to ISO 1 13 in the range of 5 to 20 cm 3/10 min.
  • Suitable SAN types are, for example, polymers from BASF SE such as Luran 3380, Luran 33100 and Luran 2580.
  • the extrusion foam of the invention contains a (1) styrene-acrylonitrile copolymer.
  • the extrusion foam according to the invention contains two to four, preferably two, styrene-acrylonitrile copolymers.
  • thermoplastic polymers (P2) of the polymer component (P) one or more thermoplastic polymers from the group consisting of Styrolcopoly- mers, polyolefins, polyacrylates, polycarbonates (PC), polyesters, polyamides, polyethersulfones (PES), polyether ketones (PEK) and polyether sulfides (PES) are used.
  • Suitable styrene copolymers are, for example, acrylonitrile-butadiene-styrene (ABS), styrene-maleic anhydride (SMA), acrylonitrile-styrene-acrylic ester (ASA) and styrene-methacrylic acid.
  • ABS acrylonitrile-butadiene-styrene
  • SMA styrene-maleic anhydride
  • ASA acrylonitrile-styrene-acrylic ester
  • ASA acrylonitrile-styrene-methacrylic acid
  • As component (P2) and polystyrene can be used. However, this is not preferred.
  • Suitable polyolefins are, for example, polypropylene (PP) polyethylene (PE) and polybutadiene.
  • a suitable polyacrylate is, for example, polymethyl methacrylate (PMMA).
  • Suitable polyesters are, for example, polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).
  • Suitable polyamides are, for example, polyamide 6 (PA6), polyamide 6,6, polyamide 6, 1 and polyamide 6 / 6,6.
  • the polymer component (P) contains no (0 wt .-%) styrene copolymer (as component P2).
  • the polymer component (P) contains no (0 wt .-%) thermoplastic polymer (P2).
  • the polymer component (P) (and thus also the extrusion foam) contains 0 to 15 wt .-%, particularly preferably 0 to 5 wt .-%, particularly preferably 0 wt .-% of the polymer (P2) (in each case related to P)
  • the polymer component (P) (and thus also the extrusion foam) contains 0.1 to 20 wt .-%, particularly preferably 0.5 to 10 wt .-%, particularly preferably 1 to 5 wt .-% of Polymers (P2) (in each case based on P)
  • the polymer component (P) contains as monomers exclusively acrylonitrile and styrene (0 wt .-% a3) and 0 wt .-% P2).
  • the extrusion foam has a density in the range of 50 to 130 g / l, preferably 60 to 120 g / l.
  • the extrusion foam has a density in the range of 20 to 60 g / l, preferably 20 to 50 g / l and particularly preferably in the range of 25 to 45 g / l.
  • the invention further provides a process for producing a closed-cell extrusion foam having a density in the range from 20 to 150 g / l, a cell count in the range from 1 to 30 cells per mm
  • SAN styrene-acrylonitrile copolymers
  • SAN styrene-acrylonitrile copolymers
  • SAN styrene-acrylonitrile copolymers
  • a1 18 to 40 wt .-% (based on SAN) copolymerized acrylonitrile
  • thermoplastic polymers from the group consisting of styrene copolymers, polyolefins, polyacrylates, polycarbonates (PC), polyesters, polyamides, polyethersulfones (PES), polyether ketones (PEK ) and polyether sulfides, to form a polymer melt, (b) introducing from 1 to 12% by weight (based on P) of a blowing agent component T which contains less than 0.2% by weight of water (based on P), containing b1) from 15 to 95% by weight ( based on T) carbon dioxide and b2) from 5 to 85% by weight (based on T) of one or more co-blowing agents selected from the group consisting of C 1 -C 4 alcohols and C 1 -C 4 carbonyl compounds, in the polymer melt to form a foamable melt .
  • step (a) of the process the polymer component (P) is heated to obtain a polymer melt.
  • a polymer melt is meant in the context of the invention, a plasticization of the polymer component (P) in a broad sense, i. the conversion of the solid components of the polymer component (P) into a deformable or flowable state.
  • the polymer component (P) is heated to a temperature above the melting or glass transition temperature. Suitable temperatures are generally at least 150 ° C, preferably 160 to 280 ° C, more preferably 180 to 240 ° C.
  • step (a) of the process of the invention may be carried out by any means known in the art, such as by means of an extruder, a mixer (e.g., a kneader). Preference is given to the use of Aufschmelzextrudern (primary extruders).
  • Step (a) of the process according to the invention can be carried out continuously or batchwise, wherein a continuous procedure is preferred.
  • Step (b) of the process according to the invention comprises introducing a blowing agent component (T) into the polymer melt produced in step (a) to form a foamable melt.
  • the blowing agent component (T) comprises (and preferably consists of) (b1) 95-15% by weight, preferably 85-15% by weight, particularly preferably 75-15% by weight, (based on T) C0 2 ,
  • C 4 -carbonyl compounds preferably C 2 -C 4 -carbonyl compounds, in particular C 3 -C 4 -ketones and formates, and
  • blowing agent component (T) Preference is given to using mixtures of two or more blowing agents as the blowing agent component (T). Particularly preferred are binary and ternary mixtures.
  • Preferred alcohols are methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methylpropanol and tert-butanol. Particularly preferred are 2-propanol and ethanol. Particularly preferred is ethanol.
  • CrC 4 carbonyl compounds are ketones, aldehydes, carboxylic acid esters and carboxylic acid amides having 1 to 4 carbon atoms.
  • Suitable ketones are acetone and methyl ethyl ketone, preferred formates being methyl formate, ethyl formate, n-propyl formate and i-propyl formate. Preference is given to methyl formate and acetone. Especially preferred is acetone.
  • water b3) may be contained in the co-propellants b2) and in the carbon dioxide b1).
  • the water concentrations of the blowing agent component (T) are within the above-mentioned concentration ranges.
  • the blowing agent component is substantially anhydrous.
  • Particularly preferred are mixtures of carbon dioxide and ethanol, carbon dioxide and acetone, carbon dioxide and methyl formate, carbon dioxide and mixtures of ethanol and acetone in the above mixing ratios.
  • the blowing agent component (T) is added to the polymer melt in a proportion of 1 to 12 wt .-%, preferably 1 to 8 and particularly preferably 1, 5 to 7% by weight (in each case based on P). In a preferred embodiment, the blowing agent component (T) is added to the polymer melt in a proportion of 1 to 4.5% by weight (based on P).
  • blowing agent component (T) is added to the polymer melt in a proportion of 2.5 to 8% by weight (based on P).
  • a suitable composition of the blowing agent component (T) contains from 15 to 95% by weight of component b1) and from 5 to 85% by weight of component b2).
  • the proportion of component b1) with respect to P is particularly preferably less than 4.5% by weight and the proportion of component b2) based on P is less than 4% by weight.
  • the blowing agent component (T) is added to the polymer melt in a proportion of 1 to 4.5% by weight, based on P, and the blowing agent component contains 15 to 40% by weight (based on T) of carbon dioxide ( Component b1).
  • the blowing agent component (T) is added to the polymer melt in an amount of from 1 to 4.5% by weight, based on (P), the blowing agent component contains from 15 to 40% by weight (based on T ) Carbon dioxide (component b1) and the extrusion foam has a density in the range of 50 to 130 g / l, preferably from 60 to 120 g / l.
  • the blowing agent component (T) is added to the polymer melt in a proportion of 2.5 to 8% by weight (based on P) and the blowing agent component contains 55 to 75% by weight (based on T) Carbon dioxide (component b1).
  • the blowing agent component (T) is added to the polymer melt in a proportion of 2.5 to 8% by weight (based on P), the blowing agent component contains 55 to 75% by weight, (based on T) Carbon dioxide (component b1) and the extrusion foam have a density in the range of 20 to 60 g / l, preferably 20 to 50 g / l and particularly preferably 25 to 45 g / l.
  • the blowing agent component (T) may be incorporated into a molten polymer component (P) by any method known to those skilled in the art. Suitable examples are extruders or mixers (eg kneader). In a preferred embodiment, the blowing agent is mixed with the molten polymer component (P) under elevated pressure. The pressure must be so high that essentially one Foaming of the molten polymer material is prevented and a homogeneous distribution of the blowing agent component (T) in the molten polymer component (P) is achieved. Suitable pressures are 50 to 500 bar (absolute), preferably 100 to 300 bar (absolute), more preferably 150 to 250 bar (absolute).
  • step (b) of the process according to the invention must be selected so that the polymeric material is in the molten state. For this it is necessary that the polymer component P is heated to a temperature above the melting or glass transition temperature. Suitable temperatures are generally at least 150 ° C, preferably 160 to 280 ° C, more preferably 180 to 240 ° C.
  • the blowing agent can be added in the melt extruder (primary extruder) or in a downstream step.
  • the foamable polymer melt is carried out in XPS extruders known to the person skilled in the art, for example via a tandem structure consisting of a melting extruder (primary extruder) and a cooling extruder (secondary extruder).
  • the process can be carried out continuously and discontinuously, wherein the polymer component (P) is melted in the primary extruder (step (a)) and the addition of the blowing agent (step (b)) to form a foamable melt also takes place in the primary extruder.
  • the foamable melt provided with blowing agent in the secondary extruder to a suitable temperature for foaming of 50-180 ° C, preferably to a temperature of 80-150 ° C, cooled.
  • the polymer component (P) before carrying out the process and / or in at least one of the steps a), b) and / or c), the polymer component (P) becomes additives, i. Auxiliaries and / or additives, added. Suitable auxiliaries and additives are known to the person skilled in the art.
  • nucleating agent is added to the polymer component (P).
  • Nucleating agents which may be used are finely divided, inorganic solids such as talc, metal oxides, silicates or polyethylene waxes in amounts of generally from 0.1 to 10% by weight, preferably from 0.1 to 3% by weight, more preferably from 1 to 1.5 % By weight, based on P, are used.
  • the average particle diameter of the nucleating agent is generally in the range from 0.01 to 100 ⁇ m, preferably from 1 to 60 ⁇ m.
  • a particularly preferred nucleating agent is talc, for example talc from Luzenac Pharma.
  • the nucleating agent may be added by methods known to those skilled in the art.
  • additives such as nucleating agents, fillers (for example mineral fillers such as glass fibers), plasticizers, flame retardants, IR absorbers such as carbon black or graphite, aluminum powder and titanium dioxide, soluble and insoluble dyes and pigments may be added.
  • Preferred additives are graphite and carbon black.
  • graphite is added in amounts of generally from 0.05 to 25% by weight, particularly preferably in amounts of from 2 to 8% by weight, based on P.
  • Suitable particle sizes for the graphite used are in the range from 1 to 50 ⁇ m, preferably in the range from 2 to 10 ⁇ m.
  • Suitable flame retardants are, for example, tetrabromobisphenol A, brominated polystyrene oligomers, tetrabromobisphenol A diallyl ether, expandable graphite, red phosphorus, triphenyl phosphate and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide.
  • HBCD hexabromocyclododecane
  • industrial products which essentially contain the o, ß and v isomers and preferably an addition of dicumyl (2,3-dimethyl-2,3-diphenylbutane) as synergists
  • brominated aromatic compounds such as tetrabromobisphenol A and brominated polystyrene oligomers.
  • thermal insulation is the addition of graphite, carbon black, aluminum powder or an I R dye (e.g., indoaniline dyes, oxonol dyes or anthraquinone dyes).
  • an I R dye e.g., indoaniline dyes, oxonol dyes or anthraquinone dyes.
  • the dyes and pigments are added in amounts ranging from 0.01 to 30, preferably in the range of 1 to 5 wt .-% (based on P).
  • a dispersing aid e.g. Organosilanes, polymers containing epoxy groups or maleic anhydride-grafted styrene polymers.
  • Preferred plasticizers are fatty acid esters, fatty acid and phthalates, which can be used in amounts of 0.05 to 10 wt .-%, based on the polymer component (P).
  • the total amount of additives is generally 0 to 30 wt .-%, preferably 0 to 20 wt .-%, based on the total weight of the extrusion foam.
  • the total amount of additives is 0.5 to 30 wt .-%, particularly preferably 0.5 to 20 wt .-% (based on the total weight of the extrusion foam). In another embodiment, the extrusion foam contains no additives.
  • Step (c) of the process according to the invention comprises foaming the foamable melt to obtain an extrusion foam.
  • the melt is to promote by a suitable device, such as a nozzle plate.
  • a suitable device such as a nozzle plate.
  • the nozzle plate is heated at least to the temperature of the blowing agent-containing polymer melt.
  • the temperature of the nozzle plate is 60 to 200 ° C.
  • the temperature of the nozzle plate is 1 10 to 180 ° C.
  • the blowing agent-containing polymer melt is transferred through the nozzle plate in a region in which a lower pressure prevails than in the region in which the foamable melt is held prior to extrusion through the nozzle plate.
  • the lower pressure may be superatmospheric or subatmospheric.
  • the extrusion is in a region of atmospheric pressure.
  • Step (c) is also conducted at a temperature at which the polymeric material to be foamed is in a molten state.
  • a temperature at which the polymeric material to be foamed is in a molten state.
  • temperatures of 50 to 170 ° C preferably at 90 to 150 ° C, more preferably at 1 10 to 140 ° C.
  • the blowing agent-containing polymer melt is transferred in step (c) in a region in which a lower pressure prevails, the blowing agent is converted into the gaseous state. Due to the large increase in volume, the polymer melt is expanded and foamed.
  • the geometric shape of the cross section of the extruded foams obtainable by the process according to the invention is essentially determined by the choice of the nozzle plate and, if appropriate, by suitable downstream devices such as plate calibrations, roller conveyor impressions or strip deductions and can be freely selected.
  • the extruded foams obtainable by the process according to the invention preferably have a rectangular cross-section.
  • the thickness of the extrusion foams is determined by the height of the nozzle plate slot.
  • the width of the extrusion foams is determined by the width of the nozzle plate slot.
  • the length of the extruded foam parts is determined in a subsequent working step by known methods familiar to the person skilled in the art, such as gluing, welding, sawing and cutting.
  • Particularly preferred are extruded foam parts with a plate-shaped geometry. Plate-shaped means that the dimension of the thickness (height) is small in comparison with the dimension of the width and the dimension of the length of the molding.
  • the extruded foam parts obtainable by the process according to the invention generally have a compressive strength, measured according to DIN N EN 826, in the range from 0.15 to 6 N / mm 2 , preferably in the range from 0.3 to 2 N / mm 2 .
  • the density of the foam sheets is in the range of 20 to 150 g / l.
  • the extruded foams according to the invention preferably have cells which, measured according to DIN ISO 4590, are at least 90%, in particular 95 to 100%, closed-cell.
  • the extrusion foam according to the invention has a cell number in the range from 1 to 30 cells per mm, preferably from 3 to 25 cells per mm and more preferably from 3 to 20 cells per mm.
  • the invention also relates to the use of the extruded foams according to the invention and the moldings obtainable therefrom. Preference is given to use as insulating material, in particular in the construction industry, underground and above ground, e.g. for foundations, walls, floors and roofs. Preference is likewise given to use as structural foam, in particular for lightweight construction applications and as core material for composite applications.
  • the invention is further illustrated by the following examples without being limited thereto.
  • Luran 3360 SAN with an acrylonitrile content of 33% by weight and a viscosity number of 60 ml / g commercial product of BASF SE
  • Luran 3380 SAN with an acrylonitrile content of 33% by weight and a viscosity number of 80 ml / g (commercial product of BASF SE)
  • Luran 33100 SAN with an acrylonitrile content of 33% by weight and a viscosity number of 100 ml / g (commercial product of BASF SE)
  • Luran 2580 SAN with an acrylonitrile content of 25% by weight and a viscosity number of 80 ml / g commercial product of BASF SE
  • the polymers used were continuously fed together with talc to a melt-down extruder.
  • the total throughput of the polymers was 7 kg / h.
  • the propellants (C0 2 , ethanol, acetone and / or methyl formate) were fed continuously through an injection port introduced into the melting extruder.
  • the blowing agent-containing melt was cooled in a subsequent cooling extruder and extruded through a slot die.
  • the intumescent melt was withdrawn without calibration via a roller belt.
  • Table 1 shows the influence of different blowing agent components (T) for the same polymer composition.
  • Comparative Examples V1 and V2 have high densities which are not acceptable for extrusion foams for use in the construction industry. In addition, the cell structure in V2 is not completely homogeneous. Comparative Examples V3 and V4 do not show satisfactory insulating properties due to the low closed cell values.
  • Table 2 shows extrusion foams (B3-B6) according to the invention, in which SANs of different molecular weights are used.
  • Table 3 compares the closed cell content of Example B7 with that of Comparative Example V5.
  • Table 4 shows that extrusion foams according to the invention are compatible with common flame retardants.
  • Table 4 SAN with different flame retardants (HBCD, TBBPA)
  • Table 5 shows the influence of different blowing agent components T, especially acetone, and different blowing agent concentrations for the same polymer composition.
  • Comparative Examples B12 to B15 show that acetone can be used analogously to ethanol as a suitable co-propellant.
  • Table 6 shows the effect of different blowing agent components (T), especially methyl formate, and different blowing agent concentrations for the same polymer composition.
  • Comparative Examples B16 and B17 show that methyl formate can be used analogously to ethanol as a suitable co-propellant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Geschlossenzelliger Extrusionsschaumstoff, erhältlich durch ein oder mehrere Styrol-Acrylnitril-Copolymeren (SAN), und gegebenenfalls ein oder mehrere thermoplastische Polymeren aus der Gruppe bestehend aus Styrolcopolymeren, PoIyolefinen, Polyacrylaten, Polycarbonaten (PC), Polyestern, Polyamiden, Polyethersulfonen (PES), Polyetherketonen (PEK) und Polyethersulfiden, zur Ausbildung einer Polymerschmelze, (b) Einbringen von 1 bis 12 Gew.-% (bezogen auf P) einer Treibmittelkomponente (T), die weniger als 0,2 Gew.-% Wasser (bezogen auf P) enthält, enthaltend b1) 15 bis 95 Gew.-% (bezogen auf T) Kohlendioxid und b2) 5 bis 85 Gew.-% (bezogen auf T) eines oder mehrerer Co-Treibmittel ausgewählt aus der Gruppe bestehend aus C1-C4 Alkoholen und C1-C4-Carbonylverbindungen, in die Polymerschmelze zur Ausbildung einer schäumbaren Schmelze, (c) Extrusion der schäumbaren Schmelze in einen Bereich niedrigeren Drucks unter Aufschäumen zu dem Extrusionsschaum, (d) gegebenenfalls Zugabe von Additiven zu der Polymerkomponente (P) in mindestens einem der Schritte a), b) und/oder c).

Description

SAN-Extrusionsschaumstoffe Beschreibung Die Erfindung betrifft Extrusionsschaumstoffe, erhältlich durch Erhitzen eines Styrol- Acrylnitril-Copolymerisats (SAN) zur Ausbildung einer Polymerschmelze, Einbringen einer Treibmittelkomponente in die Polymerschmelze, gegebenenfalls Zugabe von Hilfs- und Zusatzstoffen und Aufschäumen der Polymerschmelze. Weiter betrifft die Erfindung ein Verfahren zur Herstellung der Extrusionsschaumstoffe sowie die Ver- wendung der Extrusionsschaumstoffe als Isoliermaterial und als Strukturschaum.
Extrusionsschaumstoffe auf Polystyrolbasis werden in großem Maß in der Bauindustrie zum Isolieren von Gebäudeteilen wie Fundamenten, Wänden, Böden und Dächern eingesetzt. Für diese Anwendung werden Extrusionsschaumstoffe benötigt, die eine möglichst geringe Wärmeleitfähigkeit und damit eine große Isolationsfähigkeit besitzen. Um gute Isolationseigenschaften zu erreichen, werden bevorzugt geschlossenzellige Extrusionsschaumstoffe eingesetzt, da diese im Vergleich zu offenzelligen Extrusions- schaumstoffen eine deutlich bessere Isolationsfähigkeit aufweisen. Für den Einsatz von Extrusionsschaumstoffen in der Bauindustrie wird von diesen neben guten Isolationseigenschaften auch eine gute Wärmeformbeständigkeit bei geringer Dichte erwartet. Vor allem für Anwendungen, bei denen die Schaumstoffe hohen Temperaturen ausgesetzt sind, ist die Wärmeformbeständigkeit sehr wichtig, da es sonst zu Verformungen der Extrusionsschaumstoffe und somit zu einer Beschädigung der Isolierung kommen kann. Bauteile, bei denen eine gute Wärmeformbeständigkeit eine besondere Rolle spielt, sind beispielsweise Dachisolierungen und Wandisolierungen, die direkter Sonneneinstrahlung ausgesetzt sind.
Neben guten Isolationseigenschaften und guter Wärmeformbeständigkeit sollten Extru- sionsschaumstoffe auch eine gute Beständigkeit gegenüber Lösungsmitteln, vor allem gegenüber Öl und Mineralöl, aufweisen. Dies ist insbesondere für Bauteile erforderlich, die im unteren Wand-, im Fundament- und im Bodenbereich eingesetzt werden. Die DE 10 2004 057 602 A1 beschreibt Extrusionsschaumstoffplatten auf Basis von Styrol- polymerisaten, die eine verminderte Wärmeleitfähigkeit aufweisen. Als Polystyrolpoly- merisate werden neben Polystyrol auch Mischpolymerisate offenbart, die neben mindestens 50 Gew.-% einpolymerisiertem Styrol weitere Comonomere aus der Gruppe o Methylstyrol, kernhalogenierte Styrole, kernalkylierte Styrole, Acrylnitril, Ester der (Meth)acrylsäure von Alkoholen mit 1 bis 8 C-Atomen, N-Vinylverbindungen, Maleinsäureanhydrid und geringe Mengen an Verbindungen mit zwei polymerisierbaren Dop- pelbindungen enthalten können. Als Treibmittel wird bevorzugt ein Treibmittelgemisch aus 95 bis 20 Gew.-% Kohlendioxid, 5 bis 80 Gew.-% Wasser und 0 bis 75 Gew.-% eines Alkohols, Ketons oder Esters eingesetzt. In dem einzigen Beispiel der DE 10 2004 057 602 wird reines Polystyrol mit einem 1 :1 -Gemisch von Kohlendioxid und E- thanol extrudiert. Die Schaumstoffplatten nach der Lehre der DE 10 2004 057 602 zeigen gute Isolationseigenschaften. In Bezug auf die Wärmeformbeständigkeit und die Lösungsmittelbeständigkeit besteht jedoch noch Verbesserungspotenzial.
Die DE-A 103 21 787 offenbart ein Verfahren zur Herstellung von Schaumstoffplatten auf Basis von Styrol-Acrylnitril-Copolymeren, die eine verbesserte Lösungsmittelbeständigkeit aufweisen. Als Treibmittel oder Treibmittelkomponente wird Wasser einge- setzt. Die nach diesem Verfahren erhältlichen Schaumstoffplatten weisen eine gute Lösungsmittelbeständigkeit auf. Im Hinblick auf die Wärmeformbeständigkeit und die Isolationseigenschaften besteht jedoch noch Verbesserungspotenzial.
Die Aufgabe der Erfindung liegt demnach darin, Extrusionsschaumstoffe bereitzustel- len, die gute Isolationseigenschaften und gute Lösungsmittel- und Wärmeformbeständigkeit aufweisen. Darüber hinaus sollen die Extrusionsschaumstoffe eine homogene Zellstruktur aufweisen und ohne den Einsatz umweltschädlicher Treibmittel wie FCKW oder leicht brennbarer Treibmittel wie Alkane zugänglich sein. Gelöst wird die Aufgabe durch einen geschlossenzelligen Extrusionsschaumstoff mit einer Dichte im Bereich von 20 bis 150 g/l und einer Zellzahl im Bereich von 1 bis 30 Zellen pro mm, erhältlich durch
(a) Erhitzen einer Polymerkomponente (P), die gebildet ist aus
P1 ) 80 bis 100 Gew.-% (bezogen auf P) von einem oder mehreren Styrol- Acrylnitril-Copolymeren (SAN), enthaltend a1 ) 18 bis 40 Gew.-% (bezogen auf SAN) einpolymerisiertes Acrylnitril, a2) 60 bis 82 Gew.-% (bezogen auf SAN) einpolymerisiertes Styrol, und
0 bis 22 Gew.-% (bezogen auf SAN) mindestens eines einpolymeri- sierten Monomers aus der Gruppe bestehend aus Alkyl- (meth)acrylaten, (Meth)acrylsäure, Maleinsäureanhydrid und Malei- nimiden,
0 bis 20 Gew.-% (bezogen auf P) von einem oder mehreren thermoplastischen Polymeren aus der Gruppe bestehend aus Styrolcopolymeren, Poly- olefinen, Polyacrylaten, Polycarbonaten (PC), Polyestern, Polyamiden, Po- lyethersulfonen (PES), Polyetherketonen (PEK) und Polyethersulfiden, Ausbildung einer Polymerschmelze,
Einbringen von 1 bis 12 Gew.-% (bezogen auf P) einer Treibmittelkomponente (T), die weniger als 0,2 Gew.-% Wasser (bezogen auf P) enthält, enthaltend b1 ) 15 bis 95 Gew.-% (bezogen auf T) Kohlendioxid und b2) 5 bis 85 Gew.-% (bezogen auf T) eines oder mehrerer Co-Treibmittel ausgewählt aus der Gruppe bestehend aus CrC4 Alkoholen und d- C4 Carbonylverbindungen, in die Polymerschmelze zur Ausbildung einer schäumbaren Schmelze,
(c) Extrusion der schäumbaren Schmelze in einen Bereich niedrigeren Drucks unter Aufschäumen zu dem Extrusionsschaum,
(d) gegebenenfalls Zugabe von Additiven zu der Polymerkomponente (P) oder in mindestens einem der Schritte a), b) und/oder c).
Weiterhin Gegenstand der Erfindung ist das beschriebene Verfahren zur Herstellung der erfindungsgemäßen Extrusionsschaumstoffe sowie die Verwendung dieses Schaumstoffs als Isoliermaterial und als Strukturschaum.
Der erfindungsgemäße Extrusionsschaumstoff weist gute Isolationseigenschaften, gute Lösungsmittel- und gute Wärmeformbeständigkeit auf. Er vereint damit drei wichtige Eigenschaften in einem Werkstoff und ermöglicht somit den universellen Einsatz dieses Werkstoffs in den unterschiedlichsten Anwendungen, bei denen bisher der Einsatz verschiedener und für den jeweiligen Einsatz speziell angepasster Werkstoffe notwendig war. Der erfindungsgemäße Extrusionsschaumstoff ist ohne den Einsatz von Treibmitteln, die aus Umweltgesichtspunkten oder in Bezug auf die Brandschutzbestimmungen problematisch sind, zugänglich. Darüber hinaus bietet er trotz niedriger Dichte im Vergleich zu den Extrusionsschaumstoffen aus dem Stand der Technik gute Isolations- und mechanische Eigenschaften bei gleichzeitig hoher Lösungsmittel- und Wärmeformbeständigkeit.
Geschlossenzelliger Extrusionsschaumstoff bedeutet im Sinne der Erfindung, dass die Zellen gemessen nach DIN ISO 4590 zu mindestens 90 % geschlossen sind. Die erfindungsgemäß als Polymerkomponente (P) eingesetzten SAN (P1 ) und die thermoplastischen Polymere (P2) können nach dem Fachmann bekannten Verfahren, beispielsweise durch radikalische, anionische oder kationische Polymerisation in Substanz, Lösung, Dispersion oder Emulsion hergestellt werden. Bevorzugt ist die Herstel- lung durch radikalische Polymerisation.
Das SAN enthält im Allgemeinen 18 bis 40 Gew.-%, bevorzugt 25 bis 35 Gew.-% und insbesondere 30 bis 35 Gew.-% einpolymerisiertes Acrylnitril und im Allgemeinen 60 bis 82 Gew.-%, bevorzugt 65 bis 75 Gew.-% und insbesondere bevorzugt 65 bis 70 Gew.-% einpolymerisiertes Styrol (jeweils bezogen auf SAN).
Bevorzugt besteht das SAN aus den Komponenten a1 ) und a2) sowie gegebenenfalls a3). Das SAN kann gegebenenfalls 0 bis 22 Gew.-% (bezogen auf P) mindestens eines einpolymerisierten Monomers aus der Gruppe bestehend aus Alkyl-(meth)acrylaten, (Meth)acrylsäure, Maleinsäureanhydrid und Maleinimiden (Komponente a3)) enthalten.
Unter Alkyl(meth)acrylaten sind im Rahmen der Erfindung sowohl Alkylacrylate, als auch Alklymethacrylate zu verstehen. Unter (Meth)acrylsäure sind sowohl Acrylsäure, als auch Methacrylsäure zu verstehen.
Bevorzugte Alkyl(meth)acrylate werden gebildet aus (Meth)acrylsäure und CrC6- Alkoholen wie Methanol, Ethanol, 1 -Propanol, 2-Propanol, n-Butanol, sec.-Butanol, iso- Butanol, tert.-Butanol, Pentanol und seinen Derivaten, Hexanol und seinen Derivaten und Cyclohexanol.
Bevorzugte Maleinimide sind Maleinimid selbst, N-Alkyl-substituierte Maleinimide und N-Phenyl-substituierte Maleinimide.
In einer bevorzugten Ausführungsform enthält das SAN kein Monomer der Komponente a3), so dass das SAN als Monomerkomponenten ausschließlich aus Acrylnitril und Styrol besteht. Die im erfindungsgemäßen Verfahren einsetzbaren SAN (P1 ) weisen im Allgemeinen eine Schmelzvolumenrate MVR (220 °C/ 1 0 kg) nach ISO 1 13 im Bereich von 5 bis 20 cm3 / 10 min auf.
Geeignete SAN-Typen (SAN; Komponente P1 ) sind beispielsweise Polymere der BASF SE wie Luran 3380, Luran 33100 und Luran 2580. In einer bevorzugten Ausführungsform enthält der erfindungsgemäße Extrusions- schaumstoff ein (1 ) Styrol-Acrylnitril-Copolymer.
In einer weiteren bevorzugten Ausführungsform enthält der erfindungsgemäße Extrusi- onsschaumstoff zwei bis vier, vorzugsweise zwei, Styrol-Acrylnitril-Copolymere.
Als thermoplastische Polymere (P2) der Polymerkomponente (P) können ein oder mehrere thermoplastischen Polymeren aus der Gruppe bestehend aus Styrolcopoly- meren, Polyolefinen, Polyacrylaten, Polycarbonaten (PC), Polyestern, Polyamiden, Polyethersulfonen (PES), Polyetherketonen (PEK) und Polyethersulfiden (PES) eingesetzt werden.
Geeignete Styrolcopolymere (als Komponente P2) sind beispielsweise Acrylnitril- Butadien-Styrol (ABS), Styrol-Maleinsäureanhyrid (SMA), Acrynitril-Styrol-Acrylester (ASA) und Styrol-Methacrylsäure.
Als Komponente (P2) kann auch Polystyrol eingesetzt werden. Dies ist jedoch nicht bevorzugt.
Geeignete Polyolefinen (als Komponente P2) sind beispielsweise Polypropylen (PP) Polyethylen (PE) und Polybutadien.
Ein geeignetes Polyacrylate (als Komponente P2) ist beispielsweise Polymethyl- methacrylat (PMMA).
Geeignete Polyester (als Komponente P2) sind beispielsweise Polyethylenterephthalat (PET) und Polybutylenterephthalat (PBT).
Geeignete Polyamide (als Komponente P2) sind beispielsweise Polyamid 6 (PA6), Polyamid 6,6, Polyamid 6,l und Polyamid 6/6,6.
In einer bevorzugten Ausführungsform enthält die Polymerkomponente (P) kein (0 Gew.-%) Styrolcopolymer (als Komponente P2).
In einer weiteren bevorzugten Ausführungsform enthält die Polymerkomponente (P) kein (0 Gew.-%) thermoplastisches Polymer (P2).
In einer weiteren bevorzugten Ausführungsform enthält die Polymerkomponente (P) (und somit auch der Extrusionsschaumstoff) 0 bis 15 Gew.-%, besonders bevorzugt 0 bis 5 Gew.-%, insbesondere bevorzugt 0 Gew.-% des Polymers (P2) (jeweils bezogen auf P) In einer weiteren bevorzugten Ausführungsform enthält die Polymerkomponente (P) (und somit auch der Extrusionsschaumstoff) 0,1 bis 20 Gew.-%, besonders bevorzugt 0,5 bis 10 Gew.-%, insbesondere bevorzugt 1 bis 5 Gew.-% des Polymers (P2) (jeweils bezogen auf P)
In einer weiteren bevorzugten Ausführungsform enthält die Polymerkomponente (P) als Monomere ausschließlich Acrylnitril und Styrol (0 Gew.-% a3) und 0 Gew.-% P2). In einer Ausführungsform weist der Extrusionsschaum eine Dichte im Bereich von 50 bis 130 g/l, bevorzugt 60 bis 120 g/l auf.
In einer weiteren Ausführungsform weist der Extrusionsschaum eine Dichte im Bereich von 20 bis 60 g/l, bevorzugt 20 bis 50 g/l und insbesondere bevorzugt im Bereich von 25 bis 45 g/l auf.
Weiterhin Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines geschlos- senzelligen Extrusionsschaumstoffs mit einer Dichte im Bereich von 20 bis 150 g/l, einer Zellzahl im Bereich von 1 bis 30 Zellen pro mm durch
(a) Erhitzen einer Polymerkomponente (P), die gebildet ist aus
80 bis 100 Gew.-% (bezogen auf P) von einem oder mehreren Styrol- Acrylnitril-Copolymeren (SAN), enthaltend a1 ) 18 bis 40 Gew.-% (bezogen auf SAN) einpolymerisiertes Acrylnitril, a2) 60 bis 82 Gew.-% (bezogen auf SAN) einpolymerisiertes Styrol, und a3) 0 bis 22 Gew.-% (bezogen auf SAN) mindestens eines einpolymeri- sierten Monomers aus der Gruppe bestehend aus Alkyl- (meth)acrylaten, (Meth)acrylsäure, Maleinsäureanhydrid und Malei- nimiden,
0 bis 20 Gew.-% (bezogen auf P) von einem oder mehreren thermoplastischen Polymeren aus der Gruppe bestehend aus Styrolcopolymeren, Poly- olefinen, Polyacrylaten, Polycarbonaten (PC), Polyestern, Polyamiden, Po- lyethersulfonen (PES), Polyetherketonen (PEK) und Polyethersulfiden, zur Ausbildung einer Polymerschmelze, (b) Einbringen von 1 bis 12 Gew.-% (bezogen auf P) einer Treibmittelkomponente T, die weniger als 0,2 Gew.-% Wasser (bezogen auf P) enthält, enthaltend b1 ) 15 bis 95 Gew.-% (bezogen auf T) Kohlendioxid und b2) 5 bis 85 Gew.-% (bezogen auf T) eines oder mehrerer Co-Treibmittel ausgewählt aus der Gruppe bestehend aus CrC4 Alkoholen und d- C4 Carbonylverbindungen, in die Polymerschmelze zur Ausbildung einer schäumbaren Schmelze,
(c) Extrusion der schäumbaren Schmelze in einen Bereich niedrigeren Drucks unter Aufschäumen zu dem Extrusionsschaum,
(d) gegebenenfalls Zugabe von Additiven zu der Polymerkomponente (P) in mindestens einem der Schritte a), b) und/oder c).
In Schritt (a) des Verfahrens wird die Polymerkomponente (P) erhitzt, um eine Poly- merschmelze zu erhalten. Unter Ausbildung einer Polymerschmelze wird im Rahmen der Erfindung eine Plastifizierung der Polymerkomponente (P) im weiteren Sinne verstanden, d.h. die Überführung der festen Bestandteile der Polymerkomponente (P) in einen verformbaren oder fließfähigen Zustand. Dazu ist es notwendig, dass die Polymerkomponente (P) auf eine Temperatur oberhalb der Schmelz- bzw. Glasübergangs- temperatur erhitzt wird. Geeignete Temperaturen betragen im Allgemeinen mindestens 150 °C, bevorzugt 160 bis 280 °C, besonders bevorzugt 180 bis 240 °C.
Das Erhitzen der Polymerkomponente (P) (Schritt (a) des erfindungsgemäßen Verfahrens) kann mittels beliebiger Einrichtungen, die auf dem Fachgebiet bekannt sind, wie mittels eines Extruders, eines Mischers (z.B. eines Kneters) erfolgen. Bevorzugt ist der Einsatz von Aufschmelzextrudern (Primärextrudern). Schritt (a) des erfindungsgemäßen Verfahrens kann kontinuierlich oder diskontinuierlich durchgeführt werden, wobei eine kontinuierliche Fahrweise bevorzugt ist. Schritt (b) des erfindungsgemäßen Verfahrens umfasst das Einbringen einer Treibmittelkomponente (T) in die in Schritt (a) hergestellte Polymerschmelze zur Ausbildung einer schäumbaren Schmelze.
Die Treibmittelkomponente (T) umfasst (und besteht vorzugsweise aus) (b1 ) 95-15 Gew.-%, bevorzugt 85 - 15 Gew.-%, besonders bevorzugt 75 - 15 Gew.- %, (bezogen auf T) C02,
(b2) 5 - 85 Gew.-%, bevorzugt 15 - 85 Gew.-%, besonders bevorzugt 25 - 85 Gew.- %, (bezogen auf T) an einem oder mehreren, vorzugsweise einem oder zwei, insbesondere einem, Co-Treibmittel aus der Gruppe der CrC4-Alkohole, und C
C4-Carbonylverbindungen, bevorzugt C2-C4-Carbonylverbindungen, insbesondere C3-C4-Ketone und Formiate, sowie
(b3) weniger als 0,2 Gew.-% Wasser, bevorzugt 0 bis 0, 18 Gew.-%, mehr bevorzugt 0 bis 0, 14 Gew.-%, besonders bevorzugt 0 bis 0, 1 Gew.-%, insbesondere bevor- zugt 0 bis 0,08 und am meisten bevorzugt 0 bis 0,05 Gew.-% Wasser (jeweils bezogen auf P).
Bevorzugt werden als Treibmittelkomponente (T) Gemische aus zwei oder mehr Treibmitteln eingesetzt. Besonders bevorzugt sind binäre und ternäre Gemische.
Bevorzugte Alkohole sind Methanol, Ethanol, 1 -Propanol, 2-Propanol, 1 -Butanol, 2- Butanol, 2-Methylpropanol und tert.-Butanol. Besonders bevorzugt sind 2-Propanol und Ethanol. Insbesondere bevorzugt ist Ethanol.
CrC4-Carbonylverbindungen sind Ketone, Aldehyde, Carbonsäureester sowie Carbon- säureamide mit 1 - 4 Kohlenstoffatomen.
Geeignete Ketone sind Aceton und Methylethylketon, als Formiate bevorzugt sind Me- thylformiat, Ethylformiat, n-Propylformiat und i-Propylformiat. Bevorzugt sind Methyl- formiat und Aceton. Insbesondere bevorzugt ist Aceton.
In den Co-Treibmitteln b2) und in dem Kohlendioxid b1 ) kann Wasser b3) enthalten sein. Wasser gelangt in die Treibmittelkomponente (T) vor allem durch die Verwendung von technischen Alkoholen und Ketonen. Die Wasserkonzentrationen der Treibmittel- komponente (T) liegen innerhalb der vorstehend genannten Konzentrationsbereiche.
In einer bevorzugten Ausführungsform ist die Treibmittelkomponente im Wesentlichen wasserfrei. Besonders bevorzugt sind Mischungen von Kohlendioxid und Ethanol, Kohlendioxid und Aceton, Kohlendioxid und Methylformiat, Kohlendioxid und Mischungen aus Ethanol und Aceton in den oben genannten Mischungsverhältnissen.
Die Treibmittelkomponente (T) wird der Polymerschmelze in einem Anteil von insgesamt 1 bis 12 Gew.-%, bevorzugt 1 bis 8 und insbesondere bevorzugt 1 ,5 bis 7 Gew.- % (jeweils bezogen auf P) zugesetzt. In einer bevorzugten Ausführungsform wird die Treibmittelkomponente (T) der Polymerschmelze in einem Anteil von 1 bis 4,5 Gew.-% (bezogen auf P) zugesetzt.
In einer weiteren bevorzugten Ausführungsform wird die Treibmittelkomponente (T) der Polymerschmelze in einem Anteil von 2,5 bis 8 Gew.-% (bezogen auf P) zugesetzt.
Eine geeignete Zusammensetzung der Treibmittelkomponente (T) enthält 15 bis 95 Gew.-% der Komponente b1 ) und 5 bis 85 Gew.-% der Komponente b2). Bevorzugt beträgt der Anteil der Komponente b1 ) bezogen auf P weniger als 6 Gew.-% und der Anteil der Komponente b2) bezogen auf P weniger als 5 Gew.-%, und der Gesamtanteil der Komponenten b1 ) und b2) bezogen auf P weniger als 8 Gew.-%. Besonders bevorzugt beträgt der Anteil der Komponente b1 ) bezogen auf P weniger als 4.5 Gew.- % und der Anteil der Komponente b2) bezogen auf P weniger als 4 Gew.-%. In einer besonders bevorzugten Ausführungsform wird die Treibmittelkomponente (T) der Polymerschmelze in einem Anteil von 1 bis 4,5 Gew.-%, bezogen auf P, zugesetzt und die Treibmittelkomponente enthält 15 bis 40 Gew.-% (bezogen auf T) Kohlendioxid (Komponente b1 ).
In einer weiteren besonders bevorzugten Ausführungsform wird die Treibmittelkomponente (T) der Polymerschmelze in einem Anteil von 1 bis 4,5 Gew.-%, bezogen auf (P), zugesetzt, die Treibmittelkomponente enthält 15 bis 40 Gew.-% (bezogen auf T) Kohlendioxid (Komponente b1 ) und der Extrusionsschaum weist eine Dichte im Bereich von 50 bis 130 g/l, bevorzugt von 60 bis 120 g/l auf.
In einer weiteren besonders bevorzugten Ausführungsform wird die Treibmittelkomponente (T) der Polymerschmelze in einem Anteil von 2,5 bis 8 Gew.-% (bezogen auf P) zugesetzt und die Treibmittelkomponente enthält 55 bis 75 Gew.-%, (bezogen auf T) Kohlendioxid (Komponente b1 ).
In einer weiteren besonders bevorzugten Ausführungsform wird die Treibmittelkomponente (T) der Polymerschmelze in einem Anteil von 2,5 bis 8 Gew.-% (bezogen auf P) zugesetzt, die Treibmittelkomponente enthält 55 bis 75 Gew.-%, (bezogen auf T) Kohlendioxid (Komponente b1 ) und der Extrusionsschaum weist eine Dichte im Bereich von 20 bis 60 g/l, bevorzugt 20 bis 50 g/l und insbesondere bevorzugt 25 bis 45 g/l auf.
Die Treibmittelkomponente (T) kann in eine geschmolzene Polymerkomponente (P) durch jede dem Fachmann bekannte Methode eingebracht werden. Geeignet sind beispielsweise Extruder oder Mischer (z.B. Kneter). In einer bevorzugten Ausführungs- form wird das Treibmittel mit der geschmolzenen Polymerkomponente (P) unter erhöhtem Druck gemischt. Der Druck muss dabei so hoch sein, dass im Wesentlichen ein Aufschäumen des geschmolzenen Polymermaterials verhindert und eine homogene Verteilung der Treibmittelkomponente (T) in der geschmolzenen Polymerkomponente (P) erreicht wird. Geeignete Drücke sind 50 bis 500 bar (absolut), bevorzugt 100 bis 300 bar (absolut), besonders bevorzugt 150 bis 250 bar (absolut). Die Temperatur in Schritt (b) des erfindungsgemäßen Verfahrens muss so gewählt sein, dass das poly- mere Material im geschmolzenen Zustand vorliegt. Dazu ist es notwendig, dass die Polymerkomponente P auf eine Temperatur oberhalb der Schmelz- bzw. Glasübergangstemperatur erhitzt wird. Geeignete Temperaturen betragen im Allgemeinen mindestens 150 °C, bevorzugt 160 bis 280 °C, besonders bevorzugt 180 bis 240 °C.
Die Zugabe des Treibmittels kann im Aufschmelzextruder (Primärextruder) oder in einem nachgelagerten Schritt erfolgen.
In einer bevorzugten Ausführungsform wird die schäumbare Polymerschmelze in dem Fachmann bekannten XPS-Extrudern durchgeführt, beispielsweise über einem Tandem-Aufbau aus Aufschmelzextruder (Primärextruder) und Kühlextruder (Sekundärextruder). Das Verfahren kann kontinuierlich und diskontinuierlich durchgeführt werden, wobei die Polymerkomponente (P) im Primärextruder aufgeschmolzen wird (Schritt (a)) und die Zugabe des Treibmittels (Schritt (b)) zur Ausbildung einer schäum- baren Schmelze ebenfalls im Primärextruder erfolgt.
Danach wird die mit Treibmittel versehene schäumbare Schmelze im Sekundärextruder auf eine für das Schäumen geeignete Temperatur von 50-180 °C, bevorzugt auf eine Temperatur von 80-150 °C, gekühlt.
In einer Ausführungsform werden der Polymerkomponente (P) vor Durchführung des Verfahrens und/oder in mindestens einem der Schritte a), b) und/oder c) Additive, d.h. Hilfs- und/oder Zusatzstoffe, zugegeben. Geeignete Hilfs- und Zusatzstoffe sind dem Fachmann bekannt.
In einer bevorzugten Ausführungsform wird der Polymerkomponente (P) wenigstens ein Nukleierungsmittel zugesetzt. Als Nukleierungsmittel können feinteilige, anorganische Feststoffe wie Talkum, Metalloxide, Silikate oder Polyethylenwachse in Mengen von im Allgemeinen 0, 1 bis 10 Gew.-%, bevorzugt 0, 1 bis 3 Gew.-%, besonders bevor- zugt 1 bis 1 ,5 Gew.-%, bezogen auf P, eingesetzt werden. Der mittlere Teilchendurchmesser des Nukleierungsmittels liegt in der Regel im Bereich von 0,01 bis 100 μηη, bevorzugt 1 bis 60 μηη. Ein besonders bevorzugtes Nukleierungsmittel ist Talkum, beispielsweise Talkum von der Firma Luzenac Pharma. Das Nukleierungsmittel kann nach dem Fachmann bekannten Methoden zugegeben werden. Die Zugabe kann vor Durchführung des Verfahrens und/oder in Schritt a) und/oder b) und/oder c) erfolgen. Gewünschtenfalls können ein oder mehrere Additive wie Keimbildner, Füllstoffe (beispielsweise mineralische Füllstoffe wie Glasfasern), Weichmacher, Flammschutzmittel, IR-Absorber wie Ruß oder Graphit, Aluminiumpulver und Titandioxid, lösliche und unlösliche Farbstoffe sowie Pigmente zugegeben werden. Bevorzugte Additive sind Gra- phit und Ruß.
Besonders bevorzugt wird Graphit in Mengen von im Allgemeinen 0,05 bis 25 Gew.-%, insbesondere bevorzugt in Mengen von 2 bis 8 Gew.-%, bezogen auf P zugegeben. Geeignete Teilchengrößen für das eingesetzte Graphit liegen im Bereich von 1 bis 50 μηη, bevorzugt im Bereich von 2 bis 10 μηη.
Aufgrund der Brandschutzbestimmungen in der Bauindustrie und anderen Branchen werden bevorzugt ein oder mehrere Flammschutzmittel zugegeben. Geeignete Flammschutzmittel sind beispielsweise Tetrabrombisphenol A, bromierte Polystyrol Oligomere, Tetrabrombisphenol-A-diallylether, Blähgraphit, roter Phosphor, Triphe- nylphosphat und 9,10-Dihydro-9-oxa-10-phosphaphenanthren-10-oxid. Ein weiteres geeignetes Flammschutzmittel ist beispielsweise Hexabromcyclododecan (HBCD), insbesondere die technischen Produkte, welche im Wesentlichen das o, ß- und v- Isomer und vorzugsweise einen Zusatz von Dicumyl (2,3-Dimethyl-2,3-diphenylbutan) als Synergisten enthalten. Insbesondere bevorzugt sind bromierte aromatische Verbindungen, wie Tetrabrombisphenol A, und bromierte Polystyrol Oligomere.
Bevorzugt zur Wärmedämmung ist insbesondere die Zugabe von Graphit, Ruß, Aluminiumpulver oder eines I R-Farbstoffs (z.B. Indoanilin-Farbstoffe, Oxonol-Farbstoffe oder Anthrachinon-Farbstoffe).
In der Regel werden die Farbstoffe und Pigmente in Mengen im Bereich von 0,01 bis 30, bevorzugt im Bereich von 1 bis 5 Gew.-% zugesetzt (bezogen auf P). Zur homogenen und mikrodispersen Verteilung der Pigmente in der Polymerschmelze kann es ins- besondere bei polaren Pigmenten zweckmäßig sein, ein Dispergierhilfsmittel, z.B. Or- ganosilane, epoxygruppenhaltige Polymere oder Maleinsäureanhydrid-gepfropfte Sty- rolpolymere, einzusetzen. Bevorzugte Weichmacher sind Fettsäureester, Fettsäurea- mide und Phthalate, die in Mengen von 0,05 bis 10 Gew.-%, bezogen auf die Polymerkomponente (P), eingesetzt werden können.
Die Gesamtmenge an Additiven beträgt im Allgemeinen 0 bis 30 Gew.-%, vorzugsweise 0 bis 20 Gew.-%, bezogen auf das Gesamtgewicht des Extrusionsschaums.
In einer bevorzugten Ausführungsform beträgt die Gesamtmenge an Additiven 0,5 bis 30 Gew.-%, besonders bevorzugt 0,5 bis 20 Gew.-% (bezogen auf das Gesamtgewicht des Extrusionsschaums). In einer weiteren Ausführungsform enthält der Extrusionsschaum keine Additive.
Schritt (c) des erfindungsgemäßen Verfahrens umfasst das Aufschäumen der schäum- baren Schmelze, um einen Extrusionsschaumstoff zu erhalten.
Die Schmelze wird dazu durch eine geeignete Vorrichtung, beispielsweise eine Düsenplatte, gefördert. Die Düsenplatte wird mindestens auf die Temperatur der treibmittel- haltigen Polymerschmelze beheizt. Bevorzugt liegt die Temperatur der Düsenplatte bei 60 bis 200 °C. Besonders bevorzugt liegt die Temperatur der Düsenplatte bei 1 10 bis 180 °C.
Die treibmittelhaltige Polymerschmelze wird durch die Düsenplatte in einen Bereich überführt, in dem ein niedrigerer Druck herrscht als in demjenigen Bereich, in dem die schäumbare Schmelze vor Extrusion durch die Düsenplatte gehalten wird. Der niedrigere Druck kann überatmosphärisch oder unteratmosphärisch sein. Bevorzugt ist die Extrusion in einen Bereich mit atmosphärischem Druck.
Schritt (c) wird ebenfalls bei einer Temperatur durchgeführt, bei der das zu schäumen- de polymere Material in geschmolzenem Zustand vorliegt. Im Allgemeinen bei Temperaturen von 50 bis 170 °C, bevorzugt bei 90 bis 150 °C, besonders bevorzugt bei 1 10 bis 140 °C. Dadurch, dass die treibmittelhaltige Polymerschmelze in Schritt (c) in einen Bereich überführt wird, in dem ein niedrigerer Druck herrscht, wird das Treibmittel in den gasförmigen Zustand überführt. Durch den großen Volumenanstieg wird die Poly- merschmelze ausgedehnt und aufgeschäumt.
Die geometrische Form des Querschnitts der nach dem erfindungsgemäßen Verfahren erhältlichen Extrusionsschaumstoffe wird im Wesentlichen durch die Wahl der Düsenplatte und ggf. durch geeignete Nachfolgeeinrichtungen wie Plattenkalibrierungen, Rol- lenbahnabzüge oder Bandabzüge bestimmt und ist frei wählbar.
Die nach dem erfindungsgemäßen Verfahren erhältlichen Extrusionsschaumstoffe weisen bevorzugt einen rechtwinkligen Querschnitt auf. Die Dicke der Extrusionsschaumstoffe wird dabei durch die Höhe des Düsenplattenschlitzes bestimmt. Die Breite der Extrusionsschaumstoffe wird durch die Breite des Düsenplattenschlitzes bestimmt. Die Länge der Extrusionsschaumstoffteile wird in einem nachgelagerten Arbeitsschritt durch bekannte, dem Fachmann geläufige Verfahren wie Verkleben, Verschweißen, Zersägen und Zerschneiden bestimmt. Insbesondere bevorzugt sind Extrusionsschaumstoffteile mit einer plattenformigen Geometrie. Plattenformig bedeutet, dass die Abmessung der Dicke (Höhe) im Vergleich zu der Abmessung der Breite und der Abmessung der Länge des Formteils klein ist. Die nach dem erfindungsgemäßen Verfahren erhältlichen Extrusionsschaumstoffteile weisen in der Regel eine Druckfestigkeit, gemessen nach DI N EN 826, im Bereich von 0, 15 bis 6 N/mm2, bevorzugt im Bereich von 0,3 bis 2 N/mm2, auf. Bevorzugt liegt die Dichte der Schaumstoffplatten im Bereich von 20 bis 150 g/l. Die erfindungsgemäßen Extrusionsschaumstoffe weisen bevorzugt Zellen auf, die gemessen nach DIN ISO 4590 zu mindestens 90 %, insbesondere zu 95 bis 100 % geschlossenzellig sind.
Der erfindungsgemäße Extrusionsschaumstoff weist eine Zellzahl im Bereich von 1 bis 30 Zellen pro mm, bevorzugt von 3 bis 25 Zellen pro mm und insbesondere bevorzugt von 3 bis 20 Zellen pro mm auf.
Gegenstand der Erfindung ist auch die Verwendung der erfindungsgemäßen Extrusionsschaumstoffe und der daraus erhältlichen Formkörper. Bevorzugt ist die Verwen- dung als Isoliermaterial insbesondere in der Bauindustrie, unter- und oberirdisch, z.B. für Fundamente, Wände, Böden und Dächer. Bevorzugt ist ebenfalls die Verwendung als Strukturschaum, insbesondere für Leichtbauanwendungen und als Kernmaterial für Verbundanwendungen. Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert, ohne sie darauf zu beschränken.
Beispiele Verwendete Materialien
Luran 3360 SAN mit einem Acrylnitrilgehalt von 33 Gew.-% und einer Viskositätszahl von 60 ml/g (Handelsprodukt der BASF SE)
Luran 3380 SAN mit einem Acrylnitrilgehalt von 33 Gew.-% und einer Viskositätszahl von 80 ml/g (Handelsprodukt der BASF SE)
Luran 33100 SAN mit einem Acrylnitrilgehalt von 33 Gew.-% und einer Viskositätszahl von 100 ml/g (Handelsprodukt der BASF SE)
Luran 2580 SAN mit einem Acrylnitrilgehalt von 25 Gew.-% und einer Viskositätszahl von 80 ml/g (Handelsprodukt der BASF SE)
Talkum Talkum IT Extra, Luzenac Pharma Allgemeine Arbeitsvorschrift
Die eingesetzten Polymere wurden zusammen mit Talkum kontinuierlich einem Aufschmelzextruder zugeführt. Der Gesamtdurchsatz der Polymere betrug 7 kg/h. Durch eine in dem Aufschmelzextruder eingebrachte Injektionsöffnung wurden kontinuierlich die Treibmittel (C02, Ethanol, Aceton und/oder Methylformiat) zugeführt. Die treibmit- telhaltige Schmelze wurde in einem nachfolgenden Kühlextruder abgekühlt und durch eine Schlitzdüse extrudiert. Die aufschäumende Schmelze wurde ohne Kalibrierung über ein Rollenband abgezogen.
In Tabelle 1 ist der Einfluss unterschiedlicher Treibmittelkomponenten (T) bei gleicher Polymerzusammensetzung gezeigt. Tabelle 1
Figure imgf000015_0001
Gewichtsanteile * gemessen nach DIN ISO 4590
Die Vergleichsbeispiele V1 und V2 weisen hohe Dichten auf, die für Extrusions- schaumstoffe zum Einsatz in der Bauindustrie nicht akzeptabel sind. Zudem ist die Zellstruktur in V2 nicht vollständig homogen. Die Vergleichsbeispiele V3 und V4 zeigen aufgrund der geringen Werte für die Geschlossenzelligkeit keine befriedigenden Isolationseigenschaften. In Tabelle 2 sind erfindungsgemäße Extrusionsschaumstoffe (B3 - B6) gezeigt, bei denen SAN unterschiedlicher Molekulargewichte eingesetzt werden.
Tabelle 2 SAN unterschiedlicher Molekulargewichte mit C02 + Ethanol
Figure imgf000016_0001
* gemessen nach DIN ISO 4590
In Tabelle 3 wird die Geschlossenzelligkeit des Beispiels B7 mit der des Vergleichsbei- spiels V5 verglichen.
Tabelle 3 SAN mit C02 + Ethanol, Zusatz von Polystyrol (PS)
Figure imgf000016_0002
* gemessen nach DIN ISO 4590
Der Zusatz von Polystyrol bringt zwar leichte Vorteile bei der Dichte, vermindert aber die Geschlossenzelligkeit in nicht akzeptabler Weise.
In Tabelle 4 wird gezeigt, dass erfindungsgemäße Extrusionsschaume mit gängigen Flammschutzmitteln kompatibel sind. Tabelle 4 SAN mit unterschiedlichen Flammschutzmitteln (HBCD, TBBPA)
Figure imgf000017_0001
* Tetrabrombisphenol A *** Hexabromcyclododecan
In Tabelle 5 ist der Einfluss unterschiedlicher Treibmittelkomponenten T, speziell Aceton, und unterschiedlicher Treibmittelkonzentrationen bei gleicher Polymerzusammensetzung gezeigt.
Tabelle 5
Figure imgf000017_0002
* nach DIN ISO 4590
Die Vergleichsbeispiele B12 bis B15 zeigen, dass Aceton analog zu Ethanol als geeignetes Co-Treibmittel eingesetzt werden kann. In Tabelle 6 ist der Einfluss unterschiedlicher Treibmittelkomponenten (T), speziell Methylformiat, und unterschiedlicher Treibmittelkonzentrationen bei gleicher Polymerzusammensetzung gezeigt. Tabelle 6
Figure imgf000018_0001
* nach DIN ISO 4590
Die Vergleichsbeispiele B16 und B17 zeigen, dass Methylformiat analog zu Ethanol als geeignetes Co-Treibmittel eingesetzt werden kann.

Claims

Patentansprüche
Geschlossenzelliger Extrusionsschaumstoff mit einer Dichte im Bereich von 20 bis 150 g/l und einer Zellzahl im Bereich von 1 bis 30 Zellen pro mm, erhältlich durch
(a) Erhitzen einer Polymerkomponente (P), die gebildet ist aus
P1 ) 80 bis 100 Gew.-% (bezogen auf P) von einem oder mehreren Styrol- Acrylnitril-Copolymeren (SAN), enthaltend a1 ) 18 bis 40 Gew.-% (bezogen auf SAN) einpolymerisiertes Acrylnitril,
60 bis 82 Gew.-% (bezogen auf SAN) einpolymerisiertes Styrol, und a3) 0 bis 22 Gew.-% (bezogen auf SAN) mindestens eines einpolymeri- sierten Monomers aus der Gruppe bestehend aus Alkyl- (meth)acrylaten, (Meth)acryl säure Maleinsäureanhydrid und Maleini- miden,
P2) 0 bis 20 Gew.-% (bezogen auf P) von einem oder mehreren thermoplastischen Polymeren aus der Gruppe bestehend aus Styrolcopolymeren, Poly- olefinen, Polyacrylaten, Polycarbonaten (PC), Polyestern, Polyamiden, Po- lyethersulfonen (PES), Polyetherketonen (PEK) und Polyethersulfiden, zur Ausbildung einer Polymerschmelze,
(b) Einbringen von 1 bis 12 Gew.-% (bezogen auf P) einer Treibmittelkomponente (T), die weniger als 0,2 Gew.-% Wasser (bezogen auf P) enthält, ent- haltend b1 ) 15 bis 95 Gew.-% (bezogen auf T) Kohlendioxid und b2) 5 bis 85 Gew.-% (bezogen auf T) eines oder mehrerer Co-Treibmittel ausgewählt aus der Gruppe bestehend aus CrC4 Alkoholen und d-
C4 Carbonylverbindungen, in die Polymerschmelze zur Ausbildung einer schäumbaren Schmelze, (c) Extrusion der schäumbaren Schmelze in einen Bereich niedrigeren Drucks unter Aufschäumen zu dem Extrusionsschaum,
(d) gegebenenfalls Zugabe von Additiven zu der Polymerkomponente in min- destens einem der Schritte a), b) und/oder c).
2. Extrusionsschaumstoff gemäß Anspruch 1 , wobei 1 bis 8 Gew.-% der Treibmittelkomponente (T), enthaltend b1 ) 15 bis 95 Gew.-% (bezogen auf T) Kohlendioxid und b2) 5 bis 85 Gew.-% (bezogen auf T) eines oder mehrerer Co-Treibmittel ausgewählt aus der Gruppe bestehend aus CrC4 Alkoholen, C3-C4 Ketonen und C2-C4 Estern, eingesetzt werden.
3. Extrusionsschaumstoff gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Polymerkomponente (P) ausschließlich aus der Komponente (P1 ) besteht.
4. Extrusionsschaumstoff gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Polymerkomponente (P) als Monomere ausschließlich Acryl- nitril und Styrol enthält. 5. Extrusionsschaumstoff gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Treibmittelkomponente (T) ein Gemisch aus Kohlendioxid und Ethanol eingesetzt wird.
6. Extrusionsschaumstoff gemäß einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, dass als Treibmittelkomponente (T) ein Gemisch aus Kohlendioxid und
Aceton eingesetzt wird.
7. Extrusionsschaumstoff gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Treibmittelkomponente (T) ein Gemisch aus Kohlendioxid und Methylformiat eingesetzt wird.
8. Extrusionsschaumstoff gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Treibmittelkomponente (T) ein Gemisch aus Kohlendioxid, Aceton und Ethanol eingesetzt wird.
9. Extrusionsschaumstoff gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Gesamtanteil der Treibmittelkomponente (T) aus Kohlendioxid und Ethanol besteht und maximal 8 Gew.-% (bezogen auf P) beträgt, wobei der Anteil von Kohlendioxid max. 6 Gew.-% und der Anteil Ethanol maximal 5 Gew.- % ist.
Extrusionsschaumstoff gemäß Anspruch 6, dadurch gekennzeichnet, dass der Gesamtanteil der Treibmittelkomponente (T) aus Kohlendioxid und Aceton besteht und maximal 8 Gew.-% (bezogen auf P) beträgt, wobei der Anteil von Kohlendioxid maximal 6 Gew.-% und der Anteil Aceton maximal 5 Gew.-% ist.
Extrusionsschaumstoff gemäß Anspruch 8, dadurch gekennzeichnet, dass der Gesamtanteil der Treibmittelkomponente (T) aus Kohlendioxid, Aceton und Ethanol besteht und maximal 8 Gew.-% (bezogen auf P) beträgt, wobei der Anteil von Kohlendioxid maximal 6 Gew.-% und der Anteil der Mischung aus Aceton und Ethanol maximal 5 Gew.-% ist.
Extrusionsschaumstoff gemäß Anspruch 1 1 , dadurch gekennzeichnet, dass der Anteil von Aceton mindestens 50 Gew.-% (bezogen auf die Aceton/Ethanol- Mischung) beträgt.
Verfahren zur Herstellung eines Extrusionsschaumstoffs mit einer Dichte im Bereich von 20 bis 150 g/l, einer Zellzahl im Bereich von 1 bis 30 Zellen pro mm durch
(a) Erhitzen einer Polymerkomponente (P), die gebildet ist aus
P1 ) 80 bis 100 Gew.-% (bezogen auf P) von einem oder mehreren Styrol- Acrylnitril-Copolymeren (SAN), enthaltend a1 ) 18 bis 40 Gew.-% (bezogen auf SAN) einpolymerisiertes Acrylnitril, a2) 60 bis 82 Gew.-% (bezogen auf SAN) einpolymerisiertes Styrol, und a3) 0 bis 22 Gew.-% (bezogen auf SAN) mindestens eines einpolymeri- sierten Monomers aus der Gruppe bestehend aus Alkyl- (meth)acrylaten, (Meth)acrylsäure Maleinsäureanhydrid und Maleini- miden,
0 bis 20 Gew.-% (bezogen auf P) von einem oder mehreren thermoplastischen Polymeren aus der Gruppe bestehend aus Styrolcopolymeren, Poly- olefinen, Polyacrylaten, Polycarbonaten (PC), Polyestern, Polyamiden, Po- lyethersulfonen (PES), Polyetherketonen (PEK) und Polyethersulfiden,
Ausbildung einer Polymerschmelze,
Einbringen von 1 bis 12 Gew.-% (bezogen auf P) einer Treibmittelkompo nente (T), die weniger als 0,2 Gew.-% Wasser (bezogen auf P) enthält, ent haltend
15 bis 95 Gew.-% (bezogen auf T) Kohlendioxid und
5 bis 85 Gew.-% (bezogen auf T) eines oder mehrerer Co-Treibmittel ausgewählt aus der Gruppe bestehend aus CrC4 Alkoholen und d- C4 Carbonylverbindungen, in die Polymerschmelze zur Ausbildung einer schäumbaren Schmelze,
Extrusion der schäumbaren Schmelze in einen Bereich niedrigeren Drucks unter Aufschäumen zu dem Extrusionsschaum, gegebenenfalls Zugabe von Additiven zu der Polymerkomponente (P) in mindestens einem der Schritte a), b) und/oder c).
14. Verfahren gemäß Anspruch 13, dadurch gekennzeichnet, dass die Polymerkom- ponente (P) nur aus der Komponente (P1 ) besteht.
15. Verfahren gemäß einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass die Polymerkomponente (P) als Monomere ausschließlich Acrylnitril und Styrol enthält.
16. Verfahren gemäß einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass als Treibmittelkomponente T ein Gemisch aus Kohlendioxid und Ethanol eingesetzt wird.
Verfahren gemäß einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass als Treibmittelkomponente (T) ein Gemisch aus Kohlendioxid und Aceton eingesetzt wird.
18. Verwendung des Extrusionsschaumstoffs gemäß einem der Ansprüche 1 bis 12 als Isoliermaterial.
19. Verwendung des Extrusionsschaumstoffs gemäß einem der Ansprüche 1 bis 12 als Strukturschaum.
PCT/EP2010/063049 2009-09-07 2010-09-06 San-extrusionsschaumstoffe WO2011026979A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP10752336.7A EP2475711B1 (de) 2009-09-07 2010-09-06 San-extrusionsschaumstoffe
ES10752336.7T ES2471492T3 (es) 2009-09-07 2010-09-06 Espumas de extrusi�n de SAN
CN2010800444727A CN102575043B (zh) 2009-09-07 2010-09-06 San挤出泡沫
RU2012113365/05A RU2012113365A (ru) 2009-09-07 2010-09-06 Экструзионные пеноматериалы из сополимера стирола с акрилонитрилом (san)
CA2773246A CA2773246A1 (en) 2009-09-07 2010-09-06 Extruded san foams
US13/394,477 US20120161061A1 (en) 2009-09-07 2010-09-06 Extruded san foams
JP2012528334A JP2013503956A (ja) 2009-09-07 2010-09-06 押出san発泡体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09169563 2009-09-07
EP09169563.5 2009-09-07

Publications (1)

Publication Number Publication Date
WO2011026979A1 true WO2011026979A1 (de) 2011-03-10

Family

ID=43098915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063049 WO2011026979A1 (de) 2009-09-07 2010-09-06 San-extrusionsschaumstoffe

Country Status (9)

Country Link
US (1) US20120161061A1 (de)
EP (1) EP2475711B1 (de)
JP (1) JP2013503956A (de)
KR (1) KR20120083389A (de)
CN (1) CN102575043B (de)
CA (1) CA2773246A1 (de)
ES (1) ES2471492T3 (de)
RU (1) RU2012113365A (de)
WO (1) WO2011026979A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520610A1 (de) 2011-05-05 2012-11-07 Basf Se Wärmeformbeständiger und Flämmgeschützter Extrusionsschaumstoff aus Styrolcopolymeren
US8636929B2 (en) 2010-05-21 2014-01-28 Basf Se Nanoporous foamed active compound-containing preparations based on pharmaceutically acceptable thermoplastically workable polymers
EP2692786A1 (de) 2012-08-02 2014-02-05 Basf Se Flammgeschützter und wärmeformbeständiger Extrusionsschaumstoff aus Styrolcopolymeren

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049061A1 (de) * 2012-09-27 2014-04-03 Basf Se Expandierbare polymerpartikel
KR20200087778A (ko) * 2017-11-27 2020-07-21 에보닉 오퍼레이션스 게엠베하 발포체의 기초로서의 pes-ppsu 블렌드
EP3663340B1 (de) 2018-12-03 2022-03-16 Trinseo Europe GmbH Schäume und verfahren zur bildung von schäumen von kettenverlängerten/verzweigten copolymeren aus vinylidensubstituierten aromatischen monomeren
PL3663339T3 (pl) 2018-12-03 2024-09-23 Trinseo Europe Gmbh Pianki i sposób formowania pianek z jonomerów kopolimerów winylidenowego monomeru aromatycznego i związków nienasyconych z grupami kwasowymi

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637366A1 (de) * 1996-09-13 1998-03-19 Basf Ag Schaumstoffplatten mit verbesserter Mineralölbeständigkeit und Expandierbarkeit
EP1479717A1 (de) * 2003-05-14 2004-11-24 BASF Aktiengesellschaft Extrudierte Schaumstoffplatten aus Styrol-Acrylonitril-Copolymeren
DE102004057602A1 (de) 2004-11-29 2006-06-01 Basf Ag Schaumstoffplatten mit verminderter Wärmeleitfähigkeit
WO2009099482A1 (en) * 2008-02-06 2009-08-13 Dow Global Technologies, Inc. Article and method of producing a low density foam blend of styrenic polymer and polyolefin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8309619B2 (en) * 2004-09-03 2012-11-13 Pactiv LLC Reduced-VOC and non-VOC blowing agents for making expanded and extruded thermoplastic foams

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637366A1 (de) * 1996-09-13 1998-03-19 Basf Ag Schaumstoffplatten mit verbesserter Mineralölbeständigkeit und Expandierbarkeit
EP1479717A1 (de) * 2003-05-14 2004-11-24 BASF Aktiengesellschaft Extrudierte Schaumstoffplatten aus Styrol-Acrylonitril-Copolymeren
DE10321787A1 (de) 2003-05-14 2004-12-09 Basf Ag Schaumstoffplatten mit verbesserter Lösungsmittelbeständigkeit
DE102004057602A1 (de) 2004-11-29 2006-06-01 Basf Ag Schaumstoffplatten mit verminderter Wärmeleitfähigkeit
WO2009099482A1 (en) * 2008-02-06 2009-08-13 Dow Global Technologies, Inc. Article and method of producing a low density foam blend of styrenic polymer and polyolefin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8636929B2 (en) 2010-05-21 2014-01-28 Basf Se Nanoporous foamed active compound-containing preparations based on pharmaceutically acceptable thermoplastically workable polymers
EP2520610A1 (de) 2011-05-05 2012-11-07 Basf Se Wärmeformbeständiger und Flämmgeschützter Extrusionsschaumstoff aus Styrolcopolymeren
WO2012150249A1 (de) 2011-05-05 2012-11-08 Basf Se Wärmeformbeständiger und flammgeschützter extrusionsschaumstoff aus styrolcopolymeren
EP2692786A1 (de) 2012-08-02 2014-02-05 Basf Se Flammgeschützter und wärmeformbeständiger Extrusionsschaumstoff aus Styrolcopolymeren

Also Published As

Publication number Publication date
KR20120083389A (ko) 2012-07-25
CA2773246A1 (en) 2011-03-10
EP2475711B1 (de) 2014-04-30
ES2471492T3 (es) 2014-06-26
JP2013503956A (ja) 2013-02-04
CN102575043B (zh) 2013-09-18
CN102575043A (zh) 2012-07-11
RU2012113365A (ru) 2013-10-20
EP2475711A1 (de) 2012-07-18
US20120161061A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
EP2475711B1 (de) San-extrusionsschaumstoffe
EP1517947B1 (de) Verfahren zur herstellung von expandierbarem polystyrol
WO2005056653A1 (de) Partikelschaumstoffformteile aus expandierbaren, füllstoff enthaltenden polymergranulaten
DE10358801A1 (de) Partikelschaumformteile aus expandierbaren Styrolpolymeren und Mischungen mit thermoplastischen Polymeren
WO2011073141A1 (de) Flammgeschützte polymerschaumstoffe
EP0643739B1 (de) Verfahren zur herstellung von schaumstoffplatten mit hoher druckfestigkeit aus styrolpolymerisaten
EP2751178B1 (de) Expandierbare temperaturbeständige styrol-copolymere
EP2706086A1 (de) Verfahren zur Herstellung von Schaumstoffplatten niedriger Dichte durch Extrusion von Styrolpolymeren unter Verwendung von Hydrofluorolefinen als Treibmittel
WO2009000872A1 (de) Partikelschaumformteile aus expandierbaren acrylnitrilcopolymeren
AT510311A1 (de) Flammgeschützte, wärmedämmende polymerisate und verfahren zu deren herstellung
EP1661939A1 (de) Schaumstoffplatten mit verminderter Wärmeleitfähigkeit
EP2692519A1 (de) Wärmeformbeständiger und stabilisierter Schaumstoff aus Styrolcopolymeren
EP1869112A1 (de) Verfahren zur herstellung von polystyrolschaumpartikeln hoher dichte
EP2475710A1 (de) Extrusionsschaumstoff
WO2012150249A1 (de) Wärmeformbeständiger und flammgeschützter extrusionsschaumstoff aus styrolcopolymeren
DE102012217665A1 (de) Verfahren zur Herstellung von SAN-basierten expandierbaren Polymerpartikeln
EP2475522A1 (de) Verbundformteil insbesondere für den möbelbau
EP3755742A1 (de) Formteil sowie mischung und verfahren zu seiner herstellung
EP1930368B1 (de) Verfahren zur Herstellung von Schaumstoffen mit vergrösserten Zellen
EP2565223A1 (de) Expandierbares Granulat
EP2692786A1 (de) Flammgeschützter und wärmeformbeständiger Extrusionsschaumstoff aus Styrolcopolymeren
DE69919610T2 (de) Verfahren zur Herstellung eines thermoplastischen Schaumstoffes mittels Wasser und eines Ethers
WO2012089574A1 (de) Schaumstoffplatte auf basis von styrolpolymer-polyolefin-mischungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044472.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10752336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13394477

Country of ref document: US

Ref document number: 2773246

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012528334

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010752336

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127008964

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012113365

Country of ref document: RU