WO2011025285A2 - System and method for manufacturing silicon carbide pulverulent body - Google Patents
System and method for manufacturing silicon carbide pulverulent body Download PDFInfo
- Publication number
- WO2011025285A2 WO2011025285A2 PCT/KR2010/005753 KR2010005753W WO2011025285A2 WO 2011025285 A2 WO2011025285 A2 WO 2011025285A2 KR 2010005753 W KR2010005753 W KR 2010005753W WO 2011025285 A2 WO2011025285 A2 WO 2011025285A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon
- silicon carbide
- less
- silicon
- mixture
- Prior art date
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 61
- 238000000034 method Methods 0.000 title claims description 34
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 69
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 55
- 239000000203 mixture Substances 0.000 claims abstract description 41
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 29
- 239000010703 silicon Substances 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 33
- 239000006229 carbon black Substances 0.000 claims description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 238000010000 carbonizing Methods 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 9
- 239000010439 graphite Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 229910021485 fumed silica Inorganic materials 0.000 claims description 7
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims description 5
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 5
- 239000004642 Polyimide Substances 0.000 claims description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 5
- 239000002041 carbon nanotube Substances 0.000 claims description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 5
- 229920002678 cellulose Polymers 0.000 claims description 5
- 239000001913 cellulose Substances 0.000 claims description 5
- 229910003472 fullerene Inorganic materials 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- 239000005011 phenolic resin Substances 0.000 claims description 5
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 5
- 229920001721 polyimide Polymers 0.000 claims description 5
- 229920002635 polyurethane Polymers 0.000 claims description 5
- 239000004814 polyurethane Substances 0.000 claims description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 5
- 239000002994 raw material Substances 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- 239000008096 xylene Substances 0.000 claims description 5
- 239000010453 quartz Substances 0.000 claims description 4
- 229910002027 silica gel Inorganic materials 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 4
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- -1 prepolymer Polymers 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 abstract description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 238000003763 carbonization Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 150000001722 carbon compounds Chemical class 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000000815 Acheson method Methods 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002905 metal composite material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/956—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/90—Carbides
- C01B32/914—Carbides of single elements
- C01B32/956—Silicon carbide
- C01B32/963—Preparation from compounds containing silicon
- C01B32/97—Preparation from SiO or SiO2
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6267—Pyrolysis, carbonisation or auto-combustion reactions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/6268—Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63408—Polyalkenes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63416—Polyvinylalcohols [PVA]; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63424—Polyacrylates; Polymethacrylates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63448—Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63456—Polyurethanes; Polyisocyanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63496—Bituminous materials, e.g. tar, pitch
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3418—Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/424—Carbon black
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
- C04B2235/5288—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/72—Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
Definitions
- the present invention relates to a method and a system for manufacturing silicon carbide pulverulent body.
- SiC silicon carbide
- boron B
- SiC silicon carbide
- Al 2 O 3 is a representative of oxidant ceramics
- SiC is widely used as a representing one of non-oxidant ceramics.
- SiC fiber being reinforced material formed of ceramic and metal composite material, is vigorously explored in its use, and boron fiber is mainly used as epoxy reinforced material of high-end performance.
- SiC having an excellent physical property is definitely to be plentifully used reinforced material, in a case only a cost problem more expensive than other reinforced material is solved.
- SiC as composite material, is one of the most essential carbides in a ceramic field.
- ⁇ -phase having a cubic crystal structure and ⁇ -phase having a hexagonal crystal structure exist.
- ⁇ -phase is secure at a temperature range of 1400-1800°C, and ⁇ -phase is formed at more than 2000°C.
- the molecular weight of SiC is 40.1, its specific gravity is 3.21, and it is decomposed around 2500°C and over.
- silicon carbide has considerable high-temperature strength, has a superior property in anti-wear, anti-oxidation, anti-corrosion, creep resistance, etc. and thus draws attention as high-temperature structure material, and is currently extensively used high-level ceramic substance for such as a mechanical seal, a bearing, each kind of nozzle, a high-temperature cutting tool, an anti-fire plate, an abrasive, a reductant in steelmaking, and a lightning arrester.
- Such conventional technologies manufacture silicon carbide by mixing a solid state silicon source, for example, SiO 2 and Si, and a carbon source such kind as carbon and graphite and heat-processing thereof at 1350°C through 2000°C.
- a solid state silicon source for example, SiO 2 and Si
- a carbon source such kind as carbon and graphite and heat-processing thereof at 1350°C through 2000°C.
- Such conventional technologies accompany a problem in SiC pulverulent body recovery rate, and have limits per purity and a relatively high composite temperature.
- the present invention is intended to provide a high-purity carbon silicon pulverulent body manufacturing method and system capable of manufacturing carbon silicon pulverulent body non-expensively and easily.
- the present invention is to provide a method of manufacturing carbon silicon pulverulent body that can decrease a reaction energy needed for the production of carbon silicon pulverulent body in order to lower a heat-processing temperature, shorten a process time as well as obtain a higher recovery ratio.
- the present invention is related to a silicon carbide pulverulent body manufacturing method, characterized in that the method includes the step (a) of producing a mixture consisting of silicon sources and carbon sources in a mixer; and step (b) of synthesizing silicon carbide (SiC) pulverulent body by heating the mixture at a vacuum degree of larger than 0.03 torr and equal to and less than 0.5 torr and at a temperature of equal to or larger than 1300°C and equal to and less than 1900°C.
- a mass ratio of the silicon sources and the carbon sources is characteristically equal to and more than 1:1 and equal to and less than 4:1.
- the silicon source of the step (a) is selected from one and more of Fumed Silica, silica sol, silica gel, fine silica, and quartz powder.
- the carbon source is characteristically selected from one and more of a monomer including Carbon Black, carbon-nano tube, fullerene, phenol resin, franc resin, xylene resin, polyimide, polyurethane, polyacrylonitrile, polyvinyl alcohol, and poly acetic acid vinyl, prepolymer, cellulose, manufactured sugar, pitch, and tar.
- a monomer including Carbon Black, carbon-nano tube, fullerene, phenol resin, franc resin, xylene resin, polyimide, polyurethane, polyacrylonitrile, polyvinyl alcohol, and poly acetic acid vinyl, prepolymer, cellulose, manufactured sugar, pitch, and tar.
- a heating temperature of the step (b) is characteristically equal to or larger than 1600°C and equal to and less than 1900°C.
- a heating time of the step (b) is characteristically 3 hours.
- the silicon carbide pulverulent body manufacturing method further includes, between the step (a) and the step (b), the step of heating the mixture and carbonizing carbon sources contained in the mixture.
- the carbonizing step is characterized by carbonizing at a temperature of equal to or larger than 700°C and equal to and less than 1200°C.
- the carbonizing step is characterized by carbonizing at a temperature of equal to or larger than 900°C and equal to and less than 1100°C.
- a silicon carbide pulverulent body manufacturing system of the present invention characteristically includes a mixer producing a mixture consisting of silicon sources and carbon sources; and a sealed crucible synthesizing silicon carbide (SiC) by heating the mixture at a vacuum degree of equal to or larger than 0.03 torr and equal to and less than 0.5 torr, and at a temperature of 1300°C and more and 1900°C and less.
- SiC silicon carbide
- a mass ratio of the silicon sources and the carbon sources is characteristically equal to and more than 1:1 and equal to and less than 4:1.
- the silicon source is Fumed Silica
- the carbon source is carbon black
- a heating temperature of the crucible is characteristically 1600°C and more and 1900°C and less.
- the heating time is characteristically 30 minutes to 5 hours.
- the silicon carbide pulverulent body manufacturing system further includes a carbonizer carbonizing carbon sources contained in the mixture by heating the mixture.
- the carbonizer characteristically carbonizes a temperature of 700°C and more and 1,200°C and less.
- the carbonizer characteristically carbonizes a temperature of 900°C and more and 1,100°C and less.
- the present invention is related to a silicon carbide pulverulent body manufacturing method, including the step (a) of producing a silicon carbide raw material mixture by mixing SiO powder and carbon sources in a mixer; and the step (b) of obtaining silicon carbide pulverulent body by heat-processing the mixture at a temperature of 1,400°C and over and 1,700°C and less and for 30 minutes and over and 7 hours and less in a crucible.
- the carbon source of the step (a) is characteristically carbon black.
- a mixing ratio of carbon versus silicon is characteristically 1.3 and over and 1.8 and less.
- the step (a) uses a ball mill as a mixer, characterized by the step of producing a silicon carbide mixture by mixing SiO, carbon sources, and balls for a ball mill.
- the method further includes the step (1) of recovering a silicon carbide mixture by filtering the balls for a ball mill out using a sieve.
- the method further includes the step (2) of measuring the recovered mixture in a graphite crucible.
- the crucible material in the step (b) is graphite, characterized by filling vacuum or inert gas in an inner space.
- the present invention can be manufactured compared to an existing silicon carbide pulverulent body manufacturing method at low pressure and low temperature, can save a process cost and easily obtain high-purity silicon carbide pulverulent body.
- the present invention can lower a temperature and shorten time in a heat-processing process in the synthesis of silicon carbide pulverulent body, and enhance a recovery ratio of silicon carbide pulverulent body over a general silicon compound use process.
- FIG. 1 is a block diagram of a silicon carbide pulverulent manufacturing method according to one preferred embodiment of the invention
- FIG. 2 is a construction block diagram of a silicon carbide pulverulent manufacturing system according to one preferred embodiment of the invention.
- FIG. 3 is a flow chart of a silicon carbide pulverulent body manufacturing method according to another preferred embodiment of the invention.
- FIG. 1 is a block diagram of a silicon carbide pulverulent body manufacturing method according to one preferred embodiment of the present invention.
- first silicon sources and carbon sources are prepared, particularly it is desirable to make preparations of fumed silica as the silicon sources and carbon black as the carbon sources (S1).
- the silicon sources and carbon sources are limited to those mentioned, but silica sol, SiO 2 (silica gel), fine silica, quartz powder may be used as the silicon sources.
- solid carbon such as carbon-nano tube, fullerene or organic compounds having a higher remaining carbon ratio
- monomer or prepolymer such as phenol resin, franc resin, xylene resin, polyimide, polyurethane, polyacrylonitrile, polyvinyl alcohol and poly acetic acid vinyl, cellulose, manufactured sugar, pitch, tar, and their mixtures may be used.
- silicon sources and carbon sources are mixed.
- 40g of fumed silica as the silicon sources and 18g of carbon black as the carbon sources are mixed (S2).
- S2 fumed silica
- a mass ratio of silicon sources and carbon sources is desirable to be 1:1 and over and 4:1 and less.
- organic carbon sources requires carbon sources having about 2 times mass over solid carbon sources, but liquid carbon sources may have somewhat differences based on carbon yield produced during a later carbonization procedure.
- a mixture where silicon sources and carbon sources are mixed is heated, and thus carbon sources contained in the mixture is carbonized (S3).
- the carbonization process is desirable to be at a temperature of 700°C and over and 1200°C and less. Also, it is more desirable to maintain a temperature of the carbonization process at 900°C and over and 1100°C and less, and in a case carbon sources not being organic carbon material, the carbonization process can be omitted.
- the mixture is heated at a vacuum degree of larger than 0.03 torr and 0.5 torr and less and a temperature of 1300°C and over and 1900°C and less to synthesize silicon carbide (SiC) pulverulent body (S4).
- SiC silicon carbide
- a heating time is desired to be 30 minutes to 5 hours but not necessarily limited to this.
- a heating temperature is more desirable to be 1600°C and over and 1900°C and less.
- a synthetic process condition is desirable to have 1 torr of a vacuum degree, and it is more desirable to perform a heat-processing at a vacuum atmosphere of 0.1 torr and less.
- high-purity silicon carbide pulverulent body may be manufactured at a low-cost.
- Such an effect is indicated in Table 1 below compared to a case an existing method is used.
- a comparison example indicates a case of producing silicon carbide pulverulent body in an existing way.
- a first example and a second example are cases of producing silicon carbide pulverulent body using a manufacturing method according to the present invention.
- a common condition in all cases is that 40g of fumed silica having 40nm average diameter as silicon sources is selected and 18g of carbon black with 20nm average diameter as carbon sources is selected in order to a mixing process and a carbonization process is omitted.
- the comparison example shows one of synthesizing for 3 hours at a temperature of 1700°C, under Argon (Ar) gas ambient in a crucible.
- a first example is one of synthesizing at a vacuum degree of 0.1 torr and over and 0.5 torr and less in a crucible, at 1700°C and for 3 hours
- a second example is one of synthesizing at a vacuum degree of 0.1 torr and over and 0.5 torr and less in a crucible, at 1600°C and for 3 hours.
- impurity content of a first example and a second example is significantly small over a comparison example.
- the use of the present invention can save a manufacturing cost and obtain high-purity silicon carbide pulverulent body having much less impurity by using a vacuum state instead of the use of argon gas.
- FIG. 2 is a construction block diagram of a silicon carbide pulverulent body manufacturing system according to one preferred embodiment of the present invention.
- a silicon carbide pulverulent body manufacturing system 100 includes a mixer 110, a crucible 120, and a carbonizer 130.
- a mixer mixes silicon sources and carbon sources to produce a mixture comprised of the silicon sources and the carbon sources.
- the silicon sources and carbon sources may be selected from various kinds as described in FIG. 1. Particularly, a mass ratio of silicon sources and carbon sources is desirable to be 1:1 and over and 4:1 and less.
- a carbonizer 130 is coupled to a mixer 110 and a crucible 120 and a crucible 120, and carbonizes carbon sources contained in a mixture.
- a temperature carbonized at a carbonizer 130 is preferably 700°C and over and 1200°C and less, more preferably carbonizes at 900°C and over and 1100°C and less.
- a carbonizer 130 can be omitted in the case of mixture's carbon sources not being organic carbon material, and this case, a mixture from a mixer 110 moves directly to a crucible 120.
- a crucible 120 heats a mixture at a vacuum degree of larger than 0.03 torr and 0.5 torr and less and at a temperature of 1300°C and over and 1900°C and less to synthesize silicon carbide (SiC) pulverulent body.
- a heating temperature of a crucible is more desirable to be 1600°C and over and 1900°C and less.
- a heating time in a crucible 130 is desirable to be 3 hours.
- the aforementioned silicon carbide pulverulent body manufacturing system can manufacture low-cost and high-purity silicon carbide pulverulent body.
- FIG. 3 is a flow chart of a silicon carbide pulverulent body manufacturing method according to another preferred embodiment of the invention.
- SiO powder and carbon black are prepared (S1).
- SiO is in-process material of SiO 2 and C.
- carbon black is used as carbon sources but not necessarily limited to this.
- solid carbon such as carbon-nano tube, fullerene or organic compounds having a higher remaining carbon ratio, in detail, monomer or prepolymer such as phenol resin, franc resin, xylene resin, polyimide, polyurethane, polyacrylonitrile, polyvinyl alcohol and poly acetic acid vinyl, cellulose, manufactured sugar, pitch, tar, and their mixtures may be used.
- Such prepared SiO powder and carbon black powder are mixed into a mixer, that is, a ball mill (S2).
- a mixing ratio of SiO and C is theoretically most ideal when a ratio of C : Si is 2 : 1.
- a ratio of C : Si is desirable to be 1.3 : 1 and over and 1.8 : 1 and less.
- balls for a ball mill are mixed together.
- Such balls for a ball mill can use a nylon ball, a urethane ball, a teflon ball and the like.
- a sieve may use a metal sieve or a poly-sieve. Balls for a ball mill are filtered out using such a sieve and a silicon carbide pulverulent body may be recovered only.
- a silicon carbide pulverulent body raw material mixture filtered out at S3 is measured in a graphite crucible (S4).
- S4 graphite crucible
- silicon carbide pulverulent body is synthesized by heating in a graphite furnace for the time of 30 min. and over and 7 hours and less at a temperature of 1400°C and over and 1700°C and less (S5).
- the inner part of a graphite furnace is filled with vacuum or inert gas (for example, argon (Ar), hydrogen (H), etc.).
- vacuum or inert gas for example, argon (Ar), hydrogen (H), etc.
- silicon carbide pulverulent body is finally recovered (S6).
- a comparison example indicates a prior art, for silicon compound SiO 2 is used, and for carbon compound carbon black is used. These mixtures are comprised of a ratio of 2.5 : 1 smaller than 3 : 1, that is a theoretical mixture ratio of the existing SiO 2 and C in a ball mill. Also, a SiC crystal peak is confirmed therein by XRD (X-ray diffraction) after 5-hour heat-processing at 1650°C in a crucible.
- the example uses SiO as a silicon compound and carbon black as a carbon compound by a manufacturing process according to the invention.
- This mixture of C : Si is mixed at a ratio of 1.8 : 1 by C : Si in a ball mill.
- a SiC crystal peak is confirmed therein by XRD.
- the present invention has lowered a heating temperature by 200°C from 1650°C to 1400°C and shortened a time by 2 hours. Also, a recovery ratio of silicon carbide pulverulent body has ratchets up from 30% to 50%, and in a grain size (D50) also, finer pulverulent body may be obtained from 1.4 ⁇ m to 1.3 ⁇ m.
- the present invention can provide a silicon carbide pulverulent body manufacturing method and system capable of being manufactured by a low pressure and a low temperature and saving a process cost.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Thermal Sciences (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Impurity Content (ppm) | |||
comparison example | first example | second example | |
B | 0.1 | 0.1 | 0.1 |
| 5 | 0.01 | 0.5 |
k | 2 | 0.01 | 0.5 |
Al | 3 | 0.5 | 1 |
Cr | 1 | 0.1 | 0.1 |
Fe | 1 | 0.1 | 0.1 |
Ni | 1 | 0.1 | 0.5 |
Cu | 0.1 | 0.1 | 0.1 |
W | 1 | 0.1 | 0.5 |
Ti | 0.05 | 0.05 | 0.05 |
Ca | 10 | 0.5 | 1 |
Comparison Example | Example | |
Temperature | 1650℃ | 1400 |
Time | ||
5 | 3 | |
Recovery ratio | 30% | 53% |
Grain size (D50) | 1.4㎛ | 1.3㎛ |
Claims (13)
- A silicon carbide pulverulent body manufacturing method, characterized by:a step (a) of producing a mixture consisting of silicon sources and carbon sources in a mixer; anda step (b) of synthesizing silicon carbide (SiC) pulverulent body by heating the mixture at a vacuum degree of larger than 0.03 torr and equal to and less than 0.5 torr and at a temperature of equal to or larger than 1300℃ and equal to and less than 1900℃.
- The method as claimed in claim 1, wherein in the step (a), a mass ratio of the silicon sources and the carbon sources is equal to and more than 1:1 and equal to and less than 4:1.
- The method as claimed in claim 2, characterized in that the silicon source of the step (a) is selected from one and more of Fumed Silica, silica sol, silica gel, fine silica, and quartz powder, wherein the carbon source is selected from one and more of a monomer including carbon black, carbon-nano tube, fullerene, phenol resin, franc resin, xylene resin, polyimide, polyurethane, polyacrylonitrile, polyvinyl alcohol, and poly acetic acid vinyl, prepolymer, cellulose, manufactured sugar, pitch, and tar.
- The method as claimed in claim 1, characterized in that the method, between the step (a) and the step (b), further includes heating the mixture and carbonizing carbon sources contained in the mixture.
- The method as claimed in claim 4, characterized in that the carbonizing step includes carbonizing at a temperature of equal to or larger than 700℃ and equal to and less than 1200℃.
- A silicon carbide pulverulent body manufacturing method, characterized by:a step (a) of producing a silicon carbide raw material mixture by mixing of SiO powder and carbon sources in a mixer; anda step (b) of obtaining silicon carbide pulverulent body by heat-processing the mixture at a temperature of 1,400℃ and more and 1,700℃ and less and for 30 minutes and over and 7 hours and less in a crucible.
- The method as claimed in claim 6, characterized in that in the step (a), the carbon source is carbon black.
- The method as claimed in claim 7, characterized in that in the step (a), a mixing ratio of carbon (C) versus silicon (Si) is 1.3 and over and 1.8 and less.
- The method as claimed in claim 1, characterized in that the method, between the step (a) and the step (b), further includes a step (1) of recovering a silicon carbide mixture by filtering the balls for a ball mill out using a sieve; anda step (2) of measuring the recovered mixture in a graphite crucible,wherein the step (a) uses a ball mill as a mixer, characterized by the step of producing a silicon carbide mixture by mixing SiO, carbon sources, and balls for a ball mill.
- The method as claimed in claim 9, characterized in that the heating furnace material in the step (b) is graphite, by filling vacuum or inert gas in an inner space.
- A silicon carbide pulverulent body manufacturing system, characterized by:a mixer producing a mixture consisting of silicon sources and carbon sources; anda sealed crucible synthesizing silicon carbide (SiC) by heating the mixture at a vacuum degree of equal to or larger than 0.03 torr and equal to and less than 0.5 torr, and at a temperature of 1300℃ and over and 1900℃ and less.
- The system as claimed in claim 11, characterized in that a mass ratio of the silicon sources and the carbon sources is equal to and more than 1:1 and equal to and less than 4:1.
- The system as claimed in claim 11, characterized in that the silicon source is selected from one and more of Fumed Silica, silica sol, silica gel, fine silica, and quartz powder, wherein the carbon source is characteristically selected from one and more of a monomer including carbon black, carbon-nano tube, fullerene, phenol resin, franc resin, xylene resin, polyimide, polyurethane, polyacrylonitrile, polyvinyl alcohol, and poly acetic acid vinyl, prepolymer, cellulose, manufactured sugar, pitch, and tar.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/392,269 US20120201735A1 (en) | 2009-08-26 | 2010-08-26 | System and method for manufacturing silicon carbide pulverulent body |
EP10812298.7A EP2470473B1 (en) | 2009-08-26 | 2010-08-26 | Method for manufacturing silicon carbide pulverulent body |
JP2012526659A JP5525050B2 (en) | 2009-08-26 | 2010-08-26 | Silicon carbide powder manufacturing method and system |
CN2010800482875A CN102596802A (en) | 2009-08-26 | 2010-08-26 | System and method for manufacturing silicon carbide pulverulent body |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2009-0079379 | 2009-08-26 | ||
KR1020090079379A KR101637567B1 (en) | 2009-08-26 | 2009-08-26 | High purity silicon carbide manufacturing method and system |
KR10-2009-0080014 | 2009-08-27 | ||
KR1020090080014A KR101587262B1 (en) | 2009-08-27 | 2009-08-27 | High efficiency silicon carbide manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2011025285A2 true WO2011025285A2 (en) | 2011-03-03 |
WO2011025285A3 WO2011025285A3 (en) | 2011-07-14 |
Family
ID=43628615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2010/005753 WO2011025285A2 (en) | 2009-08-26 | 2010-08-26 | System and method for manufacturing silicon carbide pulverulent body |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120201735A1 (en) |
EP (1) | EP2470473B1 (en) |
JP (1) | JP5525050B2 (en) |
CN (1) | CN102596802A (en) |
WO (1) | WO2011025285A2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102311268A (en) * | 2011-08-30 | 2012-01-11 | 河南新大新材料股份有限公司 | Highly compact ceramic ball of silicon carbide and preparation process thereof |
US20140127512A1 (en) * | 2011-06-24 | 2014-05-08 | Lg Innotek Co., Ltd. | Method of fabricating silicon carbide powder |
US20140178285A1 (en) * | 2011-08-01 | 2014-06-26 | Lg Innotek Co., Ltd. | Method of fabricating silicon carbide |
US20140356274A1 (en) * | 2011-12-26 | 2014-12-04 | Lg Innotek Co., Ltd. | Silicon carbide powder, method for manufacturing the same and silicon carbide sintered body, method for manufacturing the same |
US20140363675A1 (en) * | 2012-01-20 | 2014-12-11 | Lg Innotek Co., Ltd. | Silicon carbide powder and method for manufacturing the same |
CN114132929A (en) * | 2020-09-04 | 2022-03-04 | 比亚迪股份有限公司 | Preparation method of silicon carbide powder and silicon carbide powder |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094934A1 (en) | 2011-12-21 | 2013-06-27 | Lg Innotek Co., Ltd. | Method of fabricating silicon carbide powder |
KR101349502B1 (en) * | 2011-12-28 | 2014-01-08 | 엘지이노텍 주식회사 | Method for manufacturing of silicon carbide powder |
CN103387231B (en) * | 2013-07-19 | 2015-05-27 | 张兴材 | Synthesis method of beta-SiC micro-powder and whiskers |
CN103553043B (en) * | 2013-09-30 | 2015-04-22 | 陕西科技大学 | Preparation method for SiC nanometer microsphere with high specific surface area |
JP2015074565A (en) * | 2013-10-07 | 2015-04-20 | 信濃電気製錬株式会社 | Spherical silicon carbide powder and method for producing the same |
RU2642660C2 (en) * | 2016-03-21 | 2018-01-25 | ООО НПО "КвинтТех" | Method of producing silicon carbide |
WO2017180083A1 (en) * | 2016-04-15 | 2017-10-19 | Андрей ЦЫБА | A method for the industrial production of sic nanopowders and high quality sio-c nanocomposite material and equipment for implementing said method |
CN110273183B (en) * | 2018-03-17 | 2021-06-08 | 南京航空航天大学 | Preparation method of silicon carbide nano crystal whiskers |
CN108483447B (en) * | 2018-04-28 | 2019-10-22 | 北京科技大学 | A kind of preparation method of micro/nano level spherical carbide silicon materials |
CN108706979B (en) * | 2018-07-18 | 2021-03-23 | 东北林业大学 | Preparation method of silica gel modified wood-based silicon carbide ceramic material |
CN109502590B (en) * | 2018-11-23 | 2020-07-03 | 山东天岳先进材料科技有限公司 | Method for improving yield of silicon carbide powder |
CN109553105B (en) * | 2018-11-23 | 2020-09-15 | 山东天岳先进材料科技有限公司 | High-purity silicon carbide powder and preparation method thereof |
CN109775700A (en) * | 2019-02-13 | 2019-05-21 | 山东天岳先进材料科技有限公司 | The recycling of waste and old graphite crucible and high-purity carbon dust |
CN111591994A (en) * | 2020-06-03 | 2020-08-28 | 璨隆科技发展有限公司 | Preparation method of high-purity silicon carbide powder for silicon carbide single crystal growth |
CN112010311B (en) * | 2020-06-09 | 2022-11-01 | 北京世纪金光半导体有限公司 | Method for treating prefabricated material for high-purity silicon carbide powder |
CN114249594A (en) * | 2020-09-21 | 2022-03-29 | 山东硅纳新材料科技有限公司 | Preparation process of superfine silicon carbide powder |
CN113371712B (en) * | 2021-07-27 | 2022-11-08 | 北京天科合达半导体股份有限公司 | Preparation method of silicon carbide powder with low nitrogen content and silicon carbide single crystal |
CN113666375B (en) * | 2021-09-06 | 2023-10-27 | 常州大学 | Green preparation method of beta-silicon carbide with high specific surface area |
DE102021128398A1 (en) * | 2021-10-30 | 2023-05-04 | The Yellow SiC Holding GmbH | Material containing silicon carbide, precursor composition and their production process |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5021230A (en) | 1987-04-22 | 1991-06-04 | Krstic Vladimir D | Method of making silicon carbide |
EP0603888A2 (en) | 1992-12-25 | 1994-06-29 | New Oji Paper Co., Ltd. | Method of producing silicon carbide fibers |
EP0677496A2 (en) | 1994-04-12 | 1995-10-18 | New Oji Paper Co., Ltd. | Process for producing silicon carbide material |
US6627169B1 (en) | 1999-06-10 | 2003-09-30 | Bridgestone Corporation | Silicon carbide powder and production method thereof |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5137898A (en) * | 1974-09-27 | 1976-03-30 | Ngk Spark Plug Co | |
IT1107474B (en) * | 1977-07-27 | 1985-11-25 | Nat Res Dev | PROCEDURE FOR THE PRODUCTION OF SILICON CARBIDE |
JPS6046908A (en) * | 1983-08-24 | 1985-03-14 | Ushio Inc | Production of sic powder |
JPS61168515A (en) * | 1985-01-17 | 1986-07-30 | Bridgestone Corp | Production of silicon carbide |
JPH0621022B2 (en) * | 1985-10-23 | 1994-03-23 | 株式会社ブリヂストン | Method for producing β-type silicon carbide |
JPS62128913A (en) * | 1985-11-27 | 1987-06-11 | Kawasaki Steel Corp | Production of silicon carbide powder |
JPS63147811A (en) * | 1986-12-11 | 1988-06-20 | Kawasaki Steel Corp | Production of fine sic powder |
JPH07187639A (en) * | 1993-12-22 | 1995-07-25 | Ryoda Sato | Production of silicon carbide utilizing multiarc |
JPH09208210A (en) * | 1996-02-07 | 1997-08-12 | Hitachi Chem Co Ltd | Production of silicon carbide powder |
JP4202448B2 (en) * | 1997-10-03 | 2008-12-24 | 株式会社ブリヂストン | Manufacturing apparatus for silicon carbide powder and method for manufacturing silicon carbide powder using the same |
JP2001130909A (en) * | 1999-10-29 | 2001-05-15 | Bridgestone Corp | Method for producing silicon carbide powder |
JP2002316812A (en) * | 2001-04-17 | 2002-10-31 | Aisin Chem Co Ltd | Method for producing silicon carbide fine powder |
US20070110657A1 (en) * | 2005-11-14 | 2007-05-17 | Hunter Charles E | Unseeded silicon carbide single crystals |
WO2008054415A2 (en) * | 2005-12-07 | 2008-05-08 | Ii-Vi Incorporated | Method for synthesizing ultrahigh-purity silicon carbide |
KR100769695B1 (en) * | 2006-08-10 | 2007-10-23 | 한양대학교 산학협력단 | Single crystal silicon carbaide nanowire, method of preparation thereof, and filter comprising the same |
CN100560486C (en) * | 2007-07-30 | 2009-11-18 | 中国地质大学(武汉) | A kind of preparation method of nanometer carborundum |
JP2009269798A (en) * | 2008-05-08 | 2009-11-19 | Sumitomo Osaka Cement Co Ltd | Silicon carbide particles and method for producing the same |
CN101327929B (en) * | 2008-07-31 | 2010-09-08 | 上海交通大学 | Method for rapidly preparing SiC nanowire |
CN102781562B (en) * | 2009-12-24 | 2014-11-19 | Lg伊诺特有限公司 | Heat treatment container for vacuum heat treatment apparatus |
-
2010
- 2010-08-26 EP EP10812298.7A patent/EP2470473B1/en not_active Not-in-force
- 2010-08-26 JP JP2012526659A patent/JP5525050B2/en not_active Expired - Fee Related
- 2010-08-26 CN CN2010800482875A patent/CN102596802A/en active Pending
- 2010-08-26 WO PCT/KR2010/005753 patent/WO2011025285A2/en active Application Filing
- 2010-08-26 US US13/392,269 patent/US20120201735A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5021230A (en) | 1987-04-22 | 1991-06-04 | Krstic Vladimir D | Method of making silicon carbide |
EP0603888A2 (en) | 1992-12-25 | 1994-06-29 | New Oji Paper Co., Ltd. | Method of producing silicon carbide fibers |
EP0677496A2 (en) | 1994-04-12 | 1995-10-18 | New Oji Paper Co., Ltd. | Process for producing silicon carbide material |
US6627169B1 (en) | 1999-06-10 | 2003-09-30 | Bridgestone Corporation | Silicon carbide powder and production method thereof |
Non-Patent Citations (1)
Title |
---|
See also references of EP2470473A4 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140127512A1 (en) * | 2011-06-24 | 2014-05-08 | Lg Innotek Co., Ltd. | Method of fabricating silicon carbide powder |
US9416012B2 (en) * | 2011-06-24 | 2016-08-16 | Lg Innotek Co., Ltd. | Method of fabricating silicon carbide powder |
US20140178285A1 (en) * | 2011-08-01 | 2014-06-26 | Lg Innotek Co., Ltd. | Method of fabricating silicon carbide |
US9102543B2 (en) * | 2011-08-01 | 2015-08-11 | Lg Innotek Co., Ltd. | Method of fabricating silicon carbide |
CN102311268A (en) * | 2011-08-30 | 2012-01-11 | 河南新大新材料股份有限公司 | Highly compact ceramic ball of silicon carbide and preparation process thereof |
CN102311268B (en) * | 2011-08-30 | 2013-01-09 | 河南新大新材料股份有限公司 | Highly compact ceramic ball of silicon carbide and preparation process thereof |
US20140356274A1 (en) * | 2011-12-26 | 2014-12-04 | Lg Innotek Co., Ltd. | Silicon carbide powder, method for manufacturing the same and silicon carbide sintered body, method for manufacturing the same |
US9840420B2 (en) * | 2011-12-26 | 2017-12-12 | Lg Innotek Co., Ltd. | Silicon carbide powder, method for manufacturing the same and silicon carbide sintered body, method for manufacturing the same |
US20140363675A1 (en) * | 2012-01-20 | 2014-12-11 | Lg Innotek Co., Ltd. | Silicon carbide powder and method for manufacturing the same |
US9534316B2 (en) * | 2012-01-20 | 2017-01-03 | Lg Innotek Co., Ltd. | Silicon carbide powder and method for manufacturing the same |
CN114132929A (en) * | 2020-09-04 | 2022-03-04 | 比亚迪股份有限公司 | Preparation method of silicon carbide powder and silicon carbide powder |
CN114132929B (en) * | 2020-09-04 | 2023-07-28 | 比亚迪股份有限公司 | Preparation method of silicon carbide powder and silicon carbide powder |
Also Published As
Publication number | Publication date |
---|---|
EP2470473B1 (en) | 2017-12-20 |
WO2011025285A3 (en) | 2011-07-14 |
CN102596802A (en) | 2012-07-18 |
US20120201735A1 (en) | 2012-08-09 |
EP2470473A4 (en) | 2014-10-08 |
JP5525050B2 (en) | 2014-06-18 |
JP2013503099A (en) | 2013-01-31 |
EP2470473A2 (en) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011025285A2 (en) | System and method for manufacturing silicon carbide pulverulent body | |
WO2013109105A1 (en) | Silicon carbide powder and method for manufacturing the same | |
KR101637567B1 (en) | High purity silicon carbide manufacturing method and system | |
WO2013100455A1 (en) | Silicon carbide powder, method for manufacturing the same and silicon carbide sintered body, method for manufacturing the same | |
WO2013100456A1 (en) | Silicon carbide powder, method for manufacturing the same and method for growing single crystal | |
KR20110021523A (en) | High purity silicon carbide manufacturing method and apparatus | |
WO2014061899A1 (en) | Silicon carbide powder, and preparation method therefor | |
US4962069A (en) | Highly densified bodies from preceramic polysilazanes filled with silicon carbide powders | |
KR101601282B1 (en) | Furnace for manufacturing silicon carbide and silicon carbide manufacturing method using same | |
WO2012015262A2 (en) | Silicon carbide and method for manufacturing the same | |
WO2012015208A2 (en) | Silicon carbide and method for manufacturing the same | |
WO2016080801A1 (en) | Method for producing silicon nitride nanofibers | |
WO2012046897A1 (en) | Method for manufacturing porous silicon carbide ceramics | |
EP0143122A2 (en) | An ultrafine powder of silcon carbide, a method for the preparation thereof and a sintered body therefrom | |
WO2013032146A1 (en) | Method of fabricating silicon carbide | |
WO2012015261A2 (en) | Silicon carbide and method for manufacturing the same | |
WO2011014005A2 (en) | Method for preparing a silicon compound from rice hulls or rice straw | |
WO2012177097A2 (en) | Method of fabricating silicon carbide powder | |
WO2013100693A1 (en) | Silicon carbide powder production method | |
WO2012177098A2 (en) | Method of fabricating silicon carbide powder | |
KR20110022424A (en) | High efficiency silicon carbide manufacturing method | |
WO2011025117A1 (en) | Reaction sintered silicon nitride for which silicon particle size distribution adjustment is employed, and a production method therefor | |
KR20120086207A (en) | Mixture of carbon and silicon carbide and method for the same, and method for manufacturing silicon carbide sintered body | |
CN1594216A (en) | Process for synthesizing high purity sialon material by coal-series kaolin | |
CN114908420B (en) | Preparation method of high-purity silicon carbide polycrystalline powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080048287.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10812298 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012526659 Country of ref document: JP Ref document number: 2010812298 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13392269 Country of ref document: US |