JP4202448B2 - Manufacturing apparatus for silicon carbide powder and method for manufacturing silicon carbide powder using the same - Google Patents

Manufacturing apparatus for silicon carbide powder and method for manufacturing silicon carbide powder using the same Download PDF

Info

Publication number
JP4202448B2
JP4202448B2 JP27160197A JP27160197A JP4202448B2 JP 4202448 B2 JP4202448 B2 JP 4202448B2 JP 27160197 A JP27160197 A JP 27160197A JP 27160197 A JP27160197 A JP 27160197A JP 4202448 B2 JP4202448 B2 JP 4202448B2
Authority
JP
Japan
Prior art keywords
silicon carbide
gas
carbide powder
impurities
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27160197A
Other languages
Japanese (ja)
Other versions
JPH11106212A (en
Inventor
道雄 伊藤
宏明 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP27160197A priority Critical patent/JP4202448B2/en
Priority to DE19845450A priority patent/DE19845450B4/en
Publication of JPH11106212A publication Critical patent/JPH11106212A/en
Application granted granted Critical
Publication of JP4202448B2 publication Critical patent/JP4202448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/97Preparation from SiO or SiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • C01B32/977Preparation from organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Description

【0001】
【発明の属する技術分野】
本発明は炭化ケイ素粉体用製造装置及びこれを用いた炭化ケイ素粉体の製造方法に関し、さらに詳しくは高純度な炭化ケイ素粉体を得ることができる炭化ケイ素粉体用製造装置及びこれを用いた炭化ケイ素粉体の製造方法に関する。
【0002】
【従来の技術】
従来、炭化ケイ素粉体の製造方法としては、(1)アチソン法、(2)シリカと炭素の還元炭化法、(3)金属シリコンと炭素との直接反応法、(4)気相反応法、(5)有機ケイ素化合物の熱分解法、等がある。
【0003】
しかしながら、上記従来の炭化ケイ素粉体の製造方法には以下の欠点があった。(1)アチソン法はα型炭化ケイ素を製造する方法であって、金属酸化物と炭素を固相反応させる方式で比較的簡単な方法であるが、生成した炭化ケイ素は粗大であり、粉末化のためには、粉砕、分級が必要となる。また、これらの工程を経るため、煩雑な製造方法であり、かつ、高純度の粉体を得るには限界がある。
【0004】
(2)シリカと炭素の還元炭化法も古くから行われてきた製法である。この方法の工業的製法としては、電気炉を用いたバッチ型と生産性を重視した連続型があるが、いずれも生成した副生成物の影響を受けるため、純度には限界がある。
【0005】
(3)金属シリコンと炭素との直接反応法は、粉末状炭化ケイ素と炭素の反応で行われるが、高純度の粉末ケイ素は得え難くしかも高価てあり、かつ生成する炭化ケイ素は粗大で、粉砕、分級より炭化ケイ素の純度低下のリスクがある。
【0006】
(4)気相反応法は、比較的微細でしかも高純度な微粒な粉体を得ることができる。しかし、原料コストが高いことや大量生産には適していない欠点を有する。
(5)有機ケイ素化合物の熱分解法も、気相反応法と同様に比較的微細でしかも高純度な粉体を得ることができるが、原料コストが高いことや原料の取扱いが難しい等の欠点を有する。
【0007】
また、(2)シリカと炭素の還元炭化法、(3)金属シリコンと炭素との直接反応法、(4)有機ケイ素化合物の熱分解法の各々の製造方法は、一般的には電気炉を用いたバッチ式により行われ、下式の反応が提案されている。
SiO2 +3C → 2CO+SiC
しかしながら、実際にはこのような理想的な反応にはならず、以下のような反応が進むと考えられている。
SiO2 +C → SiO+CO
SiO +C → Si +CO
Si +C → SiC
【0008】
この反応の過程で発生するSiOガスは、不純物を多く含み、1700℃以下の温度で固形化し副生成物となる。したがって、従来の電気炉による製造方法では、炭化ケイ素以外の副生成物が炭化ケイ素中に混在し、高純度な粉末を得るには限界がある。
【0009】
更に近年、生産性を重視した連続型の製造方法がいくつか提案されている。例えば、特公昭55−42927号及び特公昭60−44247号では、円筒状容器を外部より加熱し、その容器の中に原料を上部より供給し容器内で炭化ケイ素を生成し、下部より取り出す方式が提案されている。しかしながら、これらの方式では反応生成物や副生成物及び未反応物が反応炉に蓄積されてその影響を受け、副生成物ガスが円筒内を上昇し、原料投入口付近で固化し、不純物が再度原料と共に下方に移動したりするため、高純度の炭化ケイ素生成物を得るのは難しい。
【0010】
また、特公昭60−37055号では、上記の同様な円筒状容器の熱効率を向上させるため、反応によって生じるCOガスを循環させているが、この方式においても反応炉内での汚染物の除去は困難で生成物の高純度化には限界がある。
【0011】
特公昭62−232213号では、不純物を含む副生成物の除去を目的として、横型プッシャー炉を用いた連続型装置において、反応部と冷却部を分離する構造を採用している。そして、反応炉においては、副生するガス及び生成物を別室で回収し冷却ゾーンに混入しないように構成されている。しかしながら、この方法は、連続型のため、長時間継続使用すると、冷却ゾーンや回収部の境界部を中心にSiOやSiO2 に代表される1700℃以下の温度で固化するような副生成物の蓄積が生じてくる。その結果、ガスの流れが遮断され、副生成物の除去が困難となり、結果的に試料中に不純物が混入してしまう。また、容器の移動に用いるプッシャー黒鉛材の破損や金属モリブデンなど耐熱金属の摩耗等を考慮すると、連続炉方式は望ましい製造方法ではない。
【0012】
【発明が解決しようとする課題】
本発明の目的は、上記の事情を鑑みなされてものであって、高純度な炭化ケイ素粉体を得ることができる炭化ケイ素粉体用製造装置及びこれを用いた炭化ケイ素粉体の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の炭化ケイ素粉体用製造装置は、 反応容器本体と該反応容器本体底部の孔部を貫通して反応容器本体内に設けられた管状部材上に積み重ねられ、炭化ケイ素の原料混合物を充填するためのガス流通可能な複数の黒鉛製の試料容器が管状部材の回転に伴って回転自在に設置され、不活性雰囲気下で前記原料混合物を焼成して炭化ケイ素粉体を得る反応炉と、該反応炉の底部より不活性ガスを流入するガス流入装置と、前記反応炉の上部から該不活性ガスと炭化ケイ素の焼成時に発生する不純物とを含むガスを排気して冷却し不純物を固化する装置と集塵機とからなる不純物を回収する手段と、該手段からの不活性ガス前記ガス流入装置に返送させる循環系統と、を具備していることを特徴とする。
【0014】
さらに本発明の炭化ケイ素粉体の製造方法は、反応容器本体と該反応容器本体底部の孔部を貫通して反応容器本体内に設けられた管状部材上に積み重ねられ、炭化ケイ素の原料混合物を充填するためのガス流通可能な複数の黒鉛製の試料容器が管状部材の回転に伴って回転自在に設置され、不活性雰囲気下で前記原料混合物焼成して炭化ケイ素粉体を得る反応炉で1700℃以上の温度で炭化ケイ素の原料混合物を焼成して炭化ケイ素粉体を得、前記反応炉の上部から該不活性ガスと炭化ケイ素の焼成時に発生する不純物とを含むガスを排気して冷却し不純物を固化する装置と集塵機とからなる不純物を回収する手段で不純物を回収し、不活性ガス前記反応炉に返送することを特徴とする。
【0015】
本発明の炭化ケイ素粉体用製造装置によれば、反応炉中に発生する不純物を排気して不純物を回収装置または集塵機で回収して不活性ガスを上記ガス流入装置に返送させる循環系統を設けたことにより、反応炉中を流れる不活性ガスの汚染を防止できる共に不活性ガスをリサイクルして使用でき、これにより高純度な炭化ケイ素粉体が製造される。
【0016】
すなわち、本発明者らは、炭化ケイ素粉体の原料混合物を不活性ガス雰囲気下で加熱、焼成していくと、1400〜2100℃の温度で反応が開始し、反応生成物であるSiCと副生成物であるSi、SiO、COガスが発生し、この不純物の多くはこれらの副生成物であるSi、SiOに含まれていることに着目し、これらは1700℃の高温下では、ガス状であるため、主に不活性ガスからなる循環ガスを所定の流速で流すことにより容易に反応部より除去することが可能であることを見いだした。
そこで、本発明では、回収装置(に送られた副生成物をここで急冷することにより微細な固体に変化させ、さらにこの微細な副生成物粉体を集塵機で捕獲することによって、循環ブロワーによって反応炉に送られる不活性ガスは常に不純物を含まないガスとして循環する。
【0017】
【発明の実施の形態】
以下、図面に基づいて本発明の好ましい実施の形態を説明する。
図1は、本発明の炭化ケイ素粉体用製造装置の概略的構成図である。図1において、10はバッチ型の反応炉、12は回収装置、14は集塵機、16は循環ブロワー、18はガス流入装置を示し、これらは各々配管で接続されている。反応炉10内には、黒鉛ケース20が配置されており、炭化ケイ素の原料混合物は、黒鉛容器22内に入れて黒鉛ケース20内に挿入可能となっている。また、黒鉛容器22と回収装置12、集塵機14、循環ブロワー16及びガス流入装置18とは、それぞれ配管で接続されて循環系統を構成している。
【0018】
図2はバッチ型の反応炉10の概略的構成図であり、この反応炉10は支柱24に支持された円筒状のステンレス製の反応炉本体26を備えており、この反応炉本体26の内部に二重構造からなる黒鉛円筒及び黒鉛底面部材及び黒鉛蓋部材とからなる黒鉛ケース20が配置されており、この黒鉛ケース20の内部に円筒状の黒鉛容器22が配置されている。
【0019】
黒鉛容器22の内部は黒鉛容器22の底部に接続されたガス入口としての管状部材28に連通されており、この管状部材28は、黒鉛底面部材及び反応炉本体26に形成された孔部を貫通し、反応炉本体26の外部に設置されたモータ30の回転に伴って回転し、管状部材28の回転に伴い黒鉛容器22が回転可能となっており、この管状部材28はガス流入装置18に接続されている。
【0020】
黒鉛容器22の上部中心部には管状部材32が設けられ、この管状部材32の上端部は黒鉛蓋部材に穿設された孔部の内面に摺動可能に配置されている。黒鉛蓋部材に設けられた管状部材32は、反応炉本体26の上部に形成されたガス出口34に連通しており、このガス出口34は回収装置12に接続されている。
【0021】
黒鉛容器22の外側面、底面及び上面には黒鉛容器22と所定の間隔をおいてそれぞれ電極38が配置された抵抗加熱式電気炉を構成しており、この電極38にはそれぞれ放射温度計40が設けられて電極38による黒鉛容器22内の温度を計測可能となっている。
また、黒鉛容器22内には、試料容器42が多段に積み重ねられている。試料容器42は黒鉛製のたらい型の容器からなっている。
【0022】
図3は回収装置の概略的構成図を示し、円環状の断熱構造を有するトラップ部48を備えており、その内部に冷却水が導入可能な円管50が配置されている。円管50の周囲には所定の間隔をおいてフィン52が設けられている。このフィン52は、それぞれ円形に形成されている。各々の互いに隣接するフィン52は円管50の軸方向にガスが流通可能な構造となっている。フィン52を備えた円管50は、円環状の断熱構造を有するトラップ部48から取り出し可能な構造を有している。
【0023】
図4は集塵機の概略的構成図を示し、集塵機本体60の内部には、中心部に孔部を有するSUS製の区画部材62が配置されており、この孔部にポリエステル製の袋状のろ布64が設けられている。集塵機本体60の側面下部側には回収装置のトラップ部48に連通するガス入口66が設けられ、集塵機本体60の側面上部側には後記する循環ブロワー16に連通するガス出口68が設けられている。図中、70はパルスガス導入口である。
【0024】
循環ブロワー16は、小型のモータを円筒型の容器内に組み込んだ構造のものが望ましく、モータのファン内部に副生成物の微粉が混入しないようにモータ部と循環部を隔離した構造が望ましい。
【0025】
(炭化ケイ素粉体の製造方法)
次の上記した構造からなる炭化ケイ素粉体用製造装置による炭化ケイ素粉体の製造方法を説明する。
試料容器42内に炭化ケイ素原料混合物を炭化した試料を充填し、これらの容器を図1に示す反応炉の黒鉛容器22内に多段に積み重ねて配置する。次に電極38に通電し、黒鉛ケース20内を所定の温度に保持して焼成を行う。焼成を行う際は、モータ30を駆動させ、管状部材28を回転させる。回転速度は可変式で回転速度は5分で1回転程度が好ましい。また、ガス流入装置18からアルゴン等の不活性ガスが管状部材28を介して黒鉛容器22内に導入する。この不活性ガスは、試料容器42に設けられた孔部を経て各段の試料容器42内に流入する。昇温条件としては、昇温速度0.5〜10℃/分、最高温度1600〜2100℃で行う。
【0026】
この焼成過程で、1400〜2100℃の温度で反応が開始され、反応生成物であるSiCと副生成物であるSi、SiO、COガスが発生する。これらの副生成物を含むガスは、黒鉛容器22内に導入される不活性ガスによって、黒鉛容器22からガス出口34を経て回収装置14に送られる。
【0027】
回収装置14においては、副生成物を含むガスは、ガス入口から導入されてトラップ部48に到達する。トラップ部48内に配置された円管50内には冷却水が導入されており、ここで副生成物を含むガスは急冷されてフィン52の周囲に主としてSiOが吸着され、ガス中のCOガスはその一部がガス排出管より排出され、水封ポンプを経て燃焼炉にて燃焼され、残りのCOガスは循環系統内を循環する。
【0028】
ガス中からSiO等が除去されたガスは集塵機14のガス入口66から導入され、ろ布64で微粉からなる不純物が捕獲され、ガスはガス出口68から循環ブロワー16及びガス流入装置18を経て再び反応炉10に返送される。ガス流入装置18による不活性ガスの送風量は、反応炉10の大きさに依存するが、一般に10〜500L/分であり、好ましくは100〜300L/分程度で運転される。
【0029】
これらの一連の操作によりアルゴンガス等の不活性ガスは、反応炉10、回収装置12、集塵機14、循環ブロワー16、ガス流入装置18を循環し、副生成物が除去される。
【0030】
一バッチの焼成工程が終了すると、回収装置12においては、フィン52を備えた円管50は、これを固定した蓋部材と共に円環状のトラップ部48から取り出される。そして、フィン52に固着した微粉等が除去される。また、集塵機14においては、ろ布64に微粉が密着し、目詰まりを起こすので、パルスガス導入口70からガスが周期的に吹き込まれ、ろ布64に付着した微粉等がろ布64から除去される。
【0031】
この場合、ろ布64の目が細かすぎると目詰まりが生じやすくなり、目が粗すぎると、微粉状の副生成物がガスと共にろ布64を通過するため、得られる炭化ケイ素粉体の純度が低下するので、ろ布64の目の粗さは適宜選定すべきである。また、ろ布64における通気度は5〜30cc/cm2 /secが好ましく、より好ましくは14〜20cc/cm2 /secである。
【0033】
【実施例】
以下、本発明の実施例をさらに詳細に説明する。
(実施例1)
ケイ素質原料としてエチルシリケート、炭素質原料としてノボール型フェノール樹脂を、そのC/Si比が2.0になる様に各々の量を調整し攪拌混合した。次にこの混合物を100−180℃の温度で約2時間硬化させた後、得られた樹脂状固形物を窒素雰囲気中、900℃の温度で約1.5時間炭化処理を行い焼成試料とした。
この試料をアルゴン雰囲気中、実験条件1にて該焼成炉をもちいて焼成処理を行った。
【0034】
(実施例2)
ケイ素質原料としてエチルシリケート、炭素質原料としてレゾール型フェノール樹脂を用い、そのC/Si比が2.5になる様に各々の量を調整し攪拌混合した後、硬化触媒であるトルエンスルホン酸を加え更に攪拌を行った。次にこの混合物を100−180℃の温度で約2時間硬化させた後、得られた樹脂状固形物を窒素雰囲気中、900℃の温度で約1.5時間炭化処理を行い焼成試料とした。
この試料をアルゴン雰囲気中、実験条件2にて該焼成炉を用いて焼成処理を行った。
【0035】
(実施例3)
ケイ質原料としてエチルシリケート、炭素質原料として高純度カーボンを用い、そのC/Si比が3.0になる様に各々の量を調整、攪拌にて均質混合したものを焼成用試料とした。
この試料をアルゴン雰囲気中、実験条件3にて該焼成炉を用いて焼成処理を行った。
【0036】
(実施例4)
ケイ素質原料として平均粒径1μm以下の高純度アモルファスシリカ、炭素質原料としてレゾール型フェノール樹脂をそのC/Si比が2.5になる様に各々の量を調整し、熱ロールにて均質に混合し、さらにヘキサミンを添加して固化させた。この混合物を窒素雰囲気中、900℃の温度で約1.5時間炭化処理を行い焼成用試料とした。この試料をアルゴン雰囲気中、実験条件4にて該焼成炉を用いて焼成処理を行った。
【0037】
(実施例5)
ケイ素質原料として平均粒径1μm以下の高純度アモルファスシリカ、炭素質原料として高純度カーボンを用いそのC/Si比が3.0になる様に各々の量を調整し、ボールミルにより充分に混合したものを焼成用試料とした。
この試料をアルゴン雰囲気中、実験条件5にて該焼成炉を用いて焼成処理を行った。
【0038】
(比較例1)
実施例2の試料を用いて、アルゴン雰囲気中、実験条件6にて該焼成炉を用いて焼成処理を行った。但しこの試験ではガスの循環機能を停止し、排ガス機能のみを稼働させて焼成処理を行った。
【0039】
(比較例2)
実施例2の試料を用いて、アルゴン雰囲気中、実験条件7にて該焼成炉を用いて焼成処理を行った。但しこの試験ではガスの循環機能を停止し、排ガス機能のみを稼働させて焼成処理を行った。
【0040】
(比較例3)
アチソン法により得られた炭化ケイ素粉体。
(屋久島電工社製:DIASIC)
【0041】
(比較例4)
連続炉法により得られた炭化ケイ素粉体。(市販品)
(昭和電工社製)
【0042】
(比較例5)
気相法により得られた炭化ケイ素粉体。(市販品)
(昭和電工社製)
【0043】
実験条件1〜7を表1に示す。
【表1】

Figure 0004202448
【0044】
実施例1〜実施例5および比較例1〜比較例2で得られた炭化ケイ素粉体及び上記の市販の炭化ケイ素粉体についてそれぞれ不純物含有量を分析した。
< 分析方法 >
炭化ケイ素粉体の不純物分析は、炭化ケイ素粉体をフッ素、硝酸、硫酸で加圧熱分解した後、IPC−質量分析法およびフレームレス原子吸光法にて行った。
分析結果を表2および表3に示す。
【0045】
【表2】
Figure 0004202448
【0046】
【表3】
Figure 0004202448
【0047】
表2および表3は、本発明の製造方法で得られた炭化ケイ素粉体の不純物の含有量は、従来の方法により得られた炭化ケイ素粉体と比較して遙に少ないことを示している。
【0048】
【発明の効果】
以上のように本発明によれば、高純度な炭化ケイ素粉体を製造することができる。
【図面の簡単な説明】
【図1】本発明の炭化ケイ素粉体用製造装置の好ましい一実施の形態を示す概略的構成図である。
【図2】図1の装置における反応炉の好ましい一実施の形態を示す断面図である。
【図3】図1の装置における回収装置の好ましい一実施の形態を示す概略的構成図である。
【図4】図1の装置における集塵機の好ましい一実施の形態を示す概略的構成図である。
【符号の説明】
10 反応炉
12 回収装置
14 集塵機
16 循環ブロワー
18 ガス流入装置
20 黒鉛ケース
26 反応炉本体
28 管状部材
30 モータ
32 黒鉛容器
34 ガス出口
38 電極
40 放射温度計
42 試料容器
48 トラップ部
50 円管
52 フィン
60 集塵機本体
62 区画部材
64 ろ布
66 ガス入口
68 ガス出口
70 パルスガス導入口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing apparatus for silicon carbide powder and a manufacturing method of silicon carbide powder using the same, and more particularly, a manufacturing apparatus for silicon carbide powder capable of obtaining high-purity silicon carbide powder and the use thereof The present invention relates to a method for producing silicon carbide powder.
[0002]
[Prior art]
Conventionally, production methods of silicon carbide powder include (1) Acheson method, (2) Reduction carbonization method of silica and carbon, (3) Direct reaction method of metal silicon and carbon, (4) Gas phase reaction method, (5) Thermal decomposition method of organosilicon compounds.
[0003]
However, the conventional method for producing silicon carbide powder has the following drawbacks. (1) The Atchison method is a method for producing α-type silicon carbide, which is a relatively simple method in which a metal oxide and carbon are reacted in a solid phase, but the generated silicon carbide is coarse and powdered. For this purpose, pulverization and classification are required. Further, since these steps are performed, it is a complicated manufacturing method and there is a limit to obtaining a high-purity powder.
[0004]
(2) Reduction carbonization of silica and carbon is a production method that has been performed for a long time. As an industrial production method of this method, there are a batch type using an electric furnace and a continuous type with an emphasis on productivity. However, since both are affected by the by-products generated, purity is limited.
[0005]
(3) The direct reaction method between metallic silicon and carbon is carried out by the reaction of powdered silicon carbide and carbon, but high-purity powdered silicon is difficult to obtain and expensive, and the resulting silicon carbide is coarse, There is a risk of lowering the purity of silicon carbide than pulverization and classification.
[0006]
(4) The gas phase reaction method can obtain a fine powder having a relatively fine and high purity. However, it has disadvantages that the raw material cost is high and is not suitable for mass production.
(5) The pyrolysis method of the organosilicon compound can obtain a relatively fine and high-purity powder as in the gas phase reaction method, but has disadvantages such as high raw material costs and difficult raw material handling. Have
[0007]
In addition, each of the production methods of (2) reductive carbonization of silica and carbon, (3) direct reaction method of metal silicon and carbon, and (4) pyrolysis method of organosilicon compound generally uses an electric furnace. The reaction of the following formula has been proposed.
SiO 2 + 3C → 2CO + SiC
However, in reality, such an ideal reaction is not achieved, and the following reaction is considered to proceed.
SiO 2 + C → SiO + CO
SiO + C → Si + CO
Si + C → SiC
[0008]
The SiO gas generated in the course of this reaction contains a large amount of impurities and solidifies at a temperature of 1700 ° C. or lower to become a by-product. Therefore, in the conventional manufacturing method using an electric furnace, by-products other than silicon carbide are mixed in silicon carbide, and there is a limit in obtaining a high-purity powder.
[0009]
In recent years, several continuous manufacturing methods that emphasize productivity have been proposed. For example, in Japanese Patent Publication Nos. 55-42927 and 60-44247, a cylindrical container is heated from the outside, raw materials are supplied into the container from the upper part, silicon carbide is generated in the container, and taken out from the lower part. Has been proposed. However, in these systems, reaction products, by-products and unreacted materials accumulate in the reaction furnace and are affected by them, and by-product gas rises in the cylinder and solidifies near the raw material inlet, and impurities are It is difficult to obtain a high-purity silicon carbide product because it moves downward with the raw material again.
[0010]
In Japanese Examined Patent Publication No. 60-37055, CO gas generated by the reaction is circulated in order to improve the thermal efficiency of the same cylindrical container as described above. In this method as well, removal of contaminants in the reaction furnace is performed. It is difficult and there is a limit to the purification of the product.
[0011]
Japanese Patent Publication No. 62-232213 employs a structure in which a reaction unit and a cooling unit are separated in a continuous apparatus using a horizontal pusher furnace for the purpose of removing by-products containing impurities. The reactor is configured so that by-product gases and products are collected in a separate chamber and are not mixed into the cooling zone. However, since this method is a continuous type, when it is continuously used for a long time, a by-product that solidifies at a temperature of 1700 ° C. or less typified by SiO or SiO 2 centering on the boundary between the cooling zone and the recovery part. Accumulation occurs. As a result, the gas flow is blocked, and it is difficult to remove by-products, and as a result, impurities are mixed into the sample. In view of breakage of the pusher graphite material used for moving the container and wear of heat-resistant metal such as metallic molybdenum, the continuous furnace method is not a desirable manufacturing method.
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a silicon carbide powder manufacturing apparatus capable of obtaining a high-purity silicon carbide powder and a method for manufacturing a silicon carbide powder using the same, in view of the above circumstances. It is to provide.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the silicon carbide powder production apparatus of the present invention is stacked on a tubular member provided in a reaction vessel body through a reaction vessel body and a hole in the bottom of the reaction vessel body. A plurality of graphite sample containers capable of flowing gas for filling the silicon carbide raw material mixture are rotatably installed as the tubular member rotates, and the raw material mixture is fired in an inert atmosphere by firing the silicon carbide. A reaction furnace for obtaining powder, a gas inflow device for introducing an inert gas from the bottom of the reaction furnace, and a gas containing impurities generated during firing of the inert gas and silicon carbide from the upper part of the reaction furnace are exhausted to a means for to recover the impurities consisting of the device and dust collector to solidify the cooled impurity, a circulation system for returning the inert gas from the means to the gas inlet device, characterized in that it comprises a .
[0014]
Furthermore, in the method for producing silicon carbide powder of the present invention, the reaction mixture is stacked on a tubular member provided in the reaction vessel body through the reaction vessel body and the hole at the bottom of the reaction vessel body. gas flow can be more graphite sample container for filling is installed rotatably with the rotation of the tubular member, in a reaction furnace to obtain a silicon carbide powder and sintering the raw material mixture in an inert atmosphere A silicon carbide raw material mixture is fired at a temperature of 1700 ° C. or higher to obtain silicon carbide powder, and a gas containing the inert gas and impurities generated during the firing of silicon carbide is exhausted from the upper part of the reactor and cooled. The impurities are collected by means for collecting impurities comprising a device for solidifying impurities and a dust collector, and the inert gas is returned to the reactor.
[0015]
According to the production apparatus for silicon carbide powder of the present invention, a circulation system is provided for exhausting impurities generated in the reaction furnace, collecting the impurities with a collection device or a dust collector, and returning the inert gas to the gas inflow device. As a result, contamination of the inert gas flowing through the reactor can be prevented and the inert gas can be recycled and used to produce high-purity silicon carbide powder.
[0016]
That is, when the present inventors heat and bake the raw material mixture of silicon carbide powder in an inert gas atmosphere, the reaction starts at a temperature of 1400 to 2100 ° C. Paying attention to the fact that Si, SiO, and CO gas as products are generated and that most of these impurities are contained in Si and SiO as these by-products, these are gaseous at a high temperature of 1700 ° C. Therefore, it has been found that the circulating gas mainly composed of inert gas can be easily removed from the reaction section by flowing at a predetermined flow rate.
Therefore, in the present invention, the by-product sent to the recovery device () is rapidly cooled here to change to a fine solid, and further, this fine by-product powder is captured by a dust collector, thereby being recycled by a circulating blower. The inert gas sent to the reactor is always circulated as a gas that does not contain impurities.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a manufacturing apparatus for silicon carbide powder according to the present invention. In FIG. 1, 10 is a batch-type reactor, 12 is a recovery device, 14 is a dust collector, 16 is a circulation blower, and 18 is a gas inflow device, which are connected by piping. A graphite case 20 is disposed in the reaction furnace 10, and a raw material mixture of silicon carbide can be inserted into the graphite case 20 in a graphite container 22. Moreover, the graphite container 22, the collection | recovery apparatus 12, the dust collector 14, the circulation blower 16, and the gas inflow apparatus 18 are respectively connected by piping, and comprise the circulation system.
[0018]
FIG. 2 is a schematic configuration diagram of the batch-type reaction furnace 10. The reaction furnace 10 includes a cylindrical stainless steel reaction furnace body 26 supported by a support column 24. A graphite case 20 comprising a graphite cylinder having a double structure and a graphite bottom member and a graphite lid member is disposed, and a cylindrical graphite container 22 is disposed inside the graphite case 20.
[0019]
The interior of the graphite container 22 communicates with a tubular member 28 serving as a gas inlet connected to the bottom of the graphite container 22, and this tubular member 28 passes through a hole formed in the graphite bottom member and the reactor main body 26. The graphite container 22 can be rotated along with the rotation of the tubular member 28, and the tubular member 28 is connected to the gas inflow device 18. It is connected.
[0020]
A tubular member 32 is provided at an upper center portion of the graphite container 22, and an upper end portion of the tubular member 32 is slidably disposed on an inner surface of a hole formed in the graphite lid member. A tubular member 32 provided on the graphite lid member communicates with a gas outlet 34 formed in the upper part of the reactor main body 26, and the gas outlet 34 is connected to the recovery device 12.
[0021]
A resistance heating type electric furnace in which electrodes 38 are arranged on the outer surface, bottom surface, and upper surface of the graphite container 22 at a predetermined distance from the graphite container 22 is configured. Is provided so that the temperature in the graphite container 22 by the electrode 38 can be measured.
In the graphite container 22, sample containers 42 are stacked in multiple stages. The sample container 42 is a graphite tub container.
[0022]
FIG. 3 shows a schematic configuration diagram of the recovery apparatus, which includes a trap portion 48 having an annular heat insulating structure, and a circular pipe 50 into which cooling water can be introduced is disposed. Fins 52 are provided around the circular tube 50 at a predetermined interval. The fins 52 are each formed in a circular shape. The fins 52 adjacent to each other have a structure in which gas can flow in the axial direction of the circular tube 50. The circular tube 50 including the fins 52 has a structure that can be taken out from the trap portion 48 having an annular heat insulating structure.
[0023]
FIG. 4 shows a schematic configuration diagram of the dust collector. Inside the dust collector main body 60, a partition member 62 made of SUS having a hole at the center is arranged, and a polyester bag-like filter is placed in the hole. A cloth 64 is provided. A gas inlet 66 communicating with the trap portion 48 of the recovery device is provided on the lower side of the side surface of the dust collector main body 60, and a gas outlet 68 communicating with the circulation blower 16 described later is provided on the upper side of the side surface of the dust collector main body 60. . In the figure, 70 is a pulse gas inlet.
[0024]
The circulation blower 16 preferably has a structure in which a small motor is incorporated in a cylindrical container, and preferably has a structure in which the motor part and the circulation part are separated so that fine powder of by-products is not mixed inside the fan of the motor.
[0025]
(Method for producing silicon carbide powder)
Next, a method for producing silicon carbide powder by the silicon carbide powder production apparatus having the following structure will be described.
A sample carbonized with a silicon carbide raw material mixture is filled in a sample container 42, and these containers are stacked in a multistage manner in the graphite container 22 of the reactor shown in FIG. Next, the electrode 38 is energized to perform firing while maintaining the interior of the graphite case 20 at a predetermined temperature. When firing, the motor 30 is driven and the tubular member 28 is rotated. The rotation speed is variable, and the rotation speed is preferably about 1 rotation in 5 minutes. Further, an inert gas such as argon is introduced from the gas inflow device 18 into the graphite container 22 through the tubular member 28. The inert gas flows into the sample containers 42 in each stage through the holes provided in the sample containers 42. As temperature raising conditions, the temperature raising rate is 0.5 to 10 ° C./min and the maximum temperature is 1600 to 2100 ° C.
[0026]
In this baking process, the reaction is started at a temperature of 1400 to 2100 ° C., and SiC as a reaction product and Si, SiO, and CO gases as by-products are generated. The gas containing these by-products is sent from the graphite container 22 to the recovery device 14 via the gas outlet 34 by the inert gas introduced into the graphite container 22.
[0027]
In the recovery device 14, the gas containing the by-product is introduced from the gas inlet and reaches the trap unit 48. Cooling water is introduced into the circular pipe 50 arranged in the trap portion 48, where the gas containing the by-product is quenched and mainly SiO is adsorbed around the fins 52, and the CO gas in the gas Part of the gas is discharged from the gas discharge pipe, burned in the combustion furnace through the water ring pump, and the remaining CO gas circulates in the circulation system.
[0028]
The gas from which SiO or the like is removed from the gas is introduced from the gas inlet 66 of the dust collector 14, and impurities made of fine powder are captured by the filter cloth 64, and the gas passes through the circulation blower 16 and the gas inflow device 18 from the gas outlet 68 again. Returned to the reactor 10. The amount of inert gas blown by the gas inflow device 18 depends on the size of the reaction furnace 10, but is generally 10 to 500 L / min, preferably about 100 to 300 L / min.
[0029]
Through these series of operations, an inert gas such as argon gas circulates through the reaction furnace 10, the recovery device 12, the dust collector 14, the circulation blower 16, and the gas inflow device 18 to remove by-products.
[0030]
When one batch of the baking process is completed, in the recovery device 12, the circular tube 50 including the fins 52 is taken out from the annular trap portion 48 together with the lid member to which the fin 52 is fixed. And the fine powder etc. which adhered to the fin 52 are removed. Further, in the dust collector 14, fine powder adheres to the filter cloth 64 and clogs occur. Therefore, gas is periodically blown from the pulse gas inlet 70, and fine powder and the like adhering to the filter cloth 64 is removed from the filter cloth 64. The
[0031]
In this case, if the filter cloth 64 is too fine, clogging is likely to occur. If the filter cloth 64 is too coarse, fine powdery by-products pass through the filter cloth 64 together with the gas. Therefore, the coarseness of the filter cloth 64 should be appropriately selected. The air permeability of the filter cloth 64 is preferably 5 to 30 cc / cm 2 / sec, and more preferably 14 to 20 cc / cm 2 / sec.
[0033]
【Example】
Examples of the present invention will be described in further detail below.
(Example 1)
Ethyl silicate as a silicon raw material and Novole type phenol resin as a carbonaceous raw material were mixed and stirred so that the respective amounts were adjusted to 2.0. Next, this mixture was cured at a temperature of 100 to 180 ° C. for about 2 hours, and then the obtained resinous solid was carbonized in a nitrogen atmosphere at a temperature of 900 ° C. for about 1.5 hours to obtain a baked sample. .
This sample was baked in an argon atmosphere under the experimental condition 1 using the baking furnace.
[0034]
(Example 2)
Using ethyl silicate as the silicon raw material and resol type phenolic resin as the carbonaceous raw material, adjusting each amount so that the C / Si ratio is 2.5, stirring and mixing, and then adding toluenesulfonic acid as the curing catalyst. In addition, stirring was performed. Next, this mixture was cured at a temperature of 100 to 180 ° C. for about 2 hours, and then the obtained resinous solid was carbonized in a nitrogen atmosphere at a temperature of 900 ° C. for about 1.5 hours to obtain a baked sample. .
This sample was fired in the argon atmosphere under the experimental condition 2 using the firing furnace.
[0035]
(Example 3)
A sample for firing was prepared by using ethyl silicate as a siliceous raw material and high-purity carbon as a carbonaceous raw material, adjusting their amounts so that the C / Si ratio was 3.0, and mixing them homogeneously with stirring.
This sample was baked in an argon atmosphere under the experimental condition 3 using the baking furnace.
[0036]
Example 4
Adjust the amounts of high-purity amorphous silica with an average particle size of 1 μm or less as the silicon raw material and resol type phenolic resin as the carbonaceous raw material so that the C / Si ratio is 2.5, and homogenize with a hot roll. The mixture was mixed and further hexamine was added to solidify. This mixture was carbonized in a nitrogen atmosphere at a temperature of 900 ° C. for about 1.5 hours to obtain a sample for firing. The sample was baked in an argon atmosphere using the baking furnace under experimental condition 4.
[0037]
(Example 5)
Using high-purity amorphous silica with an average particle size of 1 μm or less as the silicon raw material and high-purity carbon as the carbonaceous raw material, adjusting the amounts so that the C / Si ratio is 3.0, and mixing thoroughly by a ball mill The sample was used as a firing sample.
This sample was fired in an argon atmosphere using the firing furnace under experimental condition 5.
[0038]
(Comparative Example 1)
Using the sample of Example 2, a baking treatment was performed in an argon atmosphere using the baking furnace under experimental condition 6. However, in this test, the gas circulation function was stopped, and only the exhaust gas function was operated to perform the firing treatment.
[0039]
(Comparative Example 2)
Using the sample of Example 2, the baking treatment was performed in the argon furnace under the experimental condition 7 in an argon atmosphere. However, in this test, the gas circulation function was stopped, and only the exhaust gas function was operated to perform the firing treatment.
[0040]
(Comparative Example 3)
Silicon carbide powder obtained by the Atchison method.
(Yakushima Electric Works: DIASIC)
[0041]
(Comparative Example 4)
Silicon carbide powder obtained by continuous furnace method. (Commercial goods)
(Showa Denko)
[0042]
(Comparative Example 5)
Silicon carbide powder obtained by vapor phase method. (Commercial goods)
(Showa Denko)
[0043]
Experimental conditions 1 to 7 are shown in Table 1.
[Table 1]
Figure 0004202448
[0044]
Impurity contents of the silicon carbide powders obtained in Examples 1 to 5 and Comparative Examples 1 and 2 and the above-described commercially available silicon carbide powders were analyzed.
<Analysis method>
The impurity analysis of the silicon carbide powder was carried out by IPC-mass spectrometry and flameless atomic absorption after the silicon carbide powder was pyrolyzed under pressure with fluorine, nitric acid and sulfuric acid.
The analysis results are shown in Tables 2 and 3.
[0045]
[Table 2]
Figure 0004202448
[0046]
[Table 3]
Figure 0004202448
[0047]
Tables 2 and 3 show that the content of impurities in the silicon carbide powder obtained by the production method of the present invention is much smaller than that of the silicon carbide powder obtained by the conventional method. .
[0048]
【The invention's effect】
As described above, according to the present invention, high-purity silicon carbide powder can be produced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a preferred embodiment of an apparatus for producing silicon carbide powder of the present invention.
FIG. 2 is a cross-sectional view showing a preferred embodiment of a reaction furnace in the apparatus of FIG.
3 is a schematic configuration diagram showing a preferred embodiment of a recovery device in the apparatus of FIG. 1. FIG.
4 is a schematic configuration diagram showing a preferred embodiment of a dust collector in the apparatus of FIG. 1; FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Reaction furnace 12 Recovery apparatus 14 Dust collector 16 Circulation blower 18 Gas inflow apparatus 20 Graphite case 26 Reaction furnace main body 28 Tubular member 30 Motor 32 Graphite container 34 Gas outlet 38 Electrode 40 Radiation thermometer 42 Sample container 48 Trap part 50 Circular pipe 52 Fin 60 Dust collector body 62 Partition member 64 Filter cloth 66 Gas inlet 68 Gas outlet 70 Pulse gas inlet

Claims (2)

反応容器本体と該反応容器本体底部の孔部を貫通して反応容器本体内に設けられた管状部材上に積み重ねられ、炭化ケイ素の原料混合物を充填するためのガス流通可能な複数の黒鉛製の試料容器が管状部材の回転に伴って回転自在に設置され、不活性雰囲気下で前記原料混合物を焼成して炭化ケイ素粉体を得る反応炉と、該反応炉の底部より不活性ガスを流入するガス流入装置と、前記反応炉の上部から該不活性ガスと炭化ケイ素の焼成時に発生する不純物とを含むガスを排気して冷却し不純物を固化する装置と集塵機とからなる不純物を回収する手段と、該手段からの不活性ガスを前記ガス流入装置に返送させる循環系統と、を具備していることを特徴とする炭化ケイ素粉体用製造装置。A plurality of graphite made of graphite that can be passed through the reaction vessel main body and a tubular member provided in the reaction vessel main body through the hole at the bottom of the reaction vessel main body and capable of flowing gas for filling the raw material mixture of silicon carbide . A sample container is installed rotatably with the rotation of the tubular member, and a reaction furnace in which the raw material mixture is fired in an inert atmosphere to obtain silicon carbide powder, and an inert gas flows from the bottom of the reaction furnace A gas inflow device; and means for recovering impurities comprising a dust collector and a device for exhausting and cooling the gas containing the inert gas and impurities generated during the firing of silicon carbide from the upper part of the reactor to cool and solidify the impurities; And a circulation system for returning an inert gas from the means to the gas inflow device. 反応容器本体と該反応容器本体底部の孔部を貫通して反応容器本体内に設けられた管状部材上に積み重ねられ、炭化ケイ素の原料混合物を充填するためのガス流通可能な複数の黒鉛製の試料容器が管状部材の回転に伴って回転自在に設置され、不活性雰囲気下で前記原料混合物焼成して炭化ケイ素粉体を得る反応炉で1700℃以上の温度で炭化ケイ素の原料混合物を焼成して炭化ケイ素粉体を得、前記反応炉の上部から該不活性ガスと炭化ケイ素の焼成時に発生する不純物とを含むガスを排気して冷却し不純物を固化する装置と集塵機とからなる不純物を回収する手段で不純物を回収し、不活性ガス前記反応炉に返送することを特徴とする炭化ケイ素粉体の製造方法。A plurality of graphite made of graphite that can be passed through the reaction vessel main body and a tubular member provided in the reaction vessel main body through the hole at the bottom of the reaction vessel main body and capable of flowing gas for filling the raw material mixture of silicon carbide . the sample container is installed rotatably with the rotation of the tubular member, firing the raw material mixture was calcined raw material mixture of silicon carbide at temperatures above 1700 ° C. in a reactor to obtain a silicon carbide powder in an inert atmosphere to give a silicon carbide powder, the impurities consisting of the device and dust collector to solidify impurities and cooled by exhausting the gas containing impurities generated during sintering of silicon carbide and inert gas from the upper part of the reactor A method for producing silicon carbide powder , wherein impurities are collected by a collecting means, and an inert gas is returned to the reactor.
JP27160197A 1997-10-03 1997-10-03 Manufacturing apparatus for silicon carbide powder and method for manufacturing silicon carbide powder using the same Expired - Lifetime JP4202448B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP27160197A JP4202448B2 (en) 1997-10-03 1997-10-03 Manufacturing apparatus for silicon carbide powder and method for manufacturing silicon carbide powder using the same
DE19845450A DE19845450B4 (en) 1997-10-03 1998-10-02 Apparatus for producing silicon carbide powder and method for producing silicon carbide powder using this apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27160197A JP4202448B2 (en) 1997-10-03 1997-10-03 Manufacturing apparatus for silicon carbide powder and method for manufacturing silicon carbide powder using the same

Publications (2)

Publication Number Publication Date
JPH11106212A JPH11106212A (en) 1999-04-20
JP4202448B2 true JP4202448B2 (en) 2008-12-24

Family

ID=17502358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27160197A Expired - Lifetime JP4202448B2 (en) 1997-10-03 1997-10-03 Manufacturing apparatus for silicon carbide powder and method for manufacturing silicon carbide powder using the same

Country Status (2)

Country Link
JP (1) JP4202448B2 (en)
DE (1) DE19845450B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272517A (en) * 2013-06-25 2013-09-04 佳明新材料科技有限公司 Agitating device for silicon carbide micro powder recovery technology

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351614A (en) 1999-06-10 2000-12-19 Bridgestone Corp Silicon carbide powder and its production
JP2009256153A (en) * 2008-04-21 2009-11-05 Bridgestone Corp Method and apparatus for producing silicon carbide powder
JP2009263175A (en) * 2008-04-25 2009-11-12 Bridgestone Corp Firing furnace and production method of silicon carbide powder
JP5525050B2 (en) * 2009-08-26 2014-06-18 エルジー イノテック カンパニー リミテッド Silicon carbide powder manufacturing method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1084235A (en) * 1976-05-24 1980-08-26 Ryo Enomoto PROCESS AND AN APPARATUS FOR PRODUCING SILICON CARBIDE CONSISTING MAINLY OF .beta.-TYPE CRYSTAL
JPH066485B2 (en) * 1985-04-08 1994-01-26 株式会社ブリヂストン Method for producing silicon carbide
US4702900A (en) * 1985-04-08 1987-10-27 Bridgestone Corporation Method of producing silicon carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103272517A (en) * 2013-06-25 2013-09-04 佳明新材料科技有限公司 Agitating device for silicon carbide micro powder recovery technology

Also Published As

Publication number Publication date
DE19845450B4 (en) 2008-11-13
DE19845450A1 (en) 1999-04-08
JPH11106212A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
CN108821292B (en) Method and device for producing silicon monoxide
JP2874925B2 (en) Apparatus and method for producing uniform, fine boron-containing ceramic powder
JP6945526B2 (en) Heat permeable tube containing fiber reinforced ceramic matrix composite material
AU2095800A (en) Agglomeration of silicon powders
US10081553B2 (en) Process for making high-purity aluminum oxide
JP2000351614A (en) Silicon carbide powder and its production
JP2019500564A5 (en)
JP4202448B2 (en) Manufacturing apparatus for silicon carbide powder and method for manufacturing silicon carbide powder using the same
CA1175238A (en) Method and apparatus for the thermal production of metal carbides and metals
JP6029492B2 (en) Method for producing silicon carbide
EP2014617A2 (en) Process For Melting Silicon Powders
CN1492836A (en) Method for performing themral reactions between reactants and furnace for same
JP2841862B2 (en) Method for producing silicon carbide
CN111410229A (en) Preparation method and equipment of high-purity molybdenum oxide
JP2000143226A (en) Apparatus for production of powdery silicon carbide and production of powdery silicon carbide, using the same
JP2005225690A (en) METHOD AND APPARATUS FOR MANUFACTURING SiO
JP2000211909A (en) Apparatus for producing graphite
AU2020424483A1 (en) A method and apparatus to condense magnesium vapor using a fluid-cooled heat exchanger
JPH0925112A (en) Treatment of metal silicate and apparatus therefor
JPH10167725A (en) Continuous production of alumina
US20240076192A1 (en) Methods and apparatus of producing silicon nanoparticles
JP5383604B2 (en) Reactor for the production of polycrystalline silicon
JPH0454610B2 (en)
CA1115966A (en) Method of extracting magnesium from magnesium oxides
CN114345511A (en) Thermal crushing method for electronic grade polycrystalline silicon rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term