JPH10167725A - Continuous production of alumina - Google Patents

Continuous production of alumina

Info

Publication number
JPH10167725A
JPH10167725A JP8320477A JP32047796A JPH10167725A JP H10167725 A JPH10167725 A JP H10167725A JP 8320477 A JP8320477 A JP 8320477A JP 32047796 A JP32047796 A JP 32047796A JP H10167725 A JPH10167725 A JP H10167725A
Authority
JP
Japan
Prior art keywords
alumina
line
powder
aluminum hydroxide
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8320477A
Other languages
Japanese (ja)
Other versions
JP3436024B2 (en
Inventor
Mitsuaki Murakami
光明 村上
Osamu Yamanishi
修 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP32047796A priority Critical patent/JP3436024B2/en
Publication of JPH10167725A publication Critical patent/JPH10167725A/en
Application granted granted Critical
Publication of JP3436024B2 publication Critical patent/JP3436024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process for the continuous production of alumina powder having spherical form and sharp particle size distribution at a low cost. SOLUTION: Alumina is continuously produced by using a baking apparatus composed of a supplying line 1 for aluminum hydroxide, a baking oven 2 for baking the supplied aluminum hydroxide, a line 3 for delivering the baked alumina from the system, an exhaust gas line 4 to introduce the gas exhausted from the baking oven 2 into a dust-collector 5, a line 6 for discharging the exhaust gas from the dust-collector 5 and a line 7 to discharge the collected powder. In the above system, the powder collected by the dust-collector 5 is recycled to the baking oven 2 through a line 8. The aluminum hydroxide produced by Bayer's process is added together with fine alumina powder having an average particle diameter of 0.1-10μm and a fluorine compound to the baking oven 2 while recycling at least a part of the collected powder to the oven 2 and the mixture is baked to obtain the objective alumina.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はアルミナの連続的製
造方法に関する。さらに詳細には、得られるアルミナ粒
子が球状で、かつ粒度分布がシャープなアルミナの連続
的製造方法に関するものである。
The present invention relates to a method for continuously producing alumina. More specifically, the present invention relates to a method for continuously producing alumina having a spherical alumina particle and a sharp particle size distribution.

【0002】[0002]

【従来の技術】アルミナは化学的安定性や優れた機械的
強度、さらには物理的特性に優れていることより、成
形、焼結し各種機械部品や電気部品として使用されてい
る。これら用途においては、廉価で寸法安定性や高い焼
結密度が要求されることより、球状で粒度分布がシャー
プなアルミナ粉体が必要とされる。バイヤー法で得られ
る水酸化アルミニウムを焼成することによるアルミナの
製造方法としては、粒子径や粒度分布、BET比表面積
等の特性コントロールを目的に、各種多様な製法が提案
されている。例えば(1)鉱化剤として弗素、塩素、ホ
ウ素から選ばれた少なくとも1種または2種以上組み合
わせて使う方法、(2)脱ソーダ剤として硅砂等のシリ
カ系化合物、塩素系化合物を使う方法、(3)上記を組
み合わせる方法、さらには(4)焼成時、水酸化アルミ
ニウム中にアルミナの微粒子を添加し、これに上記方法
を組み合わせて焼成する方法も提案されている(特公平
6−104570号公報、特開平7−41318号公
報)。しかしながら、鉱化剤として塩素系化合物及び/
または弗素系化合物をを使う場合には、原料に鉱化剤と
して添加するハロゲン系化合物量に比例して、αアルミ
ナ中に残存するハロゲン系化合物の量が増加し、焼成時
に生成する凝集体が多くなる。かかる対策として、ハロ
ゲン系化合物を除去する方法が提案されている(特開平
7−206432公報)。また、脱ソーダ剤であるシリ
カ系化合物を添加している場合には、原料に添加する弗
素系化合物に比例してシリカ汚染も高くなる。
2. Description of the Related Art Alumina is molded, sintered and used as various mechanical parts and electric parts because of its excellent chemical stability, excellent mechanical strength and physical properties. In these applications, a low-priced dimensional stability and a high sintering density are required, so that a spherical alumina powder having a sharp particle size distribution is required. As a method for producing alumina by firing aluminum hydroxide obtained by the Bayer method, various production methods have been proposed for the purpose of controlling characteristics such as particle diameter, particle size distribution, and BET specific surface area. For example, (1) a method of using at least one kind or a combination of two or more kinds selected from fluorine, chlorine, and boron as a mineralizer, (2) a method of using a silica-based compound such as silica sand or a chlorine-based compound as a soda remover, (3) A method of combining the above, and (4) a method of adding alumina fine particles to aluminum hydroxide at the time of firing and firing the combined alumina with the above method have also been proposed (Japanese Patent Publication No. 6-104570). Gazette, JP-A-7-41318). However, chlorine compounds and / or
Alternatively, when a fluorine-based compound is used, the amount of the halogen-based compound remaining in the α-alumina increases in proportion to the amount of the halogen-based compound added as a mineralizer to the raw material, and aggregates generated during firing are reduced. More. As a countermeasure, a method of removing a halogen compound has been proposed (Japanese Patent Application Laid-Open No. 7-206432). In addition, when a silica-based compound as a soda remover is added, silica contamination increases in proportion to the fluorine-based compound added to the raw material.

【0003】[0003]

【発明が解決しようとする課題】かかる事情下に鑑み、
本発明者はバイヤー法により得られる廉価な水酸化アル
ミニウムを用い、これを連続的に焼成して廉価でかつ球
状で粒度分布がシャープなアルミナ粉体を得るべく鋭意
検討した結果、特定の焼成装置を用い、かつ焼成後のア
ルミナ中に含有されるフッ素化合物の存在量が特定範囲
になる如く、水酸化アルミニウムに種子としての微粒ア
ルミナとフッ素化合物を添加、調製し、焼成する場合に
は上記目的とするアルミナが連続的に製造し得ることを
見出し、本発明を完成するに至った。
In view of such circumstances,
The inventor of the present invention used inexpensive aluminum hydroxide obtained by the Bayer method and sintered it continuously to obtain an inexpensive, spherical, and sharp particle size distribution alumina powder. When aluminum oxide and fine particles of alumina and a fluorine compound as seeds are added to aluminum hydroxide, and the mixture is calcined, the above-mentioned purpose is used. Have been found to be able to be continuously produced, and the present invention has been completed.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は、水
酸化アルミニウムの供給ライン(1)、供給された水酸
化アルミニウムを焼成する焼成炉(2)、焼成後のアル
ミナを系外に導出するライン(3)、焼成炉(2)より
排出されるガスを集塵装置(5)へ導入する排ガスライ
ン(4)、排ガス中に含まれる粉体を捕集する集塵装置
(5)、粉体捕集後の排ガスを集塵装置(5)より排出
するライン(6)、捕集した粉体を系外に排出するライ
ン(7)よりなる焼成装置を用い連続的にアルミナを製
造する方法に於いて、該装置に集塵装置(5)で捕集し
た粉体を焼成炉(2)に循環供給するライン(8)を設
け、集塵装置(5)で捕集した粉体の少なくとも一部を
焼成炉(2)中へ循環しつつ、焼成炉(2)中に、バイ
ヤー法により得られた水酸化アルミニウムと該水酸化ア
ルミニウム(Al2 3 換算)に対して平均粒子径0.
1μm〜10μmの微粒アルミナ0.5〜20重量%
(Al2 3 換算)及び弗素系化合物を20〜200p
pm(F換算)の範囲で添加、調製し、焼成後ライン
(3)より排出されるアルミナ中のフッ素化合物含有量
が1〜200ppm(F換算)となる如く焼成すること
を特徴とするアルミナの連続的製造方法を提供するにあ
る。
That is, the present invention provides an aluminum hydroxide supply line (1), a sintering furnace (2) for sintering the supplied aluminum hydroxide, and leading the baked alumina out of the system. Line (3), an exhaust gas line (4) for introducing gas discharged from the firing furnace (2) to the dust collector (5), a dust collector (5) for collecting powder contained in the exhaust gas, A method for continuously producing alumina using a baking apparatus comprising a line (6) for discharging exhaust gas after body collection from a dust collector (5) and a line (7) for discharging collected powder to the outside of the system. In the apparatus, a line (8) for circulating and supplying the powder collected by the dust collector (5) to the firing furnace (2) is provided, and at least the powder collected by the dust collector (5) is provided. A part is circulated into the firing furnace (2) while being obtained by the Bayer method in the firing furnace (2). The average particle diameter of 0 for the aluminum hydroxide and water aluminum oxide (Al 2 O 3 conversion) was.
1 μm to 10 μm fine alumina 0.5 to 20% by weight
(In terms of Al 2 O 3 ) and 20 to 200p of fluorine compound
pm (calculated as F), and calcined so that the fluorine compound content in alumina discharged from the line (3) after firing is 1 to 200 ppm (calculated as F). It is to provide a continuous manufacturing method.

【0005】[0005]

【発明の実施の形態】以下、本発明を図面を用いて更に
詳細に説明する。図1は本発明方法に使用する水酸化ア
ルミニウムの連続的焼成装置のブロック構成図であり、
(1)は水酸化アルミニウムの供給ライン、(2)は焼
成炉、(3)は焼成後のアルミナを系外に導出するライ
ン、(4)は焼成炉(2)より排出されるガスを集塵装
置(5)へ導入する排ガスライン(4)、(5)は排ガ
ス中に含まれる粉体を捕集する集塵装置、(6)は粉体
捕集後の排ガスを集塵装置(5)より排出するライン、
(7)は捕集した粉体を系外に排出するライン、(8)
は集塵装置(5)で捕集した粉体を焼成炉(2)に循環
供給するラインを示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a block diagram of a continuous firing apparatus for aluminum hydroxide used in the method of the present invention.
(1) is a supply line of aluminum hydroxide, (2) is a firing furnace, (3) is a line for leading the alumina after firing out of the system, and (4) is a gas collected from the firing furnace (2). An exhaust gas line (4) introduced into the dust device (5), a dust collector (5) for collecting powder contained in the exhaust gas, and (6) a dust collector (5) for collecting the exhaust gas after the powder is collected. ) More discharging line,
(7) is a line for discharging the collected powder out of the system, (8)
Denotes a line for circulating and supplying the powder collected by the dust collecting device (5) to the firing furnace (2).

【0006】本発明の実施に於いては、焼成炉(2)中
に、バイヤー法により得られた水酸化アルミニウムと該
水酸化アルミニウム(Al2 3 換算)に対して平均粒
子径約0.1μm〜約10μmの微粒アルミナ約0.5
〜約20重量%(Al2 3換算)及び弗素系化合物を
約20〜約200ppm(F換算)未満の範囲で添加、
焼成する。 また、焼成炉(2)の排ガスは排ガスライ
ン(4)により集塵装置(5)へ導入し、排ガス中の主
として微粒アルミナよりなる粉体を捕集し、捕集した粉
体の少なくとも1部をライン(8)により焼成炉(2)
に循環供給し焼成に供する。
In the practice of the present invention, the average particle size of the aluminum hydroxide obtained by the Bayer method and the aluminum hydroxide (in terms of Al 2 O 3 ) is about 0.2 in a firing furnace (2). 1 μm to about 10 μm fine alumina about 0.5
To about 20% by weight (in terms of Al 2 O 3 ) and a fluorine compound in an amount of about 20 to less than about 200 ppm (in terms of F),
Bake. Exhaust gas from the firing furnace (2) is introduced into a dust collector (5) through an exhaust gas line (4) to collect powder mainly composed of fine alumina in the exhaust gas, and to collect at least a part of the collected powder. By the line (8)
Circulated and supplied for firing.

【0007】本発明方法に於いて、焼成後の製品アルミ
ナは焼成炉(2)よりライン(3)を経て、系外に取り
出すが、ライン(3)より系外に取り出す製品アルミナ
中の弗素系化合物含有量が約1〜200ppm(F換
算)未満であることを必須とする。かかる範囲の弗素系
化合物を含有する製品アルミナは、焼成炉(2)に添加
する弗素系化合物量ならびにライン(8)より焼成炉
(2)に循環使用する粉体の量により調製することがで
きる。
In the method of the present invention, the product alumina after calcination is taken out of the system from the sintering furnace (2) via the line (3), but is taken out of the system from the line (3). It is essential that the compound content be less than about 1 to 200 ppm (F conversion). The product alumina containing the fluorine compound in this range can be prepared by the amount of the fluorine compound added to the firing furnace (2) and the amount of the powder circulated through the firing furnace (2) from the line (8). .

【0008】焼成時に水酸化アルミニウムに添加する微
粒アルミナとしては、通常αアルミナ及び/または遷移
アルミナが使用される。これら微粒アルミナの平均粒子
径(平均二次粒子径)は約0.1μm〜約10μm、好
ましくは約0.5μm〜約8μmのものが使用される。
添加量はAl2 3 換算で約0.5〜約20重量%、好
ましくは約1重量%〜約5重量%である。微粒アルミナ
の添加量が上記範囲より少ない場合には得られるアルミ
ナの粒度分布がシャープでなく、他方上記範囲を越えて
も、添加量に見合う効果の発現はない。
[0008] As the fine alumina added to the aluminum hydroxide at the time of firing, α alumina and / or transition alumina are usually used. The average particle diameter (average secondary particle diameter) of these fine alumina particles is about 0.1 μm to about 10 μm, preferably about 0.5 μm to about 8 μm.
The addition amount of about 0.5 to about 20 wt% in terms of Al 2 O 3, preferably about 1% to about 5 wt%. If the amount of the fine alumina added is less than the above range, the particle size distribution of the obtained alumina is not sharp. On the other hand, even if it exceeds the above range, the effect corresponding to the added amount is not exhibited.

【0009】焼成後ライン(3)より取り出すアルミナ
中の弗素系化合物含有量は約1〜200ppm(F換
算)未満、好ましくは約1〜100ppmである。存在
量が少ない場合、所望とする球状品は得難く、他方多過
ぎる場合には板状品となる。
The content of the fluorine compound in the alumina taken out from the line (3) after the firing is less than about 1 to 200 ppm (in terms of F), preferably about 1 to 100 ppm. If the amount is small, it is difficult to obtain a desired spherical product, while if too large, it becomes a plate-like product.

【0010】本発明に適用する弗素化合物としては特に
制限されないが、通常、弗化アルミニウム、弗化水素、
弗化アンモニウム、弗化ナトリウム、弗化マグネシウ
ム、弗化カルシウムから選ばれた少なくとも1種を用い
ればよい。
Although the fluorine compound applied to the present invention is not particularly limited, it is usually aluminum fluoride, hydrogen fluoride,
At least one selected from ammonium fluoride, sodium fluoride, magnesium fluoride, and calcium fluoride may be used.

【0011】本発明に適用する集塵装置としては、特に
制限されないが、例えばサイクロン、電気式集塵機、バ
グフィルター、スクラバー等が挙げられる。また焼成炉
としては、ロータリーキルン、SPロータリーキルン、
NSPロータリーキルン、流動床炉が使用できる。熱効
率を上げるために、熱媒である燃焼ガスとアルミナ粉体
が向流式である内燃式焼成炉の使用が推奨される。
The dust collector applied to the present invention is not particularly limited, but includes, for example, a cyclone, an electric dust collector, a bag filter, a scrubber and the like. As the firing furnace, a rotary kiln, an SP rotary kiln,
NSP rotary kilns and fluidized bed furnaces can be used. In order to increase the thermal efficiency, it is recommended to use an internal combustion type firing furnace in which the combustion gas as the heat medium and the alumina powder are of a countercurrent type.

【0012】水酸化アルミニウムの焼成条件は使用する
焼成炉の種類、焼成量、要求される水酸化アルミニウム
の焼成程度等により一義的ではないが、通常焼成温度約
1100℃〜1500℃、焼成炉に於けるアルミナの滞
留時間として約1時間〜10時間の範囲で実施される。
The conditions for sintering aluminum hydroxide are not unique depending on the kind of sintering furnace to be used, the amount of sintering, the required degree of sintering of aluminum hydroxide, etc., but usually the sintering temperature is about 1100 ° C. to 1500 ° C. The residence time of alumina in the reaction is in the range of about 1 hour to 10 hours.

【0013】また、本発明方法の効果を損なわない範囲
に於いて、脱ソーダ剤としてのシリカ系化合物を焼成
時、水酸化アルミニウム(Al2 3 換算)に対し1〜
20重量%の範囲で添加し、使用することもできる。他
の添加剤を併用することも可能である。
[0013] In addition, as long as the effect of the method of the present invention is not impaired, when the silica-based compound as a soda removal agent is calcined, it is 1 to 1 with respect to aluminum hydroxide (in terms of Al 2 O 3 ).
It can be added and used in the range of 20% by weight. It is also possible to use other additives in combination.

【0014】[0014]

【発明の効果】以上、詳述した如く、本発明方法に於い
てはバイヤー法により得られた廉価な水酸化アルミニウ
ムを用い、集塵装置で捕集した粉体の少なくとも1部と
特定少量の弗素系化合物の焼成炉への添加量を調製し、
焼成品中に含有されるフッ素化合物の含有量を特定範囲
にするアルミナの連続的製造方法により、廉価で、かつ
球状で、粒度分布がシャープ(通常D90/D10が
4.0未満、好適には3.5未満)なアルミナが得られ
ることを見出したものであり、各種機械部品や電気部品
の原料供給面よりその工業的利用価値は頗る大である。
As described in detail above, in the method of the present invention, inexpensive aluminum hydroxide obtained by the Bayer method is used, and at least one part of the powder collected by the dust collecting device is mixed with a specific small amount. Adjust the amount of fluorine compound added to the firing furnace,
Inexpensive, spherical, and sharp particle size distribution (usually, D90 / D10 is less than 4.0, preferably, by the continuous production method of alumina in which the content of the fluorine compound contained in the calcined product is in a specific range. (Less than 3.5) alumina can be obtained, and its industrial utility value is extremely large from the aspect of raw material supply for various mechanical parts and electric parts.

【0015】[0015]

【実施例】次に本発明を実施例によりさらに詳細に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。尚、実施例に示す測定は、下記方法を採用した。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, the measurement shown in the Example adopted the following method.

【0016】 (1)BET比表面積 : 窒素吸着によるBET法により測定した。 (2)組成分析 弗素(F) : 水蒸気蒸留−イオン電極法により測定した。 酸化ソーダ(Na2 O): JIS H1901に準じる。 二酸化硅素(SiO2 ): JIS H1901に準じる。 (4)粒度分布 : マイクロトラックHRA X−100を使って測 定した。 (5)粉砕試験 方法1: 3.3リットルのアルミナポットに直径15mmのアルミナボール3 kgと試料であるαアルミナ400gを入れ、回転数80rpmで12時間処理 した。 方法2: 3.3リットルのアルミナポットに直径15mmのアルミナボール3 kgと試料であるαアルミナ400gに二酸化珪素8g(和光純薬製)、水酸化 マグネシウム7g(和光試薬製)、炭酸カルシウム2g(和光試薬製)を入れ、 回転数80rpmで粉砕した。 (6)成形密度:水銀アルキメデス法により測定した。 (7)焼結密度:水中アルキメデス法により測定した。(1) BET specific surface area: measured by a BET method using nitrogen adsorption. (2) Composition analysis Fluorine (F): Measured by steam distillation-ion electrode method. Sodium oxide (Na 2 O): According to JIS H1901. Silicon dioxide (SiO 2 ): According to JIS H1901. (4) Particle size distribution: Measured using Microtrac HRA X-100. (5) Pulverization Test Method 1: A 3 liter alumina pot was charged with 3 kg of alumina balls having a diameter of 15 mm and 400 g of α-alumina as a sample, and treated at 80 rpm for 12 hours. Method 2: In a 3.3 liter alumina pot, 3 kg of alumina balls having a diameter of 15 mm and 400 g of α-alumina as a sample, 8 g of silicon dioxide (manufactured by Wako Pure Chemical Industries), 7 g of magnesium hydroxide (manufactured by Wako Reagent), 2 g of calcium carbonate ( (Manufactured by Wako Reagent), and crushed at a rotation speed of 80 rpm. (6) Molding density: measured by a mercury Archimedes method. (7) Sintering density: Measured by the underwater Archimedes method.

【0017】実施例1 水10kgにバイヤー法により得られた水酸化アルミニ
ウムC−12(中心粒径50μm、Na2 O 0.2
%、F 20ppm、住友化学工業製)7650g、平
均粒径0.5μmのαアルミナAES−12(住友化学
工業製)25g、弗化アルミニウム(和光純薬製)1.
1gを順に添加混合した後、混合スラリーを濾過した。
濾過したウェットケーキを、アルミナセラミックス製回
転式小型焼成炉(内径7cm、長さ140cm、130
0℃均一温度ゾーン60cm、傾斜角2゜、回転数2r
pm、焼成炉上部にアルミナの回収用にガラスファイバ
ー製フィルターを設置し、回収したアルミナは振動機に
よりフィルターから除去した後、キルン内に戻した)に
供給速度50g/hで連続的に供給した。焼成炉内のア
ルミナの滞留時間は、6時間であった。焼成後に得られ
たαアルミナのBET比表面積は0.5m2 /g、弗素
含有量は190ppmであった。得られたαアルミナの
写真を図2に示す。方法1により粉砕したアルミナの中
心粒径は2μm、D90/D10は3.0であった。方
法2により9時間粉砕したアルミナを成形圧300kg
/cm2 でCIP成形した後、1650℃、2時間焼結
した。粉砕したアルミナの中心粒径は2.5μm、D9
0/D10は3.2、成形密度は2.10、焼結密度
は、3.84g/cm3 であった。
Example 1 Aluminum hydroxide C-12 (center particle diameter 50 μm, Na 2 O 0.2
%, F 20 ppm, 7650 g, Sumitomo Chemical Co., Ltd., 25 g of α-alumina AES-12 (Sumitomo Chemical Co., Ltd.) having an average particle size of 0.5 μm, aluminum fluoride (Wako Pure Chemical Industries, Ltd.)
After adding and mixing 1 g in order, the mixed slurry was filtered.
The filtered wet cake is placed in a small rotary ceramic baking furnace made of alumina ceramics (inner diameter 7 cm, length 140 cm, 130
0 ° C uniform temperature zone 60cm, tilt angle 2 °, rotation speed 2r
pm, a glass fiber filter was installed at the top of the firing furnace to recover alumina, and the recovered alumina was removed from the filter by a vibrator and then returned to the kiln) and continuously supplied to the kiln at a supply rate of 50 g / h. . The residence time of alumina in the firing furnace was 6 hours. The α-alumina obtained after the calcination had a BET specific surface area of 0.5 m 2 / g and a fluorine content of 190 ppm. FIG. 2 shows a photograph of the obtained α-alumina. The center particle size of alumina pulverized by the method 1 was 2 μm, and D90 / D10 was 3.0. Alumina pulverized by Method 2 for 9 hours is pressed at a molding pressure of 300 kg.
/ Cm 2 and then sintered at 1650 ° C. for 2 hours. The center particle size of the crushed alumina is 2.5 μm, D9
0 / D10 was 3.2, the molding density was 2.10, and the sintering density was 3.84 g / cm 3 .

【0018】実施例2 実施例1において、平均粒径0.5μmのαアルミナに
変えて平均粒径8μmの遷移アルミナKC−508(住
友化学工業製)を1000g混合した以外は、実施例1
と同じ操作を行った。得られたαアルミナのBET比表
面積は1m2 /g、弗素含有量は180ppmであっ
た。方法1により粉砕したアルミナの中心粒径は1.5
μm、D90/D10は3.5であった。
Example 2 Example 1 was repeated, except that 1000 g of transition alumina KC-508 (manufactured by Sumitomo Chemical Co., Ltd.) having an average particle size of 8 μm was used instead of α-alumina having an average particle size of 0.5 μm.
The same operation was performed. The BET specific surface area of the obtained α-alumina was 1 m 2 / g, and the fluorine content was 180 ppm. The center particle size of alumina pulverized by the method 1 is 1.5
μm, D90 / D10 was 3.5.

【0019】実施例3 実施例1において、弗化アルミニウム0.1gに変えた
以外は、実施例1と同じ操作を行った。得られた焼成α
アルミナのBET比表面積は1.5m2 /g、弗素含有
量は27ppmであった。方法1により粉砕したアルミ
ナの中心粒径は1.0μm、D90/D10は3.5で
あった。
Example 3 The same operation as in Example 1 was performed, except that the amount of aluminum fluoride was changed to 0.1 g. Obtained firing α
The alumina had a BET specific surface area of 1.5 m 2 / g and a fluorine content of 27 ppm. The center particle diameter of the alumina pulverized by the method 1 was 1.0 μm, and D90 / D10 was 3.5.

【0020】実施例4 実施例1において、平均粒子径約1mmの硅砂を500
gを新たに混合し、焼成後に目開き149μmの篩によ
り硅砂をアルミナから篩別した以外は、実施例1と同じ
操作を行った。得られた焼成αアルミナのBET比表面
積は0.5m2/g、弗素含有量は170ppm、Na
2 O 0.05%、SiO2 0.05%であった。方
法1により粉砕したアルミナの中心粒径は1.9μm、
D90/D10は3.0であった。
Example 4 In Example 1, 500 g of silica sand having an average particle diameter of about 1 mm was added.
g was newly mixed, and the same operation as in Example 1 was performed except that silica sand was sieved from alumina with a sieve having an opening of 149 μm after firing. The obtained calcined α-alumina has a BET specific surface area of 0.5 m 2 / g, a fluorine content of 170 ppm, and a Na content of 170 ppm.
2 O 0.05% and SiO 2 0.05%. The center particle size of the alumina pulverized by the method 1 is 1.9 μm,
D90 / D10 was 3.0.

【0021】比較例1 実施例1において、平均粒径0.5μmのαアルミナA
ES−12(住友化学工業製)を混合しない以外は、実
施例1と同じ操作を行った。得られた焼成αアルミナの
BET比表面積は0.5m2 /g、弗素含有量は190
ppmであった。方法1により粉砕したアルミナの中心
粒径は2.2μm、D90/D10は4.5であった。
Comparative Example 1 In Example 1, α-alumina A having an average particle size of 0.5 μm was used.
The same operation as in Example 1 was performed except that ES-12 (manufactured by Sumitomo Chemical Co., Ltd.) was not mixed. The obtained calcined α-alumina has a BET specific surface area of 0.5 m 2 / g and a fluorine content of 190.
ppm. The center particle size of the alumina pulverized by the method 1 was 2.2 μm, and D90 / D10 was 4.5.

【0022】比較例2 実施例1において、弗化アルミニウム2gに変えた以外
は、実施例1と同じ操作を行った。得られた焼成αアル
ミナのBET比表面積は0.4m2 /g、弗素含有量は
270ppmであった。得られたαアルミナの写真を図
3に示す。方法1により粉砕したアルミナの中心粒径は
3.0μm、D90/D10は5.0であった。方法2
により18時間粉砕したアルミナを成形圧300kg/
cm2 でCIP成形した後、1650℃、2時間焼結し
た。粉砕したアルミナの中心粒径は2.5μm、D90
/D10は5.5、成形密度は2.05g/cm3 、焼
結密度は3.78g/cm3 であった。
Comparative Example 2 The same operation as in Example 1 was performed, except that the amount of aluminum fluoride was changed to 2 g. The BET specific surface area of the obtained calcined α-alumina was 0.4 m 2 / g, and the fluorine content was 270 ppm. FIG. 3 shows a photograph of the obtained α-alumina. The center particle diameter of the alumina pulverized by the method 1 was 3.0 μm, and D90 / D10 was 5.0. Method 2
Alumina ground for 18 hours with a molding pressure of 300 kg /
After CIP molding in cm 2 , sintering was performed at 1650 ° C. for 2 hours. The center particle size of the crushed alumina is 2.5 μm, D90
/ D10 is 5.5, the molding density of 2.05 g / cm 3, the sintered density was 3.78 g / cm 3.

【0023】比較例3 実施例1において、濾過したウェットケーキ50gを、
回転式小型焼成炉に供給する変わりにシャモット質容器
に入れ、静置式電気炉にて1300℃、6時間焼成した
以外は、実施例1と同じ操作を行った。得られた焼成α
アルミナのBET比表面積は4.5m2 /g、弗素含有
量は1ppmであった。方法1により粉砕したアルミナ
の中心粒径は0.8μm、D90/D10は7.0であ
った。
Comparative Example 3 In Example 1, 50 g of the filtered wet cake was used.
The same operation as in Example 1 was performed, except that the mixture was placed in a chamotte-like container instead of being supplied to the small rotary firing furnace, and was fired at 1300 ° C. for 6 hours in a stationary electric furnace. Obtained firing α
The alumina had a BET specific surface area of 4.5 m 2 / g and a fluorine content of 1 ppm. The center particle size of alumina pulverized by the method 1 was 0.8 μm, and D90 / D10 was 7.0.

【0024】比較例4 実施例1において、弗化アルミニウムを2gに増やし、
粒子径1mm前後の硅砂を500gをあらたに混合し、
焼成後に目開き149μmの篩により硅砂をアルミナか
ら篩別した以外は、実施例1と同じ操作を行った。得ら
れた焼成αアルミナのBET比表面積は0.4、弗素含
有量は220ppm、Na2 O 0.04%、SiO2
0.15%であった。方法1により粉砕したアルミナ
の中心粒径は3.0μm、D90/D10は5.0であ
った。
Comparative Example 4 In Example 1, the amount of aluminum fluoride was increased to 2 g.
500 g of silica sand having a particle diameter of about 1 mm is newly mixed,
The same operation as in Example 1 was performed except that silica sand was sieved from alumina with a sieve having an opening of 149 μm after firing. The BET specific surface area of the obtained sintered α-alumina 0.4, the fluorine content is 220ppm, Na 2 O 0.04%, SiO 2
0.15%. The center particle diameter of the alumina pulverized by the method 1 was 3.0 μm, and D90 / D10 was 5.0.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に用いる連続的焼成装置の概略図を
示す。
FIG. 1 shows a schematic view of a continuous firing apparatus used in the method of the present invention.

【図2】アルミナの粒子構造を示す電子顕微鏡写真であ
る。
FIG. 2 is an electron micrograph showing the particle structure of alumina.

【図3】アルミナの粒子構造を示す電子顕微鏡写真であ
る。
FIG. 3 is an electron micrograph showing the particle structure of alumina.

【符号の説明】[Explanation of symbols]

(1)は水酸化アルミニウムの供給ライン (2)は焼成炉 (3)は焼成後のアルミナを系外に導出するライン (4)は排ガスライン (5)は集塵装置 (6)は粉体捕集後の排ガスを集塵装置より排出するラ
イン (7)は捕集した粉体を系外に排出するライン (8)は捕集した粉体を焼成炉に循環供給するラインを
示す。
(1) A supply line of aluminum hydroxide (2) A firing furnace (3) A line to lead the alumina after firing out of the system (4) An exhaust gas line (5) A dust collector (6) A powder A line (7) for discharging the collected exhaust gas from the dust collector is a line for discharging the collected powder to the outside of the system, and (8) is a line for circulating and supplying the collected powder to the firing furnace.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水酸化アルミニウムの供給ライン
(1)、供給された水酸化アルミニウムを焼成する焼成
炉(2)、焼成後のアルミナを系外に導出するライン
(3)、焼成炉(2)より排出されるガスを集塵装置
(5)へ導入する排ガスライン(4)、排ガス中に含ま
れる粉体を捕集する集塵装置(5)、粉体捕集後の排ガ
スを集塵装置(5)より排出するライン(6)、捕集し
た粉体を系外に排出するライン(7)よりなる焼成装置
を用い連続的にアルミナを製造する方法に於いて、該装
置に集塵装置(5)で捕集した粉体を焼成炉(2)に循
環供給するライン(8)を設け、集塵装置(5)で捕集
した粉体の少なくとも一部を焼成炉(2)中へ循環しつ
つ、焼成炉(2)中に、バイヤー法により得られた水酸
化アルミニウムと該水酸化アルミニウム(Al2 3
算)に対して平均粒子径0.1μm〜10μmの微粒ア
ルミナ0.5〜20重量%(Al2 3 換算)及び弗素
系化合物を20〜200ppm(F換算)の範囲で添
加、調製し、焼成後ライン(3)より排出されるアルミ
ナ中のフッ素化合物含有量が1〜200ppm(F換
算)となる如く焼成することを特徴とするアルミナの連
続的製造方法。
1. An aluminum hydroxide supply line (1), a firing furnace (2) for firing the supplied aluminum hydroxide, a line (3) for leading alumina after firing out of the system, and a firing furnace (2). An exhaust gas line (4) for introducing the gas discharged from the exhaust gas into a dust collector (5), a dust collector (5) for collecting powder contained in the exhaust gas, and a dust collector for collecting the exhaust gas after collecting the powder. In a method for continuously producing alumina using a baking device comprising a line (6) for discharging from the (5) and a line (7) for discharging the collected powder to the outside of the system, a dust collecting device is provided for the device. A line (8) for circulating and supplying the powder collected in (5) to the firing furnace (2) is provided, and at least a portion of the powder collected by the dust collector (5) is introduced into the firing furnace (2). While circulating, the aluminum hydroxide obtained by the Bayer method and the aluminum hydroxide were introduced into the firing furnace (2). 0.5 to 20% by weight (calculated as Al 2 O 3 ) of fine alumina having an average particle diameter of 0.1 μm to 10 μm with respect to minium (calculated as Al 2 O 3 ) and 20 to 200 ppm (calculated as F) of a fluorine compound. A continuous process for producing alumina, characterized in that the process is carried out in such a manner that the content of the fluorine compound in the alumina discharged from the line (3) after firing is from 1 to 200 ppm (in terms of F).
【請求項2】 微粒アルミナが、αアルミナ及び/また
は遷移アルミナであることを特徴とする請求項1記載の
アルミナの連続的製造方法。
2. The continuous alumina production method according to claim 1, wherein the fine alumina is α-alumina and / or transition alumina.
【請求項3】 弗素系化合物が弗化アルミニウム、弗化
水素、弗化アンモニウム、弗化ナトリウム、弗化マグネ
シウム、弗化カルシウムから選ばれた少なくとも1種で
あることを特徴とする請求項1記載のアルミナの連続的
製造方法。
3. The method according to claim 1, wherein the fluorine compound is at least one selected from aluminum fluoride, hydrogen fluoride, ammonium fluoride, sodium fluoride, magnesium fluoride, and calcium fluoride. Continuous production method of alumina.
【請求項4】 シリカ系化合物を脱ソーダ剤として1〜
20重量%添加することを特徴とする請求項1記載のア
ルミナの連続的製造方法。
4. Use of a silica-based compound as a soda remover
The method for continuously producing alumina according to claim 1, wherein 20% by weight is added.
【請求項5】 焼成炉におけるアルミナの平均滞留時間
が1〜10時間であることを特徴とする請求項1記載の
アルミナの連続的製造方法。
5. The continuous alumina production method according to claim 1, wherein the average residence time of the alumina in the firing furnace is 1 to 10 hours.
JP32047796A 1996-11-29 1996-11-29 Continuous production method of alumina Expired - Fee Related JP3436024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32047796A JP3436024B2 (en) 1996-11-29 1996-11-29 Continuous production method of alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32047796A JP3436024B2 (en) 1996-11-29 1996-11-29 Continuous production method of alumina

Publications (2)

Publication Number Publication Date
JPH10167725A true JPH10167725A (en) 1998-06-23
JP3436024B2 JP3436024B2 (en) 2003-08-11

Family

ID=18121887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32047796A Expired - Fee Related JP3436024B2 (en) 1996-11-29 1996-11-29 Continuous production method of alumina

Country Status (1)

Country Link
JP (1) JP3436024B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002034692A2 (en) 2000-10-20 2002-05-02 Showa Denko K.K. Method of producing low soda alumina, low soda alumina and method of producing porcelain
JP2003012323A (en) * 2001-06-26 2003-01-15 Sumitomo Chem Co Ltd Method for producing low soda alumina
JP2006199568A (en) * 2004-06-16 2006-08-03 Showa Denko Kk Process for producing low-soda alumina, apparatus therefor, and alumina
WO2011129658A2 (en) * 2010-04-16 2011-10-20 주식회사 해마루머티리얼즈 Method for preparing high-purity alumina
WO2016084723A1 (en) * 2014-11-28 2016-06-02 日本碍子株式会社 Tabular alumina powder production method and tabular alumina powder

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002034692A2 (en) 2000-10-20 2002-05-02 Showa Denko K.K. Method of producing low soda alumina, low soda alumina and method of producing porcelain
US6960336B2 (en) 2000-10-20 2005-11-01 Showa Denko K.K. Method of producing low soda alumina, low soda alumina produced by the method and method of producing porcelain
JP2003012323A (en) * 2001-06-26 2003-01-15 Sumitomo Chem Co Ltd Method for producing low soda alumina
JP2006199568A (en) * 2004-06-16 2006-08-03 Showa Denko Kk Process for producing low-soda alumina, apparatus therefor, and alumina
WO2011129658A2 (en) * 2010-04-16 2011-10-20 주식회사 해마루머티리얼즈 Method for preparing high-purity alumina
WO2011129658A3 (en) * 2010-04-16 2012-03-22 주식회사 해마루머티리얼즈 Method for preparing high-purity alumina
KR101147047B1 (en) * 2010-04-16 2012-05-17 주식회사 에이치엠알(Hmr) Method for manufacturing high purity alumina
US8784754B2 (en) 2010-04-16 2014-07-22 Hmr Co., Ltd. Method for preparing high-purity alumina
WO2016084723A1 (en) * 2014-11-28 2016-06-02 日本碍子株式会社 Tabular alumina powder production method and tabular alumina powder
CN107074573A (en) * 2014-11-28 2017-08-18 日本碍子株式会社 The preparation method and plate-like aluminum oxide powder of plate-like aluminum oxide powder
JPWO2016084723A1 (en) * 2014-11-28 2017-09-07 日本碍子株式会社 Method for producing plate-like alumina powder and plate-like alumina powder
US10343928B2 (en) 2014-11-28 2019-07-09 Ngk Insulators, Ltd. Method for manufacturing plate-like alumina powder and plate-like alumina powder

Also Published As

Publication number Publication date
JP3436024B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
JP2638873B2 (en) Method for producing alumina powder with narrow particle size distribution
JP2638890B2 (en) Method for producing easily crushable alumina
US4746638A (en) Alumina-titania composite powder and process for preparing the same
KR20090094128A (en) PROCESS FOR PRODUCING HIGH-PURITY α-ALUMINA
JPS5819640B2 (en) Hexagonal plate-shaped alpha aluminum oxide single crystal, its production method, and surface treatment method using the single crystal
KR20100024476A (en) Silica glass granule
US4325844A (en) Method of preparing diatomite for rapid calcination
JP4548625B2 (en) Manufacturing method of high purity synthetic quartz glass powder
JPH013008A (en) Method for producing easily crushable alumina
US20050226807A1 (en) Method of producing low soda alumina, low soda alumina produced by the method and method of producing porcelain
CN1114291A (en) Production of powder of 2-Aluminium monoxide
KR20100022513A (en) Process for preparing high-purity silicon dioxide granule
JP3975513B2 (en) Continuous production of alpha alumina
JP3972380B2 (en) Method for producing α-alumina
JP3436024B2 (en) Continuous production method of alumina
JP3389642B2 (en) Method for producing low soda alumina
JP2001180931A (en) Method for producing alumina of low soda content
JP3115162B2 (en) Method for producing quartz glass powder
JP2002274974A (en) Porous ceramic spherical body and method of manufacturing the same
AU2005254404A1 (en) Process for producing low-soda alumina, apparatus therefor, and alumina
JPH0812322A (en) Alpha-alumina powder and its production
JP3805815B2 (en) Method for producing calcium hydroxide dry powder
JPH07101723A (en) Production of alpha alumina powder
JP2006199568A (en) Process for producing low-soda alumina, apparatus therefor, and alumina
JPS6227005B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees