JP3975513B2 - Continuous production of alpha alumina - Google Patents

Continuous production of alpha alumina Download PDF

Info

Publication number
JP3975513B2
JP3975513B2 JP20326497A JP20326497A JP3975513B2 JP 3975513 B2 JP3975513 B2 JP 3975513B2 JP 20326497 A JP20326497 A JP 20326497A JP 20326497 A JP20326497 A JP 20326497A JP 3975513 B2 JP3975513 B2 JP 3975513B2
Authority
JP
Japan
Prior art keywords
alumina
firing
line
powder
aluminum hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20326497A
Other languages
Japanese (ja)
Other versions
JPH1149515A (en
Inventor
敏史 勝田
光明 村上
修 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP20326497A priority Critical patent/JP3975513B2/en
Publication of JPH1149515A publication Critical patent/JPH1149515A/en
Application granted granted Critical
Publication of JP3975513B2 publication Critical patent/JP3975513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はαアルミナの連続的製造法に関する。さらに詳細には、得られるアルミナ粒子が球状で、かつ粒度分布がシャープなαアルミナの連続的製造法に関するものである。
【0002】
【従来の技術】
αアルミナは化学的安定性や優れた機械的強度、さらには物理的特性に優れていることより、成形、焼結し各種機械部品や電気部品として使用されている。これらの用途においては、廉価で寸法安定性や高い焼結密度が要求されることより、球状で粒度分布がシャープなアルミナ粉体が必要とされる。
【0003】
バイヤー法で得られる水酸化アルミニウムを焼成することによるアルミナの製造方法としては、粒子径や粒度分布、BET比表面積等の特性コントロールを目的に、各種多様な製法が提案されている。例えば(1)鉱化剤として弗素、塩素、ホウ素の少なくとも1種を添加し焼成する方法、(2)脱ソーダ剤として硅砂等のシリカ系化合物、塩素系化合物を使う方法、(3)上記の鉱化剤と脱ソーダ剤を組み合わせ用ちいる方法、さらには(4)焼成時、水酸化アルミニウム中にアルミナの微粒子を添加し、これに上記方法を組み合わせて焼成する方法も提案されている(特公平6−104570号公報、特開平7−41318号公報)。
【0004】
しかしながら、鉱化剤として塩素系化合物及び/または弗素系化合物等のハロゲン系化合物を使う場合には、原料に鉱化剤として添加するハロゲン系化合物量に比例して、αアルミナ中に残存するハロゲン系化合物の量が増加し、焼成時に生成する凝集体が多くなる。かかる対策として0.1体積%以上であるハロゲン含有ガス雰囲気で焼成した後、該組成物を脱ハロゲン処理する方法が提案されている(特開平7−206432号公報)。この方法によればハロゲン含有量が低く粒度分布のシャープなαアルミナが得られるものの、新たに脱ハロゲン処理が必要であるとの問題を有する。また脱ソーダ剤であるシリカ系化合物を添加している場合には、原料に添加する弗素系化合物に比例してシリカ汚染も高くなる。
【0005】
【発明が解決しようとする課題】
かかる事情下に鑑み、本発明者はバイヤー法により得られる廉価な水酸化アルミニウムを用い、これを連続的に焼成して、球状で粒度分布がシャープなαアルミナ粉体を得るべく鋭意検討した結果、特定の焼成装置を用い、原料である水酸化アルミニウムに、特定物性を有するアルミナを添加、混合して焼成すると共に、焼成後のアルミナ中に含有される弗素系化合物の存在量が特定範囲になる如く、特定量の弗素系化合物の添加と、捕集した粉体の循環使用量を調製し、焼成する場合には、上記目的とするαアルミナが連続的に製造し得ることを見出し、本発明を完成するに至った。
【0006】
【課題を解決するための手段】
すなわち、本発明は、水酸化アルミニウムの供給ライン(1)、供給された水酸化アルミニウムを焼成する焼成炉(2)、焼成後のアルミナを系外に導出するライン(3)、焼成炉(2)より排出されるガスを集塵装置(5)へ導入する排ガスライン(4)、排ガス中に含まれる粉体を捕集する集塵装置(5)、粉体捕集後の排ガスを集塵装置(5)より排出するライン(6)、捕集した粉体を系外に排出するライン(7)よりなる焼成装置を用い連続的にαアルミナを製造する方法に於いて、該装置に集塵装置(5)で捕集した粉体を焼成炉(2)に循環供給するライン(8)を設け、集塵装置(5)で捕集した粉体の少なくとも一部を焼成炉(2)中へ循環しつつ、焼成炉(2)中に、バイヤー法により得られた水酸化アルミニウムと平均粒子径15μm〜150μm、X線回折法により測定した(110)面{2θ=37.7°}、(300)面{2θ=68.2°}、(116)面{2θ=57.5°}の線強度を下記の式1
(I(110)+I(300))/(2×I(116)) 式1
に代入し求めた値が0.3〜1.0であるアルミナ(アルミナAと称する)を、該水酸化アルミニウム(Al23換算)に対して5〜150重量%(Al23換算)及び、水酸化アルミニウム(Al23換算)とアルミナAの合量に対して弗素系化合物を20〜200ppm(F換算)の範囲で添加、調製し、焼成後ライン(3)より排出されるアルミナ中の弗素系化合物含有量が1〜200ppm(F換算)となるが如く焼成することを特徴とするαアルミナの連続的製造法を提供するにある。
【0007】
【発明の実施の形態】
以下、本発明を図面を用いてさらに詳細に説明する。
図1は本発明方法に使用する水酸化アルミニウムの連続的焼成装置のブロック構成図であり、(1)は水酸化アルミニウムの供給ライン、(2)は焼成炉、(3)は焼成後のアルミナを系外に導出するライン、(4)は焼成炉(2)より排出されるガスを集塵装置(5)へ導入する排ガスライン、(5)は排ガス中に含まれる粉体を捕集する集塵装置、(6)は粉体捕集後の排ガスを集塵装置(5)より排出するライン、(7)は捕集した粉体を系外に排出するライン、(8)は集塵装置(5)で捕集した粉体を焼成炉(2)に循環供給するラインを示す。
【0008】
本発明の実施に於いては、焼成炉(2)中に、バイヤー法により得られた水酸化アルミニウムと平均粒子径が約15μm〜約150μmであり、X線回折法により測定した(110)面{2θ=37.7°}、(300)面{2θ=68.2°}、(116)面{2θ=57.5°}の線強度を下記の式1
(I(110) +I(300) )/(2×I(116) ) 式1
に代入し求めた値が0.3〜1.0であるアルミナAを、該水酸化アルミニウム(Al2 3 換算)に対して5〜150重量%(Al2 3 換算)及び、水酸化アルミニウム(Al2 3 換算)とアルミナAの合量に対して弗素系化合物を20〜200ppm(F換算)の範囲で添加、焼成する。また、焼成炉(2)の排ガスは排ガスライン(4)により集塵装置(5)へ導入し、排ガス中のアルミナ粉体を捕集し、捕集した粉体の少なくとも一部をライン(8)により焼成炉(2)に循環供給し焼成に供する。
【0009】
本発明方法に於いて、焼成後の製品アルミナは焼成炉(2)よりライン(3)を経て、系外に取り出すが、ライン(3)より系外に取り出す製品アルミナ中の弗素系化合物含有量が1〜200ppm(F換算)であることを必須とする。かかる範囲の弗素系化合物を含有する製品アルミナは、焼成炉(2)に添加する弗素系化合物量ならびにライン(8)より焼成炉(2)に循環供給する粉体の量により、調整することができる。
【0010】
焼成時に、水酸化アルミニウムに添加するアルミナAとしては、αアルミナが使用される。アルミナAはX線回折法において、
(110)面{2θ=37.7°}、(300)面{2θ=68.2°}、(116)面{2θ=57.5°}のX線強度が上記した1において、0.3〜1.0、好ましくは約0.3〜約0.8の値を満たし、平均粒子径(平均二次粒子径)は約15μm〜約150μm、好ましくは約30μm〜約70μmのものが使用される。
【0011】
添加量は水酸化アルミニウム(Al換算)に対して約5〜約150重量%、好ましくは約10重量%〜約100重量%である。アルミナAの添加量が上記範囲よりも少ない場合には得られるアルミナの粒度分布がシャープでなく、他方上記範囲を超えても、添加に見合う効果の発現はない。アルミナAが1に於いて上記した範囲を満たさない場合、すなわち、上記1による値が約0.3未満(粒子形状が薄片状)である場合には所定量のアルミナAを添加したとしても、粒度分布のシャープなαアルミナを得ることはできない。また、上記1による値が約1.0を超える場合にも粒度分布のシャープなαアルミナを得ることはできない。
【0012】
アルミナAとしては、平均粒子(二次)径が約15μm〜約150μm、式1による値が約0.3〜約1.0のアルミナであればよく、特にその製造方法を制限するものではないが、例えば、水酸化アルミニウムC−12(住友化学工業株式会社製)をバッチ式静置炉中で約1250℃、2 時間焼成することにより得ることができる。
【0013】
本発明に於いて、適用する弗素系化合物としては、特に制限されないが、通常、弗化アルミニウム、弗化水素、弗化アンモニウム、弗化ナトリウム、弗化マグネシウムおよび弗化カルシウムから選ばれた少なくとも1種を用いればよい。
【0014】
本発明に適用する集塵装置としては、特に制限されないが、例えばサイクロン、電気式集塵機、バグフィルター、スクラバー等が挙げられる。また焼成炉としては、ロータリーキルン、SPロータリーキルン、NSPロータリーキルン、流動床炉が使用できる。熱効率を上げるために、熱媒である燃焼ガスとアルミナ粉体が向流式である内燃式焼成炉の使用が推奨される。
【0015】
水酸化アルミニウムの焼成条件は、使用する焼成炉の種類、焼成量、要求される水酸化アルミニウムの焼成程度等により一義的ではないが、通常焼成温度約1100℃〜約1500℃、焼成炉に於けるアルミナの滞留時間として約1時間〜約10時間の範囲で実施される。
【0016】
また、本発明方法の効果を損わない範囲に於いて、脱ソーダ剤としてのシリカ系化合物を焼成時、水酸化アルミニウム(Al2 3 換算)に対し約1〜約20重量%の範囲で添加し、使用することもできる。他の添加剤を併用することも可能である。
【0017】
【発明の効果】
以上、詳述した如く、本発明方法に於いてはバイヤー法により得られた廉価な水酸化アルミニウムを用い、これに焼成助材として特定物性を有するアルミナを添加し、剤集塵装置で捕集した粉体の少なくとも一部と弗素系化合物の焼成炉への添加量を調整し、焼成品中に含有される弗素系化合物の含有量を特定範囲にするアルミナの連続的製造方法により、廉価で、かつ球状で、粒度分布がシャープ(通常D90/D10が4.0未満、好適には3.5未満)なアルミナが得られることを見出したものであり、各種機械部品や電気部品の原料供給面よりその工業的価値は頗る大である。
【0018】
【実施例】
次に本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。尚、実施例に示す測定は、下記方法を採用した。
【0019】
(1)アルミナAの値: 粉末X線回折法(CuKα、管電圧40kV、管電流20mA、走査速度2°/分、発散スリット1°、散乱スリット1°、受光スリット0.6mm)により(110)面{2θ=37.7°}、(300)面{2θ=68.2°}、(116)面{2θ=57.5°}の線強度を測定し、式1に代入し求めた。
(I(110) +I(300) )/(2×I(116) ) 式1
【0020】
(2)BET比表面積: 窒素吸着によるBET法により測定した。
【0021】
(3)組成分析
弗素(F) : 水蒸気蒸留−イオン電極法により測定した。
酸化ソーダ(Na2 O): JIS H1901に準じる。
二酸化硅素(SiO2 ): JIS H1901に準じる。
【0022】
(4)粒度分布 : マイクロトラックHRA X−100を使って測定した。
【0023】
(5)粉砕試験
方法1:3.3Lアルミナポットに直径15mmのアルミナボール3kgと試料αアルミナ400gを入れ、回転数80rpmで12時間処理した。
方法2:3.3Lアルミナポットに直径15mmのアルミナボール3kgと試料αアルミナ400gに二酸化珪素8g(和光純薬製)、水酸化マグネシウム7g(和光試薬製)、炭酸カルシウム2g(和光試薬製)を入れ、回転数80rpmで粉砕した。
【0024】
(6)成形密度 :水銀アルキメデス法により測定した。
【0025】
(7)焼結密度 :水中アルキメデス法により測定した。
【0026】
実施例1
バイヤー法により得られた水酸化アルミニウムC−12(中心粒径50μm、Na2 O 0.2%、F 20ppm、住友化学工業株式会社製)6950g、平均粒径50μm、上記式1に於ける値が0.4のアルミナ(商品名:アルミナA−26,住友化学工業株式会社製)455g、弗化アルミニウム(和光純薬製)1.1gを添加混合した後、アルミナセラミックス製回転式小型焼成炉(内径7cm、長さ140cm、1300℃均一温度ゾーン60cm、傾斜角45゜、回転数2rpm、焼成炉上部にアルミナの回収用にガラスファイバー製フィルターを設置し、回収したアルミナは振動機によりフィルターから除去した後、キルン内に戻した)に供給速度100g/hで連続的に供給した。焼成炉内のアルミナの滞留時間は、6時間であった。
焼成後に得られたαアルミナのBET比表面積は0.9m2 /g、弗素含有量は170ppmであった。方法1により粉砕したアルミナの中心粒径は1.6μm、D90/D10は3.0であった。方法2により9時間粉砕したアルミナを成形圧300kg/cm2 でCIP成形した後、1650℃、2時間焼結した。粉砕したアルミナの中心粒径は2.2μm、D90/D10は3.1、成形密度は2.12g/cm3 、焼結密度は、3.84g/cm3 であった。
【0027】
実施例2
実施例1において、水酸化アルミニウムC−12 3830g、平均粒径50μm、指数0.4のアルミナA−26 2500gを、弗化アルミニウム(和光純薬製)1.1g混合した以外は、実施例1と同じ操作を行った。得られたαアルミナのBET比表面積は2.1m2 /g、弗素含有量は180ppmであった。方法1により粉砕したアルミナの中心粒径は1.0μm、D90/D10は3.5であった。
【0028】
実施例3
実施例1において、弗化アルミニウム0.1gに変えた以外は、実施例1と同じ操作を行った。得られた焼成αアルミナのBET比表面積は2.3m2 /g、弗素含有量は25ppmであった。方法1により粉砕したアルミナの中心粒径は1.0μm、D90/D10は3.5であった。
【0029】
実施例4
実施例1において、粒子径1mm前後の硅砂を500gをあらたに混合し、焼成後に目開き149μmの篩により硅砂をアルミナから篩別した以外は、実施例1と同じ操作を行った。得られた焼成αアルミナのBET比表面積は0.9m2 /g、弗素含有量は165ppm、Na2 O 0.06%、SiO2 0.04%であった。方法1により粉砕したアルミナの中心粒径は1.7μm、D90/D10は3.0であった。
【0030】
比較例1
実施例1において、平均粒径50μmのαアルミナA−26を混合しない以外は、実施例1と同じ操作を行った。得られた焼成αアルミナのBET比表面積は0.5m2 /g、弗素含有量は190ppmであった。方法1により粉砕したアルミナの中心粒径は2.3μm、D90/D10は4.8であった。
【0031】
比較例2
実施例1において、アルミナA−26に変えて平均粒径50μm、上記式1に於ける値が0.2のアルミナ(水酸化アルミニウムC−12を500℃で仮焼し、これに弗化水素酸を弗素換算でAl2 3 当たり1重量%添加した後、アルミナ製ルツボに入れ1300℃で2時間焼成して得たアルミナ)を使用した以外は実施例1と同じ操作を行った。得られた焼成αアルミナのBET比表面積は1.1m2 /g、弗素含有量は180ppmであった。方法1により粉砕したアルミナの中心粒径は1.6μm、D90/D10は4.3であった。方法2により9時間粉砕したアルミナを成形圧300kg/cm2 でCIP成形した後、1650℃、2時間焼結した。粉砕したアルミナの中心粒径は2.2μm、D90/D10は4.7、成形密度は2.08g/cm3 、焼結密度は3.79g/cm3 であった。
【0032】
比較例3
実施例1において、混合した粉体を、回転式小型焼成炉に供給する変わりにシャモット質容器に入れ、静置式電気炉にて1300℃、6時間焼成した以外は、実施例1と同じ操作を行った。得られた焼成αアルミナのBET比表面積は4.4m2 /g、弗素含有量は5ppmであった。方法1により粉砕したアルミナの中心粒径は0.8μm、D90/D10は6.8であった。
【図面の簡単な説明】
【図1】本発明方法に用いる連続的焼成装置の概略図を示す。
【符号の説明】
(1)は水酸化アルミニウムの供給ライン
(2)は焼成炉
(3)は焼成後のアルミナを系外に導出するライン
(4)は排ガスライン
(5)は集塵装置
(6)は粉体捕集後の排ガスを集塵装置より排出するライン
(7)は捕集した粉体を系外に排出するライン
(8)は捕集した粉体を焼成炉に循環供給するライン
を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous process for the production of alpha alumina. More specifically, the present invention relates to a continuous production method of α-alumina having a spherical alumina particle and a sharp particle size distribution.
[0002]
[Prior art]
α-alumina is molded, sintered and used as various mechanical parts and electrical parts because of its excellent chemical stability, excellent mechanical strength, and physical properties. In these applications, alumina powder having a spherical shape and a sharp particle size distribution is required because it is inexpensive and requires dimensional stability and high sintering density.
[0003]
As a method for producing alumina by firing aluminum hydroxide obtained by the Bayer method, various production methods have been proposed for the purpose of controlling characteristics such as particle size, particle size distribution, and BET specific surface area. For example, (1) a method of adding and firing at least one of fluorine, chlorine and boron as a mineralizer, (2) a method of using a silica-based compound such as cinnabar sand or a chlorine-based compound as a soda removing agent, (3) A method of using a combination of a mineralizer and a soda remover, and further (4) a method of adding alumina fine particles to aluminum hydroxide at the time of firing, and firing by combining this with the above method ( (Japanese Patent Publication No. 6-104570, Japanese Patent Laid-Open No. 7-41318).
[0004]
However, when a halogen compound such as a chlorine compound and / or a fluorine compound is used as a mineralizer, the halogen remaining in α-alumina is proportional to the amount of the halogen compound added as a mineralizer to the raw material. The amount of the system compound increases, and the aggregates generated during firing increase. As a countermeasure, there has been proposed a method of dehalogenating the composition after firing in a halogen-containing gas atmosphere of 0.1% by volume or more (Japanese Patent Laid-Open No. 7-206432). According to this method, α-alumina having a low halogen content and a sharp particle size distribution can be obtained, but it has a problem that a new dehalogenation treatment is necessary. In addition, when a silica compound as a soda removing agent is added, silica contamination increases in proportion to the fluorine compound added to the raw material.
[0005]
[Problems to be solved by the invention]
In view of such circumstances, the present inventor used inexpensive aluminum hydroxide obtained by the Bayer method, and continuously baked it, and as a result of earnest examination to obtain an α-alumina powder having a spherical shape and a sharp particle size distribution Using a specific firing device, alumina having specific physical properties is added to aluminum hydroxide as a raw material, mixed and fired, and the abundance of fluorine compounds contained in the alumina after firing is within a specific range. As can be seen, when the addition of a specific amount of a fluorine-based compound and the amount of collected powder to be recycled are prepared and calcined, the above-mentioned target α-alumina can be continuously produced. The invention has been completed.
[0006]
[Means for Solving the Problems]
That is, the present invention includes an aluminum hydroxide supply line (1), a firing furnace (2) for firing the supplied aluminum hydroxide, a line (3) for discharging the fired alumina out of the system, and a firing furnace (2). ) The exhaust gas line (4) for introducing the gas discharged from the dust collector (5), the dust collector (5) for collecting powder contained in the exhaust gas, and collecting the exhaust gas after collecting the powder In a method of continuously producing α- alumina using a firing apparatus comprising a line (6) for discharging from the apparatus (5) and a line (7) for discharging collected powder out of the system, A line (8) for circulating and supplying the powder collected by the dust device (5) to the firing furnace (2) is provided, and at least a part of the powder collected by the dust collector (5) is provided in the firing furnace (2). While circulating into the baking furnace (2), the aluminum hydroxide obtained by the buyer method and (110) plane {2θ = 37.7 °}, (300) plane {2θ = 68.2 °}, (116) plane {2θ = 57.5 ° measured by X-ray diffraction method with a particle diameter of 15 μm to 150 μm } The line strength of
(I (110) + I (300) ) / (2 × I (116) ) Equation 1
Alumina assignment with values obtained is 0.3 to 1.0 in (referred to as alumina A), 5 to 150% by weight relative to the aqueous aluminum oxide (Al 2 O 3 in terms) (Al 2 O 3 in terms of ) And aluminum hydroxide (Al 2 O 3 equivalent) and the total amount of alumina A, fluorine compound is added and prepared in the range of 20 to 200 ppm (F equivalent), and discharged from the line (3) after firing. It is another object of the present invention to provide a continuous production method of α-alumina, characterized in that it is fired so that the fluorine-based compound content in the alumina becomes 1 to 200 ppm (F conversion).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a block diagram of an aluminum hydroxide continuous firing apparatus used in the method of the present invention, wherein (1) is an aluminum hydroxide supply line, (2) is a firing furnace, and (3) is alumina after firing. (4) is an exhaust gas line for introducing gas discharged from the firing furnace (2) into the dust collector (5), and (5) is for collecting powder contained in the exhaust gas. (6) is a line for discharging exhaust gas after collecting powder from the dust collector (5), (7) is a line for discharging collected powder out of the system, (8) is dust collecting The line which circulates and supplies the powder collected by the apparatus (5) to a baking furnace (2) is shown.
[0008]
In the practice of the present invention, in the firing furnace (2), the aluminum hydroxide obtained by the Bayer method and the average particle size is about 15 μm to about 150 μm and measured by the X-ray diffraction method (110) plane. The linear intensity of {2θ = 37.7 °}, (300) plane {2θ = 68.2 °}, (116) plane {2θ = 57.5 °}
(I (110) + I (300) ) / (2 × I (116) ) Equation 1
Substituted in the alumina A value is 0.3 to 1.0 as determined, 5-150 wt% relative to the aqueous aluminum oxide (Al 2 O 3 conversion) (Al 2 O 3 basis) and hydroxide A fluorine-based compound is added in a range of 20 to 200 ppm (F conversion) with respect to the total amount of aluminum (Al 2 O 3 conversion) and alumina A and fired. The exhaust gas from the firing furnace (2) is introduced into the dust collector (5) through the exhaust gas line (4), the alumina powder in the exhaust gas is collected, and at least a part of the collected powder is collected in the line (8 ) Is circulated and supplied to the firing furnace (2) for firing.
[0009]
In the method of the present invention, the product alumina after firing is taken out from the system through the line (3) from the firing furnace (2), but the fluorine compound content in the product alumina taken out from the system from the line (3) Is 1 to 200 ppm (F conversion). Product alumina containing such a range of fluorine compounds can be adjusted by the amount of fluorine compound added to the firing furnace (2) and the amount of powder circulated from the line (8) to the firing furnace (2). it can.
[0010]
As alumina A added to aluminum hydroxide at the time of firing, α-alumina is used. Alumina A is an X-ray diffraction method.
(110) plane {2θ = 37.7 °}, in Formula 1, X-ray intensity is above (300) plane {2θ = 68.2 °}, ( 116) plane {2θ = 57.5 °}, 0 The average particle size (average secondary particle size) is about 15 μm to about 150 μm, preferably about 30 μm to about 70 μm. used.
[0011]
The amount added is about 5 to about 150% by weight, preferably about 10% to about 100% by weight, based on aluminum hydroxide (in terms of Al 2 O 3 ). When the amount of alumina A added is less than the above range, the particle size distribution of the resulting alumina is not sharp. If alumina A does not satisfy the range described above In Formula 1, i.e., as was the case the value according to the formula 1 is less than about 0.3 (particle shape, flaky) was added alumina A predetermined amount However, α-alumina having a sharp particle size distribution cannot be obtained. Further, even when the value according to the above formula 1 exceeds about 1.0, α-alumina having a sharp particle size distribution cannot be obtained.
[0012]
The alumina A may be any alumina having an average particle (secondary) diameter of about 15 μm to about 150 μm and a value according to Formula 1 of about 0.3 to about 1.0, and the production method is not particularly limited. However, it can be obtained, for example, by baking aluminum hydroxide C-12 (manufactured by Sumitomo Chemical Co., Ltd.) in a batch static oven at about 1250 ° C. for 2 hours.
[0013]
In the present invention, the fluorine compound to be applied is not particularly limited, but usually at least one selected from aluminum fluoride, hydrogen fluoride, ammonium fluoride, sodium fluoride, magnesium fluoride and calcium fluoride. Use seeds.
[0014]
Although it does not restrict | limit especially as a dust collector applied to this invention, For example, a cyclone, an electric dust collector, a bag filter, a scrubber etc. are mentioned. Moreover, as a kiln, a rotary kiln, SP rotary kiln, NSP rotary kiln, and a fluidized bed furnace can be used. In order to increase the thermal efficiency, it is recommended to use an internal combustion furnace in which the combustion gas as the heat medium and the alumina powder are countercurrent.
[0015]
The firing conditions of aluminum hydroxide are not unambiguous depending on the type of firing furnace used, the amount of firing, the required degree of firing of aluminum hydroxide, etc., but usually the firing temperature is about 1100 ° C. to about 1500 ° C. in the firing furnace. The alumina residence time is about 1 hour to about 10 hours.
[0016]
Further, within a range that does not impair the effect of the method of the present invention, when the silica-based compound as the soda removal agent is fired, it is in the range of about 1 to about 20% by weight with respect to aluminum hydroxide (as Al 2 O 3 ). It can also be added and used. Other additives can be used in combination.
[0017]
【The invention's effect】
As described above in detail, in the method of the present invention, inexpensive aluminum hydroxide obtained by the Bayer method is used, and alumina having specific physical properties is added thereto as a firing aid, and collected by an agent dust collector. By adjusting the addition amount of at least a part of the powder and the fluorine compound to the firing furnace, the continuous production method of alumina that makes the content of the fluorine compound contained in the fired product a specific range is inexpensive. In addition, it has been found that alumina having a spherical shape and a sharp particle size distribution (usually D90 / D10 is less than 4.0, preferably less than 3.5) can be obtained, and supplies raw materials for various mechanical parts and electrical parts. In terms of its industrial value, its industrial value is enormous.
[0018]
【Example】
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples. In addition, the measurement shown in an Example employ | adopted the following method.
[0019]
(1) Value of alumina A: (110) by powder X-ray diffraction method (CuKα, tube voltage 40 kV, tube current 20 mA, scanning speed 2 ° / min, divergence slit 1 °, scattering slit 1 °, light receiving slit 0.6 mm) ) Surface {2θ = 37.7 °}, (300) surface {2θ = 68.2 °}, and (116) surface {2θ = 57.5 °} are measured and assigned to Equation 1. .
(I (110) + I (300) ) / (2 × I (116) ) Equation 1
[0020]
(2) BET specific surface area: Measured by the BET method by nitrogen adsorption.
[0021]
(3) Composition analysis Fluorine (F): Measured by a steam distillation-ion electrode method.
Sodium oxide (Na 2 O): Conforms to JIS H1901.
Silicon dioxide (SiO 2 ): Conforms to JIS H1901.
[0022]
(4) Particle size distribution: Measured using Microtrac HRA X-100.
[0023]
(5) Grinding test method 1: 3 kg of alumina balls having a diameter of 15 mm and 400 g of sample α-alumina were placed in a 3.3 L alumina pot and treated at a rotational speed of 80 rpm for 12 hours.
Method 2: 3 kg of alumina balls with a diameter of 15 mm in a 3.3 L alumina pot, 400 g of sample α-alumina, 8 g of silicon dioxide (manufactured by Wako Pure Chemical), 7 g of magnesium hydroxide (manufactured by Wako Reagent), 2 g of calcium carbonate (manufactured by Wako Reagent) The mixture was crushed at a rotation speed of 80 rpm.
[0024]
(6) Molding density: Measured by the mercury Archimedes method.
[0025]
(7) Sintering density: Measured by the underwater Archimedes method.
[0026]
Example 1
Aluminum hydroxide C-12 (center particle size 50 μm, Na 2 O 0.2%, F 20 ppm, manufactured by Sumitomo Chemical Co., Ltd.) 6950 g obtained by the Bayer method, average particle size 50 μm, value in the above formula 1 Is added to and mixed with 455 g of alumina (trade name: Alumina A-26, manufactured by Sumitomo Chemical Co., Ltd.) and 1.1 g of aluminum fluoride (manufactured by Wako Pure Chemical Industries). (Inner diameter 7 cm, length 140 cm, 1300 ° C. uniform temperature zone 60 cm, inclination angle 45 °, rotation speed 2 rpm, glass fiber filter is installed on the upper part of the firing furnace for recovery of alumina, and the recovered alumina is removed from the filter by a vibrator. After the removal, it was returned to the kiln) and continuously fed at a feed rate of 100 g / h. The residence time of alumina in the firing furnace was 6 hours.
The BET specific surface area of the α-alumina obtained after firing was 0.9 m 2 / g, and the fluorine content was 170 ppm. The center particle diameter of the alumina pulverized by Method 1 was 1.6 μm, and D90 / D10 was 3.0. The alumina pulverized by Method 2 for 9 hours was CIP molded at a molding pressure of 300 kg / cm 2 and then sintered at 1650 ° C. for 2 hours. The mean particle diameter of the milled alumina 2.2 .mu.m, D90 / D10 was 3.1, the molding density of 2.12 g / cm 3, the sintered density was 3.84 g / cm 3.
[0027]
Example 2
Example 1 Example 1 except that 3830 g of aluminum hydroxide C-12, 2500 g of alumina A-26 having an average particle diameter of 50 μm and an index of 0.4 were mixed with 1.1 g of aluminum fluoride (manufactured by Wako Pure Chemical Industries). The same operation was performed. The α-alumina obtained had a BET specific surface area of 2.1 m 2 / g and a fluorine content of 180 ppm. The center particle diameter of the alumina pulverized by Method 1 was 1.0 μm, and D90 / D10 was 3.5.
[0028]
Example 3
In Example 1, the same operation as in Example 1 was performed, except that the aluminum fluoride was changed to 0.1 g. The calcined α-alumina obtained had a BET specific surface area of 2.3 m 2 / g and a fluorine content of 25 ppm. The center particle diameter of the alumina pulverized by Method 1 was 1.0 μm, and D90 / D10 was 3.5.
[0029]
Example 4
In Example 1, 500 g of cinnabar sand having a particle diameter of about 1 mm was newly mixed, and after calcination, the same operation as in Example 1 was performed except that cinnabar sand was sieved from alumina with a sieve having a mesh size of 149 μm. The obtained calcined α-alumina had a BET specific surface area of 0.9 m 2 / g, a fluorine content of 165 ppm, Na 2 O 0.06% and SiO 2 0.04%. The center particle diameter of the alumina pulverized by Method 1 was 1.7 μm, and D90 / D10 was 3.0.
[0030]
Comparative Example 1
In Example 1, the same operation as in Example 1 was performed except that α-alumina A-26 having an average particle diameter of 50 μm was not mixed. The calcined α-alumina obtained had a BET specific surface area of 0.5 m 2 / g and a fluorine content of 190 ppm. The center particle diameter of the alumina pulverized by Method 1 was 2.3 μm, and D90 / D10 was 4.8.
[0031]
Comparative Example 2
In Example 1, instead of alumina A-26, alumina having an average particle size of 50 μm and a value of 0.2 in the above formula 1 (calcined with aluminum hydroxide C-12 at 500 ° C., and then added with hydrogen fluoride) The same operation as in Example 1 was performed except that 1% by weight of acid in terms of fluorine was added per Al 2 O 3 and alumina obtained by placing in an alumina crucible and firing at 1300 ° C. for 2 hours was used. The calcined α-alumina obtained had a BET specific surface area of 1.1 m 2 / g and a fluorine content of 180 ppm. The center particle diameter of the alumina pulverized by Method 1 was 1.6 μm, and D90 / D10 was 4.3. The alumina pulverized by Method 2 for 9 hours was CIP molded at a molding pressure of 300 kg / cm 2 and then sintered at 1650 ° C. for 2 hours. The mean particle diameter of the milled alumina 2.2 .mu.m, the D90 / D10 4.7, molded density of 2.08 g / cm 3, the sintered density was 3.79 g / cm 3.
[0032]
Comparative Example 3
In Example 1, the mixed powder was put into a chamotte container instead of being supplied to a rotary small firing furnace, and the same operation as in Example 1 was performed except that it was fired at 1300 ° C. for 6 hours in a stationary electric furnace. went. The calcined α-alumina obtained had a BET specific surface area of 4.4 m 2 / g and a fluorine content of 5 ppm. The center particle diameter of the alumina pulverized by Method 1 was 0.8 μm, and D90 / D10 was 6.8.
[Brief description of the drawings]
FIG. 1 shows a schematic view of a continuous firing apparatus used in the method of the present invention.
[Explanation of symbols]
(1) is an aluminum hydroxide supply line (2) is a firing furnace (3) is a line for extracting the alumina after firing out of the system (4) is an exhaust gas line (5) is a dust collector (6) is powder A line (7) for discharging the collected exhaust gas from the dust collector shows a line (8) for discharging the collected powder out of the system, and a line (8) for circulating and feeding the collected powder to the firing furnace.

Claims (3)

水酸化アルミニウムの供給ライン(1)、供給された水酸化アルミニウムを焼成する焼成炉(2)、焼成後のアルミナを系外に導出するライン(3)、焼成炉(2)より排出されるガスを集塵装置(5)へ導入する排ガスライン(4)、排ガス中に含まれる粉体を捕集する集塵装置(5)、粉体捕集後の排ガスを集塵装置(5)より排出するライン(6)、捕集した粉体を系外に排出するライン(7)よりなる焼成装置を用い連続的にαルミナを製造する方法に於いて、該装置に集塵装置(5)で捕集した粉体を焼成炉(2)に循環供給するライン(8)を設け、集塵装置(5)で捕集した粉体の少なくとも一部を焼成炉(2)中へ循環しつつ、焼成炉(2)中に、バイヤー法により得られた水酸化アルミニウムと平均粒子径15μm〜150μm、X線回折法により測定した(110)面{2θ=37.7°}、(300)面{2θ=68.2°}、(116)面{2θ=57.5°}の線強度を下記の式1
(I(110)+I(300))/(2×I(116)) 式1
に代入し求めた値が0.3〜1.0であるアルミナ(アルミナAと称する)を、該水酸化アルミニウム(Al23換算)に対して5〜150重量%(Al23換算)及び、水酸化アルミニウム(Al23換算)とアルミナAの合量に対して弗素系化合物を20〜200ppm(F換算)の範囲で添加、調製し、焼成後ライン(3)より排出されるアルミナ中の弗素系化合物含有量が1〜200ppm(F換算)となるが如く焼成することを特徴とするαアルミナの連続的製造法。
Supply line (1) for aluminum hydroxide, firing furnace (2) for firing the supplied aluminum hydroxide, line (3) for discharging the alumina after firing out of the system, and gas discharged from the firing furnace (2) Exhaust gas line (4) for introducing dust into the dust collector (5), dust collector (5) for collecting the powder contained in the exhaust gas, and exhausting the exhaust gas after collecting the powder from the dust collector (5) lines (6), in the method for producing a continuous α alumina with calciner the collected powder consisting line (7) for discharging out of the system, the dust collector to the device (5) A line (8) that circulates and supplies the powder collected in the firing furnace (2) is provided, and at least a part of the powder collected by the dust collector (5) is circulated into the firing furnace (2). In the firing furnace (2), aluminum hydroxide obtained by the Bayer method and an average particle size of 15 μm to 15 Line strength of (110) plane {2θ = 37.7 °}, (300) plane {2θ = 68.2 °}, (116) plane {2θ = 57.5 °} measured by X-ray diffraction method at 0 μm With the following formula 1
(I (110) + I (300) ) / (2 × I (116) ) Equation 1
Alumina assignment with values obtained is 0.3 to 1.0 in (referred to as alumina A), 5 to 150% by weight relative to the aqueous aluminum oxide (Al 2 O 3 in terms) (Al 2 O 3 in terms of ) And aluminum hydroxide (Al 2 O 3 equivalent) and the total amount of alumina A, fluorine compound is added and prepared in the range of 20 to 200 ppm (F equivalent), and discharged from the line (3) after firing. A continuous production method of α-alumina, characterized in that firing is performed so that the fluorine compound content in the alumina becomes 1 to 200 ppm (F conversion).
弗素系化合物が、弗化アルミニウム、弗化水素、弗化アンモニウム、弗化ナトリウム、弗化マグネシウム、弗化カルシウムから選ばれた少なくとも1種であることを特徴とする請求項1記載のαアルミナの連続的製造法。  2. The α-alumina according to claim 1, wherein the fluorine compound is at least one selected from aluminum fluoride, hydrogen fluoride, ammonium fluoride, sodium fluoride, magnesium fluoride, and calcium fluoride. Continuous manufacturing method. シリカ系化合物を脱ソーダ剤として1〜20重量%添加することを特徴とする請求項1記載のαアルミナの連続的製造法。  2. The method for continuously producing α-alumina according to claim 1, wherein 1 to 20% by weight of a silica-based compound is added as a soda remover.
JP20326497A 1997-07-29 1997-07-29 Continuous production of alpha alumina Expired - Fee Related JP3975513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20326497A JP3975513B2 (en) 1997-07-29 1997-07-29 Continuous production of alpha alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20326497A JP3975513B2 (en) 1997-07-29 1997-07-29 Continuous production of alpha alumina

Publications (2)

Publication Number Publication Date
JPH1149515A JPH1149515A (en) 1999-02-23
JP3975513B2 true JP3975513B2 (en) 2007-09-12

Family

ID=16471164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20326497A Expired - Fee Related JP3975513B2 (en) 1997-07-29 1997-07-29 Continuous production of alpha alumina

Country Status (1)

Country Link
JP (1) JP3975513B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW504497B (en) * 2000-05-23 2002-10-01 Sumitomo Chemical Co Alpha-alumina powder and heat-conductive sheet containing the same
WO2002034692A2 (en) 2000-10-20 2002-05-02 Showa Denko K.K. Method of producing low soda alumina, low soda alumina and method of producing porcelain
JP5103700B2 (en) * 2001-06-26 2012-12-19 住友化学株式会社 Method for producing low soda alumina
JP2006199568A (en) * 2004-06-16 2006-08-03 Showa Denko Kk Process for producing low-soda alumina, apparatus therefor, and alumina
CN106115752B (en) * 2016-06-18 2017-08-25 江西中旭科技有限公司 A kind of activated alumina process units and technique
CN108602685B (en) 2016-11-14 2019-11-15 住友化学株式会社 Aluminium oxide and containing its slurry and using its aluminum oxide porous film, laminated clapboard, nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery manufacturing method
CN113226988B (en) 2018-12-26 2023-05-12 住友化学株式会社 Alumina, alumina slurry, alumina film, laminated separator, and nonaqueous electrolyte secondary battery and method for producing same

Also Published As

Publication number Publication date
JPH1149515A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
RU2438978C2 (en) METHOD OF PRODUCING HIGHLY PURE α-ALUMINIUM OXIDE
KR100258786B1 (en) Ñ -alumina
RU2126364C1 (en) Method of producing alpha-alumina (versions)
RU2136596C1 (en) Method of preparing alpha-aluminum powder and alpha-aluminum powder
CA1144454A (en) Coarse crystalline alumina and method for its production
CN1069292C (en) Production of powder of 2-Aluminium monoxide
EP0728700B1 (en) Alpha-alumina and method for producing the same
JP2638873B2 (en) Method for producing alumina powder with narrow particle size distribution
EP0680929B1 (en) Process for producing alpha-alumina powder
JP2001089168A (en) Production of synthetic silica glass powder of high purity
JP3975513B2 (en) Continuous production of alpha alumina
JPH07206432A (en) Alpha-alumina powder and its production
JP3972380B2 (en) Method for producing α-alumina
JP3875952B2 (en) Low soda alumina manufacturing apparatus and manufacturing method
JP3743012B2 (en) Method for producing α-alumina powder
JP3389642B2 (en) Method for producing low soda alumina
JP3436024B2 (en) Continuous production method of alumina
JP2001180931A (en) Method for producing alumina of low soda content
JP5103700B2 (en) Method for producing low soda alumina
JP3387555B2 (en) Method for producing α-alumina
JPH0812322A (en) Alpha-alumina powder and its production
JP2006199568A (en) Process for producing low-soda alumina, apparatus therefor, and alumina
AU2005254404A1 (en) Process for producing low-soda alumina, apparatus therefor, and alumina
KR800000647B1 (en) Process for producing magnesiun aluminate spinel
JPH07206431A (en) Production of alpha-alumina powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees