JP3387555B2 - Method for producing α-alumina - Google Patents

Method for producing α-alumina

Info

Publication number
JP3387555B2
JP3387555B2 JP14302093A JP14302093A JP3387555B2 JP 3387555 B2 JP3387555 B2 JP 3387555B2 JP 14302093 A JP14302093 A JP 14302093A JP 14302093 A JP14302093 A JP 14302093A JP 3387555 B2 JP3387555 B2 JP 3387555B2
Authority
JP
Japan
Prior art keywords
alumina
firing
aluminum hydroxide
ppm
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14302093A
Other languages
Japanese (ja)
Other versions
JPH06329412A (en
Inventor
績 亀田
修 山西
光明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP14302093A priority Critical patent/JP3387555B2/en
Publication of JPH06329412A publication Critical patent/JPH06329412A/en
Application granted granted Critical
Publication of JP3387555B2 publication Critical patent/JP3387555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水酸化アルミニウムを
特定の鉱化剤の存在下、二段階焼成することにより、等
軸晶形に近い形状と優れた耐チッピング性を有するα−
アルミナの製造方法に関する。
BACKGROUND OF THE INVENTION The present invention is an α-type resin having a shape close to an equiaxed crystal form and excellent chipping resistance, which is obtained by firing aluminum hydroxide in two steps in the presence of a specific mineralizer.
The present invention relates to a method for producing alumina.

【0002】[0002]

【従来の技術】アルミナ粉末はプラグやICアルミナ基
板等の電子部品そして耐火物、研磨剤或いは各種のセラ
ミックス原料として使用されている。この様なアルミナ
粉末は廉価かつ容易に入手し得る点より通常バイヤー法
により得られたα−アルミナ粉末が使用されている。該
方法に於いては、過飽和アルミン酸ソーダ溶液に種子と
しての水酸化アルミニウムを添加し、水酸化アルミニウ
ムを析出させた後、これを濾過、水洗し、ロータリーキ
ルンや流動乾燥焼成炉或いはトンネルキルン等の焼成設
備で約1000℃〜1500℃の温度で焼成し、α−ア
ルミナを得る。
2. Description of the Related Art Alumina powder is used as electronic components such as plugs and IC alumina substrates, refractories, abrasives, and various ceramic raw materials. As such an alumina powder, α-alumina powder obtained by the Bayer method is usually used because it is inexpensive and easily available. In this method, aluminum hydroxide as seeds is added to a supersaturated sodium aluminate solution to precipitate aluminum hydroxide, which is then filtered and washed with water, and then a rotary kiln, a fluidized drying firing furnace or a tunnel kiln is used. Calcination is performed in a calcination facility at a temperature of about 1000 ° C to 1500 ° C to obtain α-alumina.

【0003】一般にα−アルミナを低温、或いは短時間
に得る目的より、少量のフッ素化合物や硼素化合物或い
は塩素化合物等の所謂鉱化剤の存在下に焼成を行うこと
は公知である。しかしながら従来この方法で製造された
α−アルミナはC軸垂直方向に結晶が発達した板状品よ
り形成されるため、研磨剤や流動性や充填性の要求され
る用途、例えば樹脂用充填材や成形精度を要求されるセ
ラミック成形体原料として他の無機粉末に比較し不利で
あった。
In general, for the purpose of obtaining α-alumina at a low temperature or in a short time, it is known to carry out calcination in the presence of a so-called mineralizer such as a small amount of a fluorine compound, a boron compound or a chlorine compound. However, since α-alumina produced by this method is conventionally formed from a plate-shaped product in which crystals are developed in the direction perpendicular to the C-axis, it is necessary to use an abrasive, a fluidity or a filling property, such as a resin filler or It was disadvantageous compared with other inorganic powders as a raw material for a ceramic molded body that requires molding accuracy.

【0004】また、該アルミナ粉末は原料である水酸化
アルミニウムからα−アルミナへの焼成過程に於いて個
々の一次粒子が強固に結合凝集した二次凝集粒を形成す
るため、上記用途の原料に供するに際しては通常、ボー
ルミルや振動ミル或いはビーズミル等により所望粒子径
まで粉砕が行われるが、かかる粉砕、混合過程でアルミ
ナは二次凝集粒子だけでなく一次粒子自体も摩砕(チッ
ピング)され、非常に微小な粒子が生成する。この様な
微粒子はセラミックス成形体原料として用いる場合には
焼成過程でバインダーのガス抜けを阻害し、焼結密度を
低下せしめるとか欠陥(ボイド)の生成の原因になる。
さらに、微粒子が凝集粒子となり研磨性能の低下やスラ
リー流動性の低下の原因となり、研磨材や樹脂充填材の
用途には不適であった。
Further, since the alumina powder forms secondary agglomerated particles in which individual primary particles are firmly bonded and agglomerated in the firing process from aluminum hydroxide as a raw material to α-alumina, it is used as a raw material for the above-mentioned use. When provided, a ball mill, a vibration mill, a bead mill or the like is usually used to pulverize the particles to a desired particle size. In the pulverization and mixing process, not only the secondary agglomerated particles but also the primary particles themselves are ground (chipping). Fine particles are generated in the. When such fine particles are used as a raw material for a ceramic molded body, they hinder the outgassing of the binder in the firing process, which lowers the sintering density and causes defects (voids).
Further, the fine particles become agglomerated particles, which causes a decrease in polishing performance and a decrease in slurry fluidity, which is not suitable for use as an abrasive or a resin filler.

【0005】特公平4−65012号公報には、「ホウ
素及び/またはフッ素を含有する化合物形態の鉱化剤添
加のもとにα−アルミナへの転移に要する以上の温度ま
で水酸化アルミニウムをか焼することによって結晶アル
ミナ(α−アルミナ)を製造する方法に於いて;水酸化
アルミニウムが、Al2 3 を基準とする比率で0.1
重量%以下、好ましくは0.05重量%以下のNa2
濃度を持ち;アンモニア(NH4 + )を含む鉱化剤が添
加されており;結晶アルミナの少なくとも80%の結晶
が1〜10μm、好ましくは3〜8μmの大きさであ
り、かつD/Hの比がせいぜい2を示すものであるこ
と;を特徴とする結晶アルミナを製造する方法」が記載
されている。上記方法により得られたα−アルミナはC
軸垂直方向のみならずC軸水平方向にも結晶成長した球
状(サイコロ状)、所謂、等軸晶形のアルミナが得られ
るものの、チッピング改良効果の点で満足しえるもので
はない。
Japanese Examined Patent Publication No. 4-65012 discloses that aluminum hydroxide is added to a temperature higher than that required for the conversion to α-alumina by adding a mineralizer in the form of a compound containing boron and / or fluorine. In a method for producing crystalline alumina (α-alumina) by baking; aluminum hydroxide is added at a ratio of 0.1 to 2 based on Al 2 O 3.
Up to and including 0.05% by weight of Na 2 O
Has a concentration; a mineralizer containing ammonia (NH 4 + ) is added; at least 80% of the crystals of crystalline alumina have a size of 1 to 10 μm, preferably 3 to 8 μm, and a D / H of A method of producing crystalline alumina characterized in that the ratio is at most 2. The α-alumina obtained by the above method is C
Although spherical (dice-shaped) alumina, in which crystals are grown not only in the axis-vertical direction but also in the C-axis horizontal direction, that is, so-called equiaxed alumina is obtained, it is not satisfactory in terms of the effect of improving chipping.

【0006】[0006]

【発明が解決しようとする課題】かかる事情下に鑑み、
本発明者等は、焼成後のアルミナの結晶が約1μm〜約
10μmであり、直径Dに対する高さHの比(D/H)
が1〜3の比較的等軸晶形に近い球状、或いはサイコロ
状に近い形状を有し、且つ粉砕によっても微粒子の生じ
にくい耐チッピング性の優れたアルミナを歩留まり良く
製造する方法を見出すことを目的とし鋭意検討した結
果、水酸化アルミニウムを特定条件で焼成する場合に
は、上記特性を満足するアルミナが得られることを見出
し、本発明を完成するに至った。
In view of such circumstances, in view of the above circumstances,
The inventors have found that the alumina crystals after firing have a size of about 1 μm to about 10 μm, and the ratio of the height H to the diameter D (D / H).
To have a spherical shape close to 1 to 3 which is relatively close to an equiaxed crystal shape, or a shape close to a dice shape, and which is excellent in chipping resistance even when pulverized and has excellent chipping resistance. As a result of intensive studies, it was found that when firing aluminum hydroxide under specific conditions, alumina satisfying the above characteristics can be obtained, and the present invention has been completed.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明はフッ
素化合物の存在下に水酸化アルミニウムを焼成し、α化
率10%〜100%未満で、F含有量50ppm〜30
00ppmのアルミナとなし、次いでこのアルミナを硼
素化合物の存在下、焼成温度800℃〜1500℃、1
時間以上焼成することを特徴とするD/Hが1〜3、平
均一次粒子径が1μm〜10μmのα−アルミナの製造
方法を提供するにある。
That is, according to the present invention, aluminum hydroxide is calcined in the presence of a fluorine compound, the alpha conversion is 10% to less than 100%, and the F content is 50 ppm to 30%.
Alumina of 00 ppm was prepared, and then this alumina was baked in the presence of a boron compound at a firing temperature of 800 ° C to 1500 ° C, 1
Another object of the present invention is to provide a method for producing α-alumina having a D / H of 1 to 3 and an average primary particle diameter of 1 μm to 10 μm, which is characterized by firing for at least an hour.

【0008】以下、本発明方法をさらに詳細に説明す
る。本発明方法に適用される水酸化アルミニウムはバイ
ヤー法により得られたものが使用される。原料水酸化ア
ルミニウムの粒子形状は特に制限されない。本発明に於
いて、原料水酸化アルミニウムはフッ素化合物の存在
下、該水酸化アルミニウムがα化率10%〜100%未
満、好ましくはα化率20%〜90%まで焼成する(以
下、この段階での焼成を一次焼成と表現する場合があ
る)。
The method of the present invention will be described in more detail below. The aluminum hydroxide used in the method of the present invention is obtained by the Bayer method. The particle shape of the raw material aluminum hydroxide is not particularly limited. In the present invention, the raw material aluminum hydroxide is calcined in the presence of a fluorine compound so that the aluminum hydroxide has an alpha conversion rate of 10% to less than 100%, preferably 20% to 90% (hereinafter, this step In some cases the firing is expressed as primary firing).

【0009】フッ素化合物としては、当該分野に於い
て、鉱化剤として公知のフッ素含有物質であれば良く、
例えばHF、AlF3 、CaF2 、NaF或いはNa3
AlF6 等が使用される。これらは原料水酸化アルミニ
ウム中に混合添加してもよく、また定量的に焼成炉中に
供給する方式をとってもよく、一次焼成後のアルミナの
α化率が10%〜100%未満で、アルミナ中のF含有
量が50ppm〜3000ppm、より好ましくは10
0ppm〜1000ppmの範囲であればよい。
The fluorine compound may be any fluorine-containing substance known in the art as a mineralizer,
For example, HF, AlF 3 , CaF 2 , NaF or Na 3
AlF 6 or the like is used. These may be mixed and added to the raw material aluminum hydroxide, or may be quantitatively supplied into the firing furnace, and the α-conversion rate of alumina after primary firing is 10% to less than 100%, and Has an F content of 50 ppm to 3000 ppm, more preferably 10
It may be in the range of 0 ppm to 1000 ppm.

【0010】焼成方法は特に制限されないが、工業的に
はロータリーキルンやトンネルキルン等で実施すればよ
く、また焼成温度、時間も特に制限されないが、一般的
には焼成温度約800℃〜1300℃、1時間〜5時間
の範囲で実施される。
The firing method is not particularly limited, but industrially, it may be carried out in a rotary kiln or a tunnel kiln, and the firing temperature and time are not particularly limited, but generally the firing temperature is about 800 ° C to 1300 ° C. It is carried out in the range of 1 hour to 5 hours.

【0011】フッ素化合物の存在下に於いて、原料水酸
化アルミニウムをα化率10%〜100%未満で、F含
有量が50ppm〜3000ppmの範囲になるまで焼
成したアルミナは、次いで硼素化合物の存在下、焼成温
度800℃以上で、焼成後のアルミナがαアルミナとな
るまで焼成する(以下、この段階での焼成を二次焼成と
表現する場合がある)。
Alumina obtained by calcining aluminum hydroxide as a raw material in the presence of a fluorine compound until the α content is in the range of 10% to less than 100% and the F content in the range of 50 ppm to 3000 ppm is followed by the presence of the boron compound. The firing is performed at a firing temperature of 800 ° C. or higher until the alumina after firing becomes α-alumina (hereinafter, firing at this stage may be referred to as secondary firing).

【0012】該焼成は上記条件、即ち硼素化合物の存在
下、αアルミナとなし得る条件であれば特に制限されな
いが、工業的にはロータリーキルンやトンネルキルン等
で実施すればよく、また焼成温度、時間も特に制限され
ないが、一般的には焼成温度約800℃〜1500℃、
好ましくは900℃〜1200℃、1時間〜5時間の範
囲で実施される。工業的にはフッ素化合物の存在下で焼
成後、同一焼成炉で連続的に硼素化合物を添加し焼成す
ることが、エネルギーコスト削減の点から推奨される
が、これに制限されるものではない。
The calcination is not particularly limited as long as it is the above-mentioned condition, that is, the condition that α-alumina can be obtained in the presence of a boron compound, but it may be industrially carried out in a rotary kiln, a tunnel kiln, etc., and the calcination temperature and time. Is not particularly limited, but generally, the firing temperature is about 800 ° C to 1500 ° C,
It is preferably carried out at 900 ° C. to 1200 ° C. for 1 hour to 5 hours. Industrially, it is recommended to add a boron compound continuously in the same firing furnace after firing in the presence of a fluorine compound in order to reduce the energy cost, but the invention is not limited thereto.

【0013】本発明に於いては硼素化合物の存在下での
焼成時にC軸垂直方向の結晶成長とと並行してC軸水平
方向の成長が促進されるので、予備的に、硼素化合物の
添加量、焼成温度、時間を選択し所望の粒子形状が得ら
れる条件を設定すればよい。通常、焼成温度が高い程、
焼成雰囲気の硼素濃度が高い程、粒子成長は速いが、平
均一次粒子径約1μm〜約10μm、直径Dに対する高
さHの比(D/H)が1〜3の比較的球状、或いはサイ
コロ状のαアルミナは、原料アルミナに対して硼素換算
で約0.05重量%〜約0.5重量%、好ましくは約
0.1重量%〜0.2重量%の範囲で、焼成温度800
℃〜1500℃、1時間〜5時間焼成することにより得
られる。
In the present invention, since the growth in the C-axis horizontal direction is promoted in parallel with the crystal growth in the C-axis vertical direction during firing in the presence of the boron compound, the addition of the boron compound is preliminary performed. The amount, the firing temperature, and the time may be selected to set the conditions for obtaining the desired particle shape. Generally, the higher the firing temperature,
The higher the boron concentration in the firing atmosphere, the faster the particle growth, but the average primary particle diameter is about 1 μm to about 10 μm, and the ratio of the height H to the diameter D (D / H) is 1 to 3 which is relatively spherical or dice-shaped. Α-alumina in the range of about 0.05% by weight to about 0.5% by weight, preferably about 0.1% by weight to 0.2% by weight, based on the raw material alumina, at a firing temperature of 800.
It can be obtained by firing at 1500C for 1 hour to 5 hours.

【0014】本発明に於いて使用する硼素化合物として
は当該分野で鉱化剤として使用されているものであれば
特に制限されないが、通常、ホウ酸、ホウ酸カルシウ
ム、ホウ酸マグネシウム、ホウ酸ナトリウム等が使用さ
れる。尚、硼素化合物存在下での焼成に於いては、フッ
素化合物、或いは塩素化合物と併用してもよい。ここに
於いてフッ素化合物としては、一次焼成工程で用いたも
のと同様のもので良く、例えばHF、AlF3 、CaF
2 、NaF或いはNa3 AlF6 等が使用される。また
塩素化合物としてはNaCl、NH4 Cl等が使用され
る。鉱化剤としてのホウ素及びフッ素の添加量は最終的
に得ようとするα−アルミナの粒径により異なるが、通
常、一次焼成に際しては、フッ素化合物は原料水酸化ア
ルミニウムに対しFとして約0.05重量%〜約0.5
重量%、二次焼成に際しては原料アルミナに対し、フッ
素化合物はFとして0重量%〜約0.5重量%、塩素化
合物はCl2 として0重量%〜約2重量%が望ましい。
The boron compound used in the present invention is not particularly limited as long as it is used as a mineralizer in the field, but usually boric acid, calcium borate, magnesium borate, sodium borate. Etc. are used. When firing in the presence of a boron compound, it may be used in combination with a fluorine compound or a chlorine compound. The fluorine compound used here may be the same as that used in the primary firing step, such as HF, AlF 3 , and CaF.
2 , NaF or Na 3 AlF 6 is used. Further, as the chlorine compound, NaCl, NH 4 Cl or the like is used. The amounts of boron and fluorine added as mineralizers vary depending on the particle size of α-alumina to be finally obtained, but normally, in the primary firing, the fluorine compound is about 0. 05% by weight to about 0.5
It is desirable that the fluorine compound is 0 wt% to about 0.5 wt% as F and the chlorine compound is Cl 2 is 0 wt% to about 2 wt% with respect to the raw material alumina in the second firing.

【0015】さらに、製品としてのα−アルミナとして
低ソーダや低ホウ素品が望まれる場合には、従来から公
知の方法、例えば、原料として低ソーダの水酸化アルミ
ニウムを使用したり、或いは一次焼成後及び/又は二次
焼成後のアルミナに水洗や酸洗を適用することも可能で
ある。
Further, when a low soda or low boron product is desired as the α-alumina product, a conventionally known method, for example, using low soda aluminum hydroxide as a raw material, or after primary firing And / or it is possible to apply water washing or pickling to the alumina after the secondary calcination.

【0016】本発明の実施に際し、フッ素存在下での焼
成は焼成後のアルミナのα化率が10%〜100%未
満、F含有量が50ppm〜3000ppmの範囲にな
るように焼成することを必須とする。α化率とF含有量
が上記範囲にない場合には、次工程の硼素化合物存在下
での焼成を上記範囲で実施しても、平均一次粒子径が約
1μm〜約10μmで、結晶のC軸水平方向の結晶成長
が促進された直径Dに対する高さHの比(D/H)が1
〜3で、且つ、粉砕時等に於いて耐チッピング性(粒子
の破砕に伴う微粒子の生成がない)に優れたα−アルミ
ナは得られない。また、理由は詳らかではないが、一次
焼成に於いて、水酸化アルミニウムに鉱化剤として硼素
化合物単独、或いはフッ素化合物と硼素化合物を併用
し、これを焼成し、この条件のまま、あるいは二次焼成
を本発明方法の条件と同様にして焼成しα−アルミナを
得た場合には、C軸水平方向の結晶成長が促進された肉
厚のα−アルミナは得られるものの、耐チッピング性の
改良効果が見られない。
In carrying out the present invention, it is essential that the baking in the presence of fluorine is carried out so that the α-conversion rate of alumina after baking is in the range of 10% to less than 100% and the F content is in the range of 50 ppm to 3000 ppm. And When the α-conversion rate and the F content are not within the above ranges, the average primary particle diameter is about 1 μm to about 10 μm and the C of the crystal is C, even if the subsequent step of firing in the presence of a boron compound is performed within the above range. The ratio of the height H to the diameter D (D / H) in which the crystal growth in the horizontal axis direction is promoted is 1
.Alpha.-alumina excellent in chipping resistance (no generation of fine particles due to crushing of particles) at the time of crushing or the like can be obtained. In addition, although the reason is not clear, in the primary firing, a boron compound alone or a fluorine compound and a boron compound are used as a mineralizer in aluminum hydroxide, and this is fired under these conditions or in the secondary firing. When α-alumina is obtained by firing under the same conditions as in the method of the present invention, a thick α-alumina in which crystal growth in the horizontal direction of the C-axis is promoted is obtained, but the chipping resistance is improved. No effect is seen.

【0017】[0017]

【発明の効果】以上詳述した本発明方法によれば、水酸
化アルミニウムをフッ素化合物の存在下、特定状態まで
焼成した後、次いで硼素雰囲気下で焼成しα−アルミナ
を得ると言う比較的、簡単な操作により、平均一次粒子
径が約1μm〜約10μmでD/Hが1〜3と比較的等
軸晶形に近い形状を有し、かつ耐チッピング性に優れた
α−アルミナが得られるもので、スパークプラグやIC
アルミナ基板用途の脱バインダー特性が要求される用
途、さらに凝集粒子による欠陥が問題となるファインセ
ラミック用途、或いは特殊研磨材用途等に好適であり、
その産業的価値は頗る大である。
According to the method of the present invention described in detail above, aluminum hydroxide is calcined to a specific state in the presence of a fluorine compound, and then calcined in a boron atmosphere to obtain α-alumina. By a simple operation, α-alumina having an average primary particle size of about 1 μm to about 10 μm and a D / H of 1 to 3 having a shape relatively close to an equiaxed crystal form and excellent in chipping resistance can be obtained. Then, spark plugs and ICs
Suitable for applications requiring debinding properties for alumina substrates, fine ceramic applications where defects due to agglomerated particles pose a problem, or special abrasive applications,
Its industrial value is enormous.

【0018】[0018]

【実施例】以下に本発明方法を更に詳細に説明するが、
実施例は本発明方法の一実施態様であり、これにより本
発明方法を限定されるものではない。尚、本発明方法に
於いて水酸化アルミニウムの一次焼成後のα化率、アル
ミナの一次粒子径、BET比表面積、中心粒子径、成形
密度、アルミナの結晶形D/H及び耐チッピング性は以
下の方法により測定した。
EXAMPLES The method of the present invention will be described in more detail below.
The examples are one embodiment of the method of the present invention and are not intended to limit the method of the present invention. In the method of the present invention, the α conversion after primary firing of aluminum hydroxide, the primary particle diameter of alumina, the BET specific surface area, the central particle diameter, the molding density, the crystal form D / H of alumina and the chipping resistance are as follows. It was measured by the method.

【0019】α化率;粉末X線回折法(理学電機株式会
社製ローターフレックスRAD−BCuKα線の(11
6)回折線から求めた)による。
Α-factor; powder X-ray diffraction method (Rigaku Denki Co., Ltd. rotor flex RAD-BCuK α-ray (11
6) Obtained from the diffraction line).

【0020】一次粒子径;BET比表面積から次式に基
づき算出した。 一次粒子径=6/ρ・BET (ρ:アルミナの真比
重3.99g/cm3
Primary particle diameter: Calculated from the BET specific surface area according to the following formula. Primary particle size = 6 / ρ · BET (ρ: true specific gravity of alumina 3.99 g / cm 3 )

【0021】BET比表面積;窒素ガス吸着法(日機装
株式会社製ベーターソーブ自動表面積計モデル420
0)により測定した。
BET specific surface area; nitrogen gas adsorption method (Betasorb automatic surface area meter model 420 manufactured by Nikkiso Co., Ltd.)
0).

【0022】中心粒子径;X線透過法(マイクロメリテ
ィックス社製 粒度分布測定器セディグラフ5100)
により測定した。
Central particle diameter: X-ray transmission method (Semigraph 5100, particle size distribution analyzer manufactured by Micromeritics)
It was measured by.

【0023】成形密度;試料をボールミルにより粉砕し
た後金型一軸プレスにより200kg/cm2 で予備成
形した後、静水圧プレスで500kg/cm2 で成形し
測定サンプルを得た後、この成形体の密度を水銀法にて
測定した。
Molding density: The sample was crushed with a ball mill, pre-molded with a die uniaxial press at 200 kg / cm 2 , and then molded with an isostatic press at 500 kg / cm 2 to obtain a measurement sample. The density was measured by the mercury method.

【0024】結晶形D/H;電子顕微鏡写真より単位面
積当たりに存在する粒子の直径(D)及び厚み(H)を
測定しその平均値を算出した。
Crystal form D / H: The diameter (D) and thickness (H) of particles present per unit area were measured from an electron micrograph, and the average value was calculated.

【0025】耐チッピング性;焼成後の耐チッピング性
の評価は、3.3リットルのアルミナ製ポットにアルミ
ナ350g、15mmφアルミナ製ボール2950gを
封入し回転数80rpmで24時間乾式ボールミル粉砕
により行った後、粉砕前のアルミナのBET比表面積
(BET1)と粉砕後のアルミナのBET比表面積(B
ET2)を測定し、BET2/BET1より粉砕による
微粒子の生成程度の指標とした。
Chipping resistance: After evaluation of the chipping resistance after firing, 350 g of alumina and 2950 g of 15 mmφ alumina balls were placed in a 3.3 liter alumina pot and dry ball mill grinding was carried out at a rotation speed of 80 rpm for 24 hours. , BET specific surface area (BET1) of alumina before pulverization and BET specific surface area (BET of alumina after pulverization)
ET2) was measured, and it was used as an index of the degree of generation of fine particles by pulverization from BET2 / BET1.

【0026】実施例1 バイヤー法により得られた水酸化アルミニウム(二次平
均粒子径約80μm、Na2 O含有量0.2重量%)に
フッ化アルミニウム(AlF3 )を0.6重量%添加、
混合した後、高アルミナ質のサヤに入れ小型電気炉にて
1100℃、2時間焼成を行った。得られたアルミナの
α化率は40%、BET50.9m2 /g、フッ素含有
量は800ppmであった。次いで一次焼成後のアルミ
ナにH3 BO3 を0.9重量%添加、混合した後、高ア
ルミナ質のサヤに入れ小型電気炉にて1300℃、2時
間焼成を行った。得られたアルミナの平均一次粒子径
(μm)とBET比表面積(BET1、m2 /g)、D
/Hを測定した後、このアルミナの耐チッピング性を測
定した。その結果を表1に示す。
Example 1 0.6% by weight of aluminum fluoride (AlF 3 ) was added to aluminum hydroxide (secondary average particle size: about 80 μm, Na 2 O content: 0.2% by weight) obtained by the Bayer method. ,
After mixing, the mixture was put in a high alumina sheath and baked in a small electric furnace at 1100 ° C. for 2 hours. The obtained alumina had an alpha conversion rate of 40%, BET of 50.9 m 2 / g, and a fluorine content of 800 ppm. Next, 0.9% by weight of H 3 BO 3 was added to and mixed with the alumina after the primary calcination, and the mixture was put into a high-alumina sheath and calcined at 1300 ° C. for 2 hours in a small electric furnace. The average primary particle diameter (μm) and BET specific surface area (BET1, m 2 / g) of the obtained alumina, D
After measuring / H, the chipping resistance of this alumina was measured. The results are shown in Table 1.

【0027】実施例2 実施例1で得られた一次焼成後のアルミナに対し鉱化剤
としてのAlF3 0.6重量%とH3 BO3 を0.9重
量%をアルミナ中に添加、混合した後、高アルミナ質の
サヤに入れ小型電気炉にて1300℃、2時間焼成を行
った。得られたアルミナの平均一次粒子径(μm)とB
ET比表面積(BET1、m2 /g)、D/Hを測定し
た後、このアルミナの耐チッピング性を測定した。その
結果を表1に示す。
Example 2 0.6% by weight of AlF 3 as a mineralizer and 0.9% by weight of H 3 BO 3 were added to and mixed with the alumina after the primary calcination obtained in Example 1. After that, it was put in a high alumina sheath and fired at 1300 ° C. for 2 hours in a small electric furnace. The average primary particle diameter (μm) of the obtained alumina and B
After measuring the ET specific surface area (BET 1, m 2 / g) and D / H, the chipping resistance of this alumina was measured. The results are shown in Table 1.

【0028】実施例3及び4 一次焼成に於いて鉱化剤としてAlF3 0.1重量%を
用い、焼成温度を実施例3は1150℃、実施例4は1
200℃とした他は実施例1と同様に一次焼成、二次焼
成を実施した。一次焼成後得られたアルミナのα化率は
実施例3は27%、実施例4は81%、BET比表面積
は実施例3は28.6m2 /g、実施例4は3.7m2
/g、フッ素含有量は実施例3は130ppm、実施例
4は120ppmであった。また二次焼成後得られたア
ルミナの平均一次粒子径(μm)とBET比表面積(B
ET1、m2 /g)、D/Hを測定した後、このアルミ
ナの耐チッピング性を測定した。その結果を表1に示
す。
Examples 3 and 4 Using 0.1% by weight of AlF 3 as a mineralizer in the primary calcination, the calcination temperature was 1150 ° C. in Example 3 and 1 in Example 4.
Primary firing and secondary firing were carried out in the same manner as in Example 1 except that the temperature was set to 200 ° C. The alpha conversion of the alumina obtained after the primary calcination was 27% in Example 3, 81% in Example 4, the BET specific surface area was 28.6 m 2 / g in Example 3, and 3.7 m 2 in Example 4.
/ G, the fluorine content of Example 3 was 130 ppm, Example 4 was 120 ppm. The average primary particle diameter (μm) and BET specific surface area (B
ET1, m 2 / g) and D / H were measured, and then the chipping resistance of this alumina was measured. The results are shown in Table 1.

【0029】比較例1 実施例1で用いたと同じ原料水酸化アルミニウムにAl
3 0.6重量%を添加、混合した後、高アルミナ質の
サヤに入れ小型電気炉にて1300℃、2時間焼成を行
った。得られたアルミナの平均一次粒子径(μm)とB
ET比表面積(BET1、m2 /g)、D/Hを測定し
た後、このアルミナの耐チッピング性を測定した。その
結果を表1に示す。
Comparative Example 1 The same raw material aluminum hydroxide used in Example 1 was mixed with Al.
After 0.6 wt% of F 3 was added and mixed, the mixture was put into a high alumina sheath and fired at 1300 ° C. for 2 hours in a small electric furnace. The average primary particle diameter (μm) of the obtained alumina and B
After measuring the ET specific surface area (BET 1, m 2 / g) and D / H, the chipping resistance of this alumina was measured. The results are shown in Table 1.

【0030】比較例2 実施例1で用いたと同じ原料水酸化アルミニウムにH3
BO3 0.9重量%を添加、混合した後、高アルミナ質
のサヤに入れ小型電気炉にて1300℃、2時間焼成を
行った。得られたアルミナの平均一次粒子径(μm)と
BET比表面積(BET1、m2 /g)、D/Hを測定
した後、このアルミナの耐チッピング性を測定した。そ
の結果を表1に示す。
Comparative Example 2 The same raw material aluminum hydroxide used in Example 1 was added with H 3
After 0.9 wt% of BO 3 was added and mixed, the mixture was placed in a high alumina sheath and fired at 1300 ° C. for 2 hours in a small electric furnace. After measuring the average primary particle diameter (μm), BET specific surface area (BET1, m 2 / g) and D / H of the obtained alumina, the chipping resistance of this alumina was measured. The results are shown in Table 1.

【0031】比較例3 実施例1で用いたと同じ原料水酸化アルミニウムにAl
3 0.6重量%とH3 BO3 0.9重量%を添加、混
合した後、高アルミナ質のサヤに入れ小型電気炉にて1
300℃、2時間焼成を行った。得られたアルミナの平
均一次粒子径(μm)とBET比表面積(BET1、m
2 /g)、D/Hを測定した後、このアルミナの耐チッ
ピング性を測定した。その結果を表1に示す。
Comparative Example 3 The same raw material aluminum hydroxide as used in Example 1 was mixed with Al.
After adding and mixing 0.6% by weight of F 3 and 0.9% by weight of H 3 BO 3 , the mixture was put in a high-alumina sheath and placed in a small electric furnace.
Firing was performed at 300 ° C. for 2 hours. The average primary particle diameter (μm) and BET specific surface area (BET1, m of the obtained alumina)
2 / g) and D / H were measured, and then the chipping resistance of this alumina was measured. The results are shown in Table 1.

【0032】比較例4 実施例1の方法に於いて、二次焼成時にH3 BO3 を添
加しない他は実施例1と同様の方法でアルミナを得た。
得られたアルミナの平均一次粒子径(μm)とBET比
表面積(BET1、m2 /g)、D/Hを測定した後、
このアルミナの耐チッピング性を測定した。その結果を
表1に示す。
Comparative Example 4 Alumina was obtained in the same manner as in Example 1 except that H 3 BO 3 was not added during the secondary firing in the method of Example 1.
After measuring the average primary particle diameter (μm), BET specific surface area (BET1, m 2 / g) and D / H of the obtained alumina,
The chipping resistance of this alumina was measured. The results are shown in Table 1.

【0033】比較例5 実施例1の方法に於いて、二次焼成時にH3 BO3 に代
えAlF3 0.6重量%を添加、混合した他は実施例1
と同様の方法でアルミナを得た。得られたアルミナの平
均一次粒子径(μm)とBET比表面積(BET1、m
2 /g)、D/Hを測定した後、このアルミナの耐チッ
ピング性を測定した。その結果を表1に示す。
Comparative Example 5 Example 1 was repeated except that 0.6% by weight of AlF 3 was added and mixed in place of H 3 BO 3 during the secondary firing in the method of Example 1.
Alumina was obtained in the same manner as in. The average primary particle diameter (μm) and BET specific surface area (BET1, m of the obtained alumina)
2 / g) and D / H were measured, and then the chipping resistance of this alumina was measured. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−97528(JP,A) 特開 平5−310419(JP,A) (58)調査した分野(Int.Cl.7,DB名) C01F 7/44 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-59-97528 (JP, A) JP-A-5-310419 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C01F 7/44

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ素化合物の存在下に水酸化アルミニ
ウムを焼成し、α化率10%〜100%未満、F含有量
50ppm〜3000ppmのアルミナとなし、次いで
このアルミナを硼素化合物の存在下、焼成温度800℃
〜1500℃、1時間以上焼成することを特徴とするD
/Hが1〜3、平均一次粒子径が1μm〜10μmのα
−アルミナの製造方法。
1. Aluminum hydroxide is calcined in the presence of a fluorine compound to obtain an alumina having an alpha conversion of 10% to less than 100% and an F content of 50 ppm to 3000 ppm, and then calcined in the presence of a boron compound. Temperature 800 ℃
〜1500 ° C, D characterized by baking for 1 hour or more
/ H is 1 to 3 and the average primary particle diameter is 1 μm to 10 μm α
-Alumina production method.
【請求項2】 硼素化合物の存在下に焼成するアルミナ
のα化率が20%〜90%であることを特徴とする請求
項1記載のα−アルミナの製造方法。
2. The method for producing α-alumina according to claim 1, wherein the α-alumina conversion rate of alumina calcined in the presence of a boron compound is 20% to 90%.
JP14302093A 1993-05-20 1993-05-20 Method for producing α-alumina Expired - Lifetime JP3387555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14302093A JP3387555B2 (en) 1993-05-20 1993-05-20 Method for producing α-alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14302093A JP3387555B2 (en) 1993-05-20 1993-05-20 Method for producing α-alumina

Publications (2)

Publication Number Publication Date
JPH06329412A JPH06329412A (en) 1994-11-29
JP3387555B2 true JP3387555B2 (en) 2003-03-17

Family

ID=15329064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14302093A Expired - Lifetime JP3387555B2 (en) 1993-05-20 1993-05-20 Method for producing α-alumina

Country Status (1)

Country Link
JP (1) JP3387555B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001295960A1 (en) 2000-10-20 2002-05-06 Showa Denko K K Method of producing low soda alumina, low soda alumina and method of producing porcelain
AU2003900030A0 (en) 2003-01-07 2003-01-23 Advanced Nano Technologies Pty Ltd Process for the production of ultrafine plate-like alumina particles
CN107074574B (en) 2015-09-30 2020-09-22 日本碍子株式会社 Method for producing plate-like alumina powder
CN114620751A (en) * 2022-04-28 2022-06-14 洛阳中超新材料股份有限公司 Spheroidal large primary crystal alpha-Al2O3Method for preparing powder

Also Published As

Publication number Publication date
JPH06329412A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
US4308088A (en) Macrocrystalline aluminum oxide and method for its manufacture
JP4122746B2 (en) Method for producing fine α-alumina powder
US5514631A (en) Alumina sol-gel fiber
EP0152768B1 (en) Abrasive grits or ceramic bodies and preparation thereof
US5395407A (en) Abrasive material and method
KR100258786B1 (en) Ñ -alumina
US10766783B2 (en) Magnesium oxide-containing spinel powder and method for producing same
EP0728700B1 (en) Alpha-alumina and method for producing the same
JPH04500947A (en) Small α-alumina particles and plates
US3837871A (en) Hexagonal silicon aluminum oxynitride
JPH06510272A (en) Improved mixed metal oxide crystal powder and its synthesis method
JP2506852B2 (en) Ceramic abrasive product, manufacturing method thereof, and surface grinding method
JP3972380B2 (en) Method for producing α-alumina
JP3387555B2 (en) Method for producing α-alumina
JP3389642B2 (en) Method for producing low soda alumina
JPH0343211B2 (en)
JP2624069B2 (en) Spherical corundum particles
JP3975513B2 (en) Continuous production of alpha alumina
JP2699770B2 (en) Highly-fillable silicon nitride powder and method for producing the same
JP2001002413A (en) Production of magnesia spinel powder
JPH0686291B2 (en) Spinel powder and method for producing the same
JPH0789759A (en) Alumina for tape cast, alumina composition, alumina green sheet, alumina sintered plate and its production
JPH0647459B2 (en) Silica-based filler and method for producing the same
WO2023176893A1 (en) Silicon nitride powder and method for producing silicon nitride sintered body
WO2023163057A1 (en) Negative thermal expansion material and composite material

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

EXPY Cancellation because of completion of term