WO2011024750A1 - 太陽電池の評価方法及び評価装置 - Google Patents

太陽電池の評価方法及び評価装置 Download PDF

Info

Publication number
WO2011024750A1
WO2011024750A1 PCT/JP2010/064169 JP2010064169W WO2011024750A1 WO 2011024750 A1 WO2011024750 A1 WO 2011024750A1 JP 2010064169 W JP2010064169 W JP 2010064169W WO 2011024750 A1 WO2011024750 A1 WO 2011024750A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
insulating
solar cell
electrode layer
photoelectric conversion
Prior art date
Application number
PCT/JP2010/064169
Other languages
English (en)
French (fr)
Inventor
和弘 山室
展史 南
充 矢作
湯山 純平
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2011528778A priority Critical patent/JPWO2011024750A1/ja
Publication of WO2011024750A1 publication Critical patent/WO2011024750A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an evaluation method and an evaluation apparatus that can accurately evaluate local photoelectric conversion efficiency in a desired region of a solar cell.
  • a solar cell using a silicon single crystal is excellent in energy conversion efficiency per unit area.
  • a solar cell using a silicon single crystal uses a silicon wafer obtained by slicing a silicon single crystal ingot, a large amount of energy is consumed for manufacturing the ingot and the manufacturing cost is high.
  • a solar cell is manufactured using a silicon single crystal, a considerable cost is required at present.
  • solar cells using amorphous (amorphous) silicon thin films that can be manufactured at lower cost are widely used as low-cost solar cells.
  • An amorphous silicon solar cell uses a semiconductor film having a layer structure called a pin junction in which an amorphous silicon film (i-type) that generates electrons and holes when receiving light is sandwiched between p-type and n-type silicon films. Electrodes are formed on both sides of the semiconductor film. Electrons and holes generated by sunlight move actively due to the potential difference between the p-type and n-type semiconductors, and this is continuously repeated, causing a potential difference between the electrodes on both sides.
  • i-type amorphous silicon film
  • a transparent electrode such as TCO (Transparent Conductive Oxide) is formed on a glass substrate as a lower electrode, and a semiconductor film made of amorphous silicon, an upper electrode, A structure in which an Ag thin film or the like is formed is employed.
  • TCO Transparent Conductive Oxide
  • an amorphous silicon solar cell including a photoelectric conversion body composed of such upper and lower electrodes and a semiconductor film there is a problem that a potential difference is small and a resistance value is large only by depositing each layer uniformly over a wide area on a substrate. .
  • an amorphous silicon solar cell is configured by forming partition elements in which photoelectric conversion bodies are electrically partitioned for each predetermined size and electrically connecting partition elements adjacent to each other.
  • partition elements in which photoelectric conversion bodies are electrically partitioned for each predetermined size and electrically connecting partition elements adjacent to each other.
  • grooves called so-called scribe lines (scribe lines) are formed on a photoelectric converter formed uniformly over a large area on a substrate using a laser beam or the like to obtain a large number of strip-shaped partition elements.
  • scribe lines scribe lines
  • the thin film silicon solar cell of such a structure it is known that some structural defects will arise in a manufacture stage. For example, when an amorphous silicon film is formed, particles may be mixed in or pinholes may be generated, so that the upper electrode and the lower electrode may be locally short-circuited.
  • the metal film constituting the upper electrode melts along the scribe line to reach the lower electrode, There may be a local short circuit with the lower electrode.
  • photoelectric conversion efficiency changes locally in the direction parallel to the surface of the amorphous silicon film, and distribution (bias) occurs.
  • the photoelectric conversion efficiency tends to be distributed in the direction parallel to the surface of the silicon film due to the film forming conditions and the state of the film forming apparatus, and the quality of the solar cell varies. Is likely to occur. Therefore, it is desired to develop a technique that can measure the photoelectric conversion efficiency with high accuracy and can accurately identify the location when the photoelectric conversion efficiency is distributed.
  • the evaluation target region of a solar cell is irradiated with light, the photoluminescence and electroluminescence generated at this time are measured, the distribution of emission intensity is measured, and the photoelectric conversion efficiency is evaluated.
  • a method is disclosed. Further, a method is disclosed in which a direct current is introduced into an evaluation target region, a photoluminescence or electroluminescence generated at this time is measured to measure a distribution of emission intensity, and photoelectric conversion efficiency is evaluated (for example, (See Patent Document 1).
  • FIGS. 14A and 14B are conceptual diagrams for explaining the problems of the photoelectric conversion efficiency evaluation method according to the conventional method, FIG. 14A is a top view of the thin-film silicon solar cell, and FIG. 14B is a line II-II in FIG. 14A.
  • FIG. 14A is a top view of the thin-film silicon solar cell
  • FIG. 14B is a line II-II in FIG. 14A.
  • the region 9 of the substrate 11 that is the evaluation target of the solar cell 10 is irradiated with light 9, the emission intensity is measured in the region E, and the photoelectric conversion efficiency of the region E is determined from the measured value.
  • the structural defect A that locally shorts the upper electrode 15 and the lower electrode 13 in the solar cell 10 occurs in the vicinity of the region E, a part of the current generated during light irradiation is structural defect. If it passes through A, the photoelectric conversion efficiency in the region E cannot be accurately evaluated.
  • reference numeral 12 denotes a photoelectric converter
  • reference numeral 14 denotes a semiconductor layer
  • reference numeral 19 denotes a scribe line
  • reference numeral 21 denotes a partition element, as will be described later.
  • This invention is made
  • the solar cell evaluation method of the present invention includes a plurality of partition elements in which at least a first electrode layer, a semiconductor layer, and a second electrode layer are stacked in this order on a substrate and electrically connected. And a solar cell having a scribe line for removing the semiconductor layer and the second electrode layer in the photoelectric conversion body, and in the partition element to be evaluated, a predetermined region is insulated from a peripheral region (insulating step) ), Irradiating light to the insulated region including the predetermined region (irradiation step), and measuring current-voltage characteristics in the predetermined region during light irradiation (measurement step).
  • the predetermined region is insulated from the peripheral region (insulating step)
  • at least the semiconductor layer and the second electrode layer are removed to provide the insulating wire.
  • the region formed in the partition element and surrounded by the insulating wire may be the predetermined region.
  • the semiconductor layer is formed so as to straddle two adjacent scribe lines separately when insulating the predetermined region from the peripheral region (insulating step). And by removing the second electrode layer, two insulating lines are formed in the partition element, one insulating line is formed so as to straddle the two insulating lines, and the one scribe line and three The region surrounded by the insulated wires may be the predetermined region.
  • the solar cell evaluation apparatus of the present invention includes a plurality of partition elements in which at least a first electrode layer, a semiconductor layer, and a second electrode layer are stacked in this order on a substrate and electrically connected.
  • An evaluation apparatus for a solar cell comprising: a photoelectric converter; and a scribe line for removing the semiconductor layer and the second electrode layer in the photoelectric converter, wherein a predetermined region is separated from a peripheral region in the partition element to be measured
  • An insulating part for insulation, an irradiation part for irradiating light to the insulated region including the predetermined region, and a measurement unit for measuring current-voltage characteristics in the predetermined region during light irradiation are provided.
  • the insulating unit includes a laser light source
  • the irradiation unit includes a light source
  • the measurement unit includes a probe for detecting current or voltage
  • the laser light source It is preferable that the light source and the probe are independently movable on the partition element.
  • local photoelectric conversion efficiency can be evaluated with high accuracy in a desired region of a thin-film silicon solar cell.
  • FIG. 2B is an enlarged cross-sectional view showing a portion indicated by a symbol Z in FIG. 2A. It is a figure which illustrates the solar cell after an insulation process, and is a top view of a solar cell. It is a figure which illustrates the solar cell after an insulation process, and is sectional drawing in the II line
  • FIG. 10 is a graph showing measurement results of current-voltage characteristics in Comparative Example 1. It is a top view which shows the solar cell which provided the insulated wire used in Example 1.
  • FIG. 4 is a graph showing measurement results of current-voltage characteristics in Example 1. It is a graph which extracts and shows the measurement result about the cell 60 of Example 1 and Comparative Example 1. It is a graph which extracts and shows the measurement result about the cell 119 of Example 1 and Comparative Example 1. It is a figure which illustrates the solar cell after the insulation process concerning a modification, and is the top view which showed the solar cell typically. It is a figure which illustrates the solar cell after the insulation process concerning a modification, and is the top view which showed the solar cell typically. FIG.
  • FIG. 13 is a sectional view taken along line XX in FIG.
  • FIG. 13 is a sectional view taken along line YY in FIG. 12.
  • It is a conceptual diagram for demonstrating the problem of the evaluation method of the photoelectric conversion efficiency by a conventional method, and is a top view of a thin film silicon solar cell.
  • FIG. 14B is a conceptual diagram for explaining the problems of the photoelectric conversion efficiency evaluation method according to the conventional method, and is a cross-sectional view taken along the line II-II in FIG. 14A.
  • FIG. 1 is an enlarged perspective view of a main part of a thin film silicon type solar cell evaluated by an embodiment of the evaluation method of the present invention.
  • 2A is an enlarged cross-sectional view of a main part in the layer configuration of the solar cell of FIG.
  • FIG. 2B is an enlarged cross-sectional view showing a portion indicated by a symbol Z in FIG. 2A.
  • the solar cell 10 has a transparent insulating substrate 11.
  • a photoelectric conversion body 12 is formed on the first surface 11 a of the substrate 11.
  • the substrate 11 is made of, for example, an insulating material that is excellent in sunlight transmittance and durable, such as a crow or a transparent resin.
  • Sunlight S is incident on the second surface 11 b of the substrate 11.
  • a first electrode layer 13 lower electrode
  • the first electrode layer 13 is made of a transparent conductive material, for example, a light transmissive metal oxide such as TCO or ITO (Indium Tin Oxide).
  • the second electrode layer 15 is formed of a conductive metal film such as Ag or Cu.
  • the semiconductor layer 14 has, for example, a pin junction structure in which an i-type silicon film 16 is sandwiched between a p-type silicon film 17 and an n-type silicon film 18 as shown in FIG. 2B.
  • a potential difference is generated between the first electrode layer 13 and the second electrode layer 15 (photoelectric conversion).
  • a material for the silicon film any one of amorphous type, nanocrystal type, and the like is used.
  • the photoelectric converter 12 is divided by a scribe line 19 into a large number of partition elements 21, 21,.
  • the partition elements 21, 21,... Are electrically partitioned from each other, and are electrically connected in series, for example, between the partition elements 21 adjacent to each other.
  • the photoelectric conversion body 12 has a structure in which the partition elements 21, 21... Are all electrically connected in series, and can extract a current with a high potential difference.
  • the scribe line 19 is formed, for example, by forming the photoelectric conversion body 12 uniformly on the first surface 11a of the substrate 11 and then forming grooves in the photoelectric conversion body 12 at a predetermined interval with a laser or the like.
  • a protective layer (not shown) made of an insulating resin or the like on the second electrode layer 15 constituting the photoelectric converter 12.
  • an insulating step is performed in which an insulating region is formed by insulating a predetermined region from a peripheral region in the partition element to be evaluated.
  • the insulation process is performed as shown in FIGS. 3A and 3B, for example.
  • 3A and 3B are diagrams illustrating the solar cell after the insulating process, in which FIG. 3A is a top view and FIG. 3B is a cross-sectional view taken along the line II in FIG. 3A. That is, the two insulating lines R2 and R3 are formed by removing the semiconductor layer 14 and the second electrode layer 15.
  • Each of the insulating lines R2 and R3 is provided so as to straddle two adjacent scribe lines 19a and 19b. Further, a single insulating line R1 is formed by removing the semiconductor layer 14 and the second electrode layer 15 so as to straddle the two insulating lines R2 and R3.
  • the insulating lines R2 and R3 extend in a direction orthogonal to the scribe lines 19a and 19b.
  • the insulated wire R1 extends in a direction orthogonal to the insulated wires R2 and R3.
  • the insulating lines R1 to R3 are formed, for example, by irradiating the solar cell 10 with a laser.
  • the insulating lines R1 to R3 can be provided by removing the semiconductor layer 14 and the second electrode layer 15 at the same time using the same kind of laser (laser having the same wavelength). In this way, in the insulating process, the insulating lines R1 to R3 are formed by removing only the two layers of the semiconductor layer 14 and the second electrode layer 15.
  • the insulating line D1 surrounded by one scribe line 19a and the three insulating lines R1 to R3 is separated from the peripheral region (other region) in the partition element 21s.
  • the symbol B indicates a portion where the semiconductor layer 14 and the substrate 11 are in contact
  • the symbol C indicates that the first electrode layer 13 and the second electrode layer 15 are connected. Indicates the site.
  • the region (not shown) surrounded by the two scribe lines 19a and 19b and the two insulation lines R2 and R3 is formed on the partition element 21s without providing the insulation line R1 will be described.
  • the three layers of the first electrode layer 13, the semiconductor layer 14, and the second electrode layer 15 are removed. It is necessary to form the two insulated wires R2 and R3. If only the two layers of the semiconductor layer 14 and the second electrode layer 15 are removed without providing the insulating wire R1, for example, the current flows between the adjacent region via the first electrode layer 13 located below the insulating wire. Will be transmitted between.
  • an irradiation step of irradiating light to a region including the insulating region is performed after the insulating step.
  • the region irradiated with light includes the insulating region D1, and the region located outside the insulating region D1 may be irradiated with light.
  • Light is irradiated from the second surface 11 b of the solar cell 10.
  • a measurement process for obtaining current-voltage characteristics in the insulating region during light irradiation is then performed.
  • the second electrode layer 15 in the insulating region D1 and the second electrode layer 15 in the region D2 adjacent to the insulating region D1 Is in contact with the probe on the opposite surface.
  • a scribe line 19a is formed between the region D2 and the insulating region D1.
  • the second electrode layer 15 is a layer formed above the first surface 11a opposite to the second surface 11b irradiated with light.
  • the insulating region D1 is reliably insulated from the peripheral region in the partition element 21s, and thus is not affected by the peripheral region. For example, current generated in the peripheral region does not flow through the insulating region D1. Therefore, for example, as shown in FIG. 3A, even when the structural defect A exists in the region D2 or the region D3 adjacent to the insulating region D1, the photoelectric conversion efficiency in the insulating region D1 can be evaluated with high accuracy.
  • an insulating line R2 is formed between the region D3 and the insulating region D1. Further, even when the structural defect A exists in a region other than the region D2 or D3, similarly, the photoelectric conversion efficiency in the insulating region D1 can be evaluated with high accuracy.
  • an insulating part that insulates a predetermined region in a partition element to be measured from a peripheral region to form an insulating region, and light is applied to the region including the insulating region.
  • An irradiating unit for irradiating and a measuring unit for measuring current-voltage characteristics in the insulating region during light irradiation are provided.
  • the insulating part for example, a laser irradiation device provided with a laser light source is used.
  • the light irradiation apparatus provided with the light source is used, for example.
  • light source refers to “light source that constitutes an irradiation portion” and is distinguished from “laser light source that constitutes an insulation portion”.
  • the measuring unit for example, a current / voltage measuring device including a plurality of probes is used.
  • the laser light source, the light source, and the probe are configured to be able to move independently on the partition element of the solar cell.
  • the evaluation apparatus preferably includes a plurality of first fixing portions to which the laser light source, the light source, and the probe are separately fixed. The plurality of first fixing portions are arranged by moving the laser light source, the light source, and the probe to desired positions.
  • the evaluation apparatus includes a first control unit such as a computer that is electrically connected to the first fixing unit and automatically controls the movement of the first fixing unit.
  • an evaluation apparatus is provided with the 2nd fixing
  • the second fixing portion is arranged by moving the solar cell to a desired position. Furthermore, it is more preferable that the evaluation apparatus includes a second control unit such as a computer that is electrically connected to the second fixing unit and automatically controls the movement of the second fixing unit.
  • the first control unit and the second control unit may be integrated.
  • FIG. 4 is a schematic configuration diagram illustrating an embodiment of the evaluation apparatus according to the present invention.
  • the evaluation device 3 shown in FIG. 4 includes a laser irradiation device 31 arranged so that the laser light source faces the substrate 11 of the solar cell 10, and a light irradiation device arranged so that the light source faces the substrate 11 of the solar cell 10. 32 and a current / voltage measuring device 33 in which two probes 330 and 330 are arranged so as to be in contact with the second electrode layer 15 of the solar cell 10.
  • each of the laser irradiation apparatus 31, the light irradiation apparatus 32, the current-voltage measuring device 33, and the solar cell 10 is being fixed to the said 1st fixing
  • the current / voltage measuring instrument a measuring instrument including two probes in which a voltage probe and a current probe are integrally provided is shown. However, for example, a voltage probe and a current probe are provided separately. It is also possible to use a so-called four-terminal type current / voltage measuring instrument provided with two probes.
  • a current / voltage measuring device having two probes is shown, but a measuring device having 2n (n represents an integer of 2 or more) probes may be used.
  • the current-voltage characteristics in a plurality of insulating regions can be measured simultaneously, or the current-voltage characteristics can be measured simultaneously with a plurality of probes for one insulating region.
  • the light irradiation device may be a light irradiation device including one light source, or a light irradiation device including n (n represents an integer of 2 or more) light sources. Also good.
  • the partition element is provided with the insulating region to be evaluated that is insulated from the periphery, and the region including the insulating region is irradiated with light, so that the insulating region is not affected by the peripheral region.
  • Current-voltage characteristics can be measured, and photoelectric conversion efficiency can be locally evaluated with high accuracy. For example, if a plurality of insulating regions whose current-voltage characteristics are measured include an insulating region having a photoelectric exchange efficiency that is significantly different from that of other insulating regions, a structural defect exists in the region. I can judge.
  • the evaluation method of the present invention when the evaluation method of the present invention is not applied, it cannot be accurately determined whether or not it is affected by a structural defect based on the obtained measurement result.
  • the present invention evaluates the distribution state of photoelectric conversion efficiency in a direction parallel to the surface of the silicon film of the solar cell with high accuracy, and identifies the location with high accuracy when the distribution occurs. For the first time.
  • the photoelectric converter 12 is formed by removing the semiconductor layer 14 and the second electrode layer 15 between two adjacent scribe lines 19a and 19b.
  • Four insulating lines R4 to R7 were provided, and a rectangular insulating region D4 surrounded by these insulating lines R4 to R7 was formed.
  • the insulating region surrounded only by the insulating line is formed in this way, the influence of the scribe line is eliminated, and the distribution of the current-voltage characteristics in the insulating region can be measured.
  • region enclosed only by an insulated wire, triangle shape, pentagon shape, circular shape etc. may be sufficient, for example.
  • whether to form an insulating region that does not include a scribe line or whether to form an insulating region that includes a scribe line may be determined depending on the situation.
  • FIG. 12 shows an insulating region D5 surrounded by only insulating lines, a scribe line 19b, and three scribe lines 19b between the two adjacent scribe lines 19a and 19b formed in the photoelectric converter 12 in the insulating process.
  • An example in which an insulating region D6 surrounded by a single insulating line is provided side by side is shown.
  • 13A shows a cross section taken along line XX of FIG. 12
  • FIG. 13B shows a cross section taken along line YY of FIG.
  • the insulating region D5 is formed in a rectangular shape by four insulating wires R8 to R11.
  • the insulating region D6 extends in parallel with the scribe lines 19b and the scribe lines 19b and the insulation lines R12 and R13 extending from the scribe lines 19b to the scribe lines 19a to the substantially central region of the partition elements 21.
  • the insulation line R14 extends along the scribe line 19b so as to straddle the insulation lines R12 and R13.
  • R15 indicates an insulating line extending along the scribe line 19b so as to straddle the insulating lines R12 and R13.
  • the insulated wire R15 is positioned such that the scribe line 19b is sandwiched between the insulated wire R15 and the insulated wire R14.
  • the probe 330 is shown in FIGS. 12, 13A, and B.
  • the photoelectric conversion body 12 when the insulating region surrounded only by the insulating line and the insulating region surrounded by the scribe line and the insulating line are provided side by side, by comparing the current-voltage characteristics of the two, The distribution resulting from the influence of the scribe line can be measured.
  • FIG. 5 is a top view showing the used (prepared) solar cell 10 ′.
  • region at the time of light irradiation was measured using the evaluation apparatus of this invention (comparative example 1). The measurement results are shown in FIG.
  • FIG. 6 has shown the result of having measured the current-voltage characteristic in four irradiation areas about each of the cells 2, 31, 60, 91, and 119.
  • the variation in the current-voltage characteristics between the irradiation regions was small within the same partition element (within one partition element). Moreover, in any partition element, the photoelectric conversion efficiency was lower than the photoelectric conversion efficiency when the current-voltage characteristics were measured by irradiating the entire solar cell 10 ′ with light.
  • FIG. 7 is a top view showing the solar cell 10 provided with the insulating wires R1 to R3.
  • Example 1 The measurement results of Example 1 are shown in FIG. FIG. 8 shows the results of measuring the current-voltage characteristics of the two irradiation regions in each of the cells 2, 31, and 119, and the results of measuring the current-voltage characteristics of the five irradiation regions in the cell 60. And shows the result of measuring the current-voltage characteristics of one irradiation region in the cell 91.
  • Example 1 and Comparative Example 1 in the cell 60 are extracted and shown in FIG.
  • FIG. 9 about Example 1 and the comparative example 1, all showed the result of having measured the current-voltage characteristic of five irradiation regions.
  • FIG. 10 the results are summarized by extracting the results of Example 1 and Comparative Example 1 in the cell 119.
  • FIG. 10 shows the results of measuring the current-voltage characteristics of two irradiation regions for Example 1, and shows the results of measuring the current-voltage characteristics of five irradiation regions in Comparative Example 1. Yes.
  • Example 1 in the cell 60, the current-voltage characteristics of one insulating region D1 are significantly different from the current-voltage characteristics of the other insulating regions D1, and the insulating region D1 It was confirmed that there were structural defects. Further, in FIG. 9, a large variation in the current-voltage characteristics is confirmed between the plurality of insulating regions D1 excluding the insulating region D1 where the structural defects shown in FIG. 8 are present. That is, it has been confirmed that there is a large variation in the current-voltage characteristics in the current-voltage characteristic group indicated by the symbol I in FIG. On the other hand, in the current-voltage characteristic group indicated by the symbol P in FIG.
  • FIG. 10 shows that the same result as that of FIG. 9 was obtained except that the measurement result indicating the presence of the structural defect is not shown. That is, by applying the evaluation method of the present invention, it is clarified that there is no structural defect in the cell 119, but the current-voltage characteristic varies in the insulating region D1.
  • the photoelectric conversion efficiency of the solar cell 10 can be evaluated with high accuracy, and the location of the structural defect can be specified with high accuracy.
  • Comparative Example 1 as described above, the influence of the structural defect that can be specified by Example 1 is exerted on the entire irradiation region, and the measurement result (current-voltage characteristics) has low accuracy.
  • the present invention can evaluate the local photoelectric conversion efficiency with high accuracy in a desired region of a thin-film silicon solar cell.

Landscapes

  • Photovoltaic Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 この太陽電池の評価方法は、基板(11)上に少なくとも第一電極層(13),半導体層(14),及び第二電極層(15)がこの順に重ねられて電気的に接続された複数の区画素子(21)を含む光電変換体(12)と、前記光電変換体(12)において前記半導体層(14)及び前記第二電極層(5)を除去するスクライブ線(19)とを有する太陽電池(10)を準備し、評価対象の前記区画素子(21)において、所定領域(D1)を周辺領域から絶縁し、絶縁された前記所定領域(D1)を含む領域に光を照射し、光照射時の前記所定領域(D1)における電流電圧特性を測定して太陽電池を評価する。

Description

太陽電池の評価方法及び評価装置
 本発明は、太陽電池の所望の領域において、局所的な光電変換効率を高精度に評価できる評価方法及び評価装置に関する。
 本願は、2009年8月25日に出願された特願2009-194594号に基づき優先権を主張し、その内容をここに援用する。
 エネルギーの効率的な利用の観点から、近年、太陽電池はますます広く一般に利用されつつある。特に、シリコン単結晶を利用した太陽電池は単位面積当たりのエネルギー変換効率に優れている。しかし、一方でシリコン単結晶を利用した太陽電池は、シリコン単結晶インゴットをスライスしたシリコンウエハを用いるため、インゴットの製造に大量のエネルギーが費やされ、製造コストが高い。特に屋外などに設置される大面積の太陽電池を実現する場合、シリコン単結晶を利用して太陽電池を製造すると、現状では相当にコストが掛かる。そこで、より安価に製造可能なアモルファス(非晶質)シリコン薄膜を利用した太陽電池が、低コストの太陽電池として普及している。
 アモルファスシリコン太陽電池は、光を受けると電子とホールを発生するアモルファスシリコン膜(i型)がp型およびn型のシリコン膜で挟まれたpin接合と呼ばれる層構造の半導体膜を用いている。この半導体膜の両面には、それぞれ電極が形成されている。太陽光によって発生した電子とホールは、p型・n型半導体の電位差によって活発に移動し、これが連続的に繰り返されることで両面の電極に電位差が生じる。
 こうしたアモルファスシリコン太陽電池の具体的な構成としては、例えば、ガラス基板にTCO(Transparent Conductive Oxide)などの透明電極を下部電極として成膜し、この上にアモルファスシリコンからなる半導体膜と、上部電極となるAg薄膜などが形成された構成が採用される。
 このような上下電極と半導体膜からなる光電変換体を備えたアモルファスシリコン太陽電池においては、基板上に広い面積で均一に各層を成膜しただけでは電位差が小さく、抵抗値が大きくなる問題がある。そのため、例えば、光電変換体を所定のサイズごとに電気的に区画した区画素子を形成し、互いに隣接する区画素子同士を電気的に接続することにより、アモルファスシリコン太陽電池が構成されている。
 具体的には、基板上に広い面積で均一に形成した光電変換体に、レーザー光などを用いてスクライブ線(スクライブライン)と称される溝を形成し、多数の短冊状の区画素子を得て、この区画素子同士を電気的に直列に接続した構造が採用されている。
 ところで、こうした構造の薄膜シリコン太陽電池においては、製造段階で幾つかの構造欠陥が生じることが知られている。例えば、アモルファスシリコン膜の成膜時にパーティクルが混入したり、ピンホールが生じたりすることにより、上部電極と下部電極とが局所的に短絡することがある。また、基板上に光電変換体を形成した後に、スクライブ線によって多数の区画素子に分割する際に、このスクライブ線に沿って上部電極を成す金属膜が溶融して下部電極に達し、上部電極と下部電極とが局所的に短絡することもある。このように短絡すると、アモルファスシリコン膜の面に平行な方向において、局所的に光電変換効率が変化して、分布(偏り)が生じてしまう。
 さらに、薄膜シリコン太陽電池の大型化に伴い、成膜条件や成膜装置の状態に起因して、シリコン膜の面に平行な方向において光電変換効率に分布が生じ易く、太陽電池の品質にばらつきが生じ易い。
 そこで、光電変換効率を精度良く測定でき、光電変換効率に分布が生じている場合には、その箇所を精度良く特定できる技術の開発が望まれている。
 これに対して従来は、例えば、太陽電池の評価対象領域に光を照射して、この時に生じるフォトルミネッセンスやエレクトロルミネッセンスを測定して発光強度の分布を測定し、光電変換効率を評価しようとする方法が開示されている。
 また、評価対象領域に直流電流を導入して、この時に生じるフォトルミネッセンスやエレクトロルミネッセンスを測定して発光強度の分布を測定し、光電変換効率を評価しようとする方法が開示されている(例えば、特許文献1参照)。
国際公開第2006/059615号パンフレット
 しかし、フォトルミネッセンスやエレクトロルミネッセンスから発光強度の分布を測定する評価方法では、発光強度と光電変換効率との間に必ずしも定量的な関係があるとは言えず、光電変換効率を正確に評価できないという問題点があった。さらに、所望の領域において、局所的な光電変換効率を高精度に評価できないという問題点があった。その理由について、図14A,図14Bを参照しながら説明する。図14A,図14Bは、従来法による光電変換効率の評価方法の問題点を説明するための概念図であり、図14Aは薄膜シリコン太陽電池の上面図、図14Bは図14AのII-II線における断面図である。
 従来法では、図14Bに示すように太陽電池10の評価対象である基板11の領域Eに光9を照射して、領域Eにおいて発光強度を測定し、その測定値から領域Eの光電変換効率を評価していた。しかし、例えば、太陽電池10に上部電極15と下部電極13とを局所的に短絡する構造欠陥Aが、領域Eの近傍に生じている場合、光照射時に発生する電流の一部が、構造欠陥Aを経由してしまうと、領域Eでの光電変換効率を正確に評価できない。なお、図14A,図14Bにおいては、後述するように符号12は光電変換体、符号14は半導体層、符号19はスクライブ線、符号21は区画素子をそれぞれ示す。
 本発明は上記事情に鑑みて為されたものであり、薄膜シリコン太陽電池の所望の領域において、局所的な光電変換効率を高精度に評価できる評価方法及び評価装置を提供することを課題とする。
(1)本発明の太陽電池の評価方法は、基板上に少なくとも第一電極層,半導体層,及び第二電極層がこの順に重ねられて電気的に接続された複数の区画素子を含む光電変換体と、前記光電変換体において前記半導体層及び前記第二電極層を除去するスクライブ線とを有する太陽電池を準備し、評価対象の前記区画素子において、所定領域を周辺領域から絶縁し(絶縁工程)、絶縁された前記所定領域を含む領域に光を照射し(照射工程)、光照射時の前記所定領域における電流電圧特性を測定する(測定工程)。
(2)上記(1)の太陽電池の評価方法においては、前記所定領域を周辺領域から絶縁する際(絶縁工程)に、少なくとも前記半導体層及び第二電極層を除去することによって絶縁線を前記区画素子に形成し、前記絶縁線によって囲まれる領域は、前記所定領域であってもよい。
(3)上記(1)の太陽電池の評価方法においては、前記所定領域を周辺領域から絶縁する際(絶縁工程)に、隣り合う二本のスクライブ線に別々に跨るように、少なくとも前記半導体層及び第二電極層を除去することによって二本の絶縁線を前記区画素子に形成し、前記二本の絶縁線に跨るように一本の絶縁線を形成し、前記一本のスクライブ線及び三本の絶縁線で囲まれた領域は、前記所定領域であってもよい。
(4)また、本発明の太陽電池の評価装置は、基板上に少なくとも第一電極層,半導体層,及び第二電極層がこの順に重ねられて電気的に接続された複数の区画素子を含む光電変換体と、前記光電変換体において前記半導体層及び前記第二電極層を除去するスクライブ線とを有する太陽電池の評価装置であって、測定対象の前記区画素子において、所定領域を周辺領域から絶縁する絶縁部と、絶縁された前記所定領域を含む領域に光を照射する照射部と、光照射時の前記所定領域における電流電圧特性を測定する測定部と、を備えている。
(5)上記(4)の太陽電池の評価装置においては、前記絶縁部がレーザー光源を備え、前記照射部が光源を備え、前記測定部が電流又は電圧を検出するプローブを備え、前記レーザー光源及び光源及びプローブは、それぞれ独立して前記区画素子上を移動可能であることが好ましい。
 本発明によれば、薄膜シリコン太陽電池の所望の領域において、局所的な光電変換効率を高精度に評価できる。
本発明の評価方法の一実施形態によって評価される太陽電池の要部を示す拡大斜視図である。 本発明の評価方法の一実施形態によって評価される太陽電池の要部の拡大断面図である。 図2Aの符号Zで表された部位を示す拡大断面図である。 絶縁工程後の太陽電池を例示する図であり、太陽電池の上面図である。 絶縁工程後の太陽電池を例示する図であり、図3AのI-I線における断面図である。 本発明に係る評価装置の一実施形態を例示する概略構成図である。 比較例1で使用した太陽電池を示す上面図である。 比較例1における電流電圧特性の測定結果を示すグラフである。 実施例1で使用した、絶縁線を設けた太陽電池を示す上面図である。 実施例1における電流電圧特性の測定結果を示すグラフである。 実施例1及び比較例1のセル60についての測定結果を抜粋して示すグラフである。 実施例1及び比較例1のセル119についての測定結果を抜粋して示すグラフである。 変形例にかかる絶縁工程後の太陽電池を例示する図であり、太陽電池を模式的に示した上面図である。 変形例にかかる絶縁工程後の太陽電池を例示する図であり、太陽電池を模式的に示した上面図である。 図12のX-X線における断面図である。 図12のY-Y線における断面図である。 従来法による光電変換効率の評価方法の問題点を説明するための概念図であり、薄膜シリコン太陽電池の上面図である。 従来法による光電変換効率の評価方法の問題点を説明するための概念図であり、図14AのII-II線における断面図である。
 以下、本発明に係る太陽電池の評価方法及び評価装置の一実施形態について、図面に基づき説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
<太陽電池の評価方法>
 図1は、本発明の評価方法の一実施形態によって評価される薄膜シリコン型の太陽電池の要部の拡大斜視図である。図2Aは、図1の太陽電池の層構成における要部の拡大断面図である。図2Bは、図2Aの符号Zで表された部位を示す拡大断面図である。太陽電池10は、透明な絶縁性の基板11を有する。基板11の第一面11aには光電変換体12が形成されている。基板11は、例えば、カラスや透明樹脂など、太陽光の透過性に優れ、かつ耐久性を有する絶縁材料で形成されている。こうした基板11の第二面11bに、太陽光Sが入射される。
 光電変換体12においては、基板11上に順に第一電極層13(下部電極)、半導体層14、及び第二電極層15(上部電極)が積層されている。第一電極層13は、透明な導電材料、例えば、TCO、ITO(Indium Tin Oxide)などの光透過性の金属酸化物から形成されている。また、第二電極層15は、Ag、Cuなど導電性の金属膜によって形成されている。
 半導体層14は、例えば、図2Bに示すように、p型シリコン膜17とn型シリコン膜18との間にi型シリコン膜16を挟んだpin接合構造を有する。そして、この半導体層14に太陽光が入射すると電子とホールが生じて、p型シリコン膜17とn型シリコン膜18との電位差によって電子及びホールが活発に移動し、これが連続的に繰り返されることで第一電極層13と第二電極層15との間に電位差が生じる(光電変換)。なお、シリコン膜の材料としては、アモルファス型、ナノクリスタル型等のうちの、いずれかの材料が用いられる。
 光電変換体12は、スクライブ線19によって、例えば外形が短冊状の多数の区画素子21,21・・・に分割されている。この区画素子21,21・・・は互いに電気的に区画されるとともに、互いに隣接する区画素子21同士の間で、例えば電気的に直列に接続される。これにより、光電変換体12は、区画素子21,21・・・を全て電気的に直列に繋いだ構造を有し、高い電位差の電流を取り出すことができる。スクライブ線19は、例えば、基板11の第一面11aに均一に光電変換体12を形成した後、レーザーなどによって光電変換体12に所定の間隔で溝を形成することにより形成される。
 なお、こうした光電変換体12を構成する第二電極層15の上に、さらに絶縁性の樹脂などからなる保護層(図示せず)を形成するのが好ましい。
(絶縁工程)
 本発明に係る評価方法の一実施形態においては、まず、評価対象の前記区画素子において、所定領域を周辺領域から絶縁させて絶縁領域を形成する絶縁工程を行う。絶縁工程は、例えば、図3A,図3Bに示すように行われる。図3A,図3Bは、絶縁工程後の太陽電池を例示する図であり、図3Aは上面図、図3Bは図3AのI-I線における断面図である。すなわち、半導体層14及び第二電極層15を取り除くことによって二本の絶縁線R2及びR3を形成する。絶縁線R2及びR3の各々は、隣り合う二本のスクライブ線19a及び19bに跨るように設けられている。さらにこれら二本の絶縁線R2及びR3に跨るように、半導体層14及び第二電極層15を取り除くことによって一本の絶縁線R1を形成する。
 絶縁線R2及びR3は、スクライブ線19a及び19bに直交する方向に延在している。また、絶縁線R1は、絶縁線R2及びR3に直交する方向に延在している。
 絶縁線R1~R3は、例えば、レーザーを太陽電池10上に照射することによって形成されている。同種のレーザー(同じ波長のレーザー)を使用して、半導体層14及び第二電極層15を同時に取り除くことで絶縁線R1~R3を設けることができる。このように、絶縁工程においては、半導体層14及び第二電極層15の二層だけを取り除くことによって、絶縁線R1~R3が形成されている。上記のように絶縁線R1を別途設けることで、一本のスクライブ線19a及び三本の絶縁線R1~R3で囲まれた絶縁領域D1は、区画素子21sにおいて、周辺領域(その他の領域)から確実に絶縁される。
 なお、図3A,図3Bにおいて、符号Bは、半導体層14と基板11とが接触している部位を示し、符号Cは、第一電極層13と第二電極層15とが接続している部位を示す。
 一方、絶縁線R1を設けずに、二本のスクライブ線19a及び19b並びに二本の絶縁線R2及びR3で囲まれた領域(図示略)を区画素子21s上に形成する場合を説明する。該領域を区画素子21sにおいて、絶縁領域として周辺領域(その他の領域)から確実に絶縁するためには、第一電極層13、半導体層14及び第二電極層15の三層を取り除くことによって二本の絶縁線R2及びR3を形成する必要がある。絶縁線R1を設けずに、半導体層14及び第二電極層15の二層を取り除いただけでは、例えば、電流が絶縁線の下に位置する第一電極層13を介して、隣り合う領域との間で伝達されてしまう。このため、絶縁が不完全であり、所望の絶縁領域が得られない。一方、レーザーの照射によって三層を取り除く場合、第一電極層13を照射するレーザーの種類(波長)と、半導体層14及び第二電極層15を照射するレーザーの種類(波長)とを異ならせる必要がある。したがって、工程数の増加を伴い、複雑な装置が必要となる。
(照射工程)
 本発明に係る評価方法の一実施形態においては、前記絶縁工程後に、前記絶縁領域を含む領域に光を照射する照射工程を行う。
 例えば、図3A,図3Bに示す太陽電池の場合、光が照射される領域は、絶縁領域D1を含み、絶縁領域D1の外側に位置する領域に光が照射されてもよい。光は、太陽電池10の第二面11bから照射される。
(測定工程)
 本発明に係る評価方法の一実施形態においては、次いで、光照射時の前記絶縁領域における電流電圧特性を得るための測定工程を行う。
 例えば、図3A,図3Bに示す太陽電池の場合、絶縁領域D1の第二電極層15と、絶縁領域D1に隣接する領域D2の第二電極層15(太陽電池10の、光の照射面とは反対側の面)にプローブが接触される。領域D2と絶縁領域D1との間にはスクライブ線19aが形成されている。第二電極層15は、光が照射される第二面11bとは反対の第1面11aの上方に形成された層である。絶縁領域D1の第二電極層15に接触されたプローブと領域D2の第二電極層15に接触されたプローブとの間において、電流及び電圧が測定される。これによって電流電圧特性が得られる。この測定工程において、絶縁領域D1は、区画素子21sにおける周辺領域から確実に絶縁されているので、周辺領域の影響を受けることがない。例えば、周辺領域において発生した電流が絶縁領域D1に流れることがない。したがって、例えば、図3Aに示すように、絶縁領域D1に隣接する前記領域D2又は領域D3に構造欠陥Aが存在する場合でも、絶縁領域D1における光電変換効率を高精度に評価できる。ここで、領域D3と絶縁領域D1との間には絶縁線R2が形成されている。また、構造欠陥Aが、前記領域D2又はD3以外の領域に存在する場合であっても、同様に、絶縁領域D1における光電変換効率を高精度に評価できる。
<太陽電池の評価装置>
 本発明に係る評価装置の一実施形態は、前記評価工程において、測定対象の区画素子における所定領域を周辺領域から絶縁させて絶縁領域を形成する絶縁部と、前記絶縁領域を含む領域に光を照射する照射部と、光照射時の前記絶縁領域における電流電圧特性を測定する測定部とを備える。
 絶縁部としては、例えば、レーザー光源を備えたレーザー照射装置が用いられる。照射部としては、例えば、光源を備えた光照射装置が用いられる。なお、本明細書においては、特に指定のない限り、「光源」は、「照射部を構成する光源」を指し、「絶縁部を構成するレーザー光源」とは区別される。測定部としては、例えば、プローブを複数備えた電流電圧測定器が用いられる。
 本発明に係る評価装置の一実施形態においては、前記レーザー光源、光源及びプローブが、それぞれ独立して、太陽電池の区画素子上を移動できるように構成されていることが好ましい。そのためには、評価装置は、前記レーザー光源,光源,及びプローブが別々に固定される複数の第一固定部を備えることが好ましい。複数の第一固定部は、前記レーザー光源,光源,及びプローブを所望の位置に移動させて配置する。また、評価装置は、これら第一固定部と電気的に接続され、これら第一固定部の動きを自動で制御する、コンピューター等の第一制御部を備えることがより好ましい。さらに、評価装置は、評価に供する太陽電池が固定される第二固定部を備えることが好ましい。この第二固定部は、太陽電池を所望の位置に移動させて配置する。さらに、また、評価装置は、第二固定部と電気的に接続され、第二固定部の動きを自動で制御する、コンピューター等の第二制御部を備えることがより好ましい。第一制御部及び第二制御部は、一体となっていてもよい。
 図4は、本発明に係る評価装置の一実施形態を例示する概略構成図である。
 図4に示す評価装置3は、レーザー光源が太陽電池10の基板11に対向するように配置されたレーザー照射装置31、光源が太陽電池10の基板11に対向するように配置された光照射装置32、及び、太陽電池10の第二電極層15に二つのプローブ330,330が接触可能に配置された電流電圧測定器33を備える。そして、レーザー照射装置31、光照射装置32、電流電圧測定器33及び太陽電池10の各々は、上記第一固定部又は第二固定部(図示略)に固定されており、独立して図中のX軸方向、Y軸方向及びZ軸方向のいずれにも移動可能である。なお、本実施形態においては、電流電圧測定器として、電圧プローブと電流プローブが一体に設けられたプローブを二つ備えた測定器を示しているが、例えば、電圧プローブと電流プローブが別々に設けられたプローブを二つ備えた、いわゆる四端子型の電流電圧測定器を使用することもできる。また、本実施形態においては、プローブを二つ備えた電流電圧測定器が示されているが、2n(nは2以上の整数を表す)個のプローブを備えた測定器が用いられてもよい。このような構成を有する測定器においては、複数の絶縁領域おける電流電圧特性を同時に測定したり、一つの絶縁領域について複数個のプローブで同時に電流電圧特性を測定したりすることができる。また、光照射装置も同様に、光源を一つ備えた光照射装置が用いられてもよいし、n(nは2以上の整数を表す)個の光源を備えた光照射装置が用いられてもよい。
 本発明によれば、区画素子において、周辺から絶縁された評価対象の絶縁領域を設け、この絶縁領域を含む領域に光を照射することで、周辺領域の影響を受けることなく、該絶縁領域の電流電圧特性を測定でき、光電変換効率を局所的に高精度に評価できる。
 例えば、電流電圧特性が測定された複数の絶縁領域の中で、他の絶縁領域とは光電変換効率が大きく異なる光電交換効率を有する絶縁領域が存在すれば、該領域中に構造欠陥が存在すると判断できる。一方、本発明の評価方法を適用しない場合には、得られた測定結果に基づいて、構造欠陥の影響を受けているか否を正確に判断できない。
 このように、本発明は、太陽電池のシリコン膜の面に平行な方向における光電変換効率の分布状態を高精度に評価し、分布が生じている場合にはその箇所を高精度に特定する装置及び方法を初めて提供している。
(変形例)
 次に、前述の絶縁工程についての変形例について説明する。以下では、上記実施形態と同一の部位については同一符号で示す。
 上述の絶縁工程では、図3Aに示すように、光電変換体12において、半導体層14及び第二電極層15を取り除くことによって形成された二本の絶縁線R2及びR3を、それぞれ別々に、隣り合う二本のスクライブ線19a及び19bに跨るように設け、さらにこれら二本の絶縁線R2及びR3に跨るように、半導体層14及び第二電極層15を取り除くことによって形成された一本の絶縁線R1を設けた。そして、一本のスクライブ線19a及び三本の絶縁線R1~R3で囲まれた絶縁領域D1を形成した。
 ここで説明する変形例では、図11に示すように、光電変換体12において、隣り合う二本のスクライブ線19a及び19bの間に、半導体層14及び第二電極層15を取り除くことによって形成された四本の絶縁線R4~R7を設け、これら絶縁線R4~R7によって囲まれる矩形状の絶縁領域D4を形成した。
 このように絶縁線のみによって囲まれる絶縁領域を形成した場合には、スクライブ線の影響が排除され、絶縁領域における電流電圧特性の分布を測定することができる。なお、絶縁線のみによって囲まれる領域の形態(形状)としては、例えば、三角形状、五角形状、円形状等であってもよい。
 また、絶縁工程において、スクライブ線を含まない絶縁領域を形成するか、又は、スクライブ線を含む絶縁領域を形成するか否かは、状況に応じて判断すればよい。
 次に、図12は、絶縁工程において、光電変換体12に形成された隣り合う二本のスクライブ線19a及び19bの間に、絶縁線のみによって囲まれる絶縁領域D5と、スクライブ線19bと、三本の絶縁線で囲まれる絶縁領域D6とが並べて設けられた例を示している。図13Aには、図12のX-X線における断面が示され、図13Bには、図12のY-Y線における断面が示されている。
 この例において、絶縁領域D5は、四本の絶縁線R8~R11によって矩形状に形成されている。絶縁領域D6は、スクライブ線19bと、スクライブ線19bに跨り、スクライブ線19bからスクライブ線19aに向けて、区画素子21の略中央領域まで延出する絶縁線R12,R13と、互いに平行に延出した絶縁線R12,R13に跨るように、スクライブ線19bに沿って延出する絶縁線R14と、で形成されている。なお、図12においてR15は、絶縁線R12,R13に跨るようにスクライブ線19bに沿って延出する絶縁線を示している。この絶縁線R15は、絶縁線R15と絶縁線R14とによってスクライブ線19bが挟まれるように位置している。また、図12、図13A,Bにおいては、プローブ330が示されている。
 このように、光電変換体12において、絶縁線のみによって囲まれる絶縁領域と、スクライブ線及び絶縁線で囲まれる絶縁領域と、を並べて設けた場合には、双方の電流電圧特性を比較することにより、スクライブ線の影響に起因する分布を測定することができる。
 以下、具体的実施例により、本発明についてさらに詳しく説明する。ただし、本発明は以下に示す実施例に何ら限定されるものではない。
(実施例1、比較例1)
 図5に示すように複数の区画素子(セル2,31,60,91,及び119)を有する太陽電池10’を準備し、各区画素子(セル2,31,60,91,及び119)の各々に絶縁線を設けることなく、一つの区画素子において五箇所(図5中、符号D’で示す)に、22mm×8.6mmの照射面積で光を照射した。図5は、使用した(準備した)太陽電池10’を示す上面図である。そして、本発明の評価装置を使用して、光照射時の各照射領域における電流電圧特性を測定した(比較例1)。測定結果を図6に示す。なお、図6は、セル2,31,60,91,及び119の各々について、四箇所の照射領域における電流電圧特性が測定された結果を示している。
 図6から明らかなように、同じ区画素子内(一つの区画素子内)においては、照射領域間の電流電圧特性のばらつきは小さかった。また、いずれの区画素子においても、その光電変換効率は、太陽電池10’全体に光を照射して電流電圧特性を測定した時の光電変換効率よりも低くなった。
 次いで、上記のように電流電圧特性が測定された後の前記太陽電池10’を準備し、絶縁線R1~R3を各区画素子(セル)に形成した。具体的に、図7に示すように、図3の場合と同様に各区画素子(セル)に絶縁線R1~R3を設け、評価対象となる複数の所定領域を周辺領域から絶縁させ、複数の絶縁領域D1が形成された太陽電池10を得た。図7は、絶縁線R1~R3が設けられた太陽電池10を示す上面図である。その後、絶縁領域D1を含む領域に、22mm×8.4mmの照射面積で光を照射し、比較例1の場合と同様に、本発明の評価装置を使用して電流電圧特性を測定した(実施例1)。実施例1の測定結果を図8に示す。なお、図8は、セル2,31,及び119の各々における二箇所の照射領域の電流電圧特性が測定された結果を示し、セル60における五箇所の照射領域の電流電圧特性が測定された結果を示し、セル91における一箇所の照射領域の電流電圧特性が測定された結果を示している。
 図8から明らかなように、一つの区画素子(セル60)において、一つの絶縁領域D1の電流電圧特性が他の領域の電流電圧特性とは大きく異なることが確認できた。これは、該絶縁領域D1中に構造欠陥が存在することを示す。
 セル60における実施例1及び比較例1の結果を抜粋して、図9に示す。なお、図9では、実施例1及び比較例1について、いずれも五箇所の照射領域の電流電圧特性が測定された結果を示している。
 また、図10においては、セル119における実施例1及び比較例1の結果を抜粋することにより、その結果がまとめられている。なお、図10は、実施例1については二箇所の照射領域の電流電圧特性が測定された結果を示し、比較例1においては五箇所の照射領域の電流電圧特性が測定された結果を示している。
 図8に基づいて説明したように、実施例1では、セル60において、一つの絶縁領域D1の電流電圧特性が、その他の絶縁領域D1の電流電圧特性と大きく異なっており、この絶縁領域D1に構造欠陥が存在することが確認できた。さらに、図9においては、図8によって示された構造欠陥が存在する絶縁領域D1が除かれた複数の絶縁領域D1の間においても、電流電圧特性に大きなばらつきが確認されている。即ち、図9の符号Iで示された電流電圧特性グループにおいて、電流電圧特性に大きなばらつきが生じていることが確認されている。一方、図9の符号Pで示された電流電圧特性グループ、即ち、比較例1によって測定された電流電圧特性においては、ばらつきが生じていることを判断し難い。
 したがって、図9においては、実施例1における電流電圧特性のばらつきの大きさが、比較例1における電流電圧特性のばらつきの大きさよりも大きいことが、明確に確認できた。つまり、本発明の評価方法を適用することによって、電流電圧特性グループIにおいて良好な電流電圧特性が得られている絶縁領域D1と、良好ではない電流電圧特性が得られている絶縁領域D1との両方が存在する(ばらつきが存在する)ことを明らかにできた。電流電圧特性のばらつきは、膜質がばらついていること、即ち、太陽電池の面に平行な方向において、膜質分布が生じていることを示していると考えられる。
 また、図10は、構造欠陥の存在を示す測定結果が示されていない点をのぞいて、図9と同様の結果が得られたことを示している。即ち、本発明の評価方法を適用することによって、セル119においては、構造欠陥は存在しないが、絶縁領域D1において、電流電圧特性がばらついていることが明らかにされている。
 一方で、図6、9及び10に示すように、比較例1によって測定された電流電圧特性のばらつきは小さく、また、各区画素子の光電変換効率が、太陽電池10全体としての光電変換効率よりも低い。この理由は、電流電圧特性がセル60に存在する構造欠陥の影響を受けた結果であると考えられる。このような状態では、実施例1のように、構造欠陥が存在すること又は膜質分布が生じていることを確認することができない。
 このように、本発明の評価方法を適用することで、太陽電池10の光電変換効率を高精度に評価できると共に、構造欠陥の箇所を高精度に特定できた。一方、比較例1においては、上記のように、照射領域全般に実施例1によって特定できた構造欠陥の影響が及んでしまい、測定結果(電流電圧特性)は精度が低かった。
 本発明は、薄膜シリコン太陽電池の所望の領域において、局所的な光電変換効率を高精度に評価できる。
 3・・・評価装置、10・・・太陽電池、11・・・基板、11a・・・基板の一面、12・・・光電変換体、13・・・第一電極層、14・・・半導体層、15・・・第二電極層、19(19a,19b)・・・スクライブ線、21・・・区画素子、D1,D4,D5,D6・・・絶縁領域、R(R1~R15)・・・絶縁線、31・・・レーザー照射装置、32・・・光照射装置、33・・・電流電圧測定器、330・・・プローブ

Claims (5)

  1.  太陽電池の評価方法であって、
     基板上に少なくとも第一電極層,半導体層,及び第二電極層がこの順に重ねられて電気的に接続された複数の区画素子を含む光電変換体と、前記光電変換体において前記半導体層及び前記第二電極層を除去するスクライブ線とを有する太陽電池を準備し、
     評価対象の前記区画素子において、所定領域を周辺領域から絶縁し、
     絶縁された前記所定領域を含む領域に光を照射し、
     光照射時の前記所定領域における電流電圧特性を測定する
     ことを特徴とする太陽電池の評価方法。
  2.  前記所定領域を周辺領域から絶縁する際に、少なくとも前記半導体層及び第二電極層を除去することによって絶縁線を前記区画素子に形成し、前記絶縁線によって囲まれる領域は、前記所定領域である
     ことを特徴とする請求項1に記載の太陽電池の評価方法。
  3.  前記所定領域を周辺領域から絶縁する際に、隣り合う二本のスクライブ線に別々に跨るように、少なくとも前記半導体層及び第二電極層を除去することによって二本の絶縁線を前記区画素子に形成し、
     前記二本の絶縁線に跨るように一本の絶縁線を形成し、
     前記一本のスクライブ線及び三本の絶縁線で囲まれた領域は、前記所定領域である
     ことを特徴とする請求項1に記載の太陽電池の評価方法。
  4.  基板上に少なくとも第一電極層,半導体層,及び第二電極層がこの順に重ねられて電気的に接続された複数の区画素子を含む光電変換体と、前記光電変換体において前記半導体層及び前記第二電極層を除去するスクライブ線とを有する太陽電池の評価装置であって、
     測定対象の前記区画素子において、所定領域を周辺領域から絶縁する絶縁部と、
     絶縁された前記所定領域を含む領域に光を照射する照射部と、
     光照射時の前記所定領域における電流電圧特性を測定する測定部と、
     を備えたことを特徴とする太陽電池の評価装置。
  5.  前記絶縁部がレーザー光源を備え、
     前記照射部が光源を備え、
     前記測定部が電流又は電圧を検出するプローブを備え、
     前記レーザー光源及び光源及びプローブは、それぞれ独立して前記区画素子上を移動可能である
     ことを特徴とする請求項4に記載の太陽電池の評価装置。
PCT/JP2010/064169 2009-08-25 2010-08-23 太陽電池の評価方法及び評価装置 WO2011024750A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011528778A JPWO2011024750A1 (ja) 2009-08-25 2010-08-23 太陽電池の評価方法及び評価装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009194594 2009-08-25
JP2009-194594 2009-08-25

Publications (1)

Publication Number Publication Date
WO2011024750A1 true WO2011024750A1 (ja) 2011-03-03

Family

ID=43627855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064169 WO2011024750A1 (ja) 2009-08-25 2010-08-23 太陽電池の評価方法及び評価装置

Country Status (3)

Country Link
JP (1) JPWO2011024750A1 (ja)
TW (1) TW201117309A (ja)
WO (1) WO2011024750A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036197A1 (ja) * 2010-09-17 2012-03-22 株式会社アルバック 太陽電池の評価方法および評価装置
WO2012046691A1 (ja) * 2010-10-04 2012-04-12 株式会社アルバック 太陽電池の評価方法
WO2019109432A1 (zh) * 2017-12-06 2019-06-13 米亚索乐装备集成(福建)有限公司 太阳能电池组件的模拟组件和模拟电池芯片层的制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258747A1 (en) * 2007-04-19 2008-10-23 Oc Oerlikon Balzers Ag Test equipment for automated quality control of thin film solar modules
JP2009105402A (ja) * 2007-10-22 2009-05-14 Applied Materials Inc 診断装置を使用する光電池製造プロセスの監視及び制御

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258747A1 (en) * 2007-04-19 2008-10-23 Oc Oerlikon Balzers Ag Test equipment for automated quality control of thin film solar modules
JP2009105402A (ja) * 2007-10-22 2009-05-14 Applied Materials Inc 診断装置を使用する光電池製造プロセスの監視及び制御

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036197A1 (ja) * 2010-09-17 2012-03-22 株式会社アルバック 太陽電池の評価方法および評価装置
WO2012046691A1 (ja) * 2010-10-04 2012-04-12 株式会社アルバック 太陽電池の評価方法
WO2019109432A1 (zh) * 2017-12-06 2019-06-13 米亚索乐装备集成(福建)有限公司 太阳能电池组件的模拟组件和模拟电池芯片层的制作方法

Also Published As

Publication number Publication date
TW201117309A (en) 2011-05-16
JPWO2011024750A1 (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
JP2009105401A (ja) 薄膜光電池装置のためのプロセステスタ及びテスティング技法
TWI404223B (zh) 太陽電池之製造方法
JP2009105402A (ja) 診断装置を使用する光電池製造プロセスの監視及び制御
JP5144747B2 (ja) 太陽電池の製造方法,太陽電池の製造装置,及び太陽電池
WO2012036197A1 (ja) 太陽電池の評価方法および評価装置
US8319513B2 (en) Inspecting apparatus for solar cell and inspecting method using the same
WO2011024750A1 (ja) 太陽電池の評価方法及び評価装置
JP2013247165A (ja) 薄膜太陽電池モジュールおよびその製造方法
JP2010021437A (ja) 太陽電池の製造装置およびその製造方法
JP5186552B2 (ja) 太陽電池の製造方法および太陽電池の製造装置
WO2012046691A1 (ja) 太陽電池の評価方法
JP5165799B2 (ja) 太陽電池の評価方法及び評価装置
JP6100455B2 (ja) 太陽電池モジュールの検査装置およびその検査方法
JP2014038921A (ja) 太陽電池の評価方法及び評価装置
JP2009246122A (ja) 太陽電池の製造方法および製造装置
WO2011052426A1 (ja) 太陽電池の評価装置及び評価方法
WO2009123070A1 (ja) 太陽電池の製造方法および太陽電池の製造装置
KR20120057127A (ko) 레이저 장비 및 이를 포함하는 태양 전지 모듈의 제조 방법
JP2005303085A (ja) 太陽電池セルの特性測定方法および太陽電池セルの特性測定装置
JP2012134226A (ja) 薄膜太陽電池およびその製造方法
TWM628262U (zh) 包括中間極的薄膜太陽能電池
JP2011049299A (ja) 太陽電池の特性測定方法及び特性測定装置
WO2010146698A1 (ja) 太陽電池の製造方法および太陽電池の製造装置
JP2012114229A (ja) 電気特性測定装置
KR20110012955A (ko) 태양 전지 모듈의 리페어 방법 및 이를 사용한 태양 전지 모듈의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011528778

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811800

Country of ref document: EP

Kind code of ref document: A1