WO2011024720A1 - Method for manufacturing connection structure - Google Patents

Method for manufacturing connection structure Download PDF

Info

Publication number
WO2011024720A1
WO2011024720A1 PCT/JP2010/064078 JP2010064078W WO2011024720A1 WO 2011024720 A1 WO2011024720 A1 WO 2011024720A1 JP 2010064078 W JP2010064078 W JP 2010064078W WO 2011024720 A1 WO2011024720 A1 WO 2011024720A1
Authority
WO
WIPO (PCT)
Prior art keywords
anisotropic conductive
conductive material
material layer
compound
connection structure
Prior art date
Application number
PCT/JP2010/064078
Other languages
French (fr)
Japanese (ja)
Inventor
茂雄 真原
敬士 久保田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2010533350A priority Critical patent/JPWO2011024720A1/en
Publication of WO2011024720A1 publication Critical patent/WO2011024720A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits

Definitions

  • the present invention is a method of manufacturing a connection structure using an anisotropic conductive material including a plurality of conductive particles, and more specifically, various connections such as a flexible printed circuit board, a glass substrate, and a semiconductor chip.
  • the present invention relates to a method for manufacturing a connection structure in which electrodes of a target member are electrically connected via conductive particles.
  • Anisotropic conductive materials such as anisotropic conductive paste, anisotropic conductive ink and anisotropic conductive adhesive are widely known.
  • anisotropic conductive materials a plurality of conductive particles are dispersed in paste, ink, or resin.
  • the anisotropic conductive material is, for example, a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), or a semiconductor chip. Used for connection to glass substrates (COG (Chip on Glass)) and the like.
  • Patent Document 1 describes an anisotropic conductive material as an epoxy resin, rubber-like polymer particles, a thermally active latent epoxy curing agent, and high softening point polymer particles.
  • An anisotropic conductive material containing conductive particles is disclosed.
  • an anisotropic conductive material containing conductive particles is applied on the glass substrate.
  • the semiconductor chips are stacked, and heated and pressurized.
  • the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
  • the anisotropic conductive material applied on the glass substrate and the conductive particles contained in the anisotropic conductive material may flow greatly before curing. .
  • cured material layer and electroconductive particle formed with the anisotropic electrically-conductive material may not be arrange
  • the conductive particles may not be disposed between the upper and lower electrodes to be connected, or adjacent electrodes that should not be connected may be electrically connected via a plurality of conductive particles. For this reason, the conduction
  • anisotropic conductive material applied with the dispenser may spread beyond the coating width due to liquid dripping, and the anisotropic conductive material may protrude unintentionally outside a specific area.
  • An object of the present invention is to provide a method for manufacturing a connection structure that can improve conduction reliability when electrodes of connection target members are electrically connected.
  • an anisotropic conductive material layer containing conductive particles is applied to the upper surface of the first connection target member to form an anisotropic conductive material layer, and the anisotropic conductive material is formed.
  • the step of curing the anisotropic conductive material layer by irradiating the material layer with light to make the anisotropic conductive material layer into a B stage, and the anisotropic conductive material that has been B staged A second connection target member is further laminated on the upper surface of the layer, and heat is applied to the B-staged anisotropic conductive material layer, whereby the B-staged anisotropic conductive material layer is formed.
  • the manufacturing method of a connection structure provided with the process to harden is provided.
  • the anisotropy is performed in the step of forming the anisotropic conductive material layer and the step of forming the anisotropic conductive material layer into a B-stage. While applying the conductive material, the anisotropic conductive material layer is irradiated with light.
  • the anisotropic process includes the step of forming the anisotropic conductive material layer and the step of forming the anisotropic conductive material layer into a B-stage.
  • the anisotropic conductive material layer is irradiated with light simultaneously with the application of the conductive conductive material or immediately after the application.
  • connection structure in the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage, the time from application of the isotropic conductive material to irradiation with light is in the range of 0 to 3 seconds.
  • the anisotropic conductive material includes a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles. Conductive material is used.
  • a dispenser and And a light emitting device connected to the dispenser is used.
  • the anisotropic conductive material layer is cured by irradiating the anisotropic conductive material layer with light, and the anisotropic conductive material layer is moved to the B stage. Then, heat is applied to the B-staged anisotropic conductive material layer, so that the flow of the anisotropic conductive material layer and the conductive particles contained in the anisotropic conductive material layer can be suppressed. Therefore, the hardened
  • the upper and lower electrodes to be connected can be easily connected with conductive particles, and adjacent electrodes that should not be connected can be prevented from being connected via a plurality of conductive particles.
  • the anisotropic conductive material applied with the dispenser is cured before dripping, it is harder to spread than the coating width, preventing the anisotropic conductive material from unintentionally protruding outside the specific area. it can.
  • FIG. 1 is a partially cutaway front sectional view schematically showing a connection structure obtained by a method for manufacturing a connection structure according to an embodiment of the present invention.
  • 2 (a) to 2 (c) are partially cutaway front cross-sectional views for explaining each step of the method for manufacturing a connection structure according to one embodiment of the present invention.
  • 3 (a) and 3 (b) show a B-stage anisotropic conductive process using a composite device including a dispenser and a light irradiation device in a method for manufacturing a connection structure according to an embodiment of the present invention. It is a typical front view for demonstrating the method of forming a material layer.
  • FIGS. 4A and 4B are schematic front views for explaining a modification of the method of forming the B-staged anisotropic conductive material layer.
  • FIG. 1 schematically shows an example of a connection structure obtained by the method for manufacturing a connection structure according to an embodiment of the present invention in a partially cutaway front sectional view.
  • connection structure 1 has a structure in which a second connection target member 4 is connected to an upper surface 2a of a first connection target member 2 via a cured product layer 3.
  • the cured product layer 3 is formed by curing an anisotropic conductive material including a plurality of conductive particles 5.
  • a plurality of electrodes 2 b are provided on the upper surface 2 a of the first connection target member 2.
  • a plurality of electrodes 4 b are provided on the lower surface 4 a of the second connection target member 4.
  • the electrode 2b and the electrode 4b are electrically connected by one or a plurality of conductive particles 5.
  • connection structure 1 a glass substrate is used as the first connection target member 2, and a semiconductor chip is used as the second connection target member 4.
  • the first and second connection target members are not particularly limited. Specific examples of the first and second connection target members include electronic components such as semiconductor chips, capacitors, and diodes, and circuit boards such as printed boards, flexible printed boards, and glass boards.
  • connection structure 1 shown in FIG. 1 can be obtained as follows, for example.
  • a first connection target member 2 having an electrode 2b on the upper surface 2a is prepared.
  • an anisotropic conductive material including a plurality of conductive particles 5 is applied to the upper surface 2a of the first connection target member 2, and the anisotropic conductive material layer 3A is applied to the upper surface 2a of the first connection target member 2.
  • the anisotropic conductive material layer 3A is cured by irradiating the anisotropic conductive material layer 3A with light.
  • the anisotropic conductive material layer 3A is B-staged.
  • a B-staged anisotropic conductive material layer 3B is formed on the upper surface 2a of the first connection target member 2.
  • connection structure 1 It is preferable to irradiate the anisotropic conductive material layer 3A with light while applying the anisotropic conductive material to the upper surface 2a of the first connection target member 2. Furthermore, it is also preferable to irradiate the anisotropic conductive material layer 3 ⁇ / b> A simultaneously with the application of the anisotropic conductive material to the upper surface 2 a of the first connection target member 2 or immediately after the application.
  • application and light irradiation are performed as described above, the flow of the anisotropic conductive material layer can be further suppressed. For this reason, the conduction
  • the time from application of the anisotropic conductive material to the upper surface 2a of the first connection target member 2 until irradiation with light is preferably within a range of 0 to 3 seconds, and within a range of 0 to 2 seconds. It is more preferable that It is preferable that the time from when the anisotropic conductive material comes into contact with the upper surface 2a of the first connection target member 2 until irradiation with light satisfies the above range.
  • the light irradiation intensity at the time of light irradiation is preferably within a range of 0.1 to 100 mW / cm 2 .
  • the light source used when irradiating light is not specifically limited. Examples of the light source include a light source having a sufficient light emission distribution at a wavelength of 420 nm or less. Specific examples of the light source include, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, and a metal halide lamp.
  • the second connection target member 4 is laminated on the upper surface 3a of the B-staged anisotropic conductive material layer 3B.
  • the second connection target member 4 is laminated so that the electrode 2b on the upper surface 2a of the first connection target member 2 and the electrode 4b on the lower surface 4a of the second connection target member 4 face each other.
  • the anisotropic conductive material layer 3B is further cured by applying heat to the anisotropic conductive material layer 3B, thereby forming the cured product layer 3.
  • heat may be applied to the anisotropic conductive material layer 3B before the second connection target member 4 is laminated.
  • heat may be applied to the anisotropic conductive material layer 3B after the second connection target member 4 is laminated.
  • the preferable lower limit of the heating temperature when the anisotropic conductive material layer 3B is cured by applying heat is 160 ° C
  • the preferable upper limit is 250 ° C
  • the more preferable upper limit is 200 ° C.
  • pressure By compressing the conductive particles 5 with the electrodes 2b and 4b by pressurization, the contact area between the electrodes 2b and 4b and the conductive particles 5 can be increased. For this reason, conduction reliability can be improved.
  • connection target member 2 and the second connection target member 4 are connected via the cured product layer 3 by curing the anisotropic conductive material layer 3B. Further, the electrode 2 b and the electrode 4 b are electrically connected through the conductive particles 5. In this way, the connection structure 1 shown in FIG. 1 can be obtained. In this embodiment, since photocuring and thermosetting are used together, the anisotropic conductive material can be cured in a short time.
  • the composite apparatus shown in FIG. 3A is preferably used.
  • the dispenser 12 includes a syringe 12a for filling the inside with an anisotropic conductive material, and a grip portion 12b that grips the outer peripheral surface of the syringe 12a.
  • the light irradiation device 13 includes a light irradiation device main body 13a and a light irradiation unit 13b. In the composite apparatus 11, the grip part 12b and the light irradiation apparatus main body 13a are connected. Therefore, the distance between the dispenser 12 and the light irradiation device 13 can be reduced, that is, the distance between the discharge part of the dispenser 12 and the light irradiation part 13b can be reduced. Furthermore, the dispenser 12 and the light irradiation device 13 can be easily moved at the same speed.
  • the syringe 12a and the light irradiation apparatus main body 13a may be directly connected.
  • the syringe 12a when applying and irradiating light, while moving the composite device 11 in the direction of arrow A, the syringe 12a is anisotropically moved from the syringe 12a to the upper surface 2a of the first connection target member 2.
  • a conductive conductive material is applied to form the anisotropic conductive material layer 3A.
  • the anisotropic conductive material layer 3 ⁇ / b> A is irradiated with light from the light irradiation unit 13 b of the light irradiation device 13 connected to the dispenser 12 as indicated by an arrow B while being applied.
  • the dispenser 12 and the light irradiation device 13 are moved at the same speed from the viewpoint of controlling the time until the light irradiation with high accuracy.
  • the table 31 may be moved in the direction of the arrow A without moving the composite apparatus 11.
  • the light irradiation device 21 includes a light irradiation device main body 21 a and a light irradiation unit 21 b.
  • the light irradiation device 21 is configured to irradiate light over a wider area than the light irradiation device 13.
  • the light irradiation device 21 When using the dispenser 12 and the light irradiation device 21 not connected to the dispenser 12, for example, as shown in FIG. 4A, the light irradiation device 21 is placed above the first connection target member 2. Deploy. Next, while the dispenser 12 is moved in the direction of the arrow A between the first connection target member 2 and the light irradiation device 21, anisotropic conduction is performed from the syringe 12 a to the upper surface 2 a of the first connection target member 2. The material is applied to form the anisotropic conductive material layer 3A. Next, as shown in FIG.
  • the light irradiation unit 21b of the light irradiation device 21 disposed above the first connection target member 2 is different from the first irradiation target member 2.
  • the isotropic conductive material layer 3A is irradiated with light. The light irradiation is performed, for example, simultaneously with the application of the anisotropic conductive material or immediately after the application.
  • the light irradiation device 21 is disposed above the first connection target member 2 at the time of application. In this case, light can be irradiated quickly after application. After the application, it is preferable to irradiate the entire region of the anisotropic conductive material layer 3A all together. In this case, the anisotropic conductive material layer 3A can be made B-stage even more uniformly.
  • the anisotropic conductive material is applied simultaneously or immediately after the application of the anisotropic conductive material to the upper surface 2a of the first connection target member 2.
  • the material layer 3A can be easily irradiated with light.
  • the anisotropic conductive material used in the method for manufacturing a connection structure according to the present invention is not particularly limited. From the viewpoint of further suppressing the flow of the anisotropic conductive material applied to the upper surface 2a of the first connection target member 2 or the conductive particles contained in the anisotropic conductive material, the anisotropic conductive material is used.
  • the material preferably contains a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles.
  • the viscosity of the anisotropic conductive material before coating at 25 ° C. and 2.5 rpm is preferably in the range of 20 to 200 Pa ⁇ s.
  • the flow of the anisotropic conductive material before curing can be further suppressed.
  • the resin component between the electrode and the conductive particles can be easily removed, and the contact area between the electrode and the conductive particles can be increased.
  • the surface of the first connection target member is uneven, the surface of the unevenness can be sufficiently filled with an anisotropic conductive material, and voids hardly occur after curing. Further, it becomes difficult for the conductive particles to settle in the anisotropic conductive material, and the dispersibility of the conductive particles can be improved.
  • the manufacturing method of the anisotropic conductive material is not particularly limited.
  • Examples of the method for producing the anisotropic conductive material include the curable compound, the thermosetting agent, the photocuring initiator, the conductive particles, and other components added as necessary. And a sufficient production method using a planetary stirrer or the like.
  • connection structure manufacturing method includes, for example, a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), Alternatively, it can be used for connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)) or the like.
  • the manufacturing method of the connection structure concerning the present invention is suitable for COG use.
  • the method for manufacturing a connection structure according to the present invention is suitably used for connection between a semiconductor chip and a glass substrate.
  • the use of the method for manufacturing a connection structure according to the present invention is not limited to the above-described application.
  • the connection structure body manufacturing method according to the present invention can connect the electrodes of the semiconductor chip and the glass substrate with high accuracy, and can improve conduction reliability.
  • curable compound A conventionally known curable compound can be used as the curable compound, and is not particularly limited. As for the said sclerosing
  • the curable compound examples include light and thermosetting compounds, photocurable compounds, and thermosetting compounds.
  • the light and thermosetting compounds have photocuring properties and thermosetting properties.
  • the said photocurable compound has photocurability, for example, and does not have thermosetting.
  • the said thermosetting compound does not have photocurability, for example, and has thermosetting.
  • the curable compound includes light and a thermosetting compound, or includes a photocurable compound and a thermosetting compound.
  • the curable compound may not include at least one of the photocurable compound and the thermosetting compound.
  • at least one of a photocurable compound and a thermosetting compound may be further included.
  • the said curable compound does not contain the said light and a thermosetting compound, the said curable compound contains a photocurable compound and a thermosetting compound.
  • the curable compound includes the light and the thermosetting compound, and at least one of the photocurable compound and the thermosetting compound, Or it is preferable that a photocurable compound and a thermosetting compound are included. More preferably, the curable compound includes a photocurable compound and a thermosetting compound.
  • the curable compound is not particularly limited.
  • examples of the curable compound include epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds.
  • the (meth) acryl means acryl or methacryl.
  • the usage amount of the photocurable compound and the thermosetting compound is appropriately adjusted according to the types of the photocurable compound and the thermosetting compound.
  • the anisotropic conductive material preferably contains the photocurable compound and the thermosetting compound in a weight ratio of 1:99 to 90:10, more preferably 5:95 to 60:40, More preferably, it is included at 20:80 to 40:60.
  • the curable compound is an epoxy compound or an episulfide compound (thiirane group-containing compound). It is preferable to include at least one of the above, and it is more preferable to include an episulfide compound.
  • the preferred lower limit of the content of the episulfide compound is 10 parts by weight, the more preferred lower limit is 20 parts by weight, and the preferred upper limit is 50 parts by weight. Parts, more preferred upper limit is 40 parts by weight.
  • Each of the epoxy compound and the episulfide compound preferably has an aromatic ring.
  • the aromatic ring include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, tetracene ring, chrysene ring, triphenylene ring, tetraphen ring, pyrene ring, pentacene ring, picene ring, and perylene ring.
  • the said aromatic ring is a benzene ring, a naphthalene ring, or an anthracene ring, and it is more preferable that it is a benzene ring or a naphthalene ring.
  • the episulfide compound has a thiirane group instead of an epoxy group, it can be quickly cured at a low temperature. That is, the episulfide compound having a thiirane group can be cured at a lower temperature derived from the thiirane group as compared with the epoxy compound having an epoxy group.
  • the episulfide compound preferably has a structure represented by the following formula (1), (2), (5), (7) or (8). It is more preferable to have a structure represented by the formula (1) or (2).
  • R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms
  • 2 to 4 groups out of 4 groups of R3, R4, R5 and R6 represent hydrogen
  • R3 , R4, R5 and R6 which are not hydrogen represent a group represented by the following formula (3).
  • All of the four groups R3, R4, R5 and R6 in the above formula (1) may be hydrogen.
  • One or two of the four groups of R3, R4, R5 and R6 are groups represented by the following formula (3), and among the four groups of R3, R4, R5 and R6
  • the group that is not a group represented by the following formula (3) may be hydrogen.
  • R7 represents an alkylene group having 1 to 5 carbon atoms.
  • R51 and R52 each represents an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R53, R54, R55, R56, R57 and R58 are hydrogen.
  • the group which is not hydrogen among R53, R54, R55, R56, R57 and R58 represents a group represented by the following formula (4).
  • All of the six groups of R53, R54, R55, R56, R57 and R58 in the above formula (2) may be hydrogen.
  • One or two of the six groups of R53, R54, R55, R56, R57 and R58 are groups represented by the following formula (4), and R53, R54, R55, R56, R57 and R58. Of these, the group that is not a group represented by the following formula (4) may be hydrogen.
  • R59 represents an alkylene group having 1 to 5 carbon atoms.
  • R101 and R102 each represent an alkylene group having 1 to 5 carbon atoms.
  • Six to eight groups out of the eight groups R103, R104, R105, R106, R107, R108, R109 and R110 represent hydrogen.
  • the non-hydrogen group in R103, R104, R105, R106, R107, R108, R109, and R110 in the above formula (5) represents a group represented by the following formula (6). All of the eight groups of R103, R104, R105, R106, R107, R108, R109 and R110 may be hydrogen. One or two of the eight groups of R103, R104, R105, R106, R107, R108, R109 and R110 are groups represented by the following formula (6), and R103, R104, R105, R106 , R107, R108, R109 and R110, which is not a group represented by the following formula (6), may be hydrogen.
  • R111 represents an alkylene group having 1 to 5 carbon atoms.
  • R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms.
  • R3 and R4 each represent an alkylene group having 1 to 5 carbon atoms.
  • the episulfide compound having a structure represented by the above formula (1) or (2) has at least two thiirane groups (episulfide groups).
  • a group having a thiirane group is bonded to a benzene ring or a naphthalene ring. Since it has such a structure, the anisotropic conductive material can be rapidly cured at a low temperature by heating the anisotropic conductive material.
  • low temperature means a temperature of 200 ° C. or lower.
  • the episulfide compound having the structure represented by the above formula (1), (2), (5), (7) or (8) is represented by the above formula (1), (2), (5), (7) or The reactivity is high compared with the compound whose thiirane group in (8) is an epoxy group. This is because a thiirane group is easier to open a ring and has higher reactivity than an epoxy group. Since the episulfide compound having the structure represented by the above formula (1), (2), (5), (7) or (8) has high reactivity, the anisotropic conductive material is rapidly cured at a low temperature. Can do. In particular, since an episulfide compound having a structure represented by the above formula (1) or (2) has a considerably high reactivity, an anisotropic conductive material can be rapidly cured at a low temperature.
  • R1 and R2 in the above formula (1), R51 and R52 in the above formula (2), R7 in the above formula (3), R59 in the above formula (4), R101 in the above formula (5) and R102, R111 in the above formula (6), R1 and R2 in the above formula (7), and R3 and R4 in the above formula (8) are alkylene groups having 1 to 5 carbon atoms. If the alkylene group has more than 5 carbon atoms, the curing rate of the episulfide compound tends to be slow.
  • R1 and R2 in the above formula (1), R51 and R52 in the above formula (2), R7 in the above formula (3), R59 in the above formula (4), R101 in the above formula (5) and R102, R111 in the above formula (6), R1 and R2 in the above formula (7), and R3 and R4 in the above formula (8) are each preferably an alkylene group having 1 to 3 carbon atoms. More preferably, it is a group.
  • the alkylene group may be an alkylene group having a straight chain structure or an alkylene group having a branched structure.
  • the structure represented by the above (1) is preferably a structure represented by the following formula (1A).
  • An episulfide compound having a structure represented by the following formula (1A) is excellent in curability.
  • R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (1) is more preferably a structure represented by the following formula (1B).
  • An episulfide compound having a structure represented by the following formula (1B) is more excellent in curability.
  • the structure represented by the above (2) is preferably a structure represented by the following formula (2A).
  • An episulfide compound having a structure represented by the following formula (2A) is excellent in curability.
  • R51 and R52 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (2) is more preferably a structure represented by the following formula (2B).
  • An episulfide compound having a structure represented by the following formula (2B) is more excellent in curability.
  • the epoxy compound is not particularly limited.
  • a conventionally well-known epoxy compound can be used as an epoxy compound.
  • As for the said epoxy compound only 1 type may be used and 2 or more types may be used together.
  • Examples of the epoxy compound include phenoxy resin having an epoxy group, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, phenol aralkyl type epoxy.
  • Examples thereof include a resin, a naphthol aralkyl type epoxy resin, a dicyclopentadiene type epoxy resin, an anthracene type epoxy resin, an epoxy resin having an adamantane skeleton, an epoxy resin having a tricyclodecane skeleton, and an epoxy resin having a triazine nucleus in the skeleton.
  • epoxy compound examples include, for example, epichlorohydrin and bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol D type epoxy resin and the like, bisphenol type epoxy resin, and epichlorohydrin and phenol novolac or cresol novolak.
  • epoxy novolac resins derived from Various epoxy compounds having two or more oxirane groups in one molecule such as glycidylamine, glycidyl ester, and alicyclic or heterocyclic may be used.
  • the curable compound includes an epoxy compound having a structure in which the thiirane group in the structure represented by the formula (1), (2), (5), (7) or (8) is replaced with an epoxy group. Also good.
  • the structures represented by the above formulas (3), (4) and (6) are also preferably structures in which the thiirane group is replaced with an epoxy group.
  • the said curable compound may contain the epoxy compound represented by following formula (11) or (12).
  • the curable compound preferably contains an episulfide compound represented by the above formula (1) or (2) and an epoxy compound represented by the following formula (11) or (12).
  • R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms
  • 2 to 4 groups out of 4 groups of R13, R14, R15 and R16 represent hydrogen
  • R13 , R14, R15 and R16, which are not hydrogen represent a group represented by the following formula (13).
  • All four groups of R13, R14, R15, and R16 in the above formula (11) may be hydrogen.
  • One or two of the four groups of R13, R14, R15 and R16 is a group represented by the following formula (13), and among the four groups of R13, R14, R15 and R16
  • the group that is not a group represented by the following formula (13) may be hydrogen.
  • R17 represents an alkylene group having 1 to 5 carbon atoms.
  • R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R63, R64, R65, R66, R67 and R68 are hydrogen.
  • the group which is not hydrogen among R63, R64, R65, R66, R67 and R68 represents a group represented by the following formula (14).
  • All of the six groups of R63, R64, R65, R66, R67 and R68 in the above formula (12) may be hydrogen.
  • One or two of the six groups R63, R64, R65, R66, R67 and R68 are groups represented by the following formula (14), and R63, R64, R65, R66, R67 and R68. Of these six groups, a group that is not a group represented by the following formula (14) may be hydrogen.
  • R69 represents an alkylene group having 1 to 5 carbon atoms.
  • R11 and R12 in the formula (11), R61 and R62 in the formula (12), R17 in the formula (13), and R69 in the formula (14) are alkylene groups having 1 to 5 carbon atoms. It is. If the alkylene group has more than 5 carbon atoms, the curing rate of the epoxy compound represented by the above formula (11) or (12) tends to be slow.
  • R11 and R12 in the above formula (11), R61 and R62 in the above formula (12), R17 in the above formula (13), and R69 in the above formula (14) are each an alkylene having 1 to 3 carbon atoms. It is preferably a group, more preferably a methylene group.
  • the alkylene group may be an alkylene group having a straight chain structure or an alkylene group having a branched structure.
  • the structure represented by the above (11) is preferably a structure represented by the following formula (11A).
  • An epoxy compound having a structure represented by the following formula (11A) is commercially available and can be easily obtained.
  • R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (11) is more preferably a structure represented by the following formula (11B).
  • the epoxy compound having a structure represented by the following formula (11B) is resorcinol diglycidyl ether. Resorcinol diglycidyl ether is commercially available and can be easily obtained.
  • the structure represented by (12) is preferably a structure represented by the following formula (12A).
  • An epoxy compound having a structure represented by the following formula (12A) can be easily obtained.
  • R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms.
  • the structure represented by the above formula (12) is more preferably a structure represented by the following formula (12B).
  • An epoxy compound having a structure represented by the following formula (12B) can be easily obtained.
  • a mixture of an episulfide compound having a structure represented by the above formula (1) or (2) and an epoxy compound represented by the above formula (11) or (12) (hereinafter sometimes abbreviated as “mixture A”)
  • the content of the episulfide compound having the structure represented by the formula (1) or (2) is 10 to 50% by weight
  • the epoxy represented by the formula (11) or (12) The content of the compound is preferably 90 to 50% by weight
  • the content of the episulfide compound having a structure represented by the above formula (1) or (2) is 20 to 30% by weight
  • the above formula (11) Alternatively, the content of the epoxy compound represented by (12) is more preferably 80 to 70% by weight.
  • the curing rate of the mixture A tends to be slow.
  • the viscosity of the said mixture A will become high too much, or the said mixture A may become a solid.
  • the method for producing the mixture A is not particularly limited.
  • Examples of the production method include a production method in which an epoxy compound represented by the above formula (11) or (12) is prepared and a part of the epoxy group of the epoxy compound is converted into a thiirane group.
  • the epoxy compound represented by the above formula (11) or (12) or the solution containing the epoxy compound is continuously or intermittently added to the first solution containing the sulfurizing agent.
  • a method in which the second solution containing the sulfurizing agent is further added continuously or intermittently is preferable.
  • some epoxy groups of the epoxy compound can be converted into thiirane groups.
  • the mixture A can be obtained.
  • the sulfurizing agent include thiocyanates, thioureas, phosphine sulfide, dimethylthioformamide, N-methylbenzothiazole-2-thione, and the like.
  • the thiocyanates include sodium thiocyanate, potassium thiocyanate, and sodium thiocyanate.
  • the curable compound is a monomer of an epoxy compound having a structure represented by the following formula (21), a multimer in which at least two epoxy compounds are bonded, or a mixture of the monomer and the multimer. May be included.
  • R1 represents an alkylene group having 1 to 5 carbon atoms
  • R2 represents an alkylene group having 1 to 5 carbon atoms
  • R3 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms
  • R4 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a structure represented by the following formula (23).
  • R5 represents an alkylene group having 1 to 5 carbon atoms.
  • R6 represents an alkylene group having 1 to 5 carbon atoms.
  • the epoxy compound having a structure represented by the above formula (21) has an unsaturated double bond and at least two epoxy groups.
  • the anisotropic conductive material can be rapidly cured at a low temperature.
  • the curable compound includes a monomer having a structure represented by the following formula (31), a multimer in which at least two of the compounds are bonded, or a mixture of the monomer and the multimer. You may go out.
  • R1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms or a structure represented by the following formula (32), R2 represents an alkylene group having 1 to 5 carbon atoms, and R3 represents carbon X 1 represents an oxygen atom or a sulfur atom, and X 2 represents an oxygen atom or a sulfur atom.
  • R4 represents an alkylene group having 1 to 5 carbon atoms
  • X3 represents an oxygen atom or a sulfur atom.
  • the epoxy compound corresponding to the compound having the structure represented by the above formula (31) can be synthesized as follows, for example.
  • a raw material compound, a fluorene compound having a hydroxyl group, epichlorohydrin, sodium hydroxide, and methanol are mixed, cooled, and reacted. Thereafter, an aqueous sodium hydroxide solution is dropped. After dripping, it is further reacted to obtain a reaction solution. Next, water and toluene are added to the reaction solution, and the toluene layer is taken out. The toluene layer is washed with water and then dried to remove water and the solvent. In this way, an epoxy compound corresponding to the compound having the structure represented by the formula (31) can be easily obtained.
  • the fluorene compound which has a hydroxyl group which is a raw material compound is marketed, for example from JFE Chemical Company etc., for example.
  • the thiirane group-containing compound corresponding to the compound having the structure represented by the above formula (31) has the epoxy group of the epoxy compound corresponding to the compound having the structure represented by the above formula (31) as a thiirane group. It can be synthesized by conversion. For example, an epoxy compound as a raw material compound or a solution containing the epoxy compound is added to the solution containing the sulfurizing agent, and then the solution containing the sulfurizing agent is further added to easily convert the epoxy group to a thiirane group. it can.
  • the curable compound may include an epoxy compound having a heterocyclic ring containing a nitrogen atom.
  • the epoxy compound having a heterocyclic ring containing a nitrogen atom is preferably an epoxy compound represented by the following formula (41) or an epoxy compound represented by the following formula (42).
  • R1 to R3 each represent an alkylene group having 1 to 5 carbon atoms, and Z represents an epoxy group or a hydroxymethyl group.
  • R21 to R23 may be the same or different.
  • R1 to R3 each represents an alkylene group having 1 to 5 carbon atoms
  • p, q and r each represents an integer of 1 to 5
  • R4 to R6 each represents an alkylene group having 1 to 5 carbon atoms. Represents a group.
  • R1 to R3 may be the same or different.
  • p, q and r may be the same or different.
  • R4 to R6 may be the same or different.
  • the epoxy compound having a heterocyclic ring containing a nitrogen atom is preferably triglycidyl isocyanurate or trishydroxyethyl isocyanurate triglycidyl ether.
  • the curable compound preferably contains an epoxy compound having an aromatic ring.
  • an epoxy compound having an aromatic ring By using an epoxy compound having an aromatic ring, the curing rate of the anisotropic conductive material can be further increased and the anisotropic conductive material can be easily applied.
  • the aromatic ring is preferably a benzene ring, a naphthalene ring or an anthracene ring.
  • the epoxy compound having an aromatic ring include resorcinol diglycidyl ether and 1,6-naphthalenediglycidyl ether. Among these, resorcinol diglycidyl ether having a structure represented by the above formula (11B) is particularly preferable. By using resorcinol diglycidyl ether, the curing rate of the anisotropic conductive material can be increased and the anisotropic conductive material can be easily applied.
  • the curable compound according to the present invention may contain a photocurable compound so as to be cured by light irradiation.
  • the curable compound can be semi-cured by light irradiation, and the fluidity of the curable compound can be reduced.
  • the photocurable compound is not particularly limited, and examples thereof include (meth) acrylic resins and cyclic ether group-containing resins.
  • Examples of the (meth) acrylic resin include an ester compound obtained by reacting (meth) acrylic acid and a compound having a hydroxyl group, and an epoxy (meth) acrylate obtained by reacting (meth) acrylic acid and an epoxy compound.
  • Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with isocyanate is preferably used.
  • the photocurable compound may be a crosslinkable compound or a non-crosslinkable compound.
  • crosslinkable compound examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, (poly ) Ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, glycerol methacrylate acrylate, pentaerythritol tri (meth) acrylate, tri Examples include methylolpropane trimethacrylate, allyl (meth) acrylate, vinyl (meth) acrylate, divinylbenzene, polyester (meth) acrylate, and urethane (meth) acrylate.
  • non-crosslinkable compound examples include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) ) Acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, decyl (Meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate,
  • the curable compound contains, for example, a thermosetting compound and a photopolymerizable compound, from the viewpoint of easily controlling the curing of the anisotropic conductive material or further improving the conduction reliability of the connection structure.
  • the curable compound preferably contains a light and thermosetting compound having at least one of an epoxy group and a thiirane group and a (meth) acryloyl group. It is preferable that the said curable compound contains the light and thermosetting compound (henceforth a partial (meth) acrylated epoxy resin) which has an epoxy group and a (meth) acryloyl group.
  • the (meth) acrylate means acrylate or methacrylate.
  • the partial (meth) acrylated epoxy resin can be obtained, for example, by reacting an epoxy resin and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method. It is preferable that 20% or more of the epoxy groups are converted to (meth) acryloyl groups (conversion rate) and partially (meth) acrylated. More preferably, 50% of the epoxy groups are converted to (meth) acryloyl groups.
  • the preferable lower limit of the content of the partially (meth) acrylated epoxy resin is 0.1% by weight and the more preferable lower limit is 0 in 100% by weight of the curable compound.
  • the preferred upper limit is 2 wt%, and the more preferred upper limit is 1.5 wt%.
  • epoxy (meth) acrylate examples include bisphenol type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, carboxylic acid anhydride-modified epoxy (meth) acrylate, and phenol novolac type epoxy (meth) acrylate. .
  • thermosetting agent The said thermosetting agent is not specifically limited.
  • a conventionally known thermosetting agent can be used as the thermosetting agent.
  • examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents, and acid anhydrides.
  • the said thermosetting agent only 1 type may be used and 2 or more types may be used together.
  • the thermosetting agent is preferably an imidazole curing agent, a polythiol curing agent or an amine curing agent.
  • a latent curing agent is preferable because the storage stability of the anisotropic conductive material can be improved.
  • the latent curing agent is preferably a latent imidazole curing agent, a latent polythiol curing agent or a latent amine curing agent.
  • the thermosetting agent may be coated with a polymer material such as polyurethane resin or polyester resin.
  • the imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.
  • the polythiol curing agent is not particularly limited, and examples thereof include trimethylolpropane, tris-3-mercaptopropionate, pentaerythritol, tetrakis-3-mercaptopropionate, and dipentaerythritol, hexa-3-mercaptopropionate. .
  • the amine curing agent is not particularly limited, and hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5].
  • examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.
  • the content of the thermosetting agent is not particularly limited.
  • a preferable lower limit of the content of the thermosetting agent is 5 parts by weight, a more preferable lower limit is 10 parts by weight, a preferable upper limit is 30 parts by weight, and a more preferable upper limit is 20 parts by weight with respect to a total of 100 parts by weight of the curable compound. It is. If content of the said thermosetting agent satisfy
  • the photocuring initiator is not particularly limited.
  • a conventionally known photocuring initiator can be used as the photocuring initiator.
  • As for the said photocuring initiator only 1 type may be used and 2 or more types may be used together.
  • the photocuring initiator is not particularly limited, and examples thereof include acetophenone photocuring initiator, benzophenone photocuring initiator, thioxanthone, ketal photocuring initiator, halogenated ketone, acyl phosphinoxide, and acyl phosphonate. .
  • acetophenone photocuring initiator examples include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, methoxy Examples include acetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 2-hydroxy-2-cyclohexylacetophenone.
  • ketal photocuring initiator examples include benzyldimethyl ketal.
  • the content of the photocuring initiator is not particularly limited.
  • the preferable lower limit of the content of the photocuring initiator is 0.1 parts by weight, the more preferable lower limit is 0.2 parts by weight, and the preferable upper limit is 2 parts by weight with respect to the total of 100 parts by weight of the curable compound.
  • the upper limit is 1 part by weight. If content of the said photocuring initiator satisfy
  • the conductive particles contained in the anisotropic conductive material for example, conventionally known conductive particles capable of electrically connecting the electrodes are used.
  • the conductive particles are preferably particles having a conductive layer on the outer surface.
  • the conductive particles may have insulating particles attached to the surface of the conductive layer, or the surface of the conductive layer may be covered with an insulating layer. In this case, the insulating particles or the insulating layer is removed by pressurization when the electrodes are connected.
  • the conductive particles include organic particles, inorganic particles, organic-inorganic hybrid particles, or conductive particles whose surfaces are covered with a conductive layer, and metal particles that are substantially composed of only metal. Is mentioned.
  • the conductive layer is not particularly limited. Examples of the conductive layer include a gold layer, a silver layer, a copper layer, a nickel layer, a palladium layer, or a conductive layer containing tin.
  • the content of the conductive particles is preferably in the range of 1 to 25% by weight.
  • the more preferable lower limit of the content of the conductive particles is 5% by weight, the more preferable upper limit is 19% by weight, the still more preferable upper limit is 15% by weight, and the most preferable upper limit is 10% by weight.
  • the conductive particles can be easily arranged between the upper and lower electrodes to be connected. Furthermore, it becomes difficult to electrically connect adjacent electrodes that should not be connected via a plurality of conductive particles. That is, a short circuit between adjacent electrodes can be prevented.
  • the anisotropic conductive material may contain a solvent.
  • a solvent include ethyl acetate, methyl cellosolve, toluene, acetone, methyl ethyl ketone, cyclohexane, n-hexane, tetrahydrofuran and diethyl ether.
  • the anisotropic conductive material preferably contains an adhesive strength adjusting agent.
  • the adhesive strength modifier is preferably a silane coupling agent.
  • the anisotropic conductive material preferably contains a filler.
  • a filler By using the filler, latent heat expansion of the cured product of the anisotropic conductive material can be suppressed.
  • the filler is not particularly limited. Examples of the filler include silica, aluminum nitride, and alumina. As for the said filler, only 1 type may be used and 2 or more types may be used together.
  • the content of the filler is not particularly limited.
  • the preferable lower limit of the filler content is 5 parts by weight, the more preferable lower limit is 15 parts by weight, the preferable upper limit is 70 parts by weight, and the more preferable upper limit is 50 parts by weight with respect to the total of 100 parts by weight of the curable compound. .
  • content of the said filler satisfy
  • Example 1 (1) Preparation of episulfide compound-containing mixture In a 2 L vessel equipped with a stirrer, a cooler and a thermometer, ethanol 250 mL, pure water 250 mL, and potassium thiocyanate 20 g were added to dissolve potassium thiocyanate, One solution was prepared. Thereafter, the temperature in the container was kept within the range of 20 to 25 ° C. Next, 160 g of resorcinol diglycidyl ether was added dropwise at a rate of 5 mL / min to the first solution while stirring the first solution in a container maintained at 20 to 25 ° C. After dropping, the mixture was further stirred for 30 minutes to obtain an epoxy compound-containing mixed solution.
  • a second solution in which 20 g of potassium thiocyanate was dissolved in a solution containing 100 mL of pure water and 100 mL of ethanol was prepared.
  • the obtained second solution was added to the obtained epoxy group-containing mixed solution at a rate of 5 mL / min, and then stirred for 30 minutes.
  • a second solution in which 20 g of potassium thiocyanate is dissolved in a solution containing 100 mL of pure water and 100 mL of ethanol is further prepared, and the second solution is further added to the container at a rate of 5 mL / min. And stirred for 30 minutes. Thereafter, the temperature in the container was cooled to 10 ° C., and stirred for 2 hours to be reacted.
  • magnesium sulfate was added to the supernatant liquid to which toluene was added and stirred for 5 minutes. After stirring, magnesium sulfate was removed with a filter paper to separate the solution. The remaining solvent was removed by drying the separated solution under reduced pressure at 80 ° C. using a vacuum dryer. In this way, an episulfide compound-containing mixture was obtained.
  • the resulting episulfide compound-containing mixture was subjected to 1 H-NMR measurement using chloroform as a solvent. As a result, the signal in the 6.5 to 7.5 ppm region indicating the presence of the epoxy group decreased, and the signal appeared in the 2.0 to 3.0 ppm region indicating the presence of the episulfide group. This confirmed that some epoxy groups of resorcinol diglycidyl ether were converted into episulfide groups. From the integral value of the measurement result of 1 H-NMR, the episulfide compound-containing mixture contains 70% by weight of resorcinol diglycidyl ether and 30% by weight of the episulfide compound having the structure represented by the above formula (1B). It was confirmed.
  • the conductive particles used are conductive particles having a metal layer in which a nickel plating layer is formed on the surface of divinylbenzene resin particles and a gold plating layer is formed on the surface of the nickel plating layer. is there.
  • the obtained composition was filtered using a nylon filter paper (pore diameter: 10 ⁇ m) to obtain an anisotropic conductive paste having a conductive particle content of 10% by weight.
  • a transparent glass substrate having an ITO electrode pattern with an L / S of 30 ⁇ m / 30 ⁇ m formed on the upper surface was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 ⁇ m / 30 ⁇ m was formed on the lower surface.
  • a composite apparatus including a dispenser as shown in FIG. 3A and an ultraviolet irradiation lamp as a light irradiation apparatus connected to the dispenser was prepared.
  • the anisotropic conductive paste obtained was applied from the syringe of the dispenser to the upper surface of the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer. Further, while moving the composite device and applying the anisotropic conductive paste, using the ultraviolet irradiation lamp on the anisotropic conductive paste layer, the ultraviolet irradiation of 420 nm is irradiated so that the light irradiation intensity becomes 50 mW / cm 2. Then, the anisotropic conductive paste layer was B-staged by photopolymerization. The time T from the time when the anisotropic conductive paste was applied to the transparent glass substrate to the time when the anisotropic conductive paste layer was irradiated with light was 0.5 seconds. .
  • the semiconductor chip was stacked on the upper surface of the B-staged anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 3 MPa is applied to make the B-staged difference. The isotropic conductive paste layer was completely cured at 185 ° C. to obtain a connection structure.
  • Example 2 An anisotropic conductive paste was obtained in the same manner as in Example 1 except that the epoxy acrylate was changed to urethane acrylate ("EBECRYL8804" manufactured by Daicel-Cytec Co., Ltd.) during the preparation of the anisotropic conductive paste.
  • a connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
  • Example 3 An anisotropic conductive paste is applied using a dispenser shown in FIG. 4A and an ultraviolet irradiation lamp as a light irradiation device not connected to the dispenser, instead of the composite device shown in FIG. A connection structure was obtained in the same manner as in Example 1 except that the light was irradiated immediately after the completion of. The time T from application to irradiation with light was 2 seconds.
  • Example 4 A connection structure was obtained in the same manner as in Example 3 except that the time T from application to light irradiation was changed to 3 seconds.
  • Example 5 An anisotropic conductive paste was obtained in the same manner as in Example 3 except that the epoxy acrylate was changed to urethane acrylate ("EBECRYL8804" manufactured by Daicel-Cytec Co., Ltd.) during the preparation of the anisotropic conductive paste.
  • a connection structure was obtained in the same manner as in Example 3 except that the obtained anisotropic conductive paste was used.
  • a transparent glass substrate having an ITO electrode pattern with an L / S of 30 ⁇ m / 30 ⁇ m formed on the upper surface was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 ⁇ m / 30 ⁇ m was formed on the lower surface.
  • the obtained anisotropic conductive paste was applied on the upper surface of the transparent glass substrate from a syringe of a dispenser so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer. No light was applied during and after application.
  • the semiconductor chip was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 3 MPa is applied to form the anisotropic conductive paste layer. Completely cured at 185 ° C. to obtain a connection structure.
  • connection structure Presence / absence of voids In the obtained connection structure, whether or not voids were generated in the cured product layer formed of the anisotropic conductive paste layer was visually observed from the lower surface side of the transparent glass substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Combinations Of Printed Boards (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a method for manufacturing a connection structure for connecting electrically electrodes of connection objects with higher connection reliability. The method for manufacturing the connection structure (1) comprises the following steps: applying an anisotropic conductive material containing conductive particles on the upper face (2a) of a first connection object (2) to form an anisotropic conductive material layer (3A); projecting light onto the anisotropic conductive material layer (3A) to promote curing of the anisotropic conductive material layer (3A) to bring the anisotropic conductive material layer (3A) to a B-stage; laminating further a second connection object (4) on an upper face (3a) of the B-staged anisotropic conductive material layer (3B); and heating the B-staged anisotropic conductive material layer (3B) to cure the B-staged anisotropic conductive material layer (3B).

Description

接続構造体の製造方法Method for manufacturing connection structure
 本発明は、複数の導電性粒子を含む異方性導電材料を用いた接続構造体の製造方法であって、より詳細には、例えば、フレキシブルプリント基板、ガラス基板及び半導体チップなどの様々な接続対象部材の電極間を、導電性粒子を介して電気的に接続する接続構造体の製造方法に関する。 The present invention is a method of manufacturing a connection structure using an anisotropic conductive material including a plurality of conductive particles, and more specifically, various connections such as a flexible printed circuit board, a glass substrate, and a semiconductor chip. The present invention relates to a method for manufacturing a connection structure in which electrodes of a target member are electrically connected via conductive particles.
 異方性導電ペースト、異方性導電インク及び異方性導電粘接着剤等の異方性導電材料が広く知られている。これらの異方性導電材料では、ペースト、インク又は樹脂中に複数の導電性粒子が分散されている。 Anisotropic conductive materials such as anisotropic conductive paste, anisotropic conductive ink and anisotropic conductive adhesive are widely known. In these anisotropic conductive materials, a plurality of conductive particles are dispersed in paste, ink, or resin.
 上記異方性導電材料は、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、又は半導体チップとガラス基板との接続(COG(Chip on Glass))等に使用されている。 The anisotropic conductive material is, for example, a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), or a semiconductor chip. Used for connection to glass substrates (COG (Chip on Glass)) and the like.
 上記異方性導電材料の一例として、下記の特許文献1には、異方性導電材料をエポキシ樹脂と、ゴム状ポリマー粒子と、熱活性な潜在性エポキシ硬化剤と、高軟化点ポリマー粒子と、導電性粒子とを含有する異方性導電材料が開示されている。この異方性導電材料により、例えば、半導体チップの電極とガラス基板の電極とを電気的に接続する際には、ガラス基板上に、導電性粒子を含む異方性導電材料を塗布する。次に、半導体チップを積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、かつ導電性粒子を介して電極間を電気的に接続し、接続構造体を得る。 As an example of the anisotropic conductive material, the following Patent Document 1 describes an anisotropic conductive material as an epoxy resin, rubber-like polymer particles, a thermally active latent epoxy curing agent, and high softening point polymer particles. An anisotropic conductive material containing conductive particles is disclosed. For example, when the electrode of the semiconductor chip and the electrode of the glass substrate are electrically connected by this anisotropic conductive material, an anisotropic conductive material containing conductive particles is applied on the glass substrate. Next, the semiconductor chips are stacked, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.
特開2000-345010号公報JP 2000-34010 A
 上記電極間の電気的な接続の際に、ガラス基板上に塗布された異方性導電材料及び該異方性導電材料に含まれている導電性粒子が、硬化前に大きく流動することがある。このため、異方性導電材料により形成された硬化物層及び導電性粒子を特定の領域に配置できないことがある。さらに、接続されるべき上下の電極間に導電性粒子を配置できなかったり、接続されてはならない隣接する電極間が複数の導電性粒子を介して電気的に接続されたりすることがある。このため、得られた接続構造体の導通信頼性が低いことがある。 During the electrical connection between the electrodes, the anisotropic conductive material applied on the glass substrate and the conductive particles contained in the anisotropic conductive material may flow greatly before curing. . For this reason, the hardened | cured material layer and electroconductive particle formed with the anisotropic electrically-conductive material may not be arrange | positioned to a specific area | region. Furthermore, the conductive particles may not be disposed between the upper and lower electrodes to be connected, or adjacent electrodes that should not be connected may be electrically connected via a plurality of conductive particles. For this reason, the conduction | electrical_connection reliability of the obtained connection structure may be low.
 また、ディスペンサーで塗布された異方性導電材料が、液ダレのために塗布幅よりも広がり、特定の領域以外に意図せずに異方性導電材料がはみ出すこともある。 Also, the anisotropic conductive material applied with the dispenser may spread beyond the coating width due to liquid dripping, and the anisotropic conductive material may protrude unintentionally outside a specific area.
 本発明の目的は、接続対象部材の電極間を電気的に接続した場合に、導通信頼性を高めることができる接続構造体の製造方法を提供することである。 An object of the present invention is to provide a method for manufacturing a connection structure that can improve conduction reliability when electrodes of connection target members are electrically connected.
 本発明の広い局面によれば、第1の接続対象部材の上面に、導電性粒子を含む異方性導電材料を塗布し、異方性導電材料層を形成する工程と、上記異方性導電材料層に光を照射することにより、上記異方性導電材料層の硬化を進行させて、上記異方性導電材料層をBステージ化する工程と、Bステージ化された上記異方性導電材料層の上面に、第2の接続対象部材をさらに積層して、Bステージ化された上記異方性導電材料層に熱を付与することにより、該Bステージ化された異方性導電材料層を硬化させる工程とを備える、接続構造体の製造方法が提供される。 According to a wide aspect of the present invention, an anisotropic conductive material layer containing conductive particles is applied to the upper surface of the first connection target member to form an anisotropic conductive material layer, and the anisotropic conductive material is formed. The step of curing the anisotropic conductive material layer by irradiating the material layer with light to make the anisotropic conductive material layer into a B stage, and the anisotropic conductive material that has been B staged A second connection target member is further laminated on the upper surface of the layer, and heat is applied to the B-staged anisotropic conductive material layer, whereby the B-staged anisotropic conductive material layer is formed. The manufacturing method of a connection structure provided with the process to harden is provided.
 本発明に係る接続構造体の製造方法のある特定の局面では、上記異方性導電材料層を形成する工程と、上記異方性導電材料層をBステージ化する工程とにおいて、上記異方性導電材料を塗布しながら、上記異方性導電材料層に光が照射される。 In a specific aspect of the method for manufacturing a connection structure according to the present invention, in the step of forming the anisotropic conductive material layer and the step of forming the anisotropic conductive material layer into a B-stage, the anisotropy is performed. While applying the conductive material, the anisotropic conductive material layer is irradiated with light.
 本発明に係る接続構造体の製造方法の別の特定の局面では、上記異方性導電材料層を形成する工程と、上記異方性導電材料層をBステージ化する工程とにおいて、上記異方性導電材料の塗布と同時に、又は塗布の直後に、上記異方性導電材料層に光が照射される。 In another specific aspect of the method for manufacturing a connection structure according to the present invention, the anisotropic process includes the step of forming the anisotropic conductive material layer and the step of forming the anisotropic conductive material layer into a B-stage. The anisotropic conductive material layer is irradiated with light simultaneously with the application of the conductive conductive material or immediately after the application.
 本発明に係る接続構造体の製造方法のさらに別の特定の局面では、上記異方性導電材料層を形成する工程と、上記異方性導電材料層をBステージ化する工程とにおいて、上記異方性導電材料を塗布してから光を照射するまでの時間は0~3秒の範囲内である。 In still another specific aspect of the method for manufacturing a connection structure according to the present invention, in the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage, The time from application of the isotropic conductive material to irradiation with light is in the range of 0 to 3 seconds.
 本発明に係る接続構造体の製造方法の他の特定の局面では、上記異方性導電材料として、硬化性化合物と、熱硬化剤と、光硬化開始剤と、導電性粒子とを含む異方性導電材料が用いられる。 In another specific aspect of the method for manufacturing a connection structure according to the present invention, the anisotropic conductive material includes a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles. Conductive material is used.
 本発明に係る接続構造体の製造方法のさらに他の特定の局面では、上記異方性導電材料層を形成する工程と、上記異方性導電材料層をBステージ化する工程とにおいて、ディスペンサーと、該ディスペンサーに接続された光照射装置とを備える複合装置が用いられる。 In still another specific aspect of the method for manufacturing a connection structure according to the present invention, in the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage, a dispenser and And a light emitting device connected to the dispenser is used.
 本発明に係る接続構造体の製造方法では、異方性導電材料層に光を照射することにより、上記異方性導電材料層の硬化を進行させて、上記異方性導電材料層をBステージ化した後、Bステージ化された異方性導電材料層に熱を付与するので、異方性導電材料層及び該異方性導電材料層に含まれている導電性粒子の流動を抑制できる。従って、異方性導電材料により形成された硬化物層及び導電性粒子を特定の領域に配置できる。このため、第1,第2の接続対象部材の電極間を電気的に接続した場合に、導通信頼性を高めることができる。例えば、接続されるべき上下の電極間を導電性粒子により容易に接続でき、かつ接続されてはならない隣り合う電極間が複数の導電性粒子を介して接続されるのを抑制できる。また、ディスペンサーで塗布された異方性導電材料が液ダレする前に硬化されるために、塗布幅よりも広がり難く、特定の領域以外に意図せずに異方性導電材料がはみ出すことを抑制できる。 In the manufacturing method of the connection structure according to the present invention, the anisotropic conductive material layer is cured by irradiating the anisotropic conductive material layer with light, and the anisotropic conductive material layer is moved to the B stage. Then, heat is applied to the B-staged anisotropic conductive material layer, so that the flow of the anisotropic conductive material layer and the conductive particles contained in the anisotropic conductive material layer can be suppressed. Therefore, the hardened | cured material layer and electroconductive particle formed with the anisotropic electrically-conductive material can be arrange | positioned in a specific area | region. For this reason, conduction | electrical_connection reliability can be improved when the electrodes of the 1st, 2nd connection object member are electrically connected. For example, the upper and lower electrodes to be connected can be easily connected with conductive particles, and adjacent electrodes that should not be connected can be prevented from being connected via a plurality of conductive particles. In addition, since the anisotropic conductive material applied with the dispenser is cured before dripping, it is harder to spread than the coating width, preventing the anisotropic conductive material from unintentionally protruding outside the specific area. it can.
図1は、本発明の一実施形態に係る接続構造体の製造方法により得られた接続構造体を模式的に示す部分切欠正面断面図である。FIG. 1 is a partially cutaway front sectional view schematically showing a connection structure obtained by a method for manufacturing a connection structure according to an embodiment of the present invention. 図2(a)~(c)は、本発明の一実施形態に係る接続構造体の製造方法の各工程を説明するための部分切欠正面断面図である。2 (a) to 2 (c) are partially cutaway front cross-sectional views for explaining each step of the method for manufacturing a connection structure according to one embodiment of the present invention. 図3(a)及び(b)は、本発明の一実施形態に係る接続構造体の製造方法において、ディスペンサーと光照射装置とを備える複合装置を用いて、Bステージ化された異方性導電材料層を形成する方法を説明するための模式的な正面図である。3 (a) and 3 (b) show a B-stage anisotropic conductive process using a composite device including a dispenser and a light irradiation device in a method for manufacturing a connection structure according to an embodiment of the present invention. It is a typical front view for demonstrating the method of forming a material layer. 図4(a)及び(b)は、Bステージ化された異方性導電材料層を形成する方法の変形例を説明するための模式的な正面図である。FIGS. 4A and 4B are schematic front views for explaining a modification of the method of forming the B-staged anisotropic conductive material layer.
 以下、図面を参照しつつ本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
 図1に、本発明の一実施形態に係る接続構造体の製造方法により得られた接続構造体の一例を模式的に部分切欠正面断面図で示す。 FIG. 1 schematically shows an example of a connection structure obtained by the method for manufacturing a connection structure according to an embodiment of the present invention in a partially cutaway front sectional view.
 図1に示す接続構造体1は、第1の接続対象部材2の上面2aに、硬化物層3を介して、第2の接続対象部材4が接続された構造を有する。硬化物層3は複数の導電性粒子5を含む異方性導電材料を硬化させることにより形成されている。第1の接続対象部材2の上面2aには、複数の電極2bが設けられている。第2の接続対象部材4の下面4aには、複数の電極4bが設けられている。電極2bと電極4bとが、1つ又は複数の導電性粒子5により電気的に接続されている。 1 has a structure in which a second connection target member 4 is connected to an upper surface 2a of a first connection target member 2 via a cured product layer 3. The connection structure 1 shown in FIG. The cured product layer 3 is formed by curing an anisotropic conductive material including a plurality of conductive particles 5. A plurality of electrodes 2 b are provided on the upper surface 2 a of the first connection target member 2. A plurality of electrodes 4 b are provided on the lower surface 4 a of the second connection target member 4. The electrode 2b and the electrode 4b are electrically connected by one or a plurality of conductive particles 5.
 接続構造体1では、第1の接続対象部材2としてガラス基板が用いられており、第2の接続対象部材4として半導体チップが用いられている。第1,第2の接続対象部材は、特に限定されない。第1,第2の接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板及びガラス基板等の回路基板等が挙げられる。 In the connection structure 1, a glass substrate is used as the first connection target member 2, and a semiconductor chip is used as the second connection target member 4. The first and second connection target members are not particularly limited. Specific examples of the first and second connection target members include electronic components such as semiconductor chips, capacitors, and diodes, and circuit boards such as printed boards, flexible printed boards, and glass boards.
 図1に示す接続構造体1は、例えば、以下のようにして得ることができる。 The connection structure 1 shown in FIG. 1 can be obtained as follows, for example.
 図2(a)に示すように、電極2bを上面2aに有する第1の接続対象部材2を用意する。次に、第1の接続対象部材2の上面2aに、複数の導電性粒子5を含む異方性導電材料を塗布し、第1の接続対象部材2の上面2aに異方性導電材料層3Aを形成する。このとき、電極2b上に、1つ又は複数の導電性粒子5が配置されていることが好ましい。 As shown in FIG. 2A, a first connection target member 2 having an electrode 2b on the upper surface 2a is prepared. Next, an anisotropic conductive material including a plurality of conductive particles 5 is applied to the upper surface 2a of the first connection target member 2, and the anisotropic conductive material layer 3A is applied to the upper surface 2a of the first connection target member 2. Form. At this time, it is preferable that one or a plurality of conductive particles 5 be disposed on the electrode 2b.
 次に、図2(b)に示すように、異方性導電材料層3Aに光を照射することにより、異方性導電材料層3Aの硬化を進行させる。異方性導電材料層3Aの硬化を進行させて、異方性導電材料層3AをBステージ化する。第1の接続対象部材2の上面2aに、Bステージ化された異方性導電材料層3Bを形成する。 Next, as shown in FIG. 2B, the anisotropic conductive material layer 3A is cured by irradiating the anisotropic conductive material layer 3A with light. By curing the anisotropic conductive material layer 3A, the anisotropic conductive material layer 3A is B-staged. A B-staged anisotropic conductive material layer 3B is formed on the upper surface 2a of the first connection target member 2.
 第1の接続対象部材2の上面2aに、異方性導電材料を塗布しながら、異方性導電材料層3Aに光を照射することが好ましい。さらに、第1の接続対象部材2の上面2aへの異方性導電材料の塗布と同時に、又は塗布の直後に、異方性導電材料層3Aに光を照射することも好ましい。塗布及び光の照射が上記のように行われた場合には、異方性導電材料層の流動をより一層抑制できる。このため、得られた接続構造体1の導通信頼性をより一層高めることができる。第1の接続対象部材2の上面2aに異方性導電材料を塗布してから光を照射するまでの時間は、0~3秒の範囲内であることが好ましく、0~2秒の範囲内であることがより好ましい。第1の接続対象部材2の上面2aに異方性導電材料が接してから光を照射するまでの時間は、上記範囲を満たすことが好ましい。 It is preferable to irradiate the anisotropic conductive material layer 3A with light while applying the anisotropic conductive material to the upper surface 2a of the first connection target member 2. Furthermore, it is also preferable to irradiate the anisotropic conductive material layer 3 </ b> A simultaneously with the application of the anisotropic conductive material to the upper surface 2 a of the first connection target member 2 or immediately after the application. When application and light irradiation are performed as described above, the flow of the anisotropic conductive material layer can be further suppressed. For this reason, the conduction | electrical_connection reliability of the obtained connection structure 1 can be improved further. The time from application of the anisotropic conductive material to the upper surface 2a of the first connection target member 2 until irradiation with light is preferably within a range of 0 to 3 seconds, and within a range of 0 to 2 seconds. It is more preferable that It is preferable that the time from when the anisotropic conductive material comes into contact with the upper surface 2a of the first connection target member 2 until irradiation with light satisfies the above range.
 異方性導電材料層3Aの硬化を適度に進行させるために、光を照射する際の光照射強度は、0.1~100mW/cmの範囲内であることが好ましい。光を照射する際に用いる光源は特に限定されない。該光源としては、例えば、波長420nm以下に充分な発光分布を有する光源等が挙げられる。また、光源の具体例としては、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、及びメタルハライドランプ等が挙げられる。 In order to appropriately cure the anisotropic conductive material layer 3A, the light irradiation intensity at the time of light irradiation is preferably within a range of 0.1 to 100 mW / cm 2 . The light source used when irradiating light is not specifically limited. Examples of the light source include a light source having a sufficient light emission distribution at a wavelength of 420 nm or less. Specific examples of the light source include, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave excitation mercury lamp, and a metal halide lamp.
 次に、図2(c)に示すように、Bステージ化された異方性導電材料層3Bの上面3aに、第2の接続対象部材4を積層する。第1の接続対象部材2の上面2aの電極2bと、第2の接続対象部材4の下面4aの電極4bとが対向するように、第2の接続対象部材4を積層する。 Next, as shown in FIG. 2C, the second connection target member 4 is laminated on the upper surface 3a of the B-staged anisotropic conductive material layer 3B. The second connection target member 4 is laminated so that the electrode 2b on the upper surface 2a of the first connection target member 2 and the electrode 4b on the lower surface 4a of the second connection target member 4 face each other.
 さらに、第2の接続対象部材4の積層の際に、異方性導電材料層3Bに熱を付与することにより、異方性導電材料層3Bをさらに硬化させ、硬化物層3を形成する。ただし、第2の接続対象部材4の積層の前に、異方性導電材料層3Bに熱を付与してもよい。さらに、第2の接続対象部材4の積層の後に異方性導電材料層3Bに熱を付与してもよい。 Furthermore, when the second connection target member 4 is laminated, the anisotropic conductive material layer 3B is further cured by applying heat to the anisotropic conductive material layer 3B, thereby forming the cured product layer 3. However, heat may be applied to the anisotropic conductive material layer 3B before the second connection target member 4 is laminated. Furthermore, heat may be applied to the anisotropic conductive material layer 3B after the second connection target member 4 is laminated.
 熱の付与により異方性導電材料層3Bを硬化させる際の加熱温度の好ましい下限は160℃、好ましい上限は250℃、より好ましい上限は200℃である。 The preferable lower limit of the heating temperature when the anisotropic conductive material layer 3B is cured by applying heat is 160 ° C, the preferable upper limit is 250 ° C, and the more preferable upper limit is 200 ° C.
 異方性導電材料層3Bを硬化させる際に、加圧することが好ましい。加圧によって電極2bと電極4bとで導電性粒子5を圧縮することにより、電極2b,4bと導電性粒子5との接触面積を大きくすることができる。このため、導通信頼性を高めることができる。 It is preferable to apply pressure when the anisotropic conductive material layer 3B is cured. By compressing the conductive particles 5 with the electrodes 2b and 4b by pressurization, the contact area between the electrodes 2b and 4b and the conductive particles 5 can be increased. For this reason, conduction reliability can be improved.
 異方性導電材料層3Bを硬化させることにより、第1の接続対象部材2と第2の接続対象部材4とが、硬化物層3を介して接続される。また、電極2bと電極4bとが、導電性粒子5を介して電気的に接続される。このようにして、図1に示す接続構造体1を得ることができる。本実施形態では、光硬化と熱硬化とが併用されているため、異方性導電材料を短時間で硬化させることができる。 The first connection target member 2 and the second connection target member 4 are connected via the cured product layer 3 by curing the anisotropic conductive material layer 3B. Further, the electrode 2 b and the electrode 4 b are electrically connected through the conductive particles 5. In this way, the connection structure 1 shown in FIG. 1 can be obtained. In this embodiment, since photocuring and thermosetting are used together, the anisotropic conductive material can be cured in a short time.
 本実施形態では、異方性導電材料層3Aを形成し、該異方性導電材料層3AをBステージ化する際に、図3(a)に示す複合装置が好適に用いられる。 In the present embodiment, when the anisotropic conductive material layer 3A is formed and the anisotropic conductive material layer 3A is B-staged, the composite apparatus shown in FIG. 3A is preferably used.
 図3(a)に示す複合装置11は、ディスペンサー12と、該ディスペンサー12に接続された光照射装置13とを備える。ディスペンサー12は、内部に異方性導電材料を充填するためのシリンジ12aと、該シリンジ12aの外周面を把持している把持部12bとを備える。光照射装置13は、光照射装置本体13aと、光照射部13bとを備える。複合装置11では、把持部12bと光照射装置本体13aとが接続されている。従って、ディスペンサー12と光照射装置13との距離を小さくすることができ、すなわち、ディスペンサー12の吐出部と、光照射部13bとの距離を小さくすることができる。さらに、ディスペンサー12と光照射装置13とを同じ速度で容易に移動させることができる。なお、シリンジ12aと光照射装置本体13aとが直接接続されていてもよい。 3 (a) includes a dispenser 12 and a light irradiation device 13 connected to the dispenser 12. The dispenser 12 includes a syringe 12a for filling the inside with an anisotropic conductive material, and a grip portion 12b that grips the outer peripheral surface of the syringe 12a. The light irradiation device 13 includes a light irradiation device main body 13a and a light irradiation unit 13b. In the composite apparatus 11, the grip part 12b and the light irradiation apparatus main body 13a are connected. Therefore, the distance between the dispenser 12 and the light irradiation device 13 can be reduced, that is, the distance between the discharge part of the dispenser 12 and the light irradiation part 13b can be reduced. Furthermore, the dispenser 12 and the light irradiation device 13 can be easily moved at the same speed. In addition, the syringe 12a and the light irradiation apparatus main body 13a may be directly connected.
 図3(a)に示すように、塗布及び光の照射の際には、複合装置11を矢印Aの方向に移動させながら、第1の接続対象部材2の上面2aに、シリンジ12aから異方性導電材料を塗布し、異方性導電材料層3Aを形成する。また、塗布しながら、ディスペンサー12に接続された光照射装置13の光照射部13bから、矢印Bで示すように異方性導電材料層3Aに光を照射する。 As shown in FIG. 3A, when applying and irradiating light, while moving the composite device 11 in the direction of arrow A, the syringe 12a is anisotropically moved from the syringe 12a to the upper surface 2a of the first connection target member 2. A conductive conductive material is applied to form the anisotropic conductive material layer 3A. Further, the anisotropic conductive material layer 3 </ b> A is irradiated with light from the light irradiation unit 13 b of the light irradiation device 13 connected to the dispenser 12 as indicated by an arrow B while being applied.
 第1の接続対象部材2の上面2aに形成された異方性導電材料層3A及び該異方性導電材料層3Aに含まれている導電性粒子5の流動をより一層抑制する観点からは、ディスペンサー12と光照射装置13とを移動させながら、塗布と光の照射とが行われることが好ましい。さらに、光の照射までの時間を高精度に制御する観点からは、ディスペンサー12と光照射装置13とは同じ速度で移動されることが好ましい。ただし、複合装置11を移動させずに、台31を矢印Aの方向に移動させてもよい。 From the viewpoint of further suppressing the flow of the anisotropic conductive material layer 3A formed on the upper surface 2a of the first connection target member 2 and the conductive particles 5 contained in the anisotropic conductive material layer 3A, It is preferable that application and light irradiation are performed while moving the dispenser 12 and the light irradiation device 13. Furthermore, it is preferable that the dispenser 12 and the light irradiation device 13 are moved at the same speed from the viewpoint of controlling the time until the light irradiation with high accuracy. However, the table 31 may be moved in the direction of the arrow A without moving the composite apparatus 11.
 図4(a)に示すように、ディスペンサー12と、該ディスペンサー12に接続されていない光照射装置21とを用いてもよい。光照射装置21は、光照射装置13と同様に、光照射装置本体21aと、光照射部21bとを備える。光照射装置21は、光照射装置13よりも、広い領域に光を照射することができるように構成されている。 As shown in FIG. 4A, a dispenser 12 and a light irradiation device 21 that is not connected to the dispenser 12 may be used. Similar to the light irradiation device 13, the light irradiation device 21 includes a light irradiation device main body 21 a and a light irradiation unit 21 b. The light irradiation device 21 is configured to irradiate light over a wider area than the light irradiation device 13.
 ディスペンサー12と、該ディスペンサー12に接続されていない光照射装置21とを用いる場合には、例えば、図4(a)に示すように、第1の接続対象部材2の上方に光照射装置21を配置する。次に、第1の接続対象部材2と光照射装置21との間においてディスペンサー12を矢印Aの方向に移動させながら、第1の接続対象部材2の上面2aに、シリンジ12aから異方性導電材料を塗布し、異方性導電材料層3Aを形成する。次に、図4(b)に示すように、異方性導電材料の塗布が終了した後、第1の接続対象部材2の上方に配置された光照射装置21の光照射部21bから、異方性導電材料層3Aに光を照射する。光の照射は、例えば異方性導電材料の塗布と同時又は塗布の直後に行われる。 When using the dispenser 12 and the light irradiation device 21 not connected to the dispenser 12, for example, as shown in FIG. 4A, the light irradiation device 21 is placed above the first connection target member 2. Deploy. Next, while the dispenser 12 is moved in the direction of the arrow A between the first connection target member 2 and the light irradiation device 21, anisotropic conduction is performed from the syringe 12 a to the upper surface 2 a of the first connection target member 2. The material is applied to form the anisotropic conductive material layer 3A. Next, as shown in FIG. 4 (b), after the application of the anisotropic conductive material is completed, the light irradiation unit 21b of the light irradiation device 21 disposed above the first connection target member 2 is different from the first irradiation target member 2. The isotropic conductive material layer 3A is irradiated with light. The light irradiation is performed, for example, simultaneously with the application of the anisotropic conductive material or immediately after the application.
 光照射装置21は、塗布の際に、第1の接続対象部材2の上方に配置されていることが好ましい。この場合には、塗布の後に、光を速やかに照射できる。塗布の後に、異方性導電材料層3Aの全領域に一括して光を照射することが好ましい。この場合には、異方性導電材料層3Aをより一層均一にBステージ化することができる。 It is preferable that the light irradiation device 21 is disposed above the first connection target member 2 at the time of application. In this case, light can be irradiated quickly after application. After the application, it is preferable to irradiate the entire region of the anisotropic conductive material layer 3A all together. In this case, the anisotropic conductive material layer 3A can be made B-stage even more uniformly.
 図3(a)又は図4(a)に示す装置の使用により、第1の接続対象部材2の上面2aへの異方性導電材料の塗布と同時に、又は塗布の直後に、異方性導電材料層3Aに光を容易に照射できる。 By using the apparatus shown in FIG. 3 (a) or FIG. 4 (a), the anisotropic conductive material is applied simultaneously or immediately after the application of the anisotropic conductive material to the upper surface 2a of the first connection target member 2. The material layer 3A can be easily irradiated with light.
 本発明に係る接続構造体の製造方法で用いられる異方性導電材料は、特に限定されない。第1の接続対象部材2の上面2aに塗布された異方性導電材料又は該異方性導電材料に含まれている導電性粒子の流動をより一層抑制する観点からは、上記異方性導電材料は、硬化性化合物と、熱硬化剤と、光硬化開始剤と、導電性粒子とを含有することが好ましい。 The anisotropic conductive material used in the method for manufacturing a connection structure according to the present invention is not particularly limited. From the viewpoint of further suppressing the flow of the anisotropic conductive material applied to the upper surface 2a of the first connection target member 2 or the conductive particles contained in the anisotropic conductive material, the anisotropic conductive material is used. The material preferably contains a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles.
 塗布前の上記異方性導電材料の25℃及び2.5rpmでの粘度は、20~200Pa・sの範囲内であることが好ましい。この場合には、例えば第1の接続対象部材2の上面2aに、異方性導電材料を塗布した後に、硬化前の異方性導電材料の流動をより一層抑制できる。さらに、電極と導電性粒子との間の樹脂成分を容易に取り除くことができ、電極と導電性粒子との接触面積を大きくすることができる。さらに、第1の接続対象部材の表面が凹凸である場合に、該凹凸の表面に異方性導電材料を充分に充填させることができ、硬化後にボイドが生じ難くなる。また、異方性導電材料中において導電性粒子が沈降し難くなり、導電性粒子の分散性を高めることができる。 The viscosity of the anisotropic conductive material before coating at 25 ° C. and 2.5 rpm is preferably in the range of 20 to 200 Pa · s. In this case, for example, after the anisotropic conductive material is applied to the upper surface 2a of the first connection target member 2, the flow of the anisotropic conductive material before curing can be further suppressed. Furthermore, the resin component between the electrode and the conductive particles can be easily removed, and the contact area between the electrode and the conductive particles can be increased. Furthermore, when the surface of the first connection target member is uneven, the surface of the unevenness can be sufficiently filled with an anisotropic conductive material, and voids hardly occur after curing. Further, it becomes difficult for the conductive particles to settle in the anisotropic conductive material, and the dispersibility of the conductive particles can be improved.
 上記異方性導電材料の製造方法は特に限定されない。上記異方性導電材料の製造方法としては、例えば、上記硬化性化合物と、上記熱硬化剤と、上記光硬化開始剤と、上記導電性粒子と、必要に応じて添加される他の成分とを配合し、遊星式攪拌機等を用いて充分に混合する製造方法が挙げられる。 The manufacturing method of the anisotropic conductive material is not particularly limited. Examples of the method for producing the anisotropic conductive material include the curable compound, the thermosetting agent, the photocuring initiator, the conductive particles, and other components added as necessary. And a sufficient production method using a planetary stirrer or the like.
 本発明に係る接続構造体の製造方法は、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、又は半導体チップとガラス基板との接続(COG(Chip on Glass))等に使用できる。なかでも、本発明に係る接続構造体の製造方法は、COG用途に好適である。本発明に係る接続構造体の製造方法は、半導体チップとガラス基板との接続に好適に用いられる。ただし、本発明に係る接続構造体の製造方法の使用は、上記用途に限定されない。 The connection structure manufacturing method according to the present invention includes, for example, a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), Alternatively, it can be used for connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)) or the like. Especially, the manufacturing method of the connection structure concerning the present invention is suitable for COG use. The method for manufacturing a connection structure according to the present invention is suitably used for connection between a semiconductor chip and a glass substrate. However, the use of the method for manufacturing a connection structure according to the present invention is not limited to the above-described application.
 COG用途では、特に、半導体チップとガラス基板との電極間を、異方性導電材料の導電性粒子により確実に接続することが困難なことが多い。例えば、COG用途の場合には、半導体チップの隣り合う電極間、及びガラス基板の隣り合う電極間の間隔が10~20μm程度であることがあり、微細な配線が形成されていることが多い。微細な配線が形成されていても、本発明に係る接続構造体の製造方法により、半導体チップとガラス基板との電極間を高精度に接続することができ、導通信頼性を高めることができる。 In COG applications, in particular, it is often difficult to reliably connect the electrodes of the semiconductor chip and the glass substrate with conductive particles of an anisotropic conductive material. For example, in the case of COG use, the distance between adjacent electrodes of a semiconductor chip and the distance between adjacent electrodes of a glass substrate may be about 10 to 20 μm, and fine wiring is often formed. Even if fine wiring is formed, the connection structure body manufacturing method according to the present invention can connect the electrodes of the semiconductor chip and the glass substrate with high accuracy, and can improve conduction reliability.
 以下、上記異方性導電材料に含まれている各成分の詳細を説明する。 Hereinafter, details of each component contained in the anisotropic conductive material will be described.
 (硬化性化合物)
 上記硬化性化合物としては、従来公知の硬化性化合物を用いることができ、特に限定されない。上記硬化性化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
(Curable compound)
A conventionally known curable compound can be used as the curable compound, and is not particularly limited. As for the said sclerosing | hardenable compound, only 1 type may be used and 2 or more types may be used together.
 上記硬化性化合物としては、光及び熱硬化性化合物、光硬化性化合物、並びに熱硬化性化合物が挙げられる。上記光及び熱硬化性化合物は、光硬化性と熱硬化性とを有する。上記光硬化性化合物は、例えば光硬化性を有し、かつ熱硬化性を有さない。上記熱硬化性化合物は、例えば光硬化性を有さず、かつ熱硬化性を有する。 Examples of the curable compound include light and thermosetting compounds, photocurable compounds, and thermosetting compounds. The light and thermosetting compounds have photocuring properties and thermosetting properties. The said photocurable compound has photocurability, for example, and does not have thermosetting. The said thermosetting compound does not have photocurability, for example, and has thermosetting.
 上記硬化性化合物は、光及び熱硬化性化合物を含むか、又は光硬化性化合物と熱硬化性化合物とを含む。上記硬化性化合物が上記光及び熱硬化性化合物を含む場合には、上記硬化性化合物は、光硬化性化合物及び熱硬化性化合物の内の少なくとも一種を含んでいなくてもよく、上記光及び熱硬化性化合物に加えて、光硬化性化合物及び熱硬化性化合物の内の少なくとも一種をさらに含んでいてもよい。上記硬化性化合物が上記光及び熱硬化性化合物を含まない場合には、上記硬化性化合物は、光硬化性化合物と熱硬化性化合物とを含む。 The curable compound includes light and a thermosetting compound, or includes a photocurable compound and a thermosetting compound. When the curable compound includes the light and the thermosetting compound, the curable compound may not include at least one of the photocurable compound and the thermosetting compound. In addition to the thermosetting compound, at least one of a photocurable compound and a thermosetting compound may be further included. When the said curable compound does not contain the said light and a thermosetting compound, the said curable compound contains a photocurable compound and a thermosetting compound.
 異方性導電材料の硬化を容易に制御する観点からは、上記硬化性化合物は、上記光及び熱硬化性化合物と、光硬化性化合物及び熱硬化性化合物の内の少なくとも一種とを含むか、又は光硬化性化合物と熱硬化性化合物とを含むことが好ましい。上記硬化性化合物は、光硬化性化合物と熱硬化性化合物とを含むことがより好ましい。 From the viewpoint of easily controlling the curing of the anisotropic conductive material, the curable compound includes the light and the thermosetting compound, and at least one of the photocurable compound and the thermosetting compound, Or it is preferable that a photocurable compound and a thermosetting compound are included. More preferably, the curable compound includes a photocurable compound and a thermosetting compound.
 上記硬化性化合物は特に限定されない。上記硬化性化合物としては、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。上記(メタ)アクリルは、アクリル又はメタクリルを意味する。
 光硬化性化合物と熱硬化性化合物とを併用する場合には、光硬化性化合物と熱硬化性化合物との使用量は、光硬化性化合物と熱硬化性化合物との種類に応じて適宜調整される。上記異方性導電材料は、光硬化性化合物と熱硬化性化合物とを重量比で、1:99~90:10で含むことが好ましく、5:95~60:40で含むことがより好ましく、20:80~40:60で含むことが更に好ましい。
The curable compound is not particularly limited. Examples of the curable compound include epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. The (meth) acryl means acryl or methacryl.
When a photocurable compound and a thermosetting compound are used in combination, the usage amount of the photocurable compound and the thermosetting compound is appropriately adjusted according to the types of the photocurable compound and the thermosetting compound. The The anisotropic conductive material preferably contains the photocurable compound and the thermosetting compound in a weight ratio of 1:99 to 90:10, more preferably 5:95 to 60:40, More preferably, it is included at 20:80 to 40:60.
 [熱硬化性化合物]
 異方性導電材料の硬化を容易に制御したり、接続構造体の導通信頼性をより一層高めたりする観点からは、上記硬化性化合物は、エポキシ化合物及びエピスルフィド化合物(チイラン基含有化合物)の内の少なくとも一種を含むことが好ましく、エピスルフィド化合物を含むことがより好ましい。異方性導電材料の硬化性を高める観点からは、上記硬化性化合物100重量部中、上記エピスルフィド化合物の含有量の好ましい下限は10重量部、より好ましい下限は20重量部、好ましい上限は50重量部、より好ましい上限は40重量部である。
[Thermosetting compound]
From the viewpoint of easily controlling the curing of the anisotropic conductive material and further enhancing the conduction reliability of the connection structure, the curable compound is an epoxy compound or an episulfide compound (thiirane group-containing compound). It is preferable to include at least one of the above, and it is more preferable to include an episulfide compound. From the viewpoint of enhancing the curability of the anisotropic conductive material, in 100 parts by weight of the curable compound, the preferred lower limit of the content of the episulfide compound is 10 parts by weight, the more preferred lower limit is 20 parts by weight, and the preferred upper limit is 50 parts by weight. Parts, more preferred upper limit is 40 parts by weight.
 上記エポキシ化合物及び上記エピスルフィド化合物はそれぞれ、芳香族環を有することが好ましい。上記芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラセン環、クリセン環、トリフェニレン環、テトラフェン環、ピレン環、ペンタセン環、ピセン環及びペリレン環等が挙げられる。なかでも、上記芳香族環は、ベンゼン環、ナフタレン環又はアントラセン環であることが好ましく、ベンゼン環又はナフタレン環であることがより好ましい。 Each of the epoxy compound and the episulfide compound preferably has an aromatic ring. Examples of the aromatic ring include a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, tetracene ring, chrysene ring, triphenylene ring, tetraphen ring, pyrene ring, pentacene ring, picene ring, and perylene ring. Especially, it is preferable that the said aromatic ring is a benzene ring, a naphthalene ring, or an anthracene ring, and it is more preferable that it is a benzene ring or a naphthalene ring.
 エピスルフィド化合物は、エポキシ基ではなくチイラン基を有するので、低温で速やかに硬化させることができる。すなわち、チイラン基を有するエピスルフィド化合物は、エポキシ基を有するエポキシ化合物と比較して、チイラン基に由来してより一層低い温度で硬化可能である。 Since the episulfide compound has a thiirane group instead of an epoxy group, it can be quickly cured at a low temperature. That is, the episulfide compound having a thiirane group can be cured at a lower temperature derived from the thiirane group as compared with the epoxy compound having an epoxy group.
 低温でより一層速やかに硬化させる観点からは、上記エピスルフィド化合物は、下記式(1)、(2)、(5)、(7)又は(8)で表される構造を有することが好ましく、下記式(1)又は(2)で表される構造を有することがより好ましい。 From the viewpoint of curing more rapidly at a low temperature, the episulfide compound preferably has a structure represented by the following formula (1), (2), (5), (7) or (8). It is more preferable to have a structure represented by the formula (1) or (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表し、R3、R4、R5及びR6の4個の基の内の2~4個の基は水素を表し、R3、R4、R5及びR6の内の水素ではない基は下記式(3)で表される基を表す。 In the above formula (1), R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms, 2 to 4 groups out of 4 groups of R3, R4, R5 and R6 represent hydrogen, and R3 , R4, R5 and R6 which are not hydrogen represent a group represented by the following formula (3).
 上記式(1)中のR3、R4、R5及びR6の4個の基の全てが水素であってもよい。R3、R4、R5及びR6の4個の基の内の1個又は2個が下記式(3)で表される基であり、かつR3、R4、R5及びR6の4個の基の内の下記式(3)で表される基ではない基は水素であってもよい。 All of the four groups R3, R4, R5 and R6 in the above formula (1) may be hydrogen. One or two of the four groups of R3, R4, R5 and R6 are groups represented by the following formula (3), and among the four groups of R3, R4, R5 and R6 The group that is not a group represented by the following formula (3) may be hydrogen.
Figure JPOXMLDOC01-appb-C000002
 上記式(3)中、R7は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000002
In the above formula (3), R7 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(2)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表し、R53、R54、R55、R56、R57及びR58の6個の基の内の4~6個の基は水素を表し、R53、R54、R55、R56、R57及びR58の内の水素ではない基は、下記式(4)で表される基を表す。 In the above formula (2), R51 and R52 each represents an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R53, R54, R55, R56, R57 and R58 are hydrogen. The group which is not hydrogen among R53, R54, R55, R56, R57 and R58 represents a group represented by the following formula (4).
 上記式(2)中のR53、R54、R55、R56、R57及びR58の6個の基の全てが水素であってもよい。R53、R54、R55、R56、R57及びR58の6個の基の内の1個又は2個が下記式(4)で表される基であり、かつR53、R54、R55、R56、R57及びR58の内の下記式(4)で表される基ではない基は水素であってもよい。 All of the six groups of R53, R54, R55, R56, R57 and R58 in the above formula (2) may be hydrogen. One or two of the six groups of R53, R54, R55, R56, R57 and R58 are groups represented by the following formula (4), and R53, R54, R55, R56, R57 and R58. Of these, the group that is not a group represented by the following formula (4) may be hydrogen.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式(4)中、R59は炭素数1~5のアルキレン基を表す。 In the above formula (4), R59 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(5)中、R101及びR102はそれぞれ炭素数1~5のアルキレン基を表す。R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の内の6~8個の基は水素を表す。 In the above formula (5), R101 and R102 each represent an alkylene group having 1 to 5 carbon atoms. Six to eight groups out of the eight groups R103, R104, R105, R106, R107, R108, R109 and R110 represent hydrogen.
 上記式(5)中のR103、R104、R105、R106、R107、R108、R109及びR110の内の水素ではない基は、下記式(6)で表される基を表す。R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の全てが水素であってもよい。R103、R104、R105、R106、R107、R108、R109及びR110の8個の基の内の1個又は2個が下記式(6)で表される基であり、かつR103、R104、R105、R106、R107、R108、R109及びR110の内の下記式(6)で表される基ではない基は水素であってもよい。 The non-hydrogen group in R103, R104, R105, R106, R107, R108, R109, and R110 in the above formula (5) represents a group represented by the following formula (6). All of the eight groups of R103, R104, R105, R106, R107, R108, R109 and R110 may be hydrogen. One or two of the eight groups of R103, R104, R105, R106, R107, R108, R109 and R110 are groups represented by the following formula (6), and R103, R104, R105, R106 , R107, R108, R109 and R110, which is not a group represented by the following formula (6), may be hydrogen.
Figure JPOXMLDOC01-appb-C000006
 上記式(6)中、R111は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000006
In the above formula (6), R111 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000007
 上記式(7)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000007
In the above formula (7), R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(8)中、R3及びR4はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (8), R3 and R4 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(1)又は(2)で表される構造を有するエピスルフィド化合物は、チイラン基(エピスルフィド基)を少なくとも2つ有する。また、チイラン基を有する基が、ベンゼン環又はナフタレン環に結合されている。このような構造を有するので、異方性導電材料を加熱することにより、異方性導電材料を低温で速やかに硬化させることができる。なお、本明細書において、低温とは200℃以下の温度を意味する。 The episulfide compound having a structure represented by the above formula (1) or (2) has at least two thiirane groups (episulfide groups). In addition, a group having a thiirane group is bonded to a benzene ring or a naphthalene ring. Since it has such a structure, the anisotropic conductive material can be rapidly cured at a low temperature by heating the anisotropic conductive material. In this specification, low temperature means a temperature of 200 ° C. or lower.
 上記式(1)、(2)、(5)、(7)又は(8)で表される構造を有するエピスルフィド化合物は、上記式(1)、(2)、(5)、(7)又は(8)中のチイラン基がエポキシ基である化合物に比べて、反応性が高い。これは、チイラン基はエポキシ基よりも、開環しやすく、反応性が高いためである。上記式(1)、(2)、(5)、(7)又は(8)で表される構造を有するエピスルフィド化合物は反応性が高いので、異方性導電材料を低温で速やかに硬化させることができる。特に、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物は反応性がかなり高いので、異方性導電材料を低温で速やかに硬化させることができる。 The episulfide compound having the structure represented by the above formula (1), (2), (5), (7) or (8) is represented by the above formula (1), (2), (5), (7) or The reactivity is high compared with the compound whose thiirane group in (8) is an epoxy group. This is because a thiirane group is easier to open a ring and has higher reactivity than an epoxy group. Since the episulfide compound having the structure represented by the above formula (1), (2), (5), (7) or (8) has high reactivity, the anisotropic conductive material is rapidly cured at a low temperature. Can do. In particular, since an episulfide compound having a structure represented by the above formula (1) or (2) has a considerably high reactivity, an anisotropic conductive material can be rapidly cured at a low temperature.
 上記式(1)中のR1及びR2、上記式(2)中のR51及びR52、上記式(3)中のR7、及び上記式(4)中のR59、上記式(5)中のR101及びR102、上記式(6)中のR111、上記式(7)中のR1及びR2、上記式(8)中のR3及びR4は、炭素数1~5のアルキレン基である。該アルキレン基の炭素数が5を超えると、上記エピスルフィド化合物の硬化速度が遅くなる傾向がある。 R1 and R2 in the above formula (1), R51 and R52 in the above formula (2), R7 in the above formula (3), R59 in the above formula (4), R101 in the above formula (5) and R102, R111 in the above formula (6), R1 and R2 in the above formula (7), and R3 and R4 in the above formula (8) are alkylene groups having 1 to 5 carbon atoms. If the alkylene group has more than 5 carbon atoms, the curing rate of the episulfide compound tends to be slow.
 上記式(1)中のR1及びR2、上記式(2)中のR51及びR52、上記式(3)中のR7、及び上記式(4)中のR59、上記式(5)中のR101及びR102、上記式(6)中のR111、上記式(7)中のR1及びR2、上記式(8)中のR3及びR4はそれぞれ、炭素数1~3のアルキレン基であることが好ましく、メチレン基であることがより好ましい。上記アルキレン基は直鎖構造を有するアルキレン基であってもよく、分岐構造を有するアルキレン基であってもよい。 R1 and R2 in the above formula (1), R51 and R52 in the above formula (2), R7 in the above formula (3), R59 in the above formula (4), R101 in the above formula (5) and R102, R111 in the above formula (6), R1 and R2 in the above formula (7), and R3 and R4 in the above formula (8) are each preferably an alkylene group having 1 to 3 carbon atoms. More preferably, it is a group. The alkylene group may be an alkylene group having a straight chain structure or an alkylene group having a branched structure.
 上記(1)で表される構造は、下記式(1A)で表される構造であることが好ましい。下記式(1A)で表される構造を有するエピスルフィド化合物は、硬化性に優れている。 The structure represented by the above (1) is preferably a structure represented by the following formula (1A). An episulfide compound having a structure represented by the following formula (1A) is excellent in curability.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(1A)中、R1及びR2はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (1A), R1 and R2 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(1)で表される構造は、下記式(1B)で表される構造であることがより好ましい。下記式(1B)で表される構造を有するエピスルフィド化合物は、硬化性により一層優れている。 The structure represented by the above formula (1) is more preferably a structure represented by the following formula (1B). An episulfide compound having a structure represented by the following formula (1B) is more excellent in curability.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記(2)で表される構造は、下記式(2A)で表される構造であることが好ましい。下記式(2A)で表される構造を有するエピスルフィド化合物は、硬化性に優れている。 The structure represented by the above (2) is preferably a structure represented by the following formula (2A). An episulfide compound having a structure represented by the following formula (2A) is excellent in curability.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(2A)中、R51及びR52はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (2A), R51 and R52 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(2)で表される構造は、下記式(2B)で表される構造であることがより好ましい。下記式(2B)で表される構造を有するエピスルフィド化合物は、硬化性により一層優れている。 The structure represented by the above formula (2) is more preferably a structure represented by the following formula (2B). An episulfide compound having a structure represented by the following formula (2B) is more excellent in curability.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記エポキシ化合物は特に限定されない。エポキシ化合物として、従来公知のエポキシ化合物を使用できる。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The epoxy compound is not particularly limited. A conventionally well-known epoxy compound can be used as an epoxy compound. As for the said epoxy compound, only 1 type may be used and 2 or more types may be used together.
 上記エポキシ化合物としては、エポキシ基を有するフェノキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。 Examples of the epoxy compound include phenoxy resin having an epoxy group, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, fluorene type epoxy resin, phenol aralkyl type epoxy. Examples thereof include a resin, a naphthol aralkyl type epoxy resin, a dicyclopentadiene type epoxy resin, an anthracene type epoxy resin, an epoxy resin having an adamantane skeleton, an epoxy resin having a tricyclodecane skeleton, and an epoxy resin having a triazine nucleus in the skeleton.
 上記エポキシ化合物の具体例としては、例えばエピクロルヒドリンと、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂又はビスフェノールD型エポキシ樹脂等とから誘導されるビスフェノール型エポキシ樹脂、並びにエピクロルヒドリンとフェノールノボラック又はクレゾールノボラックとから誘導されるエポキシノボラック樹脂が挙げられる。グリシジルアミン、グリシジルエステル、並びに脂環式又は複素環式等の1分子内に2個以上のオキシラン基を有する各種のエポキシ化合物を用いてもよい。 Specific examples of the epoxy compound include, for example, epichlorohydrin and bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol D type epoxy resin and the like, bisphenol type epoxy resin, and epichlorohydrin and phenol novolac or cresol novolak. And epoxy novolac resins derived from Various epoxy compounds having two or more oxirane groups in one molecule such as glycidylamine, glycidyl ester, and alicyclic or heterocyclic may be used.
 上記硬化性化合物は、上記式(1)、(2)、(5)、(7)又は(8)で表される構造におけるチイラン基をエポキシ基に置き換えた構造を有するエポキシ化合物を含んでいてもよい。この場合に、上記式(3)、(4)及び(6)で表される構造も、チイラン基をエポキシ基に置き換えた構造であることが好ましい。上記硬化性化合物は、下記式(11)又は(12)で表されるエポキシ化合物を含んでいてもよい。上記硬化性化合物は、上記式(1)又は(2)で表されるエピスルフィド化合物と、下記式(11)又は(12)で表されるエポキシ化合物とを含んでいることが好ましい。 The curable compound includes an epoxy compound having a structure in which the thiirane group in the structure represented by the formula (1), (2), (5), (7) or (8) is replaced with an epoxy group. Also good. In this case, the structures represented by the above formulas (3), (4) and (6) are also preferably structures in which the thiirane group is replaced with an epoxy group. The said curable compound may contain the epoxy compound represented by following formula (11) or (12). The curable compound preferably contains an episulfide compound represented by the above formula (1) or (2) and an epoxy compound represented by the following formula (11) or (12).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記式(11)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表し、R13、R14、R15及びR16の4個の基の内の2~4個の基は水素を表し、R13、R14、R15及びR16の内の水素ではない基は下記式(13)で表される基を表す。 In the above formula (11), R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms, 2 to 4 groups out of 4 groups of R13, R14, R15 and R16 represent hydrogen, and R13 , R14, R15 and R16, which are not hydrogen, represent a group represented by the following formula (13).
 上記式(11)中のR13、R14、R15及びR16の4個の基の全てが水素であってもよい。R13、R14、R15及びR16の4個の基の内の1個又は2個が下記式(13)で表される基であり、かつR13、R14、R15及びR16の4個の基の内の下記式(13)で表される基ではない基は水素であってもよい。 All four groups of R13, R14, R15, and R16 in the above formula (11) may be hydrogen. One or two of the four groups of R13, R14, R15 and R16 is a group represented by the following formula (13), and among the four groups of R13, R14, R15 and R16 The group that is not a group represented by the following formula (13) may be hydrogen.
Figure JPOXMLDOC01-appb-C000014
 上記式(13)中、R17は炭素数1~5のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000014
In the above formula (13), R17 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 上記式(12)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表し、R63、R64、R65、R66、R67及びR68の6個の基の内の4~6個の基は水素を表し、R63、R64、R65、R66、R67及びR68の内の水素ではない基は、下記式(14)で表される基を表す。 In the above formula (12), R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms, and 4 to 6 groups out of 6 groups of R63, R64, R65, R66, R67 and R68 are hydrogen. The group which is not hydrogen among R63, R64, R65, R66, R67 and R68 represents a group represented by the following formula (14).
 上記式(12)中のR63、R64、R65、R66、R67及びR68の6個の基の全てが水素であってもよい。R63、R64、R65、R66、R67及びR68の6個の基の内の1個又は2個が下記式(14)で表される基であり、かつR63、R64、R65、R66、R67及びR68の6個の基の内の下記式(14)で表される基ではない基は水素であってもよい。 All of the six groups of R63, R64, R65, R66, R67 and R68 in the above formula (12) may be hydrogen. One or two of the six groups R63, R64, R65, R66, R67 and R68 are groups represented by the following formula (14), and R63, R64, R65, R66, R67 and R68. Of these six groups, a group that is not a group represented by the following formula (14) may be hydrogen.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(14)中、R69は炭素数1~5のアルキレン基を表す。 In the above formula (14), R69 represents an alkylene group having 1 to 5 carbon atoms.
 上記式(11)中のR11及びR12、上記式(12)中のR61及びR62、上記式(13)中のR17、及び上記式(14)中のR69は、炭素数1~5のアルキレン基である。該アルキレン基の炭素数が5を超えると、上記式(11)又は(12)で表されるエポキシ化合物の硬化速度が遅くなりやすい。 R11 and R12 in the formula (11), R61 and R62 in the formula (12), R17 in the formula (13), and R69 in the formula (14) are alkylene groups having 1 to 5 carbon atoms. It is. If the alkylene group has more than 5 carbon atoms, the curing rate of the epoxy compound represented by the above formula (11) or (12) tends to be slow.
 上記式(11)中のR11及びR12、上記式(12)中のR61及びR62、上記式(13)中のR17、及び上記式(14)中のR69はそれぞれ、炭素数1~3のアルキレン基であることが好ましく、メチレン基であることがより好ましい。上記アルキレン基は直鎖構造を有するアルキレン基であってもよく、分岐構造を有するアルキレン基であってもよい。 R11 and R12 in the above formula (11), R61 and R62 in the above formula (12), R17 in the above formula (13), and R69 in the above formula (14) are each an alkylene having 1 to 3 carbon atoms. It is preferably a group, more preferably a methylene group. The alkylene group may be an alkylene group having a straight chain structure or an alkylene group having a branched structure.
 上記(11)で表される構造は、下記式(11A)で表される構造であることが好ましい。下記式(11A)で表される構造を有するエポキシ化合物は、市販されており、容易に入手できる。 The structure represented by the above (11) is preferably a structure represented by the following formula (11A). An epoxy compound having a structure represented by the following formula (11A) is commercially available and can be easily obtained.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(11A)中、R11及びR12はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (11A), R11 and R12 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(11)で表される構造は、下記式(11B)で表される構造であることがより好ましい。下記式(11B)で表される構造を有するエポキシ化合物は、レゾルシノールジグリシジルエーテルである。レゾルシノールジグリシジルエーテルは市販されており、容易に入手できる。 The structure represented by the above formula (11) is more preferably a structure represented by the following formula (11B). The epoxy compound having a structure represented by the following formula (11B) is resorcinol diglycidyl ether. Resorcinol diglycidyl ether is commercially available and can be easily obtained.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 上記(12)で表される構造は、下記式(12A)で表される構造であることが好ましい。下記式(12A)で表される構造を有するエポキシ化合物は、容易に入手できる。 The structure represented by (12) is preferably a structure represented by the following formula (12A). An epoxy compound having a structure represented by the following formula (12A) can be easily obtained.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 上記式(12A)中、R61及びR62はそれぞれ炭素数1~5のアルキレン基を表す。 In the above formula (12A), R61 and R62 each represent an alkylene group having 1 to 5 carbon atoms.
 上記式(12)で表される構造は、下記式(12B)で表される構造であることがより好ましい。下記式(12B)で表される構造を有するエポキシ化合物は、容易に入手できる。 The structure represented by the above formula (12) is more preferably a structure represented by the following formula (12B). An epoxy compound having a structure represented by the following formula (12B) can be easily obtained.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記式(1)又は(2)で表される構造を有するエピスルフィド化合物と、上記式(11)又は(12)で表されるエポキシ化合物との混合物(以下、混合物Aと略記することがある)の合計100重量%中、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が10~50重量%、かつ上記式(11)又は(12)で表されるエポキシ化合物の含有量が90~50重量%であることが好ましく、上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が20~30重量%、かつ上記式(11)又は(12)で表されるエポキシ化合物の含有量が80~70重量%であることがより好ましい。 A mixture of an episulfide compound having a structure represented by the above formula (1) or (2) and an epoxy compound represented by the above formula (11) or (12) (hereinafter sometimes abbreviated as “mixture A”) In which the content of the episulfide compound having the structure represented by the formula (1) or (2) is 10 to 50% by weight, and the epoxy represented by the formula (11) or (12) The content of the compound is preferably 90 to 50% by weight, the content of the episulfide compound having a structure represented by the above formula (1) or (2) is 20 to 30% by weight, and the above formula (11) Alternatively, the content of the epoxy compound represented by (12) is more preferably 80 to 70% by weight.
 上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が少なすぎると、上記混合物Aの硬化速度が遅くなる傾向がある。上記式(1)又は(2)で表される構造を有するエピスルフィド化合物の含有量が多すぎると、上記混合物Aの粘度が高くなりすぎたり、上記混合物Aが固体になったりすることがある。 When the content of the episulfide compound having the structure represented by the above formula (1) or (2) is too small, the curing rate of the mixture A tends to be slow. When there is too much content of the episulfide compound which has a structure represented by the said Formula (1) or (2), the viscosity of the said mixture A will become high too much, or the said mixture A may become a solid.
 上記混合物Aの製造方法は特に限定されない。この製造方法として、例えば、上記式(11)又は(12)で表されるエポキシ化合物を用意し、該エポキシ化合物の一部のエポキシ基をチイラン基に変換する製造方法が挙げられる。 The method for producing the mixture A is not particularly limited. Examples of the production method include a production method in which an epoxy compound represented by the above formula (11) or (12) is prepared and a part of the epoxy group of the epoxy compound is converted into a thiirane group.
 上記混合物Aの製造方法は、硫化剤を含む第1の溶液に、上記式(11)又は(12)で表されるエポキシ化合物又は該エポキシ化合物を含む溶液を連続的又は断続的に添加した後、硫化剤を含む第2の溶液を連続的又は断続的にさらに添加する方法が好ましい。この方法により、上記エポキシ化合物の一部のエポキシ基をチイラン基に変換できる。この結果、上記混合物Aを得ることができる。上記硫化剤としては、チオシアン酸塩類、チオ尿素類、ホスフィンサルファイド、ジメチルチオホルムアミド及びN-メチルベンゾチアゾール-2-チオン等が挙げられる。上記チオシアン酸塩類としては、チオシアン酸ナトリウム、チオシアン酸カリウム及びチオシアン酸ナトリウム等が挙げられる。 In the method for producing the mixture A, the epoxy compound represented by the above formula (11) or (12) or the solution containing the epoxy compound is continuously or intermittently added to the first solution containing the sulfurizing agent. A method in which the second solution containing the sulfurizing agent is further added continuously or intermittently is preferable. By this method, some epoxy groups of the epoxy compound can be converted into thiirane groups. As a result, the mixture A can be obtained. Examples of the sulfurizing agent include thiocyanates, thioureas, phosphine sulfide, dimethylthioformamide, N-methylbenzothiazole-2-thione, and the like. Examples of the thiocyanates include sodium thiocyanate, potassium thiocyanate, and sodium thiocyanate.
 上記硬化性化合物は、下記式(21)で表される構造を有するエポキシ化合物の単量体、該エポキシ化合物が少なくとも2個結合された多量体、又は該単量体と該多量体との混合物を含んでいてもよい。 The curable compound is a monomer of an epoxy compound having a structure represented by the following formula (21), a multimer in which at least two epoxy compounds are bonded, or a mixture of the monomer and the multimer. May be included.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(21)中、R1は炭素数1~5のアルキレン基を表し、R2は炭素数1~5のアルキレン基を表し、R3は水素原子、炭素数1~5のアルキル基又は下記式(22)で表される構造を表し、R4は水素原子、炭素数1~5のアルキル基又は下記式(23)で表される構造を表す。 In the above formula (21), R1 represents an alkylene group having 1 to 5 carbon atoms, R2 represents an alkylene group having 1 to 5 carbon atoms, R3 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or the following formula ( 22), R4 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a structure represented by the following formula (23).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式(22)中、R5は炭素数1~5のアルキレン基を表す。 In the above formula (22), R5 represents an alkylene group having 1 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記式(23)中、R6は炭素数1~5のアルキレン基を表す。 In the above formula (23), R6 represents an alkylene group having 1 to 5 carbon atoms.
 上記式(21)で表される構造を有するエポキシ化合物は、不飽和二重結合と、少なくとも2個のエポキシ基とを有することを特徴とする。上記式(21)で表される構造を有するエポキシ化合物の使用により、異方性導電材料を低温で速やかに硬化させることができる。 The epoxy compound having a structure represented by the above formula (21) has an unsaturated double bond and at least two epoxy groups. By using an epoxy compound having a structure represented by the above formula (21), the anisotropic conductive material can be rapidly cured at a low temperature.
 上記硬化性化合物は、下記式(31)で表される構造を有する化合物の単量体、該化合物が少なくとも2個結合された多量体、又は該単量体と該多量体との混合物を含んでいてもよい。 The curable compound includes a monomer having a structure represented by the following formula (31), a multimer in which at least two of the compounds are bonded, or a mixture of the monomer and the multimer. You may go out.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記式(31)中、R1は水素原子もしくは炭素数1~5のアルキル基又は下記式(32)で表される構造を表し、R2は炭素数1~5のアルキレン基を表し、R3は炭素数1~5のアルキレン基を表し、X1は酸素原子又は硫黄原子を表し、X2は酸素原子又は硫黄原子を表す。 In the above formula (31), R1 represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms or a structure represented by the following formula (32), R2 represents an alkylene group having 1 to 5 carbon atoms, and R3 represents carbon X 1 represents an oxygen atom or a sulfur atom, and X 2 represents an oxygen atom or a sulfur atom.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式(32)中、R4は炭素数1~5のアルキレン基を表し、X3は酸素原子又は硫黄原子を表す。 In the above formula (32), R4 represents an alkylene group having 1 to 5 carbon atoms, and X3 represents an oxygen atom or a sulfur atom.
 上記式(31)で表される構造を有する化合物に相当するエポキシ化合物は、例えば、以下のようにして合成できる。 The epoxy compound corresponding to the compound having the structure represented by the above formula (31) can be synthesized as follows, for example.
 原料化合物である、水酸基を有するフルオレン化合物と、エピクロルヒドリンと、水酸化ナトリウムと、メタノールとを混合し、冷却し、反応させる。その後、水酸化ナトリウム水溶液を滴下する。滴下の後、さらに反応させ、反応液を得る。次に、反応液に水とトルエンとを加え、トルエン層を取り出す。トルエン層を水で洗浄した後、乾燥し、水と溶媒とを除去する。このようにして、上記式(31)で表される構造を有する化合物に相当するエポキシ化合物を容易に得ることができる。なお、原料化合物である、水酸基を有するフルオレン化合物は、例えばJFEケミカル社等から市販されている。 A raw material compound, a fluorene compound having a hydroxyl group, epichlorohydrin, sodium hydroxide, and methanol are mixed, cooled, and reacted. Thereafter, an aqueous sodium hydroxide solution is dropped. After dripping, it is further reacted to obtain a reaction solution. Next, water and toluene are added to the reaction solution, and the toluene layer is taken out. The toluene layer is washed with water and then dried to remove water and the solvent. In this way, an epoxy compound corresponding to the compound having the structure represented by the formula (31) can be easily obtained. In addition, the fluorene compound which has a hydroxyl group which is a raw material compound is marketed, for example from JFE Chemical Company etc., for example.
 また、上記式(31)で表される構造を有する化合物に相当するチイラン基含有化合物は、上記式(31)で表される構造を有する化合物に相当するエポキシ化合物のエポキシ基を、チイラン基に変換することにより合成できる。例えば、上記硫化剤を含む溶液に、原料化合物であるエポキシ化合物又は該エポキシ化合物を含む溶液を添加した後、上記硫化剤を含む溶液をさらに添加することにより、エポキシ基をチイラン基に容易に変換できる。 Further, the thiirane group-containing compound corresponding to the compound having the structure represented by the above formula (31) has the epoxy group of the epoxy compound corresponding to the compound having the structure represented by the above formula (31) as a thiirane group. It can be synthesized by conversion. For example, an epoxy compound as a raw material compound or a solution containing the epoxy compound is added to the solution containing the sulfurizing agent, and then the solution containing the sulfurizing agent is further added to easily convert the epoxy group to a thiirane group. it can.
 上記硬化性化合物は、窒素原子を含む複素環を有するエポキシ化合物を含んでいてもよい。上記窒素原子を含む複素環を有するエポキシ化合物は、下記式(41)で表されるエポキシ化合物、又は下記式(42)で表されるエポキシ化合物であることが好ましい。このような硬化性化合物の使用により、異方性導電材料の硬化速度をより一層速くし、異方性導電材料の硬化物の耐熱性をより一層高めることができる。 The curable compound may include an epoxy compound having a heterocyclic ring containing a nitrogen atom. The epoxy compound having a heterocyclic ring containing a nitrogen atom is preferably an epoxy compound represented by the following formula (41) or an epoxy compound represented by the following formula (42). By using such a curable compound, the curing rate of the anisotropic conductive material can be further increased, and the heat resistance of the cured product of the anisotropic conductive material can be further enhanced.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 上記式(41)中、R1~R3はそれぞれ炭素数1~5のアルキレン基を表し、Zはエポキシ基又はヒドロキシメチル基を表す。R21~R23は同一であってもよく、異なっていてもよい。 In the above formula (41), R1 to R3 each represent an alkylene group having 1 to 5 carbon atoms, and Z represents an epoxy group or a hydroxymethyl group. R21 to R23 may be the same or different.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 上記式(42)中、R1~R3はそれぞれ炭素数1~5のアルキレン基を示し、p、q及びrはそれぞれ1~5の整数を表し、R4~R6はそれぞれ炭素数1~5のアルキレン基を表す。R1~R3は同一であってもよく、異なっていてもよい。p、q及びrは同一であってもよく、異なっていてもよい。R4~6は同一であってもよく、異なっていてもよい。 In the above formula (42), R1 to R3 each represents an alkylene group having 1 to 5 carbon atoms, p, q and r each represents an integer of 1 to 5, and R4 to R6 each represents an alkylene group having 1 to 5 carbon atoms. Represents a group. R1 to R3 may be the same or different. p, q and r may be the same or different. R4 to R6 may be the same or different.
 上記窒素原子を含む複素環を有するエポキシ化合物は、トリグリシジルイソシアヌレート、又はトリスヒドロキシエチルイソシアヌレートトリグリシジルエーテルであることが好ましい。これらの硬化性化合物の使用により、異方性導電材料の硬化速度をさらに一層速くすることができる。 The epoxy compound having a heterocyclic ring containing a nitrogen atom is preferably triglycidyl isocyanurate or trishydroxyethyl isocyanurate triglycidyl ether. By using these curable compounds, the curing rate of the anisotropic conductive material can be further increased.
 上記硬化性化合物は、芳香族環を有するエポキシ化合物を含むことが好ましい。芳香族環を有するエポキシ化合物の使用により、異方性導電材料の硬化速度をより一層速くし、異方性導電材料を塗布しやすくすることができる。異方性導電材料の塗布性をより一層高める観点からは、上記芳香族環は、ベンゼン環、ナフタレン環又はアントラセン環であることが好ましい。上記芳香族環を有するエポキシ化合物としては、レゾルシノールジグリシジルエーテル又は1,6-ナフタレンジグリシジルエーテルが挙げられる。なかでも、上記式(11B)で表される構造を有するレゾルシノールジグリシジルエーテルが特に好ましい。レゾルシノールジグリシジルエーテルの使用により、異方性導電材料の硬化速度を速くし、異方性導電材料を塗布しやすくすることができる。 The curable compound preferably contains an epoxy compound having an aromatic ring. By using an epoxy compound having an aromatic ring, the curing rate of the anisotropic conductive material can be further increased and the anisotropic conductive material can be easily applied. From the viewpoint of further improving the applicability of the anisotropic conductive material, the aromatic ring is preferably a benzene ring, a naphthalene ring or an anthracene ring. Examples of the epoxy compound having an aromatic ring include resorcinol diglycidyl ether and 1,6-naphthalenediglycidyl ether. Among these, resorcinol diglycidyl ether having a structure represented by the above formula (11B) is particularly preferable. By using resorcinol diglycidyl ether, the curing rate of the anisotropic conductive material can be increased and the anisotropic conductive material can be easily applied.
 [光硬化性化合物]
 本発明に係る硬化性化合物は、光の照射により硬化するように、光硬化性化合物を含有していてもよい。光の照射により硬化性化合物を半硬化させ、硬化性化合物の流動性を低下させることができる。
[Photocurable compound]
The curable compound according to the present invention may contain a photocurable compound so as to be cured by light irradiation. The curable compound can be semi-cured by light irradiation, and the fluidity of the curable compound can be reduced.
 上記光硬化性化合物としては特に限定されず、(メタ)アクリル樹脂及び環状エーテル基含有樹脂等が挙げられる。 The photocurable compound is not particularly limited, and examples thereof include (meth) acrylic resins and cyclic ether group-containing resins.
 上記(メタ)アクリル樹脂として、例えば、(メタ)アクリル酸と水酸基を有する化合物とを反応させて得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させて得られるエポキシ(メタ)アクリレート、イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させて得られるウレタン(メタ)アクリレート等が好適に用いられる。 Examples of the (meth) acrylic resin include an ester compound obtained by reacting (meth) acrylic acid and a compound having a hydroxyl group, and an epoxy (meth) acrylate obtained by reacting (meth) acrylic acid and an epoxy compound. Urethane (meth) acrylate obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with isocyanate is preferably used.
 上述した光硬化性化合物以外の光硬化性化合物が含まれる場合には、該光硬化性化合物は、架橋性化合物であってもよく、非架橋性化合物であってもよい。 When a photocurable compound other than the photocurable compounds described above is included, the photocurable compound may be a crosslinkable compound or a non-crosslinkable compound.
 上記架橋性化合物の具体例としては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、グリセリンメタクリレートアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジビニルベンゼン、ポリエステル(メタ)アクリレート、及びウレタン(メタ)アクリレート等が挙げられる。 Specific examples of the crosslinkable compound include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, (poly ) Ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, glycerol methacrylate acrylate, pentaerythritol tri (meth) acrylate, tri Examples include methylolpropane trimethacrylate, allyl (meth) acrylate, vinyl (meth) acrylate, divinylbenzene, polyester (meth) acrylate, and urethane (meth) acrylate.
 上記非架橋性化合物の具体例としては、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート及びテトラデシル(メタ)アクリレート等が挙げられる。 Specific examples of the non-crosslinkable compound include ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) ) Acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, nonyl (meth) acrylate, decyl (Meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, and the like.
 [光及び熱硬化性化合物]
 上記硬化性化合物が例えば熱硬化性化合物及び光重合性化合物を含む場合には、異方性導電材料の硬化を容易に制御したり、接続構造体の導通信頼性をより一層高めたりする観点からは、上記硬化性化合物は、エポキシ基及びチイラン基の内の少なくとも一種の基と、(メタ)アクリロイル基とを有する光及び熱硬化性化合物を含むことが好ましい。上記硬化性化合物は、エポキシ基と、(メタ)アクリロイル基とを有する光及び熱硬化性化合物(以下、部分(メタ)アクリレート化エポキシ樹脂ともいう)を含むことが好ましい。上記(メタ)アクリレートは、アクリレート又はメタクリレートを意味する。
[Light and thermosetting compounds]
In the case where the curable compound contains, for example, a thermosetting compound and a photopolymerizable compound, from the viewpoint of easily controlling the curing of the anisotropic conductive material or further improving the conduction reliability of the connection structure. The curable compound preferably contains a light and thermosetting compound having at least one of an epoxy group and a thiirane group and a (meth) acryloyl group. It is preferable that the said curable compound contains the light and thermosetting compound (henceforth a partial (meth) acrylated epoxy resin) which has an epoxy group and a (meth) acryloyl group. The (meth) acrylate means acrylate or methacrylate.
 上記部分(メタ)アクリレート化エポキシ樹脂は、例えば、エポキシ樹脂と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応することにより得られる。エポキシ基の20%以上が(メタ)アクリロイル基に変換され(転化率)、部分(メタ)アクリル化されていることが好ましい。エポキシ基の50%が(メタ)アクリロイル基に変換されていることがより好ましい。 The partial (meth) acrylated epoxy resin can be obtained, for example, by reacting an epoxy resin and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method. It is preferable that 20% or more of the epoxy groups are converted to (meth) acryloyl groups (conversion rate) and partially (meth) acrylated. More preferably, 50% of the epoxy groups are converted to (meth) acryloyl groups.
 異方性導電材料の硬化性を高める観点からは、上記硬化性化合物100重量%中、上記部分(メタ)アクリレート化エポキシ樹脂の含有量の好ましい下限は0.1重量%、より好ましい下限は0.5重量%、好ましい上限は2重量%、より好ましい上限は1.5重量%である。 From the viewpoint of increasing the curability of the anisotropic conductive material, the preferable lower limit of the content of the partially (meth) acrylated epoxy resin is 0.1% by weight and the more preferable lower limit is 0 in 100% by weight of the curable compound. 0.5 wt%, the preferred upper limit is 2 wt%, and the more preferred upper limit is 1.5 wt%.
 上記エポキシ(メタ)アクリレートとしては、ビスフェノール型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、カルボン酸無水物変性エポキシ(メタ)アクリレート、及びフェノールノボラック型エポキシ(メタ)アクリレート等が挙げられる。 Examples of the epoxy (meth) acrylate include bisphenol type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, carboxylic acid anhydride-modified epoxy (meth) acrylate, and phenol novolac type epoxy (meth) acrylate. .
 (熱硬化剤)
 上記熱硬化剤は特に限定されない。上記熱硬化剤として、従来公知の熱硬化剤を用いることができる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤及び酸無水物等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting agent)
The said thermosetting agent is not specifically limited. A conventionally known thermosetting agent can be used as the thermosetting agent. Examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents, and acid anhydrides. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.
 異方性導電材料を低温でより一層速やかに硬化させることができるので、上記熱硬化剤は、イミダゾール硬化剤、ポリチオール硬化剤又はアミン硬化剤であることが好ましい。また、異方性導電材料の保存安定性を高めることができるので、潜在性の硬化剤が好ましい。該潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性ポリチオール硬化剤又は潜在性アミン硬化剤であることが好ましい。上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。 Since the anisotropic conductive material can be cured more rapidly at a low temperature, the thermosetting agent is preferably an imidazole curing agent, a polythiol curing agent or an amine curing agent. In addition, a latent curing agent is preferable because the storage stability of the anisotropic conductive material can be improved. The latent curing agent is preferably a latent imidazole curing agent, a latent polythiol curing agent or a latent amine curing agent. The thermosetting agent may be coated with a polymer material such as polyurethane resin or polyester resin.
 上記イミダゾール硬化剤としては、特に限定されず、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン及び2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物等が挙げられる。 The imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.
 上記ポリチオール硬化剤としては、特に限定されず、トリメチロールプロパン トリス-3-メルカプトプロピオネート、ペンタエリスリトール テトラキス-3-メルカプトプロピオネート及びジペンタエリスリトール ヘキサ-3-メルカプトプロピオネート等が挙げられる。 The polythiol curing agent is not particularly limited, and examples thereof include trimethylolpropane, tris-3-mercaptopropionate, pentaerythritol, tetrakis-3-mercaptopropionate, and dipentaerythritol, hexa-3-mercaptopropionate. .
 上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9-ビス(3-アミノプロピル)-2,4,8,10-テトラスピロ[5.5]ウンデカン、ビス(4-アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。 The amine curing agent is not particularly limited, and hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5]. Examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.
 上記熱硬化剤の含有量は特に限定されない。上記硬化性化合物の合計100重量部に対して、上記熱硬化剤の含有量の好ましい下限は5重量部、より好ましい下限は10重量部、好ましい上限は30重量部、より好ましい上限は20重量部である。上記熱硬化剤の含有量が上記好ましい下限及び上限を満たすと、異方性導電材料を充分に熱硬化させることができる。 The content of the thermosetting agent is not particularly limited. A preferable lower limit of the content of the thermosetting agent is 5 parts by weight, a more preferable lower limit is 10 parts by weight, a preferable upper limit is 30 parts by weight, and a more preferable upper limit is 20 parts by weight with respect to a total of 100 parts by weight of the curable compound. It is. If content of the said thermosetting agent satisfy | fills the said preferable minimum and upper limit, an anisotropic conductive material can fully be thermosetted.
 (光硬化開始剤)
 上記光硬化開始剤は特に限定されない。上記光硬化開始剤として、従来公知の光硬化開始剤を用いることができる。上記光硬化開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Photocuring initiator)
The photocuring initiator is not particularly limited. A conventionally known photocuring initiator can be used as the photocuring initiator. As for the said photocuring initiator, only 1 type may be used and 2 or more types may be used together.
 上記光硬化開始剤としては、特に限定されず、アセトフェノン光硬化開始剤、ベンゾフェノン光硬化開始剤、チオキサントン、ケタール光硬化開始剤、ハロゲン化ケトン、アシルホスフィノキシド及びアシルホスフォナート等が挙げられる。 The photocuring initiator is not particularly limited, and examples thereof include acetophenone photocuring initiator, benzophenone photocuring initiator, thioxanthone, ketal photocuring initiator, halogenated ketone, acyl phosphinoxide, and acyl phosphonate. .
 上記アセトフェノン光硬化開始剤の具体例としては、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、メトキシアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、及び2-ヒドロキシ-2-シクロヘキシルアセトフェノン等が挙げられる。上記ケタール光硬化開始剤の具体例としては、ベンジルジメチルケタール等が挙げられる。 Specific examples of the acetophenone photocuring initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, methoxy Examples include acetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, and 2-hydroxy-2-cyclohexylacetophenone. Specific examples of the ketal photocuring initiator include benzyldimethyl ketal.
 上記光硬化開始剤の含有量は特に限定されない。上記硬化性化合物の合計100重量部に対して、上記光硬化開始剤の含有量の好ましい下限は0.1重量部、より好ましい下限は0.2重量部、好ましい上限は2重量部、より好ましい上限は1重量部である。上記光硬化開始剤の含有量が上記好ましい下限及び上限を満たすと、異方性導電材料を適度に光硬化させることができる。異方性導電材料に光を照射し、Bステージ化することにより、異方性導電材料の流動を抑制できる。 The content of the photocuring initiator is not particularly limited. The preferable lower limit of the content of the photocuring initiator is 0.1 parts by weight, the more preferable lower limit is 0.2 parts by weight, and the preferable upper limit is 2 parts by weight with respect to the total of 100 parts by weight of the curable compound. The upper limit is 1 part by weight. If content of the said photocuring initiator satisfy | fills the said preferable minimum and upper limit, an anisotropic conductive material can be photocured moderately. By irradiating the anisotropic conductive material with light to form a B stage, the flow of the anisotropic conductive material can be suppressed.
 (導電性粒子)
 上記異方性導電材料に含まれている導電性粒子として、例えば、電極間を電気的に接続できる従来公知の導電性粒子が用いられる。上記導電性粒子は、外表面に導電層を有する粒子であることが好ましい。上記導電性粒子は、導電層の表面に絶縁粒子が付着していたり、導電層の表面が絶縁層により被覆されていたりしてもよい。この場合には、電極の接続の際の加圧により、絶縁粒子又は絶縁層が取り除かれる。
(Conductive particles)
As the conductive particles contained in the anisotropic conductive material, for example, conventionally known conductive particles capable of electrically connecting the electrodes are used. The conductive particles are preferably particles having a conductive layer on the outer surface. The conductive particles may have insulating particles attached to the surface of the conductive layer, or the surface of the conductive layer may be covered with an insulating layer. In this case, the insulating particles or the insulating layer is removed by pressurization when the electrodes are connected.
 上記導電性粒子としては、例えば、有機粒子、無機粒子、有機無機ハイブリッド粒子、もしくは金属粒子等の表面が導電層で被覆された導電性粒子、並びに実質的に金属のみで構成される金属粒子等が挙げられる。上記導電層は特に限定されない。上記導電層としては、金層、銀層、銅層、ニッケル層、パラジウム層又は錫を含有する導電層等が挙げられる。 Examples of the conductive particles include organic particles, inorganic particles, organic-inorganic hybrid particles, or conductive particles whose surfaces are covered with a conductive layer, and metal particles that are substantially composed of only metal. Is mentioned. The conductive layer is not particularly limited. Examples of the conductive layer include a gold layer, a silver layer, a copper layer, a nickel layer, a palladium layer, or a conductive layer containing tin.
 上記異方性導電材料100重量%中、上記導電性粒子の含有量は1~25重量%の範囲内であることが好ましい。上記導電性粒子の含有量のより好ましい下限は5重量%、より好ましい上限は19重量%、さらに好ましい上限は15重量%、最も好ましい上限は10重量%である。上記導電性粒子の含有量が上記範囲内にある場合には、接続されるべき上下の電極間に導電性粒子を容易に配置できる。さらに、接続されてはならない隣接する電極間が複数の導電性粒子を介して電気的に接続され難くなる。すなわち、隣り合う電極間の短絡を防止できる。 In 100% by weight of the anisotropic conductive material, the content of the conductive particles is preferably in the range of 1 to 25% by weight. The more preferable lower limit of the content of the conductive particles is 5% by weight, the more preferable upper limit is 19% by weight, the still more preferable upper limit is 15% by weight, and the most preferable upper limit is 10% by weight. When the content of the conductive particles is within the above range, the conductive particles can be easily arranged between the upper and lower electrodes to be connected. Furthermore, it becomes difficult to electrically connect adjacent electrodes that should not be connected via a plurality of conductive particles. That is, a short circuit between adjacent electrodes can be prevented.
 (他の成分)
 上記異方性導電材料は、溶剤を含有していてもよい。例えば、上記硬化性化合物が固形である場合に、固形の硬化性化合物に溶剤を添加し、溶解させることにより、硬化性化合物の分散性を高めることができる。上記溶剤としては、例えば、酢酸エチル、メチルセロソルブ、トルエン、アセトン、メチルエチルケトン、シクロヘキサン、n-ヘキサン、テトラヒドロフラン及びジエチルエーテル等が挙げられる。
(Other ingredients)
The anisotropic conductive material may contain a solvent. For example, when the curable compound is solid, the dispersibility of the curable compound can be increased by adding a solvent to the solid curable compound and dissolving it. Examples of the solvent include ethyl acetate, methyl cellosolve, toluene, acetone, methyl ethyl ketone, cyclohexane, n-hexane, tetrahydrofuran and diethyl ether.
 異方性導電材料の硬化物の接着力を高めることができるので、上記異方性導電材料は、接着力調整剤を含有することが好ましい。接着力をより一層高める観点からは、上記接着力調整剤は、シランカップリング剤であることが好ましい。 Since the adhesive force of the cured anisotropic conductive material can be increased, the anisotropic conductive material preferably contains an adhesive strength adjusting agent. From the viewpoint of further increasing the adhesive strength, the adhesive strength modifier is preferably a silane coupling agent.
 上記異方性導電材料は、フィラーを含有することが好ましい。該フィラーの使用により、異方性導電材料の硬化物の潜熱膨張を抑制できる。上記フィラーは特に限定されない。上記フィラーとしては、シリカ、窒化アルミニウム及びアルミナ等が挙げられる。上記フィラーは1種のみが用いられてもよく、2種以上が併用されてもよい。 The anisotropic conductive material preferably contains a filler. By using the filler, latent heat expansion of the cured product of the anisotropic conductive material can be suppressed. The filler is not particularly limited. Examples of the filler include silica, aluminum nitride, and alumina. As for the said filler, only 1 type may be used and 2 or more types may be used together.
 上記フィラーの含有量は特に限定されない。上記硬化性化合物の合計100重量部に対して、上記フィラーの含有量の好ましい下限は5重量部、より好ましい下限は15重量部、好ましい上限は70重量部、より好ましい上限は50重量部である。上記フィラーの含有量が上記好ましい下限及び上限を満たすと、異方性導電材料の硬化物の潜熱膨張を充分に抑制でき、更に異方性導電材料中にフィラーを充分に分散させることができる。 The content of the filler is not particularly limited. The preferable lower limit of the filler content is 5 parts by weight, the more preferable lower limit is 15 parts by weight, the preferable upper limit is 70 parts by weight, and the more preferable upper limit is 50 parts by weight with respect to the total of 100 parts by weight of the curable compound. . When content of the said filler satisfy | fills the said preferable minimum and upper limit, the latent thermal expansion of the cured | curing material of an anisotropic conductive material can fully be suppressed, and also a filler can fully be disperse | distributed in an anisotropic conductive material.
 以下、本発明について、実施例および比較例を挙げて具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. The present invention is not limited only to the following examples.
 (実施例1)
 (1)エピスルフィド化合物含有混合物の調製
 攪拌機、冷却機及び温度計を備えた2Lの容器内に、エタノール250mLと、純水250mLと、チオシアン酸カリウム20gとを加え、チオシアン酸カリウムを溶解させ、第1の溶液を調製した。その後、容器内の温度を20~25℃の範囲内に保持した。次に、20~25℃に保持された容器内の第1の溶液を攪拌しながら、該第1の溶液中に、レゾルシノールジグリシジルエーテル160gを5mL/分の速度で滴下した。滴下後、30分間さらに攪拌し、エポキシ化合物含有混合液を得た。
Example 1
(1) Preparation of episulfide compound-containing mixture In a 2 L vessel equipped with a stirrer, a cooler and a thermometer, ethanol 250 mL, pure water 250 mL, and potassium thiocyanate 20 g were added to dissolve potassium thiocyanate, One solution was prepared. Thereafter, the temperature in the container was kept within the range of 20 to 25 ° C. Next, 160 g of resorcinol diglycidyl ether was added dropwise at a rate of 5 mL / min to the first solution while stirring the first solution in a container maintained at 20 to 25 ° C. After dropping, the mixture was further stirred for 30 minutes to obtain an epoxy compound-containing mixed solution.
 次に、純水100mLと、エタノール100mLとを含む溶液に、チオシアン酸カリウム20gを溶解させた第2の溶液を用意した。得られたエポキシ基含有混合液に、得られた第2の溶液を5mL/分の速度で添加した後、30分攪拌した。攪拌後、純水100mLとエタノール100mLとを含む溶液に、チオシアン酸カリウム20gを溶解させた第2の溶液をさらに用意し、該第2の溶液を5mL/分の速度で容器内にさらに添加し、30分間攪拌した。その後、容器内の温度を10℃に冷却し、2時間攪拌し、反応させた。 Next, a second solution in which 20 g of potassium thiocyanate was dissolved in a solution containing 100 mL of pure water and 100 mL of ethanol was prepared. The obtained second solution was added to the obtained epoxy group-containing mixed solution at a rate of 5 mL / min, and then stirred for 30 minutes. After stirring, a second solution in which 20 g of potassium thiocyanate is dissolved in a solution containing 100 mL of pure water and 100 mL of ethanol is further prepared, and the second solution is further added to the container at a rate of 5 mL / min. And stirred for 30 minutes. Thereafter, the temperature in the container was cooled to 10 ° C., and stirred for 2 hours to be reacted.
 次に、容器内に飽和食塩水100mLを加え、10分間攪拌した。攪拌後、容器内にトルエン300mLをさらに加え、10分間攪拌した。その後、容器内の溶液を分液ロートに移し、2時間静置し、溶液を分離させた。分液ロート内の下方の溶液を排出し、上澄み液を取り出した。取り出された上澄み液にトルエン100mLを加え、攪拌し、2時間静置した。更に、トルエン100mLをさらに加え、攪拌し、2時間静置した。 Next, 100 mL of saturated saline was added to the container and stirred for 10 minutes. After stirring, 300 mL of toluene was further added to the container and stirred for 10 minutes. Thereafter, the solution in the container was transferred to a separating funnel and allowed to stand for 2 hours to separate the solution. The lower solution in the separatory funnel was discharged, and the supernatant was taken out. 100 mL of toluene was added to the removed supernatant, stirred, and allowed to stand for 2 hours. Further, 100 mL of toluene was further added, stirred and allowed to stand for 2 hours.
 次に、トルエンが加えられた上澄み液に、硫酸マグネシウム50gを加え、5分間攪拌した。攪拌後、ろ紙により硫酸マグネシウムを取り除いて、溶液を分離した。真空乾燥機を用いて、分離された溶液を80℃で減圧乾燥することにより、残存している溶剤を除去した。このようにして、エピスルフィド化合物含有混合物を得た。 Next, 50 g of magnesium sulfate was added to the supernatant liquid to which toluene was added and stirred for 5 minutes. After stirring, magnesium sulfate was removed with a filter paper to separate the solution. The remaining solvent was removed by drying the separated solution under reduced pressure at 80 ° C. using a vacuum dryer. In this way, an episulfide compound-containing mixture was obtained.
 クロロホルムを溶媒として、得られたエピスルフィド化合物含有混合物のH-NMRの測定を行った。この結果、エポキシ基の存在を示す6.5~7.5ppmの領域のシグナルが減少し、エピスルフィド基の存在を示す2.0~3.0ppmの領域にシグナルが現れた。これにより、レゾルシノールジグリシジルエーテルの一部のエポキシ基がエピスルフィド基に変換されていることを確認した。また、H-NMRの測定結果の積分値より、エピスルフィド化合物含有混合物は、レゾルシノールジグリシジルエーテル70重量%と、上記式(1B)で表される構造を有するエピスルフィド化合物30重量%とを含有することを確認した。 The resulting episulfide compound-containing mixture was subjected to 1 H-NMR measurement using chloroform as a solvent. As a result, the signal in the 6.5 to 7.5 ppm region indicating the presence of the epoxy group decreased, and the signal appeared in the 2.0 to 3.0 ppm region indicating the presence of the episulfide group. This confirmed that some epoxy groups of resorcinol diglycidyl ether were converted into episulfide groups. From the integral value of the measurement result of 1 H-NMR, the episulfide compound-containing mixture contains 70% by weight of resorcinol diglycidyl ether and 30% by weight of the episulfide compound having the structure represented by the above formula (1B). It was confirmed.
 (2)異方性導電ペーストの調製
 得られたエピスルフィド化合物含有混合物30重量部に、熱硬化剤としてのアミンアダクト(味の素ファインテクノ社製「PN-23J」)5重量部と、光硬化性化合物としてのエポキシアクリレート(ダイセル・サイテック社製「EBECRYL3702」)5重量部と、光重合開始剤としてのアシルホスフィンオキサイド系化合物(チバ・ジャパン社製「DAROCUR TPO」)0.1重量部と、硬化促進剤としての2-エチル-4-メチルイミダゾール1重量部と、フィラーとしての平均粒子径0.25μmのシリカ20重量部及び平均粒子径0.5μmのアルミナ20重量部とを配合し、さらに平均粒子径3μmの導電性粒子を配合物100重量%中での含有量が10重量%となるように添加した後、遊星式攪拌機を用いて2000rpmで5分間攪拌することにより、配合物を得た。
(2) Preparation of anisotropic conductive paste 30 parts by weight of the resulting episulfide compound-containing mixture, 5 parts by weight of an amine adduct (“PN-23J” manufactured by Ajinomoto Fine Techno Co.) as a thermosetting agent, and a photocurable compound 5 parts by weight of epoxy acrylate ("EBECRYL 3702" manufactured by Daicel-Cytec), 0.1 parts by weight of an acylphosphine oxide compound ("DAROCUR TPO" manufactured by Ciba Japan) as a photopolymerization initiator, and curing acceleration 1 part by weight of 2-ethyl-4-methylimidazole as an agent, 20 parts by weight of silica having an average particle diameter of 0.25 μm and 20 parts by weight of alumina having an average particle diameter of 0.5 μm are blended, and average particles Conductive particles having a diameter of 3 μm were added so that the content in 100% by weight of the composition was 10% by weight. , By stirring for 5 minutes at 2000rpm using a planetary mixing machine to obtain a formulation.
 なお、用いた上記導電性粒子は、ジビニルベンゼン樹脂粒子の表面にニッケルめっき層が形成されており、かつ該ニッケルめっき層の表面に金めっき層が形成されている金属層を有する導電性粒子である。 The conductive particles used are conductive particles having a metal layer in which a nickel plating layer is formed on the surface of divinylbenzene resin particles and a gold plating layer is formed on the surface of the nickel plating layer. is there.
 得られた配合物を、ナイロン製ろ紙(孔径10μm)を用いてろ過することにより、導電性粒子の含有量が10重量%である異方性導電ペーストを得た。 The obtained composition was filtered using a nylon filter paper (pore diameter: 10 μm) to obtain an anisotropic conductive paste having a conductive particle content of 10% by weight.
 (3)接続構造体の作製
 L/Sが30μm/30μmのITO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが30μm/30μmの銅電極パターンが下面に形成された半導体チップを用意した。
(3) Production of Connection Structure A transparent glass substrate having an ITO electrode pattern with an L / S of 30 μm / 30 μm formed on the upper surface was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 μm / 30 μm was formed on the lower surface.
 また、図3(a)に示すようなディスペンサーと、該ディスペンサーに接続された光照射装置としての紫外線照射ランプとを備える複合装置を用意した。 Further, a composite apparatus including a dispenser as shown in FIG. 3A and an ultraviolet irradiation lamp as a light irradiation apparatus connected to the dispenser was prepared.
 複合装置を移動させながら、上記透明ガラス基板の上面に、ディスペンサーのシリンジから、得られた異方性導電ペーストを厚さ30μmとなるように塗布し、異方性導電ペースト層を形成した。さらに、複合装置を移動させて、異方性導電ペーストを塗布しながら、異方性導電ペースト層に紫外線照射ランプを用いて、420nmの紫外線を光照射強度が50mW/cmとなるように照射し、光重合によって異方性導電ペースト層をBステージ化した。塗布してから、すなわち塗布された異方性導電ペーストが上記透明ガラス基板に接したときから、異方性導電ペースト層に光が照射されるまでの時間Tは、0.5秒であった。 While moving the composite apparatus, the anisotropic conductive paste obtained was applied from the syringe of the dispenser to the upper surface of the transparent glass substrate so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. Further, while moving the composite device and applying the anisotropic conductive paste, using the ultraviolet irradiation lamp on the anisotropic conductive paste layer, the ultraviolet irradiation of 420 nm is irradiated so that the light irradiation intensity becomes 50 mW / cm 2. Then, the anisotropic conductive paste layer was B-staged by photopolymerization. The time T from the time when the anisotropic conductive paste was applied to the transparent glass substrate to the time when the anisotropic conductive paste layer was irradiated with light was 0.5 seconds. .
 次に、Bステージ化された異方性導電ペースト層の上面に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、3MPaの圧力をかけて、Bステージ化された異方性導電ペースト層を185℃で完全硬化させ、接続構造体を得た。 Next, the semiconductor chip was stacked on the upper surface of the B-staged anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip, and a pressure of 3 MPa is applied to make the B-staged difference. The isotropic conductive paste layer was completely cured at 185 ° C. to obtain a connection structure.
 (実施例2)
 異方性導電ペーストの調製の際に、エポキシアクリレートをウレタンアクリレート(ダイセル・サイテック社製「EBECRYL8804」)に変更したこと以外は実施例1と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例1と同様にして接続構造体を得た。
(Example 2)
An anisotropic conductive paste was obtained in the same manner as in Example 1 except that the epoxy acrylate was changed to urethane acrylate ("EBECRYL8804" manufactured by Daicel-Cytec Co., Ltd.) during the preparation of the anisotropic conductive paste. A connection structure was obtained in the same manner as in Example 1 except that the obtained anisotropic conductive paste was used.
 (実施例3)
 図3(a)に示す複合装置にかえて、図4(a)に示すディスペンサーと、該ディスペンサーに接続されていない光照射装置としての紫外線照射ランプとを用いて、異方性導電ペーストの塗布が終了した直後に光を照射したこと以外は実施例1と同様にして、接続構造体を得た。塗布してからに光が照射されるまでの時間Tは、2秒であった。
(Example 3)
An anisotropic conductive paste is applied using a dispenser shown in FIG. 4A and an ultraviolet irradiation lamp as a light irradiation device not connected to the dispenser, instead of the composite device shown in FIG. A connection structure was obtained in the same manner as in Example 1 except that the light was irradiated immediately after the completion of. The time T from application to irradiation with light was 2 seconds.
 (実施例4)
 塗布してから光が照射されるまでの時間Tを3秒に変更したこと以外は実施例3と同様にして、接続構造体を得た。
Example 4
A connection structure was obtained in the same manner as in Example 3 except that the time T from application to light irradiation was changed to 3 seconds.
 (実施例5)
 異方性導電ペーストの調製の際に、エポキシアクリレートをウレタンアクリレート(ダイセル・サイテック社製「EBECRYL8804」)に変更したこと以外は実施例3と同様にして、異方性導電ペーストを得た。得られた異方性導電ペーストを用いたこと以外は実施例3と同様にして接続構造体を得た。
(Example 5)
An anisotropic conductive paste was obtained in the same manner as in Example 3 except that the epoxy acrylate was changed to urethane acrylate ("EBECRYL8804" manufactured by Daicel-Cytec Co., Ltd.) during the preparation of the anisotropic conductive paste. A connection structure was obtained in the same manner as in Example 3 except that the obtained anisotropic conductive paste was used.
 (参考例1)
 異方性導電ペーストの作製の際に、光重合開始剤としてのアシルホスフィンオキサイド系化合物を用いなかったこと以外は実施例1と同様にして、異方性導電ペーストを得た。
(Reference Example 1)
An anisotropic conductive paste was obtained in the same manner as in Example 1 except that the acylphosphine oxide compound as a photopolymerization initiator was not used in the production of the anisotropic conductive paste.
 L/Sが30μm/30μmのITO電極パターンが上面に形成された透明ガラス基板を用意した。また、L/Sが30μm/30μmの銅電極パターンが下面に形成された半導体チップを用意した。 A transparent glass substrate having an ITO electrode pattern with an L / S of 30 μm / 30 μm formed on the upper surface was prepared. Further, a semiconductor chip was prepared in which a copper electrode pattern having L / S of 30 μm / 30 μm was formed on the lower surface.
 上記透明ガラス基板の上面に、ディスペンサーのシリンジから、得られた異方性導電ペーストを厚さ30μmとなるように塗布し、異方性導電ペースト層を形成した。塗布の際及び塗布の後に光を照射しなかった。 The obtained anisotropic conductive paste was applied on the upper surface of the transparent glass substrate from a syringe of a dispenser so as to have a thickness of 30 μm to form an anisotropic conductive paste layer. No light was applied during and after application.
 次に、異方性導電ペースト層の上面に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が185℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、3MPaの圧力をかけて異方性導電ペースト層を185℃で完全硬化させ、接続構造体を得た。 Next, the semiconductor chip was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. Then, while adjusting the temperature of the head so that the temperature of the anisotropic conductive paste layer becomes 185 ° C., a pressure heating head is placed on the upper surface of the semiconductor chip and a pressure of 3 MPa is applied to form the anisotropic conductive paste layer. Completely cured at 185 ° C. to obtain a connection structure.
 (評価)
 (1)塗布前の異方性導電ペーストの粘度
 E型粘度計(東機産業社製)を用いて、25℃及び2.5rpmの条件で測定した。
(Evaluation)
(1) Viscosity of anisotropic conductive paste before application Using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.), the viscosity was measured at 25 ° C. and 2.5 rpm.
 (2)リーク評価
 得られた接続構造体を用いて、隣り合う電極20個においてリークが生じているか否かを、テスターで測定した。
(2) Leak Evaluation Using the obtained connection structure, it was measured with a tester whether or not a leak occurred in 20 adjacent electrodes.
 (3)ボイドの有無
 得られた接続構造体において、異方性導電ペースト層により形成された硬化物層にボイドが生じているか否かを、透明ガラス基板の下面側から目視により観察した。
(3) Presence / absence of voids In the obtained connection structure, whether or not voids were generated in the cured product layer formed of the anisotropic conductive paste layer was visually observed from the lower surface side of the transparent glass substrate.
 結果を下記の表1に示す。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 実施例1~5では、ディスペンサーで塗布された異方性導電材料が液ダレする前に硬化されために、塗布幅よりも広がらず、特定の領域以外に意図せずに異方性導電材料がはみ出さなかった。 In Examples 1 to 5, since the anisotropic conductive material applied by the dispenser is cured before dripping, the anisotropic conductive material does not spread beyond the coating width and is not intended outside the specific region. It did not protrude.
 1…接続構造体
 2…第1の接続対象部材
 2a…上面
 2b…電極
 3…硬化物層
 3a…上面
 3A…異方性導電材料層
 3B…Bステージ化された異方性導電材料層
 4…第2の接続対象部材
 4a…下面
 4b…電極
 5…導電性粒子
 11…複合装置
 12…ディスペンサー
 12a…シリンジ
 12b…把持部
 13…光照射装置
 13a…光照射装置本体
 13b…光照射部
 21…光照射装置
 21a…光照射装置本体
 21b…光照射部
 31…台
DESCRIPTION OF SYMBOLS 1 ... Connection structure 2 ... 1st connection object member 2a ... Upper surface 2b ... Electrode 3 ... Hardened | cured material layer 3a ... Upper surface 3A ... Anisotropic conductive material layer 3B ... An anisotropic conductive material layer made into B stage 4 ... 2nd connection object member 4a ... lower surface 4b ... electrode 5 ... electroconductive particle 11 ... composite apparatus 12 ... dispenser 12a ... syringe 12b ... grip part 13 ... light irradiation apparatus 13a ... light irradiation apparatus main body 13b ... light irradiation part 21 ... light Irradiation device 21a ... Light irradiation device body 21b ... Light irradiation unit 31 ... Stand

Claims (9)

  1.  第1の接続対象部材の上面に、導電性粒子を含む異方性導電材料を塗布し、異方性導電材料層を形成する工程と、
     前記異方性導電材料層に光を照射することにより、前記異方性導電材料層の硬化を進行させて、前記異方性導電材料層をBステージ化する工程と、
     Bステージ化された前記異方性導電材料層の上面に、第2の接続対象部材をさらに積層して、Bステージ化された前記異方性導電材料層に熱を付与することにより、該Bステージ化された異方性導電材料層を硬化させる工程とを備える、接続構造体の製造方法。
    Applying an anisotropic conductive material containing conductive particles to the upper surface of the first connection target member to form an anisotropic conductive material layer;
    Irradiating the anisotropic conductive material layer with light to advance the curing of the anisotropic conductive material layer and forming the anisotropic conductive material layer into a B-stage;
    A second connection target member is further laminated on the upper surface of the B-staged anisotropic conductive material layer, and heat is applied to the B-staged anisotropic conductive material layer, thereby providing the B-staged anisotropic conductive material layer. And a step of curing the staged anisotropic conductive material layer.
  2.  前記異方性導電材料層を形成する工程と、前記異方性導電材料層をBステージ化する工程とにおいて、
     前記異方性導電材料を塗布してから光を照射するまでの時間が0~3秒の範囲内である、請求項1に記載の接続構造体の製造方法。
    In the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage,
    The method for manufacturing a connection structure according to claim 1, wherein a time from application of the anisotropic conductive material to irradiation with light is within a range of 0 to 3 seconds.
  3.  前記異方性導電材料層を形成する工程と、前記異方性導電材料層をBステージ化する工程とにおいて、
     前記異方性導電材料を塗布しながら、前記異方性導電材料層に光を照射する、請求項1に記載の接続構造体の製造方法。
    In the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage,
    The manufacturing method of the connection structure of Claim 1 which irradiates light to the said anisotropic conductive material layer, apply | coating the said anisotropic conductive material.
  4.  前記異方性導電材料層を形成する工程と、前記異方性導電材料層をBステージ化する工程とにおいて、
     前記異方性導電材料を塗布してから光を照射するまでの時間が0~3秒の範囲内である、請求項3に記載の接続構造体の製造方法。
    In the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage,
    The method for manufacturing a connection structure according to claim 3, wherein a time from application of the anisotropic conductive material to irradiation with light is within a range of 0 to 3 seconds.
  5.  前記異方性導電材料層を形成する工程と、前記異方性導電材料層をBステージ化する工程とにおいて、
     前記異方性導電材料の塗布と同時に、又は塗布の直後に、前記異方性導電材料層に光を照射する、請求項1に記載の接続構造体の製造方法。
    In the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage,
    The manufacturing method of the connection structure of Claim 1 which irradiates light to the said anisotropic conductive material layer simultaneously with application | coating of the said anisotropic conductive material, or immediately after application | coating.
  6.  前記異方性導電材料層を形成する工程と、前記異方性導電材料層をBステージ化する工程とにおいて、
     前記異方性導電材料を塗布してから光を照射するまでの時間が0~3秒の範囲内である、請求項5に記載の接続構造体の製造方法。
    In the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage,
    The method for manufacturing a connection structure according to claim 5, wherein a time from application of the anisotropic conductive material to irradiation with light is within a range of 0 to 3 seconds.
  7.  前記異方性導電材料として、硬化性化合物と、熱硬化剤と、光硬化開始剤と、導電性粒子とを含む異方性導電材料を用いる、請求項1~6のいずれか1項に記載の接続構造体の製造方法。 7. The anisotropic conductive material according to claim 1, wherein an anisotropic conductive material including a curable compound, a thermosetting agent, a photocuring initiator, and conductive particles is used as the anisotropic conductive material. Method for manufacturing the connection structure of the present invention.
  8.  前記異方性導電材料層を形成する工程と、前記異方性導電材料層をBステージ化する工程とにおいて、
     ディスペンサーと、該ディスペンサーに接続された光照射装置とを備える複合装置を用いる、請求項1~6のいずれか1項に記載の接続構造体の製造方法。
    In the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage,
    The method for manufacturing a connection structure according to any one of claims 1 to 6, wherein a composite device including a dispenser and a light irradiation device connected to the dispenser is used.
  9.  前記異方性導電材料層を形成する工程と、前記異方性導電材料層をBステージ化する工程とにおいて、
     ディスペンサーと、該ディスペンサーに接続された光照射装置とを備える複合装置を用いる、請求項7に記載の接続構造体の製造方法。
    In the step of forming the anisotropic conductive material layer and the step of converting the anisotropic conductive material layer into a B-stage,
    The manufacturing method of the connection structure of Claim 7 using the composite apparatus provided with a dispenser and the light irradiation apparatus connected to this dispenser.
PCT/JP2010/064078 2009-08-26 2010-08-20 Method for manufacturing connection structure WO2011024720A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010533350A JPWO2011024720A1 (en) 2009-08-26 2010-08-20 Method for manufacturing connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-195429 2009-08-26
JP2009195429 2009-08-26

Publications (1)

Publication Number Publication Date
WO2011024720A1 true WO2011024720A1 (en) 2011-03-03

Family

ID=43627826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064078 WO2011024720A1 (en) 2009-08-26 2010-08-20 Method for manufacturing connection structure

Country Status (3)

Country Link
JP (3) JPWO2011024720A1 (en)
TW (1) TW201129273A (en)
WO (1) WO2011024720A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222282A (en) * 2011-04-13 2012-11-12 Sekisui Chem Co Ltd Method of manufacturing connection structure
JP2013016725A (en) * 2011-07-06 2013-01-24 Sekisui Chem Co Ltd Method for manufacturing connection structure
WO2015076235A1 (en) * 2013-11-19 2015-05-28 積水化学工業株式会社 Method for manufacturing electronic component, and electronic component
JP2017112148A (en) * 2015-12-14 2017-06-22 デクセリアルズ株式会社 Connection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA52722A (en) 2016-12-15 2021-04-14 Amgen Inc OXAZINE DERIVATIVES AS BETA-SECRETASE INHIBITORS AND METHODS OF USE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766530A (en) * 1993-08-26 1995-03-10 Olympus Optical Co Ltd Pattern forming method
JP2002128911A (en) * 2000-10-30 2002-05-09 Jsr Corp Anisotropically conductive sheet and method of using the same
JP2003506886A (en) * 1999-05-27 2003-02-18 パターニング テクノロジーズ リミテッド Method of forming masking pattern on surface
JP2007077382A (en) * 2005-08-18 2007-03-29 Hitachi Chem Co Ltd Adhesive material composition and circuit terminal connected structure and method for connecting circuit terminal
WO2007058142A1 (en) * 2005-11-21 2007-05-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing circuit board having electronic part

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155625B2 (en) * 1998-06-30 2008-09-24 三井化学株式会社 Anisotropic conductive resin composition
JP2001156114A (en) * 1999-09-14 2001-06-08 Sony Chem Corp Anisotropically conductive connection component and manufacturing method therefor
JP2005235530A (en) * 2004-02-18 2005-09-02 Hitachi Chem Co Ltd Circuit connection material
JP2007258508A (en) * 2006-03-24 2007-10-04 Sumitomo Bakelite Co Ltd Adhesive for semiconductor, semiconductor device using the same, and manufacturing method of semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766530A (en) * 1993-08-26 1995-03-10 Olympus Optical Co Ltd Pattern forming method
JP2003506886A (en) * 1999-05-27 2003-02-18 パターニング テクノロジーズ リミテッド Method of forming masking pattern on surface
JP2002128911A (en) * 2000-10-30 2002-05-09 Jsr Corp Anisotropically conductive sheet and method of using the same
JP2007077382A (en) * 2005-08-18 2007-03-29 Hitachi Chem Co Ltd Adhesive material composition and circuit terminal connected structure and method for connecting circuit terminal
WO2007058142A1 (en) * 2005-11-21 2007-05-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing circuit board having electronic part

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222282A (en) * 2011-04-13 2012-11-12 Sekisui Chem Co Ltd Method of manufacturing connection structure
JP2013016725A (en) * 2011-07-06 2013-01-24 Sekisui Chem Co Ltd Method for manufacturing connection structure
WO2015076235A1 (en) * 2013-11-19 2015-05-28 積水化学工業株式会社 Method for manufacturing electronic component, and electronic component
JP5815142B1 (en) * 2013-11-19 2015-11-17 積水化学工業株式会社 Manufacturing method of electronic parts
US9337019B2 (en) 2013-11-19 2016-05-10 Sekisui Chemical Co., Ltd. Method for manufacturing electronic component, and electronic component
JP2017112148A (en) * 2015-12-14 2017-06-22 デクセリアルズ株式会社 Connection method
WO2017104417A1 (en) * 2015-12-14 2017-06-22 デクセリアルズ株式会社 Connection method

Also Published As

Publication number Publication date
JP2011228307A (en) 2011-11-10
TW201129273A (en) 2011-08-16
JP2011071135A (en) 2011-04-07
JPWO2011024720A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5602743B2 (en) Anisotropic conductive material, connection structure, and manufacturing method of connection structure
JP4673933B2 (en) Anisotropic conductive material and connection structure
JP5520265B2 (en) Anisotropic conductive material, B-stage-like cured product, and manufacturing method of connection structure
JP2011105942A (en) Curable composition and connection structure
JP4673931B2 (en) Anisotropic conductive material and connection structure
WO2011024720A1 (en) Method for manufacturing connection structure
JP5400545B2 (en) Anisotropic conductive material, connection structure manufacturing method, and connection structure
JP4673932B2 (en) Method for manufacturing connection structure and anisotropic conductive material
JP5559723B2 (en) Method for manufacturing connection structure
JP5886582B2 (en) Anisotropic conductive material, B-stage cured product, method for producing B-stage cured product, and connection structure
JP5746535B2 (en) Curable composition and connection structure
JP5926601B2 (en) Anisotropic conductive material and connection structure
JP5314713B2 (en) Method for manufacturing connection structure and anisotropic conductive material
JP5879105B2 (en) Anisotropic conductive paste, method for manufacturing anisotropic conductive paste, connection structure, and method for manufacturing connection structure
JP5815343B2 (en) Method for producing episulfide compound material, method for producing curable composition, and method for producing connection structure
JP5705003B2 (en) Method for manufacturing connection structure
JP2012136697A (en) Anisotropic conductive material, connection structure, and method for manufacturing connection structure
JP5580752B2 (en) Mixture of thermosetting compound containing conductive particles, curable composition, and connection structure
JP5764436B2 (en) Curable composition and connection structure
JP2012021114A (en) Curable composition and connection structure
JP2012175038A (en) Method of manufacturing connection structure and anisotropic conductive material
JP2012178441A (en) Method of manufacturing connection structure and connection structure
JP5438783B2 (en) Anisotropic conductive material and connection structure
JP2012178460A (en) Method for manufacturing connection structure and coating device
JP2012178401A (en) Method for manufacturing connection structure and coating application device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010533350

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811770

Country of ref document: EP

Kind code of ref document: A1