WO2011024216A1 - 医療用部品およびその製造方法 - Google Patents

医療用部品およびその製造方法 Download PDF

Info

Publication number
WO2011024216A1
WO2011024216A1 PCT/JP2009/004096 JP2009004096W WO2011024216A1 WO 2011024216 A1 WO2011024216 A1 WO 2011024216A1 JP 2009004096 W JP2009004096 W JP 2009004096W WO 2011024216 A1 WO2011024216 A1 WO 2011024216A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
iodine
metal material
medical
film
Prior art date
Application number
PCT/JP2009/004096
Other languages
English (en)
French (fr)
Inventor
土屋弘行
前嶋正受
Matsufumi TAKAYA (高谷松文)
Original Assignee
株式会社プロステック
高谷健文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG2012005831A priority Critical patent/SG177768A1/en
Priority to RU2012102402/15A priority patent/RU2485979C1/ru
Priority to JP2011528507A priority patent/JP5044795B2/ja
Priority to MX2011010391A priority patent/MX2011010391A/es
Priority to NZ598179A priority patent/NZ598179A/xx
Priority to KR1020127007631A priority patent/KR101322942B1/ko
Priority to ES09848668T priority patent/ES2414635T3/es
Priority to BRPI0919992A priority patent/BRPI0919992B8/pt
Priority to PL09848668T priority patent/PL2371398T3/pl
Priority to PCT/JP2009/004096 priority patent/WO2011024216A1/ja
Application filed by 株式会社プロステック, 高谷健文 filed Critical 株式会社プロステック
Priority to CA2770362A priority patent/CA2770362C/en
Priority to AU2009351845A priority patent/AU2009351845B2/en
Priority to EP09848668.1A priority patent/EP2371398B1/en
Priority to CN200980154054.0A priority patent/CN102281906B/zh
Priority to US13/000,860 priority patent/US20110313539A1/en
Publication of WO2011024216A1 publication Critical patent/WO2011024216A1/ja
Priority to IL217924A priority patent/IL217924A/en
Priority to ZA2012/00882A priority patent/ZA201200882B/en
Priority to HK12102372.0A priority patent/HK1161845A1/xx
Priority to US13/836,425 priority patent/US9889231B2/en
Priority to US15/895,556 priority patent/US10668187B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/106Halogens or compounds thereof, e.g. iodine, chlorite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/202Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials with halogen atoms, e.g. triclosan, povidone-iodine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/80Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special chemical form
    • A61L2300/802Additives, excipients, e.g. cyclodextrins, fatty acids, surfactants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Definitions

  • the present invention relates to a medical part, and more particularly, to an improvement in antibacterial properties of a medical part used by being embedded in a living body such as an artificial bone or an artificial joint.
  • a technique for transplanting in vivo an implant that repairs or replaces a bone, a joint, or the like of a living body such as a human body whose function has been reduced or lost has become widely used in the living body.
  • the characteristics required for implants used in such a technique are to have the same strength as that of a part of the living body before being replaced, and first have compatibility with the living body, that is, biocompatibility. Is required.
  • the biocompatible metal material having such characteristics include titanium, titanium alloy, stainless steel, and Co—Cr alloy.
  • these metal materials do not exhibit life activity and do not chemically bond to bone, there is a problem that they are displaced or loosened during long-time use.
  • Patent Document 1 describes a method for forming an oxide film in which a hydrogen peroxide-containing paste is brought into contact with the surface of a metal that is a base material to convert the surface of the base material into a metal oxide. ing. According to this technique, an oxide film can be formed in a short time, and the compatibility with a living body is also good. In addition to the above problems, when these implants are transplanted into a living body, there is a problem that infectious diseases such as suppuration of the affected area occur with considerable accuracy.
  • Non-Patent Document 1 reports the result of an experiment in which Ag, which is known to exhibit excellent antibacterial properties, is transplanted to an animal (hamster) as an implant (made of pure silver). The results show that silver implants cause severe irritation and swelling compared to titanium and stainless steel, are inferior to biocompatibility, and the use of Ag for implant materials should be carefully judged Yes.
  • Non-Patent Document 2 reports the results of experiments on prevention of pin infection when using an externally fixed pin coated with Ag. According to the results, no sufficient reduction of bacteria by Ag coating was observed, and an increase in Ag level in blood was observed by transplantation of the Ag-coated external fixation pin into the living body.
  • the present invention can prevent infectious diseases caused by various bacteria and the like for a long time even when transplanted in a living body, has excellent antibacterial properties, is rich in antibacterial durability, and
  • An object of the present invention is to provide a medical component having a high biocompatibility and a method for producing the same.
  • the present inventors focused on iodine and iodine compounds as antibacterial substances.
  • Iodine has bactericidal and antibacterial properties, is used as a disinfectant, and is said to have little toxicity to living bodies. Accordingly, the present inventors have come up with the idea of impregnating the substrate surface of the implant with such iodine and iodine compounds in order to prevent infection of the implant. It was conceived that if the surface of the implant substrate was impregnated with iodine and an iodine compound and iodine could be gradually released, the implant itself could be sterilized, and it would be extremely effective in continuing antibacterial activity thereafter.
  • a disc-shaped test piece (plate thickness: 1.5 mm) was prepared using a Ti alloy (mass%, 6% Al-4% V-remainder Ti; JIS 60 type alloy) as a base material. These test pieces were degreased and then anodized. The anodizing treatment is carried out at a constant voltage (150 V) in an acidic electrolyte (liquid temperature: room temperature) in a mixed bath of sulfuric acid (35 g / l) -phosphoric acid (25 g / l) -hydrogen peroxide (10 g / l). It was set as the process electrolyzed for 5 minutes.
  • the applied current was an initial current density of 8 A / dm 2 , but the current value gradually decreased with time because of constant voltage electrolysis.
  • the current was a pulsed current having a frequency of 50 to 10,000 Hz. It was also carried out when the applied current was a direct current (DC).
  • test piece subjected to the anodizing treatment was washed with water, and the test piece was then dissolved in iodine compound polyvinyl pyrrolidone iodine (PVPI) 0.5 mass% in pure water.
  • PVPI polyvinyl pyrrolidone iodine
  • Iodine impregnated in an oxide film on the surface of the test piece by immersing the test piece in the anode side, placing a pure Ti plate on the cathode side, performing electrolysis for 5 min at a constant voltage of 120 V, and performing electrophoresis. Impregnation treatment was performed. In the iodine impregnation process, with an initial current density 0.2 A / dm 2 about.
  • the surface state of the oxide film formed on the surface of the test piece was observed with a scanning electron microscope (magnification: 2500 times) for the anodized test piece.
  • a scanning electron microscope magnification: 2500 times
  • Five or more visual fields were observed for each test piece, the number of holes formed in the oxide film for each visual field was measured, and arithmetically averaged to obtain the number of holes in the oxide film formed on the surface of each test piece.
  • the cross section of each test piece was observed, and the thickness of the formed film was also measured using a scanning electron microscope (magnification: 2500 times).
  • an antibacterial test was conducted by the film adhesion method on the test piece subjected to the anodizing treatment and the test piece subjected to the anodizing treatment and the iodine impregnation treatment in accordance with the provisions of JIS Z 2801.
  • Escherichia coli JCM 1649 strain
  • the number of remaining colonies was measured after a predetermined time (24 h) to evaluate antibacterial properties.
  • the number of tests was repeated twice. It is evaluated that the smaller the number of colonies remaining after the lapse of a predetermined time, the better the antibacterial properties.
  • the evaluation (antibacterial activity value) is 4, When the number is 10 or more and less than 100, the evaluation (antibacterial activity value) is 3, and when the number is 100 or more and less than 1000, the evaluation is (antibacterial activity value) 2.
  • the evaluation (antibacterial activity value) was 1 and the evaluation was 10000 or more (antibacterial activity value).
  • the antibacterial activity value is 0, and no improvement in antibacterial properties is observed.
  • the antibacterial property is significantly improved compared to when anodizing treatment is performed by adding direct current.
  • the antibacterial property is remarkably improved by applying an anodic oxidation treatment by applying a pulsed current of 800 Hz or more, more preferably 1000 to 5000 Hz. This is apparent from the relationship between the density of the formed micropores shown in FIG. 1 and the frequency of the pulse current applied in the anodizing process. From FIG.
  • the base material contains a large number of fine holes as described above, and preferably has a thickness of 3 ⁇ m or more. It was found that the antibacterial property of the base material was remarkably improved by forming a film and impregnating it with iodine or an iodine compound.
  • the present invention has been completed based on such findings and further investigations. That is, the gist of the present invention is as follows. (1) A medical part using a metal material as a base material, the surface of the base material having a film having fine pores and / or fine irregularities, and iodine or iodine in the fine holes and / or fine irregularities A medical part made of metal material, which is impregnated with a compound. (2) A metallic material medical part according to (1), wherein the coating is a coating having a fine pore and / or fine irregularities at a density of at least 5 ⁇ 10 4 pieces / mm 2 or more.
  • the film is formed by any one of electrochemical treatment, chemical treatment, thermal and / or mechanical treatment, or a combination of two or more thereof.
  • the electrochemical treatment is an anodizing treatment
  • the chemical treatment is a chemical treatment
  • the thermal and / or mechanical treatment is a heat treatment, a thermal processing treatment and a machining treatment.
  • the metal material is either Ti or Co that is a pure metal, or an alloy that is Ti alloy, Co alloy, stainless steel, or Co—Cr alloy.
  • a medical part made of a metal material characterized in that any one of the above.
  • a medical part using a metal material as a base material, and a film having fine pores at a density of at least 5 ⁇ 10 4 pieces / mm 2 or more obtained by anodizing the surface of the base material A medical part made of a metal material, characterized in that the fine pores are impregnated with iodine or an iodine compound.
  • a method for producing a medical part made of a metal material characterized in that the part is a medical part.
  • the electrochemical treatment is an anodizing treatment
  • the chemical treatment is a chemical treatment
  • the thermal and / or mechanical treatment is a heat treatment, a thermal processing treatment and a machining treatment.
  • a method for producing a medical part made of a metal material wherein (13) In (12), in the anodizing treatment, an electrolytic solution is used as an acidic electrolytic bath or an alkaline electrolytic bath, and a pulsed current having a frequency of 50 to 10,000 Hz is applied to the substrate in the electrolytic solution.
  • a method for producing a medical part made of a metal material characterized by being an electrolytic treatment.
  • the chemical treatment is a treatment of immersing the substrate in the alkaline bath or acidic bath using an alkaline bath or acidic bath having a liquid temperature of 30 ° C. or higher.
  • a manufacturing method of medical parts made of metal material (15) The method for producing a medical part made of metal material according to (12), wherein the machining process is a shot blasting process.
  • the iodine compound is polyvinyl pyrrolidone iodine, ⁇ -cyclodextrin iodine, or silver iodide. Method.
  • the present invention it is possible to easily and inexpensively manufacture a medical part having excellent antibacterial properties, excellent antibacterial durability, and high biocompatibility, and has a remarkable industrial effect. Further, if the medical component according to the present invention is used as an implant or the like to be transplanted in a living body, there is an effect that an infectious disease that is a big problem when transplanted in the living body can be prevented over a long period of time.
  • the present invention is a medical part having a metal material as a base material, and has a film having fine holes and / or fine irregularities on the surface of the base material.
  • the “micropores and / or fine irregularities” referred to herein are artificially subjected to thermal treatment, mechanical treatment, electrochemical treatment, chemical treatment, or a combination treatment thereof, The state in which the surface shape has changed from the initial state of the base material shall be said.
  • the “micropore” refers to a circular or polygonal hole having an equivalent circle diameter of about 1 to 10 ⁇ m in terms of area.
  • “Fine unevenness” means a state in which these holes are deformed or united to have unevenness (surface roughness Ra: about several ⁇ m to several hundred ⁇ m) with a depth of about several ⁇ m to several hundred ⁇ m. And
  • the film formed on the surface of the substrate may be a film having the fine pores and / or fine irregularities as described above, and the formation method is not particularly limited, but is an electrochemical treatment, a chemical treatment, a thermal treatment. And / or a film formed by any one of mechanical treatments or a combination of two or more of them. Electrochemical treatment is anodizing treatment, chemical treatment is chemical treatment, thermal treatment is heat treatment, thermal and mechanical treatment is thermal processing treatment, and mechanical treatment is mechanical treatment. Are preferred. With these treatments, it is possible to easily form a film having fine pores and / or fine irregularities having a desired density.
  • the desired density of the fine holes and / or fine irregularities is preferably at least 5 ⁇ 10 4 pieces / mm 2 or more.
  • iodine and iodine compounds that improve the antibacterial and bactericidal properties of parts are stably and sufficiently impregnated. It becomes possible to make it.
  • the fine pores or fine irregularities of the film are impregnated with iodine or an iodine compound. Since iodine has antibacterial and bactericidal properties, in the present invention, the action of iodine impregnated in the fine pores or fine irregularities of the film or the action of iodine released from the iodine compound, the antibacterial properties of the parts, Bactericidal properties are improved.
  • iodine or iodine compound is impregnated into the fine pores or fine irregularities of the film, so that the surface that can hold iodine or iodine compound increases compared to the case where it is applied to a flat surface, and can be retained in a large amount in the part.
  • iodine compound to be impregnated silver iodide, potassium iodide, nickel iodide, iron iodide, tin iodide, and the like, which are inorganic compounds
  • organic compound examples include chain saturated hydrocarbons and derivatives thereof such as methyl iodide, ethyl iodide, propyl iodide, butyl iodide, isopropyl iodide, and the like.
  • chain unsaturated hydrocarbons and derivatives thereof such as vinyl iodide, anil iodide, crotyl iodide, propargyl iodide, phenylacetylene iodide, etc.
  • aromatic hydrocarbons and derivatives thereof such as benzene iodide, benzyl iodide, benzoyl iodide, phenacyl iodide, xylylene iodide, iodophthalein, hydroquinone iodide, cyclodextrin-iodine inclusions, etc.
  • complex compounds such as trimethylsulfonium iodide, triphenylsulfonium iodide, etc.
  • polyvinyl pyrrolidone iodine, polyvinyl phthalimide iodine, etc. which are complex compounds, It can be illustrated.
  • iodine compound to be impregnated among the above-mentioned iodine compounds, polyvinylpyrrolidone iodide which is a complex compound polymer, ⁇ -cyclodextrin iodine which is an aromatic hydrocarbon and a derivative thereof, or silver iodide which is an inorganic compound is used. It is preferable from the viewpoints of safety to the human body, environmental conservation, and biocompatibility.
  • the metal material used as the base material in the present invention is not limited as long as it is suitable for medical parts, but if it is pure metal Ti or Co, if it is an alloy, Ti alloy, Co alloy, stainless steel, A Co—Cr alloy is preferred.
  • Ti and Ti alloy In consideration of transplanting the part into a living body, it is more preferable to use Ti and Ti alloy, stainless steel or Co—Cr alloy.
  • Ti is JIS Class 1 and JIS Class 2 pure Ti specified by JIS
  • Ti alloys are JIS Class 60 specified by JIS (6% Al-4% V-Ti alloy), JIS 61 Seed (3% Al-2% V-Ti alloy), 15-3-3 alloy, JIS Titanium alloys such as 11 types and JIS 12 types can be applied.
  • Stainless steels are austenitic stainless steels SUS 302 and SUS from the viewpoint of non-magnetism. 304, SUS 316, SUS 316L, SUS 317J4L, SUS 329J1, SUS 329J3L, etc. are preferable.
  • Stellite 20 alloy having a composition of 63.0% Cr—6.0% Mo—2.0% Ni—0.25% C—balance Cr is preferable from the viewpoint of strength and corrosion resistance.
  • the substrate made of one of the above metal materials is preferably processed into a predetermined shape, and then subjected to a degreasing treatment, and then, among electrochemical treatment, chemical treatment, thermal and / or mechanical treatment. Any one of the above treatments or a combination of two or more of them is applied to form a film on the substrate surface.
  • Electrochemical treatment is anodizing treatment
  • chemical treatment is chemical treatment
  • thermal treatment is heat treatment
  • thermal and mechanical treatment is thermal processing treatment
  • mechanical treatment is mechanical treatment treatment.
  • the present invention is not limited to anodizing treatment.
  • the anodizing treatment is a treatment in which a base material processed into a predetermined shape is immersed in an electrolytic solution, and an electric current is applied and electrolyzed with the base material as the anode side.
  • the electrolytic solution to be used is an acidic electrolytic bath or an alkaline electrolytic bath depending on the type of substrate.
  • a sulfuric acid-water mixed bath for example, sulfuric acid concentration: 5 to 30% by mass, preferably 10 to 25% by mass
  • a sulfuric acid-phosphoric acid-water mixed bath for example, 35 g / l sulfuric acid, phosphoric acid) 25 g / l
  • sulfuric acid-phosphoric acid-hydrogen peroxide water-water mixed bath for example, 35 g / l sulfuric acid, 25 g / l phosphoric acid, 10 g / l hydrogen peroxide water
  • sulfuric acid-phosphoric acid-ascorbic acid-water Mixed bath for example, sulfuric acid 35 g / l, phosphoric acid 25 g / l, ascorbic acid 10 g / l
  • hydrochloric acid-hydrogen peroxide-formalin-water mixed bath for example, 40% hydrochloric acid, 2% hydrogen peroxide, formalin
  • a potassium hydroxide-potassium fluoride-sodium phosphate-aluminum hydroxide-water mixed bath for example, potassium hydroxide 165 g / l, potassium fluoride 35 g / l, sodium phosphate 35 g / l And aluminum hydroxide 35 g / l. It is preferable to use an acidic electrolytic bath when the substrate is Ti and Ti alloy or stainless steel, and an alkaline electrolytic bath when the substrate is Co—Cr alloy.
  • the applied current is a pulsed current having a frequency of 50 Hz or more, preferably 10,000 Hz or less.
  • a pulsed current having a frequency of 50 Hz or more as the current to be applied, a film including fine holes and / or fine irregularities can be formed at a density of at least 5 ⁇ 10 4 pieces / mm 2 or more.
  • the current to be applied is a direct current (DC)
  • DC direct current
  • only a film that does not contain fine holes and / or fine irregularities can be formed as shown in FIG. In such a film, the film cannot be sufficiently impregnated with iodine and an iodine compound, and sufficient antibacterial properties cannot be imparted to the part.
  • the current applied in the anodizing treatment is preferably a pulsed current of 50 to 10,000 Hz. From the viewpoint of the number of fine pores formed, a more preferable frequency is 1000 to 5000 Hz.
  • anodic oxidation treatment as electrochemical treatment
  • chemical treatment as chemical treatment
  • heat treatment as thermal treatment
  • thermal processing treatment as thermal and mechanical treatment
  • mechanical treatment treatment as machining treatment
  • Any one of them, or a combination of two or more of them may be used.
  • the chemical treatment include a method of immersing the substrate using a high-temperature alkaline bath or acidic bath and forming a chemical conversion film having fine pores and / or fine irregularities on the substrate surface.
  • a sodium hydroxide-potassium nitrate-water mixed bath eg, 60 parts by weight of sodium hydroxide, 40 parts by weight of potassium nitrate, 500 parts by weight of water
  • This treatment is preferably applied when the base material is stainless steel such as SUS304.
  • Examples of the heat treatment include a method in which the substrate is heated in the air atmosphere (heating temperature: 600 to 800 ° C., preferably 700 ° C. ⁇ 1 hour) to form a film (oxide film) on the substrate surface.
  • Examples of the thermal processing treatment include a method of irradiating the substrate surface with an electron beam or a laser beam.
  • Examples of the machining process include a method using shots and blasting. In these treatments, it is important to determine the treatment conditions by considering in advance so that a fine unevenness having a desired surface shape or a film having fine pores is formed. These treatments are preferably applied when the substrate is made of, for example, stainless steel or Co—Cr alloy.
  • an iodine impregnation process is performed in which the film is impregnated with iodine or an iodine compound.
  • the base material that has been anodized is washed with water and then immersed in an aqueous solution of iodine or iodine compound, and direct current is applied to the base material as an anode for electrolysis at a constant voltage or constant current density. It can be performed.
  • the aqueous solution used for the electrolytic treatment is preferably an aqueous solution containing 0.1 to 1.0% by mass of iodine or iodine compound.
  • concentration of iodine or iodine compound is less than 0.1% by mass, the amount of iodine impregnated in the film is small and the desired antibacterial properties cannot be exhibited.
  • the content is 0.3 to 0.5% by mass.
  • the iodine compound added to the aqueous solution any of the above-mentioned iodine compounds is suitable, and among them, polyvinylpyrrolidone iodine (PVPI), ⁇ -cyclodextrin iodyne (BCDI), and silver iodide are biocompatible. From the viewpoint of sex.
  • the constant voltage electrolysis treatment is preferably performed at a constant voltage in the range of 100 to 200 V for 1 to 10 minutes.
  • the constant current density in the range of 0.05 to 10 A / dm 2 is 1 to 10 min.
  • Example 1 Ti alloy (mass%, 6% Al-4% V-balance Ti; JIS 60 type alloy), stainless steel (SUS304) as a base material, and a disk (plate thickness: 2.0 mm) as a test piece for in vitro testing
  • An external fixation pin for rabbits was prepared as a test piece for in vivo testing.
  • the Ti alloy test pieces were degreased and then anodized.
  • the anodizing treatment is carried out at a constant voltage (150 V) in an acidic electrolyte (liquid temperature: room temperature) in a mixed bath of sulfuric acid (35 g / l) -phosphoric acid (25 g / l) -hydrogen peroxide (10 g / l).
  • the applied current was an initial current density of 8 A / dm 2 , but the current value gradually decreased with time because of constant voltage electrolysis.
  • the current was a pulsed current with a frequency of 1000 Hz. The case where the anodizing treatment was not performed was taken as a comparative example.
  • the surface condition of the oxide film formed on the surface of each test piece was measured using a scanning electron microscope (magnification: 2500 times) for each of five fields of view. Observing the above, the number of holes formed in the oxide film for each visual field was measured, and the measured value of each visual field was arithmetically averaged to obtain the number of holes in the oxide film formed on the surface of each test piece. Further, the cross section of the test piece was observed with a scanning electron microscope (magnification: 2500 times) for each of five visual fields to determine the average thickness of the oxide film formed on the surface.
  • the anodized test piece (Ti alloy test piece) was washed with water for 1 minute. After washing with water, the test piece was immersed in an iodine compound aqueous solution in which 0.5% by mass of polyvinylpyrrolidone iodine (PVPI), which is an iodine compound, was dissolved in pure water. The test piece was on the anode side and the pure Ti plate was on the cathode side. And an iodine impregnation treatment for constant voltage electrolysis of 120 V was performed. The iodine impregnation treatment was performed by performing electrophoresis at an initial current density of about 0.2 A / dm 2 and impregnating the oxide film on the surface of the test piece with the iodine compound.
  • PVPI polyvinylpyrrolidone iodine
  • test piece which did not perform the anodizing process, the degreasing process and the water washing washing process for 1 minute were performed, and it used for the test.
  • an antibacterial test was performed as an in vitro test using a part of the obtained test piece (disk) in accordance with the provisions of JIS Z 2801. As pathogens, Staphylococcus aureus (ATCC 25923) and Escherichia coli (MG 1455) were used. The test was repeated 15 times each. The smaller the number of colonies remaining after the lapse of a predetermined time, the better the antibacterial properties.
  • cytotoxicity was evaluated by the colony formation method using rat fibroblast cell line V79 as an in vitro test using the obtained test piece (semicircular disc).
  • the test piece was immersed in a culture medium of a petri dish, inoculated with V79, and evaluated by confirming the formation of a colony.
  • using the obtained external fixation pin for rabbits, as an in vivo test 6 Japanese white rabbits were used, and pins were inserted into the femurs on both sides. After 14 days, the pupae were euthanized for histological analysis, and the degree of inflammation and infection in the tissue surrounding the pin insertion site was observed and scored for evaluation.
  • the evaluation items were inflammation at the pin insertion site, abscess around the pin, osteomyelitis, and inflammation around the pin tip.
  • the score is 2 if pin inflammation or abscess formation is severe, 1 if mild, 2 if osteomyelitis forms an abscess, 1 if mild, and otherwise. As 0, it evaluated by the total score of each evaluation item. The lower the total score of each evaluation item, the less inflammation and infection. At the same time, the osteoconductivity was evaluated by confirming the osteoid formation on the pin surface.
  • test piece No. A1 has an oxide film having a large number of micropores of 5 ⁇ 10 4 pieces / mm 2 or more.
  • inventive example (test piece No. A1) colony formation was remarkably suppressed, and the number of Staphylococcus aureus, which was about 2000 at the start of the antibacterial test, decreased to an average of 0.07 after 24 hours.
  • the number of Escherichia coli, which was about 2000 at the start of the test reached an average of 0 after 24 hours, indicating that the antibacterial properties are excellent.
  • the number of colonies observed after 24 hours was S. aureus, 181 (test specimen No. A2), 347 (test specimen No. A3), and E. coli 1281 (test specimen). No. A2), 1600 pieces (test piece No. A3).
  • the examples of the present invention have remarkably lower evaluation scores for inflammation and infection than the comparative examples, and that there are fewer inflammations and infections than the comparative examples. Further, the difference from this comparative example is statistically superior, and the inventive example reduces pin infection and is excellent in antibacterial properties and biocompatibility. Moreover, it can be said that the example of the present invention has good osteoid formation as well as titanium, and has sufficient osteoconductivity.
  • Example 2 A disk specimen (plate thickness: 2 mm) for antibacterial testing was prepared using stainless steel (SUS 304) as a base material. These test pieces were subjected to pickling and washing treatment, and then subjected to anodizing treatment or chemical treatment. The pickling washing treatment was performed by immersing in a mixed aqueous solution of nitric acid (5%)-hydrofluoric acid (3%) at a liquid temperature of 40 ° C. for 3 minutes.
  • the anodizing treatment was performed in an acidic electrolyte (liquid temperature: room temperature) in a mixed bath of hydrochloric acid (47% by mass) -hydrogen peroxide (2% by mass) -formalin (10% by mass) -water.
  • the anode was treated with electrolysis for 15 minutes at a constant voltage (100 V) using a pure Ti plate as a cathode.
  • the applied current was a pulsed current having a frequency of 3000 Hz. Initial current value was 3.5A / dm 2.
  • the chemical treatment was performed by immersing in an oxalic acid (25 mass%)-hydrogen peroxide (3.5 mass%)-distilled water mixed bath at 30 ° C., which is a high temperature acidic bath, for 30 minutes.
  • test pieces that have been anodized or treated with chemicals, observe the surface condition of the film (oxide film) formed on the surface of each test piece using a scanning electron microscope (magnification: 2500 times) and more than 5 fields of view.
  • the number of holes formed in the film for each visual field was measured, and the measured value of each visual field was arithmetically averaged to obtain the number of holes in the film formed on the surface of each test piece.
  • the cross-section of the test piece was observed with five fields of view with a scanning electron microscope (magnification: 2500 times), and the average thickness of the film formed on the surface was determined.
  • iodine test compound was dissolved in 0.5% by mass of iodine compound polyvinyl pyrrolidone iodine (PVPI) in pure water.
  • PVPI polyvinyl pyrrolidone iodine
  • Immerse in an aqueous solution place the test piece on the anode side and a pure Ti plate on the cathode side, conduct electrolysis for 5 min at a constant voltage of 120 V, and perform electrophoresis to impregnate the oxide film on the surface of the test piece.
  • Iodine impregnation treatment was applied. In the iodine impregnation treatment, the initial current density was about 0.2 A / dm 2 .
  • An antibacterial test was carried out by the film adhesion method in accordance with the provisions of JIS Z 2801 for test pieces that were anodized or chemically treated, and test pieces that were subjected to iodine impregnation after anodizing or chemical treatment.
  • the pathogen is E. coli (JCM 1649 strain) was used to measure the number of colonies remaining after a predetermined time (24 h), and antibacterial properties were evaluated. It is evaluated that the smaller the number of colonies remaining after the lapse of a predetermined time, the better the antibacterial properties.
  • the evaluation (antibacterial activity value) is 4, When the number is 10 or more and less than 100, the evaluation (antibacterial activity value) is 3, and when the number is 100 or more and less than 1000, the evaluation (antibacterial activity value) is 2, and 1000 or more and less than 10000 The evaluation (antibacterial activity value) was 1 and the evaluation was 10000 or more (antibacterial activity value).
  • the antibacterial activity value is 4, indicating that the antibacterial property is excellent.
  • the comparative example not subjected to the iodine impregnation treatment has an antibacterial activity value of 0 and exhibits no antibacterial property.
  • Example 3 A disk specimen (plate thickness: 5.0 mm) for antibacterial testing was prepared using a Co-Cr alloy (mass%, 63.0% Co-6.0% Mo-2.0% Ni-0.25% C-balance Cr) as a base material. . These test pieces were pickled and washed, and then anodized.
  • the anodizing treatment consists of an alkaline electrolyte (liquid solution) of potassium hydroxide (165 g / l) -potassium fluoride (35 g / l) -sodium phosphate (35 g / l) -aluminum hydroxide (35 g / l) -water.
  • potassium hydroxide 165 g / l
  • potassium fluoride 35 g / l
  • sodium phosphate 35 g / l
  • aluminum hydroxide 35 g / l
  • the applied current was a pulsed current having a frequency of 5000 Hz.
  • Initial current value was 8A / dm 2.
  • Example 2 the surface state of the film (oxide film) formed on the surface of each test piece was observed using a scanning electron microscope (magnification: 2500 times), and each test was performed. The number of pores of the film formed on the surface of the piece and the average thickness of the film were determined. Next, a part of the test pieces subjected to these treatments was washed with water, and then the iodine test compound was dissolved in 0.5% by mass of iodine compound polyvinyl pyrrolidone iodine (PVPI) in pure water.
  • PVPI polyvinyl pyrrolidone iodine
  • Example 2 antibacterial tests were conducted using the film adhesion method for test pieces that had been anodized, and for test pieces that had been impregnated with iodine after anodization. And antibacterial properties were evaluated.
  • the evaluation method was the same as in Example 2. Table 4 shows the obtained results.
  • the example of the present invention has an antibacterial activity value of 4, indicating that it has excellent antibacterial properties.
  • the comparative example not subjected to the iodine impregnation treatment has an antibacterial activity value of 0 and exhibits no antibacterial property.
  • Example 4 A disk specimen (plate thickness: 2 mm) for antibacterial testing was prepared using stainless steel (SUS 304) as a base material. These test pieces were first subjected to shot blasting, which is mechanical machining. Shot blasting was performed using four types of alumina shots in sequence. In the first stage treatment, an alumina shot of mesh # 60 was used, and the shot was carefully shot from all directions at a pressure of 3.5 kg / cm 2 so as not to leave behind for about 2 minutes.
  • the mesh # 60 shot surface was carefully shot so as to be uniformly shot within the same pressure and time as the first stage, using an alumina shot of mesh # 100.
  • the mesh # 100 shot surface was carefully shot using an alumina shot of mesh # 150 so that there was no excess or deficiency at the same pressure and time as in the first and second stages.
  • the mesh # 150 shot surface was shot at the same pressure and time using an alumina shot of mesh # 200. Thereby, the macro unevenness
  • the surface roughness after the shot blast treatment is measured in accordance with JIS B 0601-1994, the arithmetic average roughness Ra is 2 ⁇ m, the maximum height Ry is 55 ⁇ m, and the ten-point average The roughness Rz was 3.5 ⁇ m.
  • a chemical treatment which is a chemical treatment
  • the chemical treatment was performed by immersing the test piece in a sulfuric acid (50 g) -oxalic acid (50 g) -water (400 g) mixed bath at a liquid temperature of 60 ° C. for 1 hour.
  • the shot blast surface was chemically oxidized to form a micro etched surface having an oxide film on the surface.
  • the arithmetic average roughness Ra was 2.5 ⁇ m
  • the maximum height Ry was 65 ⁇ m
  • the ten-point average roughness Rz was 4.3 ⁇ m.
  • Example 2 the surface state of the film (oxide film) formed on the surface of each test piece was observed using a scanning electron microscope (magnification: 2500 times), and each test was performed. The number of fine irregularities of the film formed on the surface of the piece was determined. Next, after a part of the test pieces subjected to these treatments was sufficiently washed with water and washed, the test piece was added with 0.5 mass% of iodine compound ⁇ -cyclodextrin iodyne (BCDI) in pure water.
  • BCDI iodine compound ⁇ -cyclodextrin iodyne
  • iodine impregnation treatment was performed in which the iodine compound was electrodeposited (impregnated) onto the fine irregularities of the oxide film on the surface of the test piece.
  • the initial current density was about 12 A / dm 2 , but gradually decreased with the passage of time.
  • Example 2 the antibacterial test in accordance with the JIS Z 2801 test was performed on the test piece that had been subjected to machining treatment-chemical treatment and the test piece that had been impregnated with iodine after machining treatment-chemical treatment.
  • the antibacterial property was evaluated by carrying out the film adhesion method using E. coli (JCM 1649 strain). The number of colonies at the start of the test was 56000 / ml (5.6 ⁇ 10 4 / ml).
  • the evaluation method was the same as in Example 2.
  • the example of the present invention has an antibacterial activity value of 4, indicating that it has excellent antibacterial properties.
  • the comparative example not subjected to the iodine impregnation treatment has an antibacterial activity value of 0 and exhibits no antibacterial property.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Transplantation (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Materials For Medical Uses (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】抗菌性に優れ、かつ抗菌性の持続性に富み、さらにかつ生体親和性にも富む、医療用部品およびその製造方法を提供する。 【解決手段】基材に、酸性電解浴またはアルカリ性電解浴中で、周波数:50~10000 Hzのパルス状電流を印加して電解処理を行う陽極酸化処理を施して、該基材表面に、好ましくは5×10個/mm以上の微細孔および/または微細凹凸を有する皮膜を形成したのち、該皮膜にヨウ素またはヨウ素化合物を含浸させるヨウ素含浸処理を行う。なお、ヨウ素化合物としては、ポリビニルピロリドンヨード、β-シクロデキストリンアイオダイン、またはヨウ化銀とすることが好ましい。また、基材は、金属材料で、しかも生体親和性を有するTiまたはTi合金、ステンレス鋼、Co-Cr合金のうちのいずれかとすることが好ましい。なお、陽極酸化処理に代えて、薬品処理、熱加工処理、機械加工処理のいずれかあるいはそれらの組合せ等で皮膜を形成してもよい。これにより、優れた抗菌性、しかも優れた抗菌性の持続性を有し、かつ生体親和性にも富む、医療用部品を、容易にしかも安価に製造できるという効果を奏する。

Description

医療用部品およびその製造方法
 本発明は、医療用部品に係り、とくに、人工骨、人工関節等のように生体に埋込まれて使用される医療用部品の抗菌性向上に関する。
 近年の医療技術の進歩により、欠損や、機能が低下あるいは喪失した人体等の生体の骨、関節等を修復、あるいは代替するインプラントを、生体内に移植する技術が臨床で多用されるようになってきた。このような技術で使用されるインプラントに要求される特性としては、代替される前の生体の一部と同等の強度を具備するとともに、まず生体との適合性、すなわち、生体親和性を有することが求められる。このような特性を有する生体適合金属材料としては、チタン、チタン合金、ステンレス鋼、Co-Cr合金等が挙げられている。しかし、これらの金属材料は、生活活性を示さず、骨と化学的に結合しないために、長時間に亘る使用中にずれや緩みを生じるという問題があった。
 このような問題に対し、例えば特許文献1には、過酸化水素含有ペーストを基材である金属の表面に接触させて、基材表面を金属酸化物に変換する酸化膜の形成方法が記載されている。この技術によれば、酸化膜が短時間で形成でき、しかも生体との適合性も良好であるとしている。
 また、上記した問題とは別に、これらのインプラントを生体内に移植した際には、患部の化膿といった感染症がかなりの確度で発生するという問題がある。
 このような問題に対しては、優れた抗菌性を示すことが広く知られているCu、Agをインプラントの材料として使用することが考えられている。例えば非特許文献1には、優れた抗菌性を示すことが知られているAgを、インプラント(純銀製)として、動物(ハムスター)に移植する実験を行った結果が報告されている。その結果によれば、銀製インプラントでは、チタンやステンレス鋼に比べて、激しい炎症やむくみなどが生じ、生体親和性に劣り、インプラント用材料にAgを使用することは慎重に判断すべきであるとしている。
 また、非特許文献2には、Agコーティングした創外固定ピンを使用した場合の、ピン感染の防止についての実験結果が報告されている。その結果によれば、Agコーティングによる細菌の十分な減少は認められず、Agコーティングした創外固定ピンの生体内への移植により血液中のAgレベルの上昇が認められたとしている。
特開2008-6164号公報
C.N.Kraft,et al.:Jounal of Biomedical Materials Research Part A,Vol.49(1999)Issue2,Pages 192-199 A.Masse, et al.:Jounal of Biomedical Materials Research PartB:AppliedBiomaterials,Vol.53(2000)Issue 5,Pages 600-604
 このような従来技術の問題に鑑みて、本発明は、生体内に移植しても各種細菌等による感染症を長期にわたり防止できる、抗菌性に優れ、かつ抗菌性の持続性に富み、さらにかつ生体親和性にも富む、医療用部品およびその製造方法を提供することを目的とする。
 本発明者らは、抗菌性を有する物質として、ヨウ素およびヨウ素化合物に着目した。ヨウ素は、殺菌性、抗菌性を有し、消毒薬としても使用されており、生体への毒性は少ないと言われている。そこで、本発明者らは、このようなヨウ素およびヨウ素化合物を、インプラントの感染症防止のために、インプラントの基材表面に含浸させることに思い至った。ヨウ素およびヨウ素化合物をインプラントの基材表面に含浸させ、ヨウ素を徐々に放出することができれば、インプラント自体の殺菌ができるとともに、その後の、抗菌性の継続に極めて有効であることに想到した。そして更なる検討を加えた結果、例えば、所定範囲の周波数のパルス状電流を使用し特定組成の電解液中で、基材を陽極酸化をさせると、基材表面に微細な孔を多数有する酸化皮膜が形成され、しかも該微細な孔には、ヨウ素およびヨウ素化合物を含浸させることができ、抗菌性の継続性向上に極めて有効な孔であることを知見した。
 まず、本発明者らが行った基礎的な実験について説明する。
 Ti合金(質量%で、6%Al-4%V-残部Ti;JIS 60種合金)を基材として、円盤状試験片(板厚:1.5mm)を作製した。これら試験片に、脱脂処理を施したのち、陽極酸化処理を施した。陽極酸化処理は、硫酸(35g/l)-りん酸(25g/l)-過酸化水素水(10g/l)混合浴の酸性電解液(液温:室温)中で、定電圧(150V)で5min間電解する処理とした。印加電流は、初期電流密度:8A/dmとしたが、定電圧電解のため、時間経過とともに順次電流値は低減していった。なお、電流は、周波数:50~10000Hzのパルス状電流とした。なお、印加電流を直流(DC)とした場合も実施した。
 ついで、陽極酸化処理を施された試験片に、水洗洗浄処理を施した後、該試験片を、ヨウ素化合物であるポリビニルピロリドンヨード(PVPI)を純水中に0.5質量%溶解させたヨウ素化合物水溶液中に浸漬し、試験片を陽極側、純Ti板を陰極側に配し、120Vの定電圧で5min間電解を行い、電気泳動させてヨウ素化合物を試験片表面の酸化皮膜中に含浸させるヨウ素含浸処理を施した。なお、ヨウ素含浸処理では、初期電流密度を0.2A/dm程度とした。一部の試験片は、ヨウ素含浸処理を施さなかった。
 まず、陽極酸化処理を施された試験片について、試験片表面に形成された酸化皮膜の表面状況を走査型電子顕微鏡(倍率:2500倍)を用いて観察した。各試験片について5視野以上観察し、各視野ごとの酸化皮膜に形成された孔の個数を測定し、算術平均して、各試験片の表面に形成された酸化皮膜の孔数とした。なお、各試験片の断面を観察し、形成された皮膜の厚さも走査型電子顕微鏡(倍率:2500倍)を用いて測定した。
また、陽極酸化処理を施された試験片および陽極酸化処理とヨウ素含浸処理とを施された試験片について、JIS Z 2801の規定に準拠して抗菌性試験をフィルム密着法で実施した。病原体は大腸菌(JCM 1649株)を用い、所定時間(24h)経過後に残存するコロニー数を測定し、抗菌性を評価した。なお、試験回数は繰返し各2回とした。所定時間経過後に残存するコロニー数が少ないほど、抗菌性に優れると評価される。当初36000個/ml(3.6×10個/ml)であったコロニー数が、所定時間(24h)経過後に、1ml中に10個未満となっている場合を評価(抗菌活性値)4とし、10個以上100個未満となっている場合を評価(抗菌活性値)3とし、100個以上1000個未満となっている場合を評価(抗菌活性値)2とし、1000個以上10000個未満となっている場合を評価(抗菌活性値)1とし、10000個以上である場合を評価(抗菌活性値)0とした。
 得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 ヨウ素含浸処理を施さない陽極酸化処理のみの場合には、抗菌活性値は0であり、抗菌性の向上は認められない。また、陽極酸化処理を周波数:50 Hz以上のパルス状電流を付加して陽極酸化処理を行った場合に、直流を付加して陽極酸化処理を行った場合に、比べて抗菌性の向上が著しい。とくに800Hz以上、より好ましくは1000~5000Hzのパルス状電流を付加して陽極酸化処理を行うことにより、抗菌性が顕著に向上することがわかる。これは、図1に示す形成された微細孔の密度と、陽極酸化処理で印加したパルス電流の周波数との関係から明らかである。図1から、印加したパルス電流の周波数を50Hz以上とすることにより、形成される微細孔の密度が5×10個/mm以上と顕著に増加していることがわかる。周波数が0、すなわち直流を印加した場合には、図3(a)に示すように、皮膜には溝状の凹凸が形成されているだけで、微細孔がほとんど形成されていない。これに対し、印加したパルス電流の周波数が50Hzの場合には、図3(b)に示すように、皮膜には溝状の凹凸がなくなり、多くの微細孔が明瞭に形成されている。さらに、印加したパルス電流の周波数が1000Hzと高くなると、図3(c)に示すように、さらに多くの微細孔が形成されるようになっている。表1と図1との比較から、とくに、少なくとも孔密度:5×10個/mm以上となる微細孔を有する皮膜を形成し、ヨウ素含浸処理を施した部品は、優れた抗菌性を保持できることを知見した。
 また、図2に示すように、周波数が50Hz以上のパルス電流を印加して陽極酸化処理を施せば、多くの微細孔が形成され、かつ厚さ:3μm以上の皮膜を形成できることを知見した。
 このようなことから、基材に、周波数が50Hz以上のパルス電流を印加して陽極酸化処理を施せば、基材には上記したような微細孔を多数含む、好ましくは3μm以上の厚さの皮膜を形成でき、その中にヨウ素またはヨウ素化合物を含浸させることにより、基材の抗菌性が顕著に向上するという知見を得た。
 本発明はかかる知見に基づき、さらに検討を加えて、完成されたものである。
 すなわち、本発明の要旨はつぎのとおりである。
(1)金属材料を基材とする医療用部品であって、前記基材の表面に、微細孔および/または微細凹凸を有する皮膜を有し、該微細孔および/または微細凹凸にヨウ素またはヨウ素化合物を含浸してなることを特徴とする金属材料製医療用部品。
(2)(1)において、前記皮膜が、少なくとも5×10個/mm以上の密度で微細孔および/または微細凹凸を有する皮膜であることを特徴とする金属材料製医療用部品。
(3)(1)または(2)において、前記皮膜が、電気化学的処理、化学的処理、熱的および/または機械的処理のうちのいずれかまたはそれらの2種以上の組合せにより形成された皮膜であることを特徴とする金属材料製医療用部品。
(4)(3)において、前記電気化学的処理が陽極酸化処理であり、前記化学的処理が薬品処理であり、前記熱的および/または機械的処理が加熱処理、熱加工処理および機械加工処理のうちのいずれかであることを特徴とする金属材料製医療用部品。
(5)(1)ないし(4)のいずれかにおいて、前記ヨウ素化合物が、ポリビニルピロリドンヨード、β-シクロデキストリンアイオダイン、またはヨウ化銀であることを特徴とする金属材料製医療用部品。
(6)(1)ないし(5)のいずれかにおいて、前記金属材料が、純金属であるTiまたはCoのいずれか、あるいは合金であるTi合金、Co合金、ステンレス鋼、Co-Cr合金のうちのいずれかであることを特徴とする金属材料製医療用部品。
(7)金属材料を基材とする医療用部品であって、前記基材の表面に、陽極酸化処理を施して得た少なくとも5×10個/mm以上の密度で微細孔を有する皮膜を有し、該微細孔にヨウ素またはヨウ素化合物を含浸してなることを特徴とする金属材料製医療用部品。
(8)(7)において、前記ヨウ素化合物が、ポリビニルピロリドンヨード、β-シクロデキストリンアイオダイン、またはヨウ化銀であることを特徴とする金属材料製医療用部品。
(9)(7)または(8)において、前記皮膜が、3μm以上の厚さを有することを特徴とする金属材料製医療用部品。
(10)(7)ないし(9)のいずれかにおいて、前記基材が、TiまたはTi合金製、ステンレス鋼製、Co-Cr合金製のいずれかであることを特徴とする金属材料製医療用部品。
(11)金属材料を基材とし、該基材に電気化学的処理、化学的処理、熱的および/または機械的処理のうちのいずれかまたはそれらのうちの2種以上を組合せて施して、該基材表面に、少なくとも5×10個/mm以上の密度で微細孔および/または微細凹凸を有する皮膜を形成したのち、該皮膜にヨウ素またはヨウ素化合物を含浸させるヨウ素含浸処理を行い、医療用部品とすることを特徴とする金属材料製医療用部品の製造方法。
(12)(11)において、前記電気化学的処理が陽極酸化処理であり、前記化学的処理が薬品処理であり、前記熱的および/または機械的処理が加熱処理、熱加工処理および機械加工処理のうちのいずれかであることを特徴とする金属材料製医療用部品の製造方法。
(13)(12)において、前記陽極酸化処理が、電解液を酸性電解浴またはアルカリ性電解浴とし、該電解液中で、前記基材に、周波数:50~10000 Hzのパルス状電流を印加して電解処理を行う処理であることを特徴とする金属材料製医療用部品の製造方法。
(14)(12)において、前記薬品処理が、液温:30℃以上のアルカリ性浴または酸性浴を使用して、該アルカリ性浴または酸性浴に、前記基材を浸漬する処理であることを特徴とする金属材料製医療用部品の製造方法。
(15)(12)において、前記機械加工処理が、ショットブラスト処理であることを特徴とする金属材料製医療用部品の製造方法。
(16)(11)ないし(15)のいずれかにおいて、前記ヨウ素化合物が、ポリビニルピロリドンヨード、β-シクロデキストリンアイオダイン、またはヨウ化銀であることを特徴とする金属材料製医療用部品の製造方法。
(17)(11)ないし(16)のいずれかにおいて、前記基材が、TiまたはTi合金、ステンレス鋼、Co-Cr合金のうちのいずれかであることを特徴とする金属材料製医療用部品の製造方法。
 本発明によれば、抗菌性に優れ、かつ抗菌性の持続性に富み、さらにかつ生体親和性にも富む、医療用部品を、容易にしかも安価に製造でき、産業上格段の効果を奏する。また、本発明になる医療用部品を、生体内に移植するインプラント等として使用すれば、生体内に移植した際に大きな問題となっている感染症を、長期にわたって防止できるという効果もある。
陽極酸化処理において形成される皮膜の孔密度と印加パルス電流の周波数との関係を示すグラフである。 陽極酸化処理において形成される皮膜の厚さと印加パルス電流の周波数との関係を示すグラフである。 陽極酸化処理で形成された皮膜の表面状況を示す走査型電子顕微鏡組織写真である。
 本発明は、金属材料を基材とする医療用部品であり、基材の表面に、微細孔および/または微細凹凸を有する皮膜を有する。なお、ここでいう「微細孔および/または微細凹凸」とは、人工的に、熱的処理、機械的処理、電気化学的処理、あるいは化学的処理を、またはそれらの組合せ処理を施されて、表面形状が基材の初期状態から変化した状態をいうものとする。そして、「微細孔」とは、面積換算で円相当直径が1~10μm程度の円形または多角形状の孔をいうものとする。また、「微細凹凸」とは、これら孔が変形あるいは合体して数μm~数百μm程度の深さの凹凸(表面粗さRa:数μm~数百μm程度)が存在する状態を言うものとする。
 基材の表面に形成される皮膜は、上記したような微細孔および/または微細凹凸を有する皮膜であればよく、その形成方法はとくに限定されないが、電気化学的処理、化学的処理、熱的および/または機械的処理のうちのいずれかの処理、またはそれらのうちの2種以上を組合せた処理により形成された皮膜とすることが好ましい。電気化学的処理としては陽極酸化処理が、化学的処理としては薬品処理が、熱的処理としては加熱処理が、熱的および機械的処理としては熱加工処理が、機械的処理としては機械加工処理が、それぞれ好ましい。これらの処理であれば、所望の密度を有する微細孔および/または微細凹凸を有する皮膜を容易に形成できる。なお、微細孔および/または微細凹凸の所望の密度としては、少なくとも5×10個/mm以上の密度とすることが好ましい。基材表面に、このような所望の密度の微細孔および/または微細凹凸を有する皮膜を形成することにより、部品の抗菌性、殺菌性を向上させるヨウ素およびヨウ素化合物を、安定して十分に含浸させることが可能となる。
 そして、皮膜の微細孔または微細凹凸には、ヨウ素またはヨウ素化合物が含浸される。ヨウ素は、抗菌性、殺菌性を有しているため、本発明では、皮膜の微細孔または微細凹凸に含浸したヨウ素の作用またはヨウ素化合物から徐放されるヨウ素の作用により、部品の抗菌性、殺菌性が向上する。とくにヨウ素またはヨウ素化合物を、皮膜の微細孔または微細凹凸に含浸させることにより、平面に塗布した場合に比べ、ヨウ素またはヨウ素化合物を保持可能な表面が多くなり、部品内に多量に保持できるとともに、ヨウ素またはヨウ素化合物からのヨウ素の放出が緩やかにかつ長期にわたり継続するという利点がある。これにより、部品の抗菌性、殺菌性が長期にわたり保持可能となる。
 なお、含浸させるヨウ素化合物としては、無機化合物であるヨウ化銀、ヨウ化カリ、ヨウ化ニッケル、ヨウ化鉄、ヨウ化錫等が、
また、有機化合物としては、鎖状飽和炭化水素およびその誘導体であるヨー化メチル、ヨー化エチル、ヨー化プロピル、ヨー化ブチル、ヨー化イソプロピル等が、
また、鎖状不飽和炭化水素およびその誘導体であるヨー化ビニル、ヨー化アニル、ヨー化クロチル、ヨー化プロパルギル、ヨー化フェニルアセチレン等が、
また、芳香族炭化水素およびその誘導体であるヨー化ベンゼン、ヨー化ベンジル、ヨー化ベンゾイル、ヨー化フェナシル、ヨー化キシリレン、ヨー化フタレイン、ヨー化ヒドロキノン、シクロデキストリン-ヨウ素包摂体等が、
また、複素化合物であるヨー化トリメチルスルホニウム、ヨー化トリフェニルスルホニウム等が、
また、複素化合物ポリマーであるポリビニルピロリドンヨード、ポリビニルフタルイミドヨード等が、
例示できる。
 含浸させるヨウ素化合物としては、上記したヨウ素化合物のうち、複素化合物ポリマーであるポリビニルピロリドンヨード、あるいは芳香族炭化水素およびその誘導体であるβ-シクロデキストリンアイオダイン、または無機化合物であるヨウ化銀とすることが人体への安全性、環境保全、生体親和性の観点から好ましい。
 本発明で基材として使用する金属材料は、医療部品用として好適であればその種類は限定されないが、純金属であればTiまたはCo、合金であれば、Ti合金、Co合金、ステンレス鋼、Co-Cr合金とすることが好ましい。部品を生体に移植することを考慮すれば、TiおよびTi合金、ステンレス鋼またはCo-Cr合金とすることがより好ましい。なお、Tiとしては、JISに規定されるJIS1種、JIS2種の純Tiが、またTi合金としては、JISに規定されるJIS 60種(6%Al-4%V-Ti合金)、JIS 61種(3%Al-2%V-Ti合金)、15-3-3合金、JIS
11種、JIS 12種等のチタン合金がいずれも適用可能である。また、ステンレス鋼としては、非磁性という観点からオーステナイト系ステンレス鋼であるSUS 302、SUS
304、SUS 316、SUS 316L、SUS 317J4L、SUS 329J1、SUS 329J3L等が好ましい。また、Co-Cr合金としては63.0%Cr-6.0%Mo-2.0%Ni-0.25%C-残部Cr組成のステライト20合金が、強度、耐食性の観点から好ましい。
 次に、本発明医療用部品の製造方法について説明する。
 上記した金属材料の一つからなる基材を、好ましくは、所定の形状に加工したのち、脱脂処理を施し、ついで、電気化学的処理、化学的処理、熱的および/または機械的処理のうちのいずれかの処理、またはそれらのうちの2種以上を組合せた処理を施し、基材表面に皮膜を形成する。電気化学的処理としては陽極酸化処理が、化学的処理としては薬品処理が、熱的処理としては加熱処理が、熱的および機械的処理としては熱加工処理が、機械的処理としては機械加工処理が、それぞれ好ましい。以下、陽極酸化処理を施し、基材表面に皮膜を形成する場合を例に説明する。本発明は、陽極酸化処理に限定されないことは言うまでもない。
 陽極酸化処理は、所定の形状に加工した基材を電解液中に浸漬して基材を陽極側として電流を印加し電解する処理である。使用する電解液は、基板の種類に応じて、酸性電解浴またはアルカリ性電解浴とする。
 酸性電解浴としては、硫酸-水混合浴(例えば、硫酸濃度:5~30質量%、好ましくは10~25質量%)、硫酸-りん酸-水混合浴(例えば、硫酸35g/l、りん酸25g/l)、硫酸-りん酸-過酸化水素水-水混合浴(例えば、硫酸35g/l、りん酸25g/l、過酸化水素水10g/l)、硫酸-りん酸-アスコルビン酸-水混合浴(例えば、硫酸35g/l、りん酸25g/l、アスコルビン酸10g/l)、塩酸-過酸化水素水-ホルマリン-水混合浴(例えば、塩酸40%、過酸化水素水2%、ホルマリン10%)が例示できる。
 また、アルカリ性電解浴としては、水酸化カリウム-フッ化カリウム-りん酸ナトリウム-水酸化アルミニウム-水混合浴(例えば、水酸化カリウム165g/l、フッ化カリウム35g/l、りん酸ナトリウム35g/l、水酸化アルミニウム35g/l)が例示できる。
 基材がTiおよびTi合金、あるいはステンレス鋼の場合には、酸性電解浴を、Co-Cr合金の場合には、アルカリ性電解浴を使用することが好ましい。
 電解に際して、印加する電流は、周波数が50Hz以上好ましくは10000Hz以下のパルス状電流とする。印加する電流を、周波数が50Hz以上であるパルス状電流とすることにより、少なくとも5×10個/mm以上の密度で微細孔および/または微細凹凸を含む皮膜を形成することができる。印加する電流が直流電流(DC)であると、図3(a)に示すように、微細孔および/または微細凹凸を含まない皮膜しか形成できない。このような皮膜では、皮膜中にヨウ素およびヨウ素化合物を十分に含浸させることができず、部品に十分なる抗菌性を付与することができなくなる。なお、10000Hzを超える周波数のパルス状電流を発生させるためには、大掛かりな設備を必要とし、設備費が高価となり、製造コストの高騰を招く。このようなことから、本発明では陽極酸化処理で印加する電流は、50~10000Hzのパルス状電流とすることが好ましい。なお、形成される微細孔数の観点から、より好ましい周波数は1000~5000Hzである。
 電気化学的処理としての陽極酸化処理に代えて、化学的処理としての薬品処理、熱的処理としての加熱処理、熱的および機械的処理としての熱加工処理、機械的処理としては機械加工処理のうちのいずれか、あるいはそれらのうちの2種以上を組み合わせた処理としてもよい。
 薬品処理としては、高温のアルカリ系浴、あるいは酸性浴を使用して、基材を浸漬し、基材表面に微細孔および/または微細凹凸を有する化成処理皮膜を形成する方法が例示できる。高温でのアルカリ系浴として、例えば、140℃の水酸化ナトリウム-硝酸カリウム-水混合浴(例えば、水酸化ナトリウム60重量部、硝酸カリウム40重量部、水500重量部)を使用し、その浴中に10min間浸漬する方法が、あるいは酸性浴として、例えば、30℃のシュウ酸-過酸化水素-水混合浴(例えば、シュウ酸(100g/l)25質量%、過酸化水素(30%)3.5質量%)を使用し、30min間浸漬する方法等が例示できる。この処理は、基材を、例えばSUS304等のステレス鋼とした場合に適用することが好ましい。
 また、加熱処理としては、基材を大気雰囲気中で加熱(加熱温度:600~800℃、好ましくは700℃×1時間)し、基材表面に皮膜(酸化皮膜)を形成する方法が例示できる。また、熱加工処理としては、電子ビーム、レーザビームを基材表面に照射する方法が例示できる。また、機械加工処理としては、ショット、ブラストを用いる方法が例示できる。これらの処理においては、所望の表面形状を有する微細凹凸、あるいは微細孔を有する皮膜が形成されるように、予め検討して処理条件を決定することが肝要となる。なお、これらの処理は、基材を例えば、ステンレス鋼、Co-Cr合金とした場合に適用することが好ましい。
 本発明では、陽極酸化処理等の処理を施し基材表面に、微細孔または微細凹凸を有する皮膜を形成したのち、該皮膜に、ヨウ素またはヨウ素化合物を含浸させるヨウ素含浸処理を行う。
 ヨウ素含浸処理は、陽極酸化処理等を施された基材を水洗したのち、ヨウ素またはヨウ素化合物水溶液に浸漬し、基材を陽極として、直流を印加して、定電圧であるいは定電流密度で電解を行うことができる。電解処理に用いる水溶液は、ヨウ素またはヨウ素化合物を0.1~1.0質量%含有する水溶液とすることが好ましい。ヨウ素またはヨウ素化合物の濃度が0.1質量%未満では、皮膜に含浸されるヨウ素分が少なく、所望の抗菌性を発揮できなくなる。一方、1.0質量%を超えて添加しても、効果が飽和し、経済的に不利となる。なお、より好ましくは0.3~0.5質量%である。
 また、水溶液中に添加するヨウ素化合物としては、上記したヨウ素化合物がいずれも好適であるが、なかでも、ポリビニルピロリドンヨード(PVPI)、β-シクロデキストリンアイオダイン(BCDI)、ヨウ化銀が生体親和性の観点から好ましい。
 なお、ヨウ素含浸処理では、定電圧電解処理は、100~200Vの範囲の一定の電圧で1~10minとすることが好ましい。定電流密度電解処理では、0.05~10A/dmの範囲の一定の電流密度で1~10minとすることが好ましい。
 以下、実施例に基づいて、本発明についてさらに詳細に説明する。 
(実施例1)
 Ti合金(質量%で、6%Al-4%V-残部Ti;JIS 60種合金)、ステンレス鋼(SUS304)を基材とし、in vitro試験用試験片として円盤(板厚:2.0mm)を、in vivo試験用試験片としてウサギ用創外固定ピンを作製した。
 なお、これら試験片のうち、Ti合金製試験片については、脱脂処理を施したのち、陽極酸化処理を施した。陽極酸化処理は、硫酸(35g/l)-りん酸(25g/l)-過酸化水素水(10g/l)混合浴の酸性電解液(液温:室温)中で、定電圧(150V)で5min間電解する処理とした。印加電流は、初期電流密度:8A/dmとしたが、定電圧電解のため、時間経過とともに順次電流値は低減していった。なお、電流は、周波数:1000Hzのパルス状電流とした。陽極酸化処理を施さない場合を比較例とした。
 まず、陽極酸化処理を行った試験片(Ti合金製試験片)について、各試験片の表面に形成された酸化皮膜の表面状況を走査型電子顕微鏡(倍率:2500倍)を用いて各5視野以上観察し、各視野ごとの酸化皮膜に形成された孔の個数を測定し、各視野の測定値を算術平均し、各試験片の表面に形成された酸化皮膜の孔数とした。また、試験片断面を走査型電子顕微鏡(倍率:2500倍)で各5視野観察し、表面に形成された酸化皮膜の平均厚さを求めた。
 ついで、陽極酸化処理を行った試験片(Ti合金製試験片)に1分間の水洗洗浄処理を施した。水洗処理後、試験片を、ヨウ素化合物であるポリビニルピロリドンヨード(PVPI)を純水中に0.5質量%溶解させたヨウ素化合物水溶液中に浸漬し、試験片を陽極側、純Ti板を陰極側に配し、120Vの定電圧電解を行うヨウ素含浸処理を施した。なお、ヨウ素含浸処理は、初期電流密度を0.2A/dm程度として電気泳動を行い、ヨウ素化合物を試験片表面の酸化皮膜中に含浸させる処理とした。
 なお、陽極酸化処理を行わなかった試験片については、脱脂処理および、1分間の水洗洗浄処理を施し、試験に供した。
 つぎに、得られた試験片(円盤)の一部を用いて、in vitro試験として、JIS Z 2801の規定に準拠して抗菌性試験を実施した。病原体は黄色ブドウ球菌(ATCC 25923)、大腸菌(MG 1455)を用いた。試験回数は繰返し各15回とした。所定時間経過後に残存するコロニー数が少ないほど、抗菌性に優れるとされる。
 また、得られた試験片(半円板)を用いて、in vitro試験として、ラット線維芽細胞株V79を用いて、コロニー形成法で細胞毒性の評価を行った。試験片をシャーレーの培養液中に浸漬し、その上にV79を接種し、コロニーの形成を確認することで評価した。
 また、得られたウサギ用創外固定ピンを用いて、in vivo試験として、6匹の日本白色家兎を使用し、両側の大腿骨にピンを刺入した。14日後、組織学的分析を行うために兎を安楽死させ、ピン刺入部周囲組織の炎症と感染の程度を観察し、その程度を点数化して、評価した。評価項目は、ピン刺入部の炎症、ピン周囲の膿瘍、骨髄炎、ピン先端周辺の炎症とした。点数は、ピンによる炎症や膿瘍形成が重症である場合は2、軽度である場合を1とし、骨髄炎が膿瘍を形成している場合を2、軽度である場合を1とし、その他の場合は0として、各評価項目の合計点で評価した。各評価項目の合計点が低いほど、炎症、感染が少ないとされる。また、同時に、ピン表面の類骨形成を確認することで骨伝導能の評価を行った。
 得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明例(試験片No.A1)は、5×10個/mm以上の多数の微細孔を有する酸化皮膜が形成されていることがわかる。
 また、本発明例(試験片No.A1)では、コロニー形成が著しく抑制され、抗菌試験開始時に約2000個であった黄色ブドウ球菌が、24時間後に平均で0.07個に減少し、また、抗菌試験開始時に約2000個であった大腸菌が、24時間後に平均で0個となっており、抗菌性に優れていることがわかる。一方、比較例では、24時間後に観察されたコロニー数は、黄色ブドウ球菌で、181個(試験片No.A2)、347個(試験片No.A3)で、大腸菌で、1281個(試験片No.A2)、1600個(試験片No.A3)である。これらの差は、統計的にも優位差ありといえる。
 また、本発明例は、炎症、感染に対する評価の合計点が比較例に比して著しく低く、比較例に比して、炎症、感染が少ないといえる。また、この比較例との差は、統計的にも優位であり、本発明例はピン感染を減少させ、抗菌性、生体親和性に優れていることになる。また、本発明例は、チタンと同様に類骨の形成が良好であり、十分な骨伝導能を有しているといえる。
 さらに、本発明例は、比較例と同様に、ラット線維芽細胞株V79のコロニー形成が良好であり、細胞毒性がないことが確認できた。
(実施例2)
 ステンレス鋼(SUS 304)を基材とし、抗菌試験用の円盤試験片(板厚:2mm)を作製した。これら試験片に、酸洗洗浄処理を施したのち、陽極酸化処理または薬品処理を施した。酸洗洗浄処理は、液温:40℃の硝酸(5%)-ふっ酸(3%)混合水溶液中で、3min浸漬する処理とした。また、陽極酸化処理は、塩酸(47質量%)-過酸化水素水(2質量%)-ホルマリン(10質量%)-水混合浴の酸性電解液(液温:室温)中で、試験片を陽極に、純Ti板を陰極として、定電圧(100V)で15min間電解する処理とした。なお、印加電流は、周波数:3000Hzのパルス状電流とした。初期電流値は3.5A/dmであった。薬品処理は、高温の酸性浴である、液温:30℃のシュウ酸(25質量%)-過酸化水素(3.5質量%)-蒸留水混合浴中に30min間浸漬する処理とした。
 陽極酸化処理または薬品処理を行った試験片について、各試験片の表面に形成された皮膜(酸化皮膜)の表面状況を走査型電子顕微鏡(倍率:2500倍)を用いて各5視野以上観察し、各視野ごとの皮膜に形成された孔の個数を測定し、各視野の測定値を算術平均し、各試験片の表面に形成された皮膜の孔数とした。また、試験片断面を走査型電子顕微鏡(倍率:2500倍)で各5視野観察し、表面に形成された皮膜の平均厚さを求めた。
 ついで、これら処理を施された試験片の一部について、水洗洗浄処理を施した後、試験片を、ヨウ素化合物であるポリビニルピロリドンヨード(PVPI)を純水中に0.5質量%溶解させたヨウ素化合物水溶液中に浸漬し、試験片を陽極側、純Ti板を陰極側に配し、120Vの定電圧直流で5min間電解を行い、電気泳動させてヨウ素化合物を試験片表面の酸化皮膜中に含浸させるヨウ素含浸処理を施した。なお、ヨウ素含浸処理では、初期電流密度を0.2A/dm程度を示した。
 陽極酸化処理または薬品処理ままの試験片、および、陽極酸化処理または薬品処理後にヨウ素含浸処理を施した試験片について、JIS Z 2801の規定に準拠して抗菌性試験を、フィルム密着法で実施した。病原体は大腸菌(JCM
1649株)を用い、所定時間(24h)経過後に残存するコロニー数を測定し、抗菌性を評価した。所定時間経過後に残存するコロニー数が少ないほど、抗菌性に優れると評価される。当初42000個/ml(4.2×10個/ml)であったコロニー数が、所定時間(24h)経過後に、1ml中に10個未満となっている場合を評価(抗菌活性値)4とし、10個以上100個未満となっている場合を評価(抗菌活性値)3とし、100個以上1000個未満となっている場合を評価(抗菌活性値)2とし、1000個以上10000個未満となっている場合を評価(抗菌活性値)1とし、10000個以上である場合を評価(抗菌活性値)0とした。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 本発明例はいずれも、抗菌活性値は4を示し、優れた抗菌性を保持していることがわかる。ヨウ素含浸処理を施さない比較例は、抗菌活性値は0で、全く抗菌性を示さない。 
(実施例3)
 Co-Cr合金(質量%で、63.0%Co-6.0%Mo-2.0%Ni-0.25%C-残部Cr)を基材とし、抗菌試験用の円盤試験片(板厚:5.0mm)を作製した。これら試験片に、酸洗洗浄処理を施したのち、陽極酸化処理を施した。
 陽極酸化処理は、水酸化カリウム(165g/l)-フッ化カリウム(35g/l)-りん酸ナトリウム(35g/l)-水酸化アルミニウム(35g/l)-水混合浴のアルカリ性電解液(液温:室温)中で、試験片を陽極に、純Ti板を陰極として、直流で定電圧(150V)で15min間電解する処理とした。なお、印加電流は、周波数:5000Hzのパルス状電流とした。初期電流値は8A/dmであった。
 得られた試験片について、実施例2と同様に、各試験片の表面に形成された皮膜(酸化皮膜)の表面状況を走査型電子顕微鏡(倍率:2500倍)を用いて観察し、各試験片の表面に形成された皮膜の孔数、および皮膜の平均厚さを求めた。
 ついで、これら処理を施された試験片の一部について、水洗洗浄処理を施した後、試験片を、ヨウ素化合物であるポリビニルピロリドンヨード(PVPI)を純水中に0.5質量%溶解させたヨウ素化合物水溶液中に浸漬し、試験片を陽極側、純Ti板を陰極側に配し、150Vの定電圧直流で5min間電解を行い、電気泳動させてヨウ素化合物を試験片表面の酸化皮膜中に含浸させるヨウ素含浸処理を施した。なお、ヨウ素含浸処理では、初期電流密度を0.2A/dm程度となった。
 陽極酸化処理ままの試験片、および、陽極酸化処理後にヨウ素含浸処理を施した試験片について、実施例2と同様に、JIS Z 2801の規定に準拠して抗菌性試験を、フィルム密着法で実施し、抗菌性を評価した。なお、評価の方法は実施例2と同様とした。
 得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明例は、抗菌活性値は4を示し、優れた抗菌性を保持していることがわかる。ヨウ素含浸処理を施さない比較例は、抗菌活性値は0で、全く抗菌性を示さない。
(実施例4)
 ステンレス鋼(SUS 304)を基材とし、抗菌試験用の円盤試験片(板厚:2mm)を作製した。これら試験片に、まず、機械的処理の機械加工処理であるショットブラスト処理を施した。ショットブラスト処理は、4種のアルミナショットを順次使用して行なった。第1段階の処理では、メッシュ#60のアルミナショットを使用し、圧力:3.5kg/cmで約2分間打ち残しのないように丁寧に全方向からショットした。ついで、第2段階として、メッシュ#60ショット面を、メッシュ#100のアルミナショットを使用し、第1段階と同じ圧力、時間内で、均一にショットされるように丁寧にショットした。第3段階として、メッシュ#100ショット面を、メッシュ#150のアルミナショットを使用し、第1、2段階と同じ圧力、時間で過不足がないように丁寧にショットした。そして、第4段階として、メッシュ#150ショット面を、メッシュ#200のアルミナショットを使用し、同じ圧力、時間でショットした。これにより、試験片の表面に、マクロな凹凸を付与した。なお、ショットブラスト処理を施した後の状態での表面粗さは、JIS B 0601-1994の規定に準拠して測定すると、算術平均粗さRaが2μm、最大高さRyが55μm、十点平均粗さRzが3.5μmであった。
 ついで、上記したような表面性状を有する試験片に、さらに化学的処理である薬品処理を施した。薬品処理は、上記した試験片を、液温:60℃の硫酸(50g)-しゅう酸(50g)-水(400g)混合浴に、1時間浸漬する処理とした。これにより、ショットブラスト面を化学的に酸化して、表面に酸化皮膜を有するミクロなエッチング面とした。このときの表面粗さは、算術平均粗さRaが2.5μm、最大高さRyが65μm、十点平均粗さRzが4.3μmであった。
 得られた試験片について、実施例2と同様に、各試験片の表面に形成された皮膜(酸化皮膜)の表面状況を走査型電子顕微鏡(倍率:2500倍)を用いて観察し、各試験片の表面に形成された皮膜の微細凹凸の個数を求めた。
 ついで、これら処理を施された試験片の一部について、水洗洗浄処理を十分に施した後、試験片を、ヨウ素化合物であるβ-シクロデキストリンアイオダイン(BCDI)を純水中に0.5質量%溶解させたヨウ素化合物水溶液(液温:25℃)中に浸漬し、試験片を陽極側、純Ti板を陰極側に配し、150Vの定電圧直流で3min間電解を行い、電気泳動させてヨウ素化合物を試験片表面の酸化皮膜の微細凹凸に電着(含浸)させるヨウ素含浸処理を施した。なお、ヨウ素含浸処理では、初期電流密度を12A/dm程度としたが、時間の経過とともに漸次低減した。
 機械加工処理-薬品処理ままの試験片、および、機械加工処理-薬品処理後にヨウ素含浸処理を施した試験片について、実施例2と同様に、JIS Z 2801の規定に準拠した抗菌性試験を、大腸菌(JCM 1649株)を用いてフィルム密着法で実施し、抗菌性を評価した。なお、試験開始時のコロニー数は、56000個/ml(5.6×10個/ml)であった。評価の方法は実施例2と同様とした。
 得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 本発明例は、抗菌活性値は4を示し、優れた抗菌性を保持していることがわかる。ヨウ素含浸処理を施さない比較例は、抗菌活性値は0で、全く抗菌性を示さない。

Claims (17)

  1.  金属材料を基材とする医療用部品であって、前記基材の表面に、微細孔および/または微細凹凸を有する皮膜を有し、該微細孔および/または微細凹凸にヨウ素またはヨウ素化合物を含浸してなることを特徴とする金属材料製医療用部品。
  2.  前記皮膜が、少なくとも5×10個/mm以上の密度で微細孔および/または微細凹凸を有する皮膜であることを特徴とする請求項1に記載の金属材料製医療用部品。
  3.  前記皮膜が、電気化学的処理、化学的処理、熱的および/または機械的処理のうちのいずれかまたはそれらの2種以上の組合せにより形成された皮膜であることを特徴とする請求項1または2に記載の金属材料製医療用部品。
  4.  前記電気化学的処理が陽極酸化処理であり、前記化学的処理が薬品処理であり、前記熱的および/または機械的処理が加熱処理、熱加工処理および機械加工処理のうちのいずれかであることを特徴とする請求項3に記載の金属材料製医療用部品。
  5.  前記ヨウ素化合物が、ポリビニルピロリドンヨード、β-シクロデキストリンアイオダイン、またはヨウ化銀であることを特徴とする請求項1ないし4のいずれかに記載の金属材料製医療用部品。
  6.  前記金属材料が、純金属であるTiまたはCoのいずれか、あるいは合金であるTi合金、Co合金、ステンレス鋼、Co-Cr合金のうちのいずれかであることを特徴とする請求項1ないし5のいずれかに記載の金属材料製医療用部品。
  7.  金属材料を基材とする医療用部品であって、前記基材の表面に、陽極酸化処理を施して得た少なくとも5×10個/mm以上の密度で微細孔を有する皮膜を有し、該微細孔にヨウ素またはヨウ素化合物を含浸してなることを特徴とする金属材料製医療用部品。
  8.  前記ヨウ素化合物が、ポリビニルピロリドンヨード、β-シクロデキストリンアイオダイン、またはヨウ化銀であることを特徴とする請求項7に記載の金属材料製医療用部品。
  9.  前記皮膜が、3μm以上の厚さを有することを特徴とする請求項7または8に記載の金属材料製医療用部品。
  10.  前記基材が、TiまたはTi合金製、ステンレス鋼製、Co-Cr合金製のいずれかであることを特徴とする請求項7ないし9のいずれかに記載の金属材料製医療用部品。
  11.  金属材料を基材とし、該基材に電気化学的処理、化学的処理、熱的および/または機械的処理のうちのいずれかまたはそれらのうちの2種以上を組合せて施して、該基材表面に、少なくとも5×10個/mm以上の密度で微細孔および/または微細凹凸を有する皮膜を形成したのち、該皮膜にヨウ素またはヨウ素化合物を含浸させるヨウ素含浸処理を行い、医療用部品とすることを特徴とする金属材料製医療用部品の製造方法。
  12.  前記電気化学的処理が陽極酸化処理であり、前記化学的処理が薬品処理であり、前記熱的および/または機械的処理が加熱処理、熱加工処理および機械加工処理のうちのいずれかであることを特徴とする請求項11に記載の金属材料製医療用部品の製造方法。
  13.  前記陽極酸化処理が、電解液を酸性電解浴またはアルカリ性電解浴とし、該電解液中で、前記基材に、周波数:50~10000 Hzのパルス状電流を印加して電解処理を行う処理であることを特徴とする請求項12に記載の金属材料製医療用部品の製造方法。
  14.  前記薬品処理が、液温:30℃以上のアルカリ性浴または酸性浴を使用して、該アルカリ性浴または酸性浴に、前記基材を浸漬する処理であることを特徴とする請求項12に記載の金属材料製医療用部品の製造方法。
  15.  前記機械加工処理が、ショットブラスト処理であることを特徴とする請求項12に記載の金属材料製医療用部品の製造方法。
  16.  前記ヨウ素化合物が、ポリビニルピロリドンヨード、β-シクロデキストリンアイオダイン、またはヨウ化銀であることを特徴とする請求項11ないし15のいずれかに記載の金属材料製医療用部品の製造方法。
  17.  前記基材が、TiまたはTi合金、ステンレス鋼、Co-Cr合金のうちのいずれかであることを特徴とする請求項11ないし16のいずれかに記載の金属材料製医療用部品の製造方法。
PCT/JP2009/004096 2009-08-25 2009-08-25 医療用部品およびその製造方法 WO2011024216A1 (ja)

Priority Applications (20)

Application Number Priority Date Filing Date Title
CA2770362A CA2770362C (en) 2009-08-25 2009-08-25 Medical supplies and method of producing the same
RU2012102402/15A RU2485979C1 (ru) 2009-08-25 2009-08-25 Медицинские изделия и способ их получения
MX2011010391A MX2011010391A (es) 2009-08-25 2009-08-25 Suministros medicos y metodo para producir los mismos.
NZ598179A NZ598179A (en) 2009-08-25 2009-08-25 Medical implant comprising an iodine impregnated porous metallic surface layer on a metal substrate
KR1020127007631A KR101322942B1 (ko) 2009-08-25 2009-08-25 의료용 부품 및 그 제조 방법
ES09848668T ES2414635T3 (es) 2009-08-25 2009-08-25 Pieza médica y método de fabricación de la misma
BRPI0919992A BRPI0919992B8 (pt) 2009-08-25 2009-08-25 suprimentos médicos metálicos e método de produção de suprimentos médicos metálicos
AU2009351845A AU2009351845B2 (en) 2009-08-25 2009-08-25 Medical Supplies and Method of Producing the Same
PCT/JP2009/004096 WO2011024216A1 (ja) 2009-08-25 2009-08-25 医療用部品およびその製造方法
SG2012005831A SG177768A1 (en) 2009-08-25 2009-08-25 Medical supplies and method of producing the same
JP2011528507A JP5044795B2 (ja) 2009-08-25 2009-08-25 医療用部品およびその製造方法
PL09848668T PL2371398T3 (pl) 2009-08-25 2009-08-25 Wyroby medyczne i sposób ich wytwarzania
EP09848668.1A EP2371398B1 (en) 2009-08-25 2009-08-25 Medical supplies and method of producing the same
CN200980154054.0A CN102281906B (zh) 2009-08-25 2009-08-25 医疗用部件及其制造方法
US13/000,860 US20110313539A1 (en) 2009-08-25 2009-08-25 Medical supplies and method of producing the same
IL217924A IL217924A (en) 2009-08-25 2012-02-02 Medical metallic equipment and method of manufacture
ZA2012/00882A ZA201200882B (en) 2009-08-25 2012-02-06 Medical supplies and method of producing the same
HK12102372.0A HK1161845A1 (en) 2009-08-25 2012-03-08 Medical supplies and method of producing the same
US13/836,425 US9889231B2 (en) 2009-08-25 2013-03-15 Medical supplies and method of producing the same
US15/895,556 US10668187B2 (en) 2009-08-25 2018-02-13 Medical supplies and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004096 WO2011024216A1 (ja) 2009-08-25 2009-08-25 医療用部品およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/000,860 A-371-Of-International US20110313539A1 (en) 2009-08-25 2009-08-25 Medical supplies and method of producing the same
US13/836,425 Division US9889231B2 (en) 2009-08-25 2013-03-15 Medical supplies and method of producing the same

Publications (1)

Publication Number Publication Date
WO2011024216A1 true WO2011024216A1 (ja) 2011-03-03

Family

ID=43627347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004096 WO2011024216A1 (ja) 2009-08-25 2009-08-25 医療用部品およびその製造方法

Country Status (18)

Country Link
US (3) US20110313539A1 (ja)
EP (1) EP2371398B1 (ja)
JP (1) JP5044795B2 (ja)
KR (1) KR101322942B1 (ja)
CN (1) CN102281906B (ja)
AU (1) AU2009351845B2 (ja)
BR (1) BRPI0919992B8 (ja)
CA (1) CA2770362C (ja)
ES (1) ES2414635T3 (ja)
HK (1) HK1161845A1 (ja)
IL (1) IL217924A (ja)
MX (1) MX2011010391A (ja)
NZ (1) NZ598179A (ja)
PL (1) PL2371398T3 (ja)
RU (1) RU2485979C1 (ja)
SG (1) SG177768A1 (ja)
WO (1) WO2011024216A1 (ja)
ZA (1) ZA201200882B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416202A (zh) * 2011-05-24 2012-04-18 周君琳 碘抗菌钛合金骨科内固定钉板的设计和制作方法
JP2013172926A (ja) * 2012-02-27 2013-09-05 Japan Lifeline Co Ltd 医療用ガイドワイヤ
WO2014203566A1 (ja) * 2013-06-18 2014-12-24 オリンパス株式会社 生体用インプラント
WO2018179357A1 (ja) * 2017-03-31 2018-10-04 株式会社プロステック 抗菌性生体インプラント
WO2018179358A1 (ja) * 2017-03-31 2018-10-04 株式会社プロステック 抗菌性生体インプラントの製造方法
WO2020067500A1 (ja) 2018-09-28 2020-04-02 株式会社三菱ケミカルホールディングス 抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673018B2 (en) 2010-02-05 2014-03-18 AMx Tek LLC Methods of using water-soluble inorganic compounds for implants
CN102417741A (zh) * 2011-05-24 2012-04-18 周君琳 碘抗菌羟基磷灰石涂层钛和钛合金内植物的设计和制备
WO2013130431A1 (en) * 2012-03-02 2013-09-06 DePuy Synthes Products, LLC Anodized titanium devices and related methods
KR102215670B1 (ko) * 2014-04-09 2021-02-15 세키스이가가쿠 고교가부시키가이샤 자동차용 프론트 유리용 중간막, 롤상체 및 자동차용 프론트 유리
CN111763017A (zh) 2014-04-09 2020-10-13 积水化学工业株式会社 夹层玻璃用中间膜、辊状体、夹层玻璃及夹层玻璃的制造方法
GB201508385D0 (en) * 2015-05-15 2015-07-01 Accentus Medical Ltd Metal treatment
CN105396173B (zh) * 2015-11-20 2018-06-29 广西中医药大学 利用铑配合物制备具有抗菌抗癌性能的不锈钢的方法
UA113360C2 (xx) * 2015-12-07 2017-01-10 Імплантат
RU2616670C1 (ru) * 2015-12-18 2017-04-18 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Способ нанесения иода и его соединений на поверхность изделий из полимолочной кислоты
CN105821324A (zh) * 2016-05-05 2016-08-03 苏州蔻美新材料有限公司 一种骨科合金材料及其制备方法
RU2647968C1 (ru) * 2017-02-27 2018-03-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ формирования титановых пористых покрытий на титановых имплантатах
EP3981444A1 (en) 2017-03-30 2022-04-13 Biomet Manufacturing, LLC Methods of modifying the porous surface of implants
CN107829123B (zh) * 2017-10-09 2020-05-12 深圳市中科摩方科技有限公司 一种表面双层涂层的铝合金及其制备方法和应用
CN108315795B (zh) * 2018-03-06 2019-08-23 福建省南平铝业股份有限公司 一种抗菌铝材的制作方法
CN111733436A (zh) * 2020-06-19 2020-10-02 浙江大学 一种银碘表面修饰的钛合金植入物及其制备方法
CN111588904B (zh) * 2020-06-19 2021-06-04 浙江大学 含聚己内酯/聚维酮碘表层的载碘钛合金医用部件及其制作方法
CN111763980B (zh) * 2020-06-30 2021-10-29 南京同曦同康抗菌材料科技有限公司 一种抗菌抗病毒不锈钢及其制备方法
CN111763978B (zh) * 2020-06-30 2021-10-15 南京同曦同康抗菌材料科技有限公司 一种抗菌抗病毒铝合金及其制备方法
CN114129768B (zh) * 2021-11-08 2022-09-16 浙江大学 一种抗感染的改良型载碘钛合金抗菌植入物及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513001A (ja) * 1998-04-17 2003-04-08 キネテイツク・リミテツド 物質投与用インプラント及びインプラントの製造方法
JP2004515276A (ja) * 2000-12-06 2004-05-27 アストラ・テック・アクチエボラーグ 生体適合性が向上した医療用プロテーゼ装置およびインプラント
JP2007507306A (ja) * 2003-09-30 2007-03-29 ジンテーズ アクチエンゲゼルシャフト クール 整形外科用インプラントの抗微生物ヒアルロン酸被覆物
JP2008006164A (ja) 2006-06-30 2008-01-17 Yoshioka:Kk 酸化膜の形成方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547267B2 (ja) * 1973-09-21 1979-04-05
US4323055A (en) * 1980-04-08 1982-04-06 Minnesota Mining And Manufacturing Company Radioactive iodine seed
US5478237A (en) * 1992-02-14 1995-12-26 Nikon Corporation Implant and method of making the same
JPH06248494A (ja) * 1993-02-23 1994-09-06 Nippon Alum Co Ltd Ti合金の陽極酸化皮膜形成方法
DE19948783C2 (de) * 1999-02-18 2001-06-13 Alcove Surfaces Gmbh Implantat
US7192445B2 (en) 2000-12-06 2007-03-20 Astra Tech Ab Medical prosthetic devices and implants having improved biocompatibility
JP2003073207A (ja) * 2001-08-29 2003-03-12 Fujikura Ltd 抗菌材
EP1550477B1 (en) 2002-08-23 2015-11-04 National Cerebral and Cardiovascular Center Stent and process for producing the same
CN100368600C (zh) * 2003-12-09 2008-02-13 中南大学 生物陶瓷膜的制备方法
TWI261629B (en) * 2003-12-11 2006-09-11 Ind Tech Res Inst Surface treatment process for enhancing the release of metal ions from sacrificial electrode and sacrificial electrode prepared by said process
CN100427379C (zh) * 2004-03-19 2008-10-22 中国科学院固体物理研究所 纳米单晶锑丝/三氧化二铝有序介孔复合体及制备方法
US20060016690A1 (en) * 2004-07-23 2006-01-26 Ilya Ostrovsky Method for producing a hard coating with high corrosion resistance on articles made anodizable metals or alloys
US20070016163A1 (en) * 2005-06-28 2007-01-18 Microchips, Inc. Medical and dental implant devices for controlled drug delivery
WO2007074968A1 (en) * 2005-12-26 2007-07-05 Cowellmedi Co., Ltd. Dental implant coated with recombinant bone morphogenic protein and coating method thereof
RU2325133C1 (ru) * 2006-08-30 2008-05-27 Алексей Вячеславович Архипов Внутрикостный дентальный имплантат
BRPI0718660A2 (pt) * 2006-11-10 2013-11-26 Sandvik Intellectual Property Materiais compósitos de implante cirúrgico e kits e métodos de fabricação.
US20080147186A1 (en) * 2006-12-14 2008-06-19 Joshi Ashok V Electrochemical Implant For Delivering Beneficial Agents
AU2008306596B2 (en) * 2007-10-03 2013-04-04 Accentus Plc Method of manufacturing metal with biocidal properties
DE102009032228A1 (de) 2009-07-08 2011-01-13 Giesecke & Devrient Gmbh Vorrichtung und Verfahren für die Annahme oder Ausgabe von Banknoten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003513001A (ja) * 1998-04-17 2003-04-08 キネテイツク・リミテツド 物質投与用インプラント及びインプラントの製造方法
JP2004515276A (ja) * 2000-12-06 2004-05-27 アストラ・テック・アクチエボラーグ 生体適合性が向上した医療用プロテーゼ装置およびインプラント
JP2007507306A (ja) * 2003-09-30 2007-03-29 ジンテーズ アクチエンゲゼルシャフト クール 整形外科用インプラントの抗微生物ヒアルロン酸被覆物
JP2008006164A (ja) 2006-06-30 2008-01-17 Yoshioka:Kk 酸化膜の形成方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. MASSE ET AL., JOURNAL OF BIOCHEMICAL MATERIALS RESEARCH PART B: APPLIED BIOMATERIALS, vol. 53, no. 5, 2000, pages 600 - 604
C.N. KRAFT ET AL., JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, vol. 49, no. 2, 1999, pages 192 - 199
See also references of EP2371398A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102416202A (zh) * 2011-05-24 2012-04-18 周君琳 碘抗菌钛合金骨科内固定钉板的设计和制作方法
JP2013172926A (ja) * 2012-02-27 2013-09-05 Japan Lifeline Co Ltd 医療用ガイドワイヤ
WO2014203566A1 (ja) * 2013-06-18 2014-12-24 オリンパス株式会社 生体用インプラント
JPWO2014203566A1 (ja) * 2013-06-18 2017-02-23 オリンパス株式会社 生体用インプラント
WO2018179357A1 (ja) * 2017-03-31 2018-10-04 株式会社プロステック 抗菌性生体インプラント
WO2018179358A1 (ja) * 2017-03-31 2018-10-04 株式会社プロステック 抗菌性生体インプラントの製造方法
JPWO2018179357A1 (ja) * 2017-03-31 2020-02-06 株式会社プロステック 抗菌性生体インプラント
JPWO2018179358A1 (ja) * 2017-03-31 2020-02-06 株式会社プロステック 抗菌性生体インプラントの製造方法
WO2020067500A1 (ja) 2018-09-28 2020-04-02 株式会社三菱ケミカルホールディングス 抗菌材、積層体、抗菌性積層体、医療用部材、抗菌材の製造方法、抗菌性積層体の製造方法及び抗菌方法
CN112770900A (zh) * 2018-09-28 2021-05-07 三菱化学株式会社 抗菌材料、层积体、抗菌性层积体、医疗用构件、抗菌材料的制造方法、抗菌性层积体的制造方法和抗菌方法
EP3858596A4 (en) * 2018-09-28 2021-11-24 Mitsubishi Chemical Corporation ANTIMICROBIAL MATERIAL, LAMINATED BODY, ANTIMICROBIAL LAMINATED BODY, MEDICAL ELEMENT, METHOD FOR MANUFACTURING ANTIMICROBIAL MATERIAL, METHOD FOR MANUFACTURING ANTIMICROBIAL LAMINATOR AND ANTIMICROBIAL LAMINATOR

Also Published As

Publication number Publication date
IL217924A0 (en) 2012-03-29
CN102281906B (zh) 2014-08-27
CN102281906A (zh) 2011-12-14
KR20120062830A (ko) 2012-06-14
MX2011010391A (es) 2012-01-20
CA2770362A1 (en) 2011-03-03
BRPI0919992B1 (pt) 2020-12-29
AU2009351845B2 (en) 2012-12-20
SG177768A1 (en) 2012-03-29
US9889231B2 (en) 2018-02-13
AU2009351845A1 (en) 2012-03-08
BRPI0919992A2 (pt) 2020-08-11
EP2371398B1 (en) 2013-05-15
HK1161845A1 (en) 2012-08-10
ES2414635T3 (es) 2013-07-22
IL217924A (en) 2014-11-30
US20130240365A1 (en) 2013-09-19
ZA201200882B (en) 2013-05-29
RU2485979C1 (ru) 2013-06-27
PL2371398T3 (pl) 2013-08-30
US10668187B2 (en) 2020-06-02
BRPI0919992B8 (pt) 2021-06-22
JPWO2011024216A1 (ja) 2013-01-24
JP5044795B2 (ja) 2012-10-10
NZ598179A (en) 2013-06-28
KR101322942B1 (ko) 2013-10-29
US20180243483A1 (en) 2018-08-30
EP2371398A4 (en) 2011-11-02
EP2371398A1 (en) 2011-10-05
US20110313539A1 (en) 2011-12-22
CA2770362C (en) 2013-12-03

Similar Documents

Publication Publication Date Title
JP5044795B2 (ja) 医療用部品およびその製造方法
Kumar et al. A comprehensive review on techniques to create the anti-microbial surface of biomaterials to intervene in biofouling
Jamesh et al. Evaluation of corrosion resistance and cytocompatibility of graded metal carbon film on Ti and NiTi prepared by hybrid cathodic arc/glow discharge plasma-assisted chemical vapor deposition
Makwana et al. Electrochemical and plasma surface modification of magnesium and its alloy
CN102644077A (zh) 仿生陶瓷/金属叠层复合支架涂层制备工艺
CN101229396A (zh) 一种血管支架及其制备方法
Liu et al. The effects of annealing temperature on corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores on NiTi alloy
RU2508130C1 (ru) Способ изготовления кардиоимплантата из сплава на основе никелида титана с модифицированным ионно-плазменной обработкой поверхностным слоем
JP6826656B2 (ja) 抗菌性生体インプラントの製造方法
JP6861271B2 (ja) 抗菌性生体インプラント
Lu et al. Nanostructured Cu-doped TiO2 with photothermal effect for prevention of implant-associated infection
CN109652766B (zh) 一种医用植入材料用镁-银-铜涂层及其制备方法
RU2600294C1 (ru) Способ получения микропористого слоя на поверхности изделий из титана или его сплава
CN115212355B (zh) 红外-可见光的光热光动力协同低温抗菌牙种植体材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154054.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 13000860

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011528507

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2131/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009848668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/010391

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012102402

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 217924

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2770362

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009351845

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 12027695

Country of ref document: CO

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009351845

Country of ref document: AU

Date of ref document: 20090825

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127007631

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0919992

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110718