WO2011023467A1 - Kraftstoffeinspritzventil - Google Patents

Kraftstoffeinspritzventil Download PDF

Info

Publication number
WO2011023467A1
WO2011023467A1 PCT/EP2010/060415 EP2010060415W WO2011023467A1 WO 2011023467 A1 WO2011023467 A1 WO 2011023467A1 EP 2010060415 W EP2010060415 W EP 2010060415W WO 2011023467 A1 WO2011023467 A1 WO 2011023467A1
Authority
WO
WIPO (PCT)
Prior art keywords
seat
nozzle
region
fuel injection
injection valve
Prior art date
Application number
PCT/EP2010/060415
Other languages
English (en)
French (fr)
Inventor
Michael Leukart
Katja Grothe
Wilhelm Christ
Gerhard Suenderhauf
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP10734739.5A priority Critical patent/EP2470771B1/de
Priority to RU2012111981/06A priority patent/RU2541367C2/ru
Priority to CN201080037997.8A priority patent/CN102625878B/zh
Priority to US13/392,914 priority patent/US9441590B2/en
Publication of WO2011023467A1 publication Critical patent/WO2011023467A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1886Details of valve seats not covered by groups F02M61/1866 - F02M61/188

Definitions

  • the invention relates to a fuel injection valve for injecting fuel into a combustion chamber of an internal combustion engine having the features of the preamble of claim 1.
  • German Offenlegungsschrift DE 10 2006 012 242 A1 discloses a fuel injection valve for an internal combustion engine which has a valve body in which a pressure space which can be filled with fuel under high pressure is formed, from which at least one injection opening originates.
  • a longitudinally displaceable valve needle is arranged, which cooperates with a sealing surface with a conical valve seat formed in the pressure chamber for opening and closing the at least one injection opening. So that enough fuel flows between the sealing surface of the valve needle and the valve seat through to the injection openings to a corresponding
  • a conical valve seat is proposed with an opening angle between 75 ° and 100 °.
  • the proposed Kraft- fuel injection valve on the advantage that a lesser stroke of the valve needle is required to overcome the seat throttling region, so that rapid successive injections are possible with a high injection pressure.
  • the larger opening angle of the valve seat to reduce flow-related disturbing forces on the valve needle, which can have a desalination of the valve needle result.
  • the object of the present invention is therefore to provide a fuel injector which has a high strength, in particular in the region of the valve seat.
  • the proposed to solve the problem fuel injector has a nozzle needle, which is guided in a central bore of a nozzle body for releasing or closing at least one injection port hubbeweglich, wherein the nozzle needle formed on its combustion chamber end end, circumferential sealing area with a combustion chamber end of the Nozzle body trained conical seal seat cooperates.
  • the conical sealing seat has an opening angle ⁇ i between 30 ° and 50 °, preferably between 40 ° and 50 °.
  • the injection pressure can be increased by corresponding values.
  • the nozzle per in the region of the injection openings have a smaller wall thickness, so that the injection openings have a shorter length, which in turn has a favorable effect on the coking sensitivity.
  • a greater strength or robustness of the sealing seat region can also be achieved by carrying out other strength-increasing measures, such as, for example, a higher material quality, larger ones
  • Wall thicknesses or stiffeners these measures are usually more expensive and usually not without influence on the function of the fuel injector.
  • Ballistic injectors Since the proposed seat geometry requires a larger nozzle needle lift for seat deceleration, such is preferably realized in the case of ballistic fuel injection valves or injectors. In contrast to non-ballistic injectors, ballistic injectors have no stroke stop for limiting the nozzle needle stroke. Ballistic injectors thus enable a larger nozzle needle lift, which in turn causes the nozzle needle to move outside the seat throttling area for a long time, thus ensuring the complete injection pressure at the injection openings over a relatively long period of time.
  • the at least one injection opening in the region of the sealing seat opens into the central bore of the nozzle body.
  • the fuel injection valve preferably has a so-called seat hole nozzle.
  • Seat hole nozzles have blind hole nozzles, in which the injection openings open below the sealing seat in a blind hole, among other things, the advantage that the harmful volume can be reduced by up to 50%. Due to the lower harmful emissions, the HC emissions are also significantly reduced. As well as the
  • the proposed seat geometry of a fuel injection valve according to the invention in connection with the training as a seat hole nozzle proves to be particularly advantageous. Due to the injection openings formed in the seat portion, a seat hole nozzle has a lower strength compared to a blind hole nozzle, but this is compensated by the fact that stresses due to the proposed smaller opening angle of the sealing seat can be significantly reduced. Since, in the case of seat-hole nozzles, there is more often the danger of a depression of the nozzle needle than blind-hole nozzles, it is furthermore preferably proposed that the central bore has a seat-near guide region for guiding the nozzle needle.
  • a guide region which is formed within a region of the central bore whose length is at most 40% of the total length of the nozzle body starting from the combustion chamber end of the nozzle body, is referred to as "seated close.”
  • a seat-oriented guide can be used to counterbalance or skew the nozzle needle
  • the central bore preferably has a region of reduced diameter for forming the seat-near guide region.
  • the seat-near guide area is formed immediately adjacent to the sealing seat.
  • an optimal guidance of the nozzle needle can be achieved on the other hand, the production of the guide area within the central bore is simplified. If, for example, the central bore for forming the guide region has a reduced diameter, closing only on one side of the guide region, that is to say on the side remote from the seat, rich in the central hole with a larger diameter, so that it can be easily prepared by exposure.
  • the circumferential sealing area formed on the nozzle needle has at least one cone-shaped partial area.
  • the cone angle ⁇ 2 of this partial area is preferably selected to be at least slightly larger than the opening angle ⁇ i of the sealing seat.
  • the nozzle needle thus essentially abuts with a line-shaped sealing contour on the sealing seat.
  • the circumferential sealing region can also be composed of two cone-shaped partial regions with different cone angles.
  • the circumferential sealing area formed on the nozzle needle has a pressure stage with hydraulic active surfaces, which can be acted upon with fuel pressure in the axial and / or radial direction.
  • a pressure stage may for example also have the shape of a circumferential groove.
  • An adjoining, in the radial direction effective hydraulic pressure can also contribute to the leadership of the nozzle needle and thus prevent the risk of Ausachstechnik. Due to the properties mentioned above, an inventive
  • nozzle design can significantly reduce HC emissions, ensure good spray symmetry, and achieve nozzle area strength that enables high injection pressures.
  • the fuel injection valve according to the invention may be designed as a ballistic injector without a stroke stop, the use of which is widespread.
  • FIGS. show: Fig. 1 are schematic partial sections in the region of the sealing seat, which contrast a 45 ° nozzle according to the invention of a known 60 ° nozzle and
  • FIG. 2 shows schematic partial sections which contrast a seat hole nozzle of a blind hole nozzle.
  • FIG. 1 The comparison of FIG. 1 is shown on the left side according to the invention and on the right side a known nozzle construction.
  • Both nozzle designs comprise a nozzle needle 1, which is guided in a hub 2 in a central bore 2 of a nozzle body.
  • the nozzle construction according to the invention has a seat-near guide region 7 with a reduced diameter.
  • At least one injection port 4 is released or closed.
  • Both nozzles are designed as seat hole nozzles, that is to say that the at least one injection opening 4 open into the central bore 2 in each case in the region of a sealing seat 6 formed inside the central bore 2.
  • the sealing seat 6 in each case has a conical shape, which essentially corresponds to a conically extending partial region 8 of the nozzle needle 1 and forms a sealing region 5.
  • the conical portion 8 of the nozzle needle 1 is followed by a cylindrical portion and thereafter again a conical portion, so that at the nozzle needle 1, a pressure stage 9 and between the nozzle needle 1 and sealing seat 6 an annular space is formed as a pressure chamber, which in the operation of the injection valve is filled under high pressure fuel.
  • the pressure chamber is in communication with a formed between the nozzle needle 1 and the central bore 2 annular gap, which also serves as a pressure chamber.
  • the central bore 2 runs out into a blind hole 10 in each case.
  • Fig. 2 shows a Weglochdüse (left side) and a blind hole nozzle (right side) in a comparison.
  • the at least one injection opening 4 opens in the region of the sealing seat 6 into the central bore 2 of the nozzle body, while in the blind-hole nozzle the at least one injection opening 4 enters into the blind hole 10 empties.
  • a dead volume in the blind hole 10. As the illustrations of Fig. 2 it can be seen, this is significantly, that is reduced by about 50%.
  • the HC emissions can therefore also be significantly reduced when using a seat hole nozzle, which presents itself as a further advantage.

Abstract

Die Erfindung betrifft ein Kraftstoffeinspritzventil zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine mit einer Düsennadel (1), die in einer zentralen Bohrung (2) eines Düsenkörpers (3) zur Freigabe oder zum Verschließen wenigstens einer Einspritzöffnung (4) hubbeweglich geführt ist, wobei die Düsennadel (1) über einen an ihrem brennraumseitigen Ende ausgebildeten, umlaufenden Dichtbereich (5) mit einem am brennraumseitigen Ende des Düsenkörpers (3) ausgebildeten, konisch verlaufenden Dichtsitz (6) zusammenwirkt. Erfindungsgemäß besitzt der konisch verlaufende Dichtsitz (6) einen Öffnungswinkel (α1) zwischen 30° und 50°, vorzugsweise zwischen 40° und 50°.

Description

Beschreibung
Titel
Kraftstoffe i ns p ritz ve nti I
Die Erfindung betrifft ein Kraftstoffeinspritzventil zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine mit den Merkmalen des Oberbegriffes des Anspruchs 1.
Stand der Technik
Aus der Offenlegungsschrift DE 10 2006 012 242 Al geht ein Kraftstoffeinspritzventil für eine Brennkraftmaschine hervor, das einen Ventilkörper besitzt, in dem ein mit Kraftstoff unter hohem Druck befüllbarer Druckraum ausgebildet ist, von dem wenigstens eine Einspritzöffnung ausgeht. Im Druckraum ist eine längsverschiebbare Ventilnadel angeordnet, die mit einer Dichtfläche mit einem im Druckraum ausgebildeten konischen Ventilsitz zum Öffnen und Schließen der wenigstens einen Einspritzöffnung zusammenwirkt. Damit genügend Kraftstoff zwischen der Dichtfläche der Ventilnadel und dem Ventilsitz hindurch zu den Einspritzöffnungen fließt, um eine entsprechende
Einspritzrate zu erreichen, muss die Ventilnadel einen gewissen Mindesthub durchfahren. Denn erst muss der Bereich überwunden werden, in dem der Spalt zwischen der Dichtfläche und dem Ventilsitz drosselt und der an den Einspritzöffnungen anliegende Einspritzdruck gemindert ist. Mit einem großen Mindesthub, um den vollen Einspritz- druck zu erreichen, lassen sich jedoch keine rasch aufeinander folgenden Einspritzungen realisieren. In der vorstehend genannten Offenlegungsschrift wird daher ein konisch ausgebildeter Ventilsitz mit einem Öffnungswinkel zwischen 75° und 100° vorgeschlagen. Gegenüber Kraftstoffeinspritzventilen, die einen konischen Ventilsitz mit einem üblichen Öffnungswinkel von etwa 60° besitzen, weist das vorgeschlagene Kraft- stoffeinspritzventil den Vorteil auf, dass zur Überwindung des Sitzdrosselungsbereiches ein geringerer Hub der Ventilnadel erforderlich ist, so dass rasch aufeinander folgende Einspritzungen mit einem hohen Einspritzdruck möglich sind. Zudem soll der größere Öffnungswinkel des Ventilsitzes strömungsbedingte störende Kräfte auf die Ventilnadel mindern, die eine Desachsierung der Ventilnadel zur Folge haben können.
Angesichts stetig steigender Einspritzdrücke stehen heute Festigkeitsaspekte, insbesondere im Bereich des Ventilsitzes, bei der Entwicklung moderner Kraftstoffeinspritzventile im Vordergrund. Wobei die gewählte Sitzgeometrie großen Einfluss auf die Funktion des Kraftstoffinjektors besitzt.
Die Aufgabe der vorliegenden Erfindung besteht daher darin, einen Kraftstoffinjektor bereitzustellen, der insbesondere im Bereich des Ventilsitzes eine hohe Festigkeit aufweist.
Die Aufgabe wird gelöst durch ein Kraftstoffeinspritzventil mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen der Erfindung werden in den direkt oder indirekt auf Anspruch 1 rückbezogenen Unteransprüchen angegeben. Offenbarung der Erfindung
Das zur Lösung der Aufgabe vorgeschlagene Kraftstoffeinspritzventil weist eine Düsennadel auf, die in einer zentralen Bohrung eines Düsenkörpers zur Freigabe oder zum Verschließen wenigstens einer Einspritzöffnung hubbeweglich geführt ist, wobei die Düsennadel über einen an ihrem brennraumseitigen Ende ausgebildeten, umlaufenden Dichtbereich mit einem am brennraumseitigen Ende des Düsenkörpers ausgebildeten, konisch verlaufenden Dichtsitz zusammenwirkt. Erfindungsgemäß besitzt der konisch verlaufende Dichtsitz einen Öffnungswinkel αi zwischen 30° und 50°, vorzugsweise zwischen 40° und 50°. Der Vorteil einer solchen Sitzgeometrie besteht darin, dass aufgrund des kleineren Öffnungswinkels, der weit unter den üblichen 60° liegt, deutliche Spannungsminderungen im Bereich des Dichtsitzes am brennraumseitigen Ende des Düsenkörpers erzielt werden können. Aufgrund der erzielten Spannungsminderung bzw. der geringeren Belastung kann beispielsweise der Einspritzdruck um entsprechende Werte erhöht werden. Alternativ oder ergänzend kann auch der Düsenkör- per im Bereich der Einspritzöffnungen eine geringere Wandstärke besitzen, so dass die Einspritzöffnungen eine geringere Länge aufweisen, was sich wiederum günstig auf die Verkokungsempfindlichkeit auswirkt. Eine größere Festigkeit bzw. Robustheit des Dichtsitzbereiches ist zwar auch durch Vornahme anderer festigkeitssteigernder Maß- nahmen erreichbar, wie beispielsweise durch eine höhere Werkstoffqualität, größere
Wandstärken oder Versteifungen, diese Maßnahmen sind jedoch meist kostenintensiver und in der Regel nicht ohne Einfluss auf die Funktion des Kraftstoffinjektors.
Da die vorgeschlagene Sitzgeometrie einen größeren Düsennadelhub zur Sitzentdros- seiung bedingt, wird eine solche vorzugsweise bei ballistischen Kraftstoffeinspritzventilen bzw. Injektoren realisiert. Ballistische Injektoren weisen im Unterschied zu nichtballistischen Injektoren keinen Hubanschlag zur Begrenzung des Düsennadelhubes auf. Ballistische Injektoren ermöglichen somit einen größeren Düsennadelhub, der wiederum bewirkt, dass sich die Düsennadel längere Zeit außerhalb des Sitzdrosselungs- bereiches bewegt und damit den vollständigen Einspritzdruck an den Einspritzöffnungen über einen längeren Zeitraum gewährleistet.
Alternativ oder ergänzend finden zur Überwindung des Sitzdrosselungsbereiches weiterhin bevorzugt schnell schaltende Ventile Einsatz. Diese ermöglichen, dass der Hub- bereich oberhalb der Sitzdrosselung schneller erreicht wird, so dass in kurzer Zeit der volle Einspritzdruck an den Einspritzöffnungen anliegt. Um die Schnelligkeit der Düsennadel zu erhöhen, kann beispielsweise ein großes Verhältnis von Ablauf- und Zulaufdrossel gewählt werden. Somit werden größere Nadelhübe durch eine„schnelle" Nadel kompensiert. Andererseits können durch eine gezielte Ausnutzung des Nadel- drosselbereiches und einer reduzierten Nadelkraft bei kleinen Nadelhüben kleine und kleinste Einspritzmengen genauer zugemessen werden. Denn gegenüber Kraftstoffeinspritzventilen mit einem 60°-Öffnungswinkel des Ventilsitzes besitzt ein erfindungsgemäßes Kraftstoffeinspritzventil bei kleinen Nadelhüben eine geringere Nadelkraft. Eine solche führt ferner dazu, dass bei Einsatz eines Servoventils zur Düsenadelsteuerung der Steuerraum schneller entlastet wird, wodurch die Düsennadel wiederum eine Beschleunigung erfährt.
Gemäß einer bevorzugten Ausführungsform mündet die wenigstens eine Einspritzöffnung im Bereich des Dichtsitzes in die zentrale Bohrung des Düsenkörpers. Dement- sprechend weist das Kraftstoffeinspritzventil bevorzugt eine sogenannte Sitzlochdüse auf. Sitzlochdüsen besitzen gegenüber Sacklochdüsen, bei denen die Einspritzöffnungen unterhalb des Dichtsitzes in ein Sackloch münden, unter anderem den Vorteil, dass das Schadvolumen um bis zu 50% reduziert werden kann. Aufgrund des geringe- ren Schadvolumens werden auch die HC- Emissionen deutlich reduziert. Da auch die
Anforderungen hinsichtlich der Emissionswerte stetig steigen, kann eine weitere Aufgabe der vorliegenden Erfindung in der Reduzierung solcher gesehen werden. Insoweit erweist sich die vorgeschlagene Sitzgeometrie eines erfindungsgemäßen Kraftstoffeinspritzventils in Verbindung mit der Ausbildung als Sitzlochdüse als besonders vorteil- haft. Aufgrund der im Sitzbereich ausgebildeten Einspritzöffnungen besitzt eine Sitzlochdüse gegenüber einer Sacklochdüse zwar regelmäßig eine geringere Festigkeit, diese wird jedoch dadurch kompensiert, dass Spannungen aufgrund des vorgeschlagenen kleineren Öffnungswinkels des Dichtsitzes deutlich gemindert werden können. Da bei Sitzlochdüsen gegenüber Sacklochdüsen zudem häufiger die Gefahr einer De- sachsierung der Düsennadel besteht, wird weiterhin bevorzugt vorgeschlagen, dass die zentrale Bohrung einen sitznahen Führungsbereich zur Führung der Düsennadel aufweist. Als„sitznah" wird vorliegend ein Führungsbereich bezeichnet, der innerhalb eines Bereiches der zentralen Bohrung ausgebildet ist, dessen Länge maximal 40% der Gesamtlänge des Düsenkörpers ausgehend vom brennraumseitigen Ende des Düsenkörpers beträgt. Durch eine sitznahe Führung kann einer Desachsierung bzw. Schiefstellung der Düsennadel entgegen gewirkt werden. Somit ist eine gute Strahlsymmetrie und damit eine gleichmäßige Verteilung des eingespritzten Kraftstoffes im Brennraum der Brennkraftmaschine gewährleistet. Bevorzugt weist die zentrale Bohrung einen Be- reich mit reduziertem Durchmesser zur Ausbildung des sitznahen Führungsbereichs auf.
Vorzugsweise ist der sitznahe Führungsbereich unmittelbar anschließend an den Dichtsitz ausgebildet. Zum Einen kann dadurch eine optimale Führung der Düsennadel erreicht werden, zum Anderen wird die Herstellung des Führungsbereiches innerhalb der zentralen Bohrung vereinfacht. Weist die zentrale Bohrung zur Ausbildung des Führungsbereiches beispielsweise einen reduzierten Durchmesser auf, schließt lediglich an einer Seite des Führungsbereiches, das heißt an der sitzfernen Seite, ein Be- reich der zentralen Bohrung mit einem größeren Durchmesser an, so dass dieser durch Freilegen einfach hergestellt werden kann.
Bevorzugt besitzt der an der Düsennadel ausgebildete umlaufende Dichtbereich zu- mindest einen konusförmigen Teilbereich. Der Konuswinkel α2 dieses Teilbereiches ist vorzugsweise zumindest geringfügig größer als der Öffnungswinkel αi des Dichtsitzes gewählt. Die Düsennadel liegt somit im Wesentlichen mit einer linienförmigen Dichtkontur am Dichtsitz an. Zur Ausbildung einer Dichtkante kann der umlaufende Dichtbereich auch aus zwei konusförmigen Teilbereichen mit unterschiedlichen Konuswinkeln zu- sammengesetzt sein.
Gemäß einer bevorzugten Ausführungsform besitzt der an der Düsennadel ausgebildete umlaufende Dichtbereich eine Druckstufe mit hydraulischen Wirkflächen, die in axialer und/oder radialer Richtung mit Kraftstoff druck beaufschlagbar sind. Eine solche Druckstufe kann beispielsweise auch die Form einer umlaufenden Nut aufweisen. Ein hieran anliegender, in radialer Richtung wirksamer hydraulischer Druck kann ebenfalls zur Führung der Düsennadel beitragen und somit die Gefahr einer Desachsierung verhindern. Aufgrund der vorstehend genannten Eigenschaften eignet sich ein erfindungsgemäßes
Kraftstoffeinspritzventil insbesondere für moderne Brennverfahren mit einem hohen Anteil an vorgemischter Verbrennung im Teillastbereich, welche deutlich erhöhte HC- Emissionen erzeugen. Die üblicherweise gewählten Düsenkonstruktionen tragen zu den erhöhten Werten bei. Denn die Einspritzdüse ist üblicherweise als Sacklochdüse mit einem Sitzkegelwinkel von etwa 60° ausgebildet. Die vorliegend vorgeschlagene
Düsenkonstruktion vermag dagegen die HC- Emissionen deutlich zu verringern, eine gute Spraysymmetrie zu gewährleisten und eine Festigkeit des Düsenbereiches zu erzielen, die hohe Einspritzdrücke ermöglicht. Des Weiteren kann das erfindungsgemäße Kraftstoffeinspritzventil als ballistischer Injektor ohne Hubanschlag ausgebildet sein, dessen Einsatz weit verbreitet ist.
Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Diese zeigen: Fig. 1 schematische Teilschnitte im Bereich des Dichtsitzes, die eine erfindungsgemäße 45°-Düse einer bekannten 60°-Düse gegenüberstellen und
Fig. 2 schematische Teilschnitte, die eine Sitzlochdüse einer Sacklochdüse gegen- überstellen.
Der Gegenüberstellung der Fig. 1 ist auf der linken Seite eine erfindungsgemäße und auf der rechten Seite eine bekannte Düsenkonstruktion zu entnehmen. Beide Düsenkonstruktionen umfassen eine Düsennadel 1, die in einer zentralen Bohrung 2 eines Düsenkörpers 3 hubbeweglich geführt ist. Die erfindungsgemäße Düsenkonstruktion weist hierzu einen sitznahen Führungsbereich 7 mit reduziertem Durchmesser auf. Über die Hubbewegung der Düsennadel 1 wird wenigstens eine Einspritzöffnung 4 freigegeben oder verschlossen. Beide Düsen sind als Sitzlochdüsen konstruiert, das heißt, dass die wenigstens eine Einspritzöffnung 4 jeweils im Bereich eines innerhalb der zentralen Bohrung 2 ausgebildeten Dichtsitzes 6 in die zentrale Bohrung 2 münden. Der Dichtsitz 6 weist jeweils einen konischen Verlauf auf, der im Wesentlichen mit einem konisch verlaufenden Teilbereich 8 der Düsennadel 1 korrespondiert und einen Dichtbereich 5 bildet. An den konischen Teilbereich 8 der Düsennadel 1 schließt sich ein zylinderförmiger Teilbereich und hiernach wieder ein konischer Teilbereich an, so dass an der Düsennadel 1 eine Druckstufe 9 und zwischen Düsennadel 1 und Dichtsitz 6 ein Ringraum als Druckkammer ausgebildet wird, der im Betrieb des Einspritzventils mit unter hohem Druck stehendem Kraftstoff befüllt ist. Die Druckkammer steht in Verbindung mit einem zwischen der Düsennadel 1 und der zentralen Bohrung 2 ausgebildeten Ringspalt, der ebenfalls als Druckraum dient. Brennraumseitig (in der Fig. 1 unten) läuft die zentrale Bohrung 2 jeweils in ein Sackloch 10 aus. Unterschiede bestehen im Wesentlichen nur im Hinblick auf den gewählten Öffnungswinkel αi des konisch verlaufenden Dichtsitzes 6, der in der linken Darstellung 45° und in der rechten Darstellung 60° beträgt, sowie dem Konuswinkel α2 des konischen Teilbereiches 8 der Düsennadel 1, der jeweils entsprechend ausgebildet ist.
Fig. 2 zeigt eine Sitzlochdüse (linke Seite) und eine Sacklochdüse (rechte Seite) in einer Gegenüberstellung. Bei der Sitzlochdüse mündet die wenigstens eine Einspritzöffnung 4 im Bereich des Dichtsitzes 6 in die zentrale Bohrung 2 des Düsenkörpers, während bei der Sacklochdüse die wenigstens eine Einspritzöffnung 4 in das Sackloch 10 mündet. Auch bei der Sitzlochdüse verbleibt beim Einspritzen von Kraftstoff in den Brennraum einer Brennkraftmaschine ein Schadvolumen im Sackloch 10. Wie den Darstellungen der Fig. 2 zu entnehmen ist, wird dieses jedoch deutlich, das heißt um etwa 50% reduziert. Die HC-Emissionen können bei Verwendung einer Sitzlochdüse demnach ebenfalls deutlich gesenkt werden, welches sich als ein weiterer Vorteil darstellt.

Claims

Patentansprüche
1. Kraftstoffeinspritzventil zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine mit einer Düsennadel (1), die in einer zentralen Bohrung (2) eines Düsenkörpers (3) zur Freigabe oder zum Verschließen wenigstens einer Einspritzöffnung (4) hubbeweglich geführt ist, wobei die Düsennadel (1) über einen an ihrem brennraumseitigen Ende ausgebildeten, umlaufenden Dichtbereich (5) mit einem am brennraumseitigen Ende des Düsenkörpers (3) ausgebildeten, konisch verlaufenden Dichtsitz (6) zusammenwirkt,
dadurch gekennzeichnet, dass der konisch verlaufende Dichtsitz (6) einen Öff- nungswinkel (αi) zwischen 30° und 50°, vorzugsweise zwischen 40° und 50° besitzt.
2. Kraftstoffeinspritzventil nach Anspruch 1,
dadurch gekennzeichnet, dass die wenigstens eine Einspritzöffnung (4) im Be- reich des Dichtsitzes (6) in die zentrale Bohrung (2) mündet.
3. Kraftstoffeinspritzventil nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die zentrale Bohrung (2) einen sitznahen Führungsbereich (7) mit reduziertem Durchmesser zur Führung der Düsennadel (1) aufweist, wobei der Führungsbereich (7) innerhalb eines Bereiches der zentralen
Bohrung (2) ausgebildet ist, dessen Länge maximal 40% der Gesamtlänge des Düsenkörpers (3) ausgehend vom brennraumseitigen Ende des Düsenkörpers (3) beträgt.
4. Kraftstoffeinspritzventil nach Anspruch 3,
dadurch gekennzeichnet, dass die zentrale Bohrung (2) einen Bereich mit reduziertem Durchmesser zur Ausbildung des sitznahen Führungsbereichs (7) aufweist.
5. Kraftstoffeinspritzventil nach Anspruch 3 oder 4,
dadurch gekennzeichnet, dass der sitznahe Führungsbereich (7) unmittelbar anschließend an den Dichtsitz (6) ausgebildet ist.
6. Kraftstoffeinspritzventil nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der an der Düsennadel (1) ausgebildete umlaufende Dichtbereich (5) zumindest einen konusförmigen Teilbereich (8) besitzt, wobei vorzugsweise der Konuswinkel (α2) des Teilbereiches (8) zumindest geringfügig größer als der Öffnungswinkel (αi) des Dichtsitzes (6) gewählt ist.
7. Kraftstoffeinspritzventil nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der an der Düsennadel (1) ausgebildete umlaufende Dichtbereich (5) eine Druckstufe (9) mit hydraulischen Wirkflächen besitzt, die in axialer und/oder radialer Richtung mit Kraftstoff druck beaufschlagbar sind.
PCT/EP2010/060415 2009-08-28 2010-07-19 Kraftstoffeinspritzventil WO2011023467A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10734739.5A EP2470771B1 (de) 2009-08-28 2010-07-19 Kraftstoffeinspritzventil
RU2012111981/06A RU2541367C2 (ru) 2009-08-28 2010-07-19 Топливная форсунка
CN201080037997.8A CN102625878B (zh) 2009-08-28 2010-07-19 燃料喷射阀
US13/392,914 US9441590B2 (en) 2009-08-28 2010-07-19 Fuel injection valve

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009028960.7 2009-08-28
DE102009028960 2009-08-28
DE102009029542.9 2009-09-17
DE102009029542A DE102009029542A1 (de) 2009-08-28 2009-09-17 Kraftstoffeinspritzventil

Publications (1)

Publication Number Publication Date
WO2011023467A1 true WO2011023467A1 (de) 2011-03-03

Family

ID=43524865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/060415 WO2011023467A1 (de) 2009-08-28 2010-07-19 Kraftstoffeinspritzventil

Country Status (6)

Country Link
US (1) US9441590B2 (de)
EP (1) EP2470771B1 (de)
CN (1) CN102625878B (de)
DE (1) DE102009029542A1 (de)
RU (1) RU2541367C2 (de)
WO (1) WO2011023467A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150020778A1 (en) * 2012-03-14 2015-01-22 International Engine Intellectual Property Company Llc Fuel injector nozzle
CN104088741A (zh) * 2014-06-23 2014-10-08 中国北方发动机研究所(天津) 一种喷油器针阀体盛油腔结构
FR3057623B1 (fr) * 2016-10-14 2020-12-25 Delphi Int Operations Luxembourg Sarl Membre de vanne d'un injecteur de carburant
DE102018113508A1 (de) * 2018-06-06 2019-12-12 Liebherr-Components Deggendorf Gmbh Verfahren zum Fertigen einer Düse
RU190851U1 (ru) * 2019-03-29 2019-07-15 Евгений Викторович Горбачевский Распылитель электрогидравлической форсунки
RU190852U1 (ru) * 2019-03-29 2019-07-15 Евгений Викторович Горбачевский Распылитель форсунки дизеля
RU2698586C1 (ru) * 2019-05-13 2019-08-28 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" Распылитель топливной форсунки

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822789A (en) * 1956-06-15 1958-02-11 Exxon Research Engineering Co Injection of heavy fuel into diesel engines and valve means therefor
EP0460326A1 (de) * 1990-06-08 1991-12-11 Lucas Industries Public Limited Company Kraftstoffeinspritzdüse
DE10111035A1 (de) * 2000-03-08 2001-10-18 Denso Corp Kraftstoffeinspritzdüse
WO2004104408A1 (de) * 2003-05-26 2004-12-02 Siemens Aktiengesellschaft Mehrlocheinspritzdüse
DE202006007883U1 (de) * 2006-05-17 2006-10-19 Robert Bosch Gmbh Kraftstoffinjektor mit doppelter Nadelführung
DE102006012242A1 (de) 2006-03-15 2007-09-20 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2927737A (en) * 1952-04-12 1960-03-08 Bosch Gmbh Robert Fuel injection valves
US4987887A (en) * 1990-03-28 1991-01-29 Stanadyne Automotive Corp. Fuel injector method and apparatus
GB9425652D0 (en) * 1994-12-20 1995-02-22 Lucas Ind Plc Fuel injection nozzle
CN1187233A (zh) * 1995-06-09 1998-07-08 株式会社杰克赛尔 喷孔面积可变的燃料喷嘴
DE19755057A1 (de) * 1997-12-11 1999-06-17 Bosch Gmbh Robert Kraftstoffeinspritzdüse für selbstzündende Brennkraftmaschinen
DE19844638A1 (de) * 1998-09-29 2000-03-30 Siemens Ag Kraftstoffeinspritzventil für eine Brennkraftmaschine
RU2175078C2 (ru) 2000-01-31 2001-10-20 Гундоров Валентин Михайлович Распылитель форсунки для двигателя внутреннего сгорания
DE10031264A1 (de) * 2000-06-27 2002-01-17 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10046304C1 (de) 2000-09-19 2002-06-06 Bosch Gmbh Robert Verfahren zum Herstellen eines Ventilsitzkörpers eines Brennstoffeinspritzventils
DE10122503A1 (de) * 2001-05-10 2002-11-21 Bosch Gmbh Robert Ventil mit radialen Ausnehmungen
DE102004047183A1 (de) * 2004-09-29 2006-03-30 Robert Bosch Gmbh Kraftstoffeinspritzventil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2822789A (en) * 1956-06-15 1958-02-11 Exxon Research Engineering Co Injection of heavy fuel into diesel engines and valve means therefor
EP0460326A1 (de) * 1990-06-08 1991-12-11 Lucas Industries Public Limited Company Kraftstoffeinspritzdüse
DE10111035A1 (de) * 2000-03-08 2001-10-18 Denso Corp Kraftstoffeinspritzdüse
WO2004104408A1 (de) * 2003-05-26 2004-12-02 Siemens Aktiengesellschaft Mehrlocheinspritzdüse
DE102006012242A1 (de) 2006-03-15 2007-09-20 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE202006007883U1 (de) * 2006-05-17 2006-10-19 Robert Bosch Gmbh Kraftstoffinjektor mit doppelter Nadelführung

Also Published As

Publication number Publication date
US9441590B2 (en) 2016-09-13
DE102009029542A1 (de) 2011-03-03
CN102625878B (zh) 2016-03-09
RU2012111981A (ru) 2013-10-20
RU2541367C2 (ru) 2015-02-10
EP2470771B1 (de) 2013-09-11
CN102625878A (zh) 2012-08-01
US20120153053A1 (en) 2012-06-21
EP2470771A1 (de) 2012-07-04

Similar Documents

Publication Publication Date Title
EP2235354B1 (de) Kraftstoffinjektor, dessen steuerventilelement einen stützbereich aufweist
EP2470771B1 (de) Kraftstoffeinspritzventil
WO2006063912A1 (de) Kraftstoffeinspritzventil für eine brennkraftmaschine
EP2715103B1 (de) Düsenbaugruppe für einen kraftstoffinjektor sowie kraftstoffinjektor
EP1574701A1 (de) Common-Rail Injektor
EP2123898B1 (de) Kraftstoff-Injektor
DE102012211169A1 (de) Kraftstoffinjektor
DE102010040940A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor
WO2011042296A1 (de) Kraftstoffeinspritzventil und dessen herstellung
EP2354527B1 (de) Kraftstoffinjektor
DE102014225392A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor sowie Kraftstoffinjektor
DE102011078390A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor sowie Kraftstoffinjektor
AT397289B (de) Kraftstoffeinspritzdüse für brennkraftmaschinen
DE102013212142A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor sowie Kraftstoffinjektor
DE10160490B4 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
DE102012210534A1 (de) Kraftstoffinjektor
DE102009028089A1 (de) Kraftstoffeinspritzventil mit erhöhter Kleinmengenfähigkeit
EP3184803B1 (de) Kraftstoffinjektor
DE102005005713A1 (de) Düsenbaugruppe und Einspritzventil
EP2726731B1 (de) Kraftstoffinjektor
EP2957760A1 (de) Düsenbaugruppe für einen kraftstoffinjektor sowie kraftstoffinjektor
WO2015086560A1 (de) Verbindungsbereich zwischen einem hochdruckkanal und einer hochdruckkammer und kraftstoffeinspritzkomponente mit einem verbindungsbereich
DE102012213535A1 (de) Kraftstoffinjektor
DE102019210551A1 (de) Kraftstoffinjektor
DE102012101587B4 (de) Einspritzdüse für Verbrennungskraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037997.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10734739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010734739

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13392914

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012111981

Country of ref document: RU