WO2011021640A1 - 温度サイクル装置 - Google Patents

温度サイクル装置 Download PDF

Info

Publication number
WO2011021640A1
WO2011021640A1 PCT/JP2010/063926 JP2010063926W WO2011021640A1 WO 2011021640 A1 WO2011021640 A1 WO 2011021640A1 JP 2010063926 W JP2010063926 W JP 2010063926W WO 2011021640 A1 WO2011021640 A1 WO 2011021640A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat block
temperature
layer heat
reaction
reaction solution
Prior art date
Application number
PCT/JP2010/063926
Other languages
English (en)
French (fr)
Inventor
健樹 荒井
理 武田
博幸 伊豆
博之 向井
Original Assignee
タカラバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカラバイオ株式会社 filed Critical タカラバイオ株式会社
Priority to JP2011527688A priority Critical patent/JPWO2011021640A1/ja
Priority to US13/389,479 priority patent/US20120270309A1/en
Priority to CN201080036270.8A priority patent/CN102471746B/zh
Publication of WO2011021640A1 publication Critical patent/WO2011021640A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/147Employing temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • B01L2300/1827Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks using resistive heater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs

Definitions

  • the present invention relates to a temperature cycle apparatus useful for carrying out a reaction of a biological sample used in the field of molecular biology research and the like, in particular, amplification of a nucleic acid.
  • the nucleic acid amplification reaction is a method of repeating the synthesis of a nucleic acid complementary to and / or having the same sequence as a template nucleic acid, and includes the principles such as PCR method, LCR method, NASBA method, ICAN method, SDA method, and LAMP method.
  • PCR method Several different methods have been developed. These have different characteristics and are used properly according to the purpose and the like, but the PCR method is used in most scenes.
  • the PCR method uses a template nucleic acid, a pair of oligonucleotide primers, and a heat-resistant DNA polymerase-containing reaction solution as "denaturation of double-stranded nucleic acid”, “annealing of oligonucleotide primer to template nucleic acid”, and “complementary to template nucleic acid” It is carried out by subjecting it to a temperature cycle in which "synthetic nucleic acid synthesis" occurs sequentially.
  • a reaction apparatus thermal cycler
  • PCR is performed with a small amount (about 10 to 200 ⁇ L) of a reaction solution.
  • a large-capacity reaction vessel When a large-capacity reaction vessel is used, if there is a temperature difference between the reaction vessel parts, water vapor condenses on the low-temperature part, for example, the upper wall of the reaction vessel that is not in contact with the reaction solution, and the amplification efficiency decreases. And cause variation in amplification efficiency between samples.
  • an apparatus Japanese Patent Laid-Open No. 6-233670 having a mechanism for covering the upper surface of a reaction vessel containing a sample with a heated member or circulating air may be used.
  • An apparatus for heating / cooling the entire reaction vessel Japanese Patent Publication No. 2000-511435 has been developed.
  • the latter apparatus requires a complicated structure including a space for circulating air around the reaction vessel, a means for controlling and circulating the temperature of the air, and a reaction vessel excellent in heat conduction (for example, a glass vessel). ) Must be used.
  • the former apparatus has a simple configuration including a heat block and a cover as main components, and a microtube or a microtiter plate widely used in the biochemical field can be used. However, since a gap is generated between the heat block and the cover, the temperature of this portion of the reaction vessel is lowered, and condensation of water vapor or the like can occur.
  • reaction vessel depending on where the reaction vessel is installed, for example, a temperature difference occurs between the case where it is installed at the center of the heat block and the case where it is installed at the end of the heat block. Therefore, when PCR or an enzyme reaction is performed, there arises a problem that the reaction is uneven depending on the position where the reaction container is installed. Further, by covering the upper surface of the reaction vessel with a cover, a problem arises in the detection of the signal in the nucleic acid detection method (real-time PCR) in which the generation of a signal accompanying amplification of the target nucleic acid is detected during amplification.
  • real-time PCR real-time PCR
  • the inventors have a two-layer structure in which the heat block used for incubation of the reaction solution is composed of an upper layer heat block and a lower layer heat block, and the temperature of the upper layer heat block is adjusted to be higher than the temperature of the lower layer heat block. It was found that PCR can be carried out with good reproducibility because the condensation of water vapor or the like derived from the reaction solution is prevented.
  • the present invention is a temperature cycle apparatus for incubating a reaction solution, and includes (1) a heat block for holding and heating a reaction vessel containing the reaction solution, and the heat block is a lower layer heat block And two layers of upper heat block, Furthermore, (2) Temperature control means for maintaining the temperature of the upper heat block higher than the temperature of the lower heat block when incubating the reaction liquid by independently controlling the temperature of the lower heat block and the temperature of the upper heat block.
  • the present invention relates to a temperature cycle apparatus characterized by comprising.
  • the present invention provides a temperature cycle apparatus provided with a heat block composed of two layers of an upper layer heat block and a lower layer heat block.
  • the heat block is a structure in which a depression (well) that can hold a container (reaction container) containing a reaction solution to be incubated is formed.
  • the well may be shaped according to the reaction container to be used, and is designed to hold, for example, a microtube and / or a microtiter plate (96 holes, 386 holes, etc.) and a capillary.
  • As the reaction container one having a capacity of 10 to 2000 ⁇ L per reaction container held in one well is used.
  • the reaction vessel is stored in the apparatus of the present invention with a cap or a seal.
  • the heat block is preferably made of a material having excellent thermal conductivity, and usually a heat block made of a metal having good thermal conductivity (for example, aluminum, copper alloy, etc.) is used. Either a configuration in which the upper layer heat block and the lower layer heat block are made of the same material or a configuration in which different materials are used can be applied to the present invention.
  • the heat block is formed in a structure in which the reaction vessel is held so as to penetrate the upper layer heat block and contact the lower layer heat block. Therefore, the thickness of the upper heat block is usually designed in the range of 0.5 to 1 cm, preferably in the range of 0.6 to 0.8 cm.
  • the thickness of the lower layer heat block is not particularly limited as long as the reaction vessel can be accommodated when combined with the upper layer heat block.
  • the heat block composed of two layers of an upper layer heat block and a lower layer heat block is substantially up to the upper end of the reaction vessel (for example, 70% or more of the total height of the reaction vessel, preferably 80% or more, more preferably (85% or more)
  • a structure that can be stored in a well is preferable.
  • the heat block includes temperature control means capable of independently controlling the temperatures of the upper layer heat block and the lower layer heat block.
  • the temperature control means is a first temperature means for changing and maintaining the temperature of the lower heat block, a second temperature means for changing and maintaining the temperature of the upper heat block, and independently controlling these temperature means.
  • control means for changing the temperature of both layers over time.
  • the control means also includes a computer that stores information about the temperature profile to be executed and instructs the execution thereof, and a sensor that acquires actual temperature data of both layers of the heat block for temperature control. That is, the computer controls the temperatures of both layers of the heat block according to the profile based on the input temperature profile information and the actual temperature data of both layers of the heat block.
  • both layers of the heat block can be obtained by connecting the first temperature means, the second temperature means and the sensor to an external computer via an appropriate interface without mounting a computer. And an apparatus capable of performing independent temperature control.
  • a resistance temperature detector using a temperature change of electric resistance can be used as the sensor.
  • the sensor is provided in each of the upper layer heat block and the lower layer heat block, and enables the temperature of both layers to be measured independently. Furthermore, a plurality of sensors may be arranged on both layers.
  • a known heater or cooler can be used for the first temperature means and the second temperature means, but a Peltier element is preferably used.
  • a heat sink or a cooling fan can be provided in the apparatus in order to promote heat dissipation during heat block cooling.
  • the first temperature means is preferably provided inside the heat block so as to be flush with the lower surface or the lower surface of the lower heat block so as not to disturb the temperature control of the upper heat block.
  • the 2nd temperature means is provided in the inside of a heat block so that it may become the upper surface or upper surface of an upper layer heat block so that temperature control of a lower layer heat block may not be prevented.
  • the reaction solution is incubated by the lower layer heat block that substantially holds the lower part of the reaction vessel.
  • the temperature control means incubates the reaction solution using the lower layer heat block using predetermined temperature profile information.
  • a temperature control means controls the temperature of an upper layer heat block, and maintains it at a temperature higher than a lower layer heat block. That is, the upper layer heat block heats the upper part of the reaction vessel at a temperature higher than the incubation temperature while the reaction solution is incubated by the lower layer heat block.
  • the upper layer heat block prevents the lower layer heat block from incubating the reaction solution according to the temperature profile. If not, both layers may be brought into contact to form a heat block. However, since both layers are generally made of a material with high thermal conductivity, when the two layers are brought into contact, the heat of the upper heat block is rapidly transferred to the lower heat block, and the temperature of the lower heat block is changed to the temperature. There is a possibility that it cannot be controlled according to the profile.
  • the temperature cycle apparatus includes a heat conduction preventing means for preventing heat conduction between the upper layer heat block and the lower layer heat block.
  • a heat conduction preventing means for preventing heat conduction between the upper layer heat block and the lower layer heat block.
  • the heat conduction preventing means has a configuration in which a coating (for example, silicon, Teflon (registered trademark)) for preventing heat conduction is applied to the lower surface of the upper heat block and / or the upper surface of the lower heat block.
  • a coating for example, silicon, Teflon (registered trademark)
  • positions a heat insulating material for example, silicon
  • the interval between the two layers is set so that the temperature of the region between the two layers of the reaction vessel is higher than the temperature at which condensation from the reaction solution does not occur (dew point temperature) or higher than the reaction solution.
  • the interval between the two layers may be a minimum necessary interval that can ensure incubation according to the temperature profile by the lower layer heat block and can prevent condensation of the reaction liquid in the region between both layers of the reaction vessel.
  • the total height is preferably 15% or less.
  • the temperature of the upper heat block is set so that the temperature of the upper heat block is maintained higher than that of the lower heat block within the range that can ensure the incubation according to the temperature profile of the lower heat block while the reaction solution is incubated. That's fine. And it is not always necessary to change the temperature sequentially according to the temperature profile of the lower layer heat block.
  • the temperature of the upper heat block is set to be 3 ° C. or higher, preferably 5 ° C. or higher, than the temperature of the lower heat block.
  • the upper heat block is maintained at 60 to 120 ° C., preferably 105 to 120 ° C.
  • the temperature of the lower heat block is 40 ° C. or lower
  • the temperature of the upper heat block is An apparatus maintained at 45-60 ° C is exemplified.
  • the upper limit of the temperature of the upper heat block is 115 to 120 ° C.
  • the incubation temperature reaches a high temperature (for example, 70 ° C. or higher)
  • the temperature at the top of the reaction vessel is the reaction solution in the reaction vessel. Therefore, the water or other components in the reaction liquid will not condense on the upper part of the reaction vessel. Therefore, the concentration of the components in the reaction solution is prevented from changing beyond that caused by the desired reaction, and the reaction occurs with good reproducibility.
  • the lower layer heat block is covered with the temperature-controlled upper layer heat block, the temperature drop of the lower layer heat block due to the ambient temperature is reduced, the temperature of the entire lower layer heat block is made uniform, and the heat block Temperature unevenness due to a difference in position (for example, a difference in position between the central portion and the peripheral portion) is suppressed. Therefore, variation in reaction efficiency due to a difference in reaction position on the heat block can be prevented.
  • the apparatus of the present invention does not necessarily require a cover having a temperature means for covering and heating the upper surface of the reaction vessel, which is provided in a conventional temperature cycle apparatus.
  • a cover for preventing the reaction container cap from dropping off or the reaction container seal from peeling off may be provided.
  • this cover may be provided with a temperature means for maintaining the temperature at the same level as the temperature of the upper heat block and a control means for the purpose of reinforcing or supplementing the function of the upper heat block in the present invention.
  • the reaction container held in the well by the cover may be pressed downward to improve the adhesion between the lower part of the reaction container and the lower layer heat block so that the heat of the lower layer heat block can be easily transmitted to the reaction container. .
  • a detection means for example, a spectrofluorometer
  • a signal for example, fluorescence
  • a light-transmitting cover or an opening for allowing the signal to pass through What is necessary is just to use the cover which provided.
  • the apparatus of the present invention can be an apparatus in which each of the above-described components is housed in a housing.
  • the apparatus optionally includes an interface used for connection to a computer or an external computer, an input means (for example, a keyboard) for inputting a temperature profile to be executed, a temperature profile,
  • the display apparatus for example, liquid crystal display
  • an optical device for monitoring a signal such as fluorescence emitted from the reaction solution may be mounted.
  • the apparatus of the present invention prevents the dew condensation on the upper part of the reaction vessel containing the reaction solution, particularly the inner surface of the cap or seal, during the incubation of the reaction solution. Is not inhibited, and the signal can be easily detected. That is, the apparatus of the present invention is useful when it is provided with detection means for detecting the progress of the reaction in the reaction vessel optically and with time, particularly from above the reaction vessel.
  • FIG. 2A is a top view
  • FIG. 2B is a front view
  • FIG. 2A is a top view
  • FIG. 2B is a front view
  • FIG. 2A is a top view
  • FIG. 2B is a front view
  • FIG. 2A is a top view
  • FIG. 2B is a front view
  • FIG. 2A is a top view
  • FIG. 2B is a front view
  • it is a figure which shows the structure of an upper layer heat block and a lower layer heat block.
  • it is sectional drawing which shows the state which accommodated and hold
  • FIG. 7A is a view showing a state in which a reaction vessel is held by an upper layer heat block and a lower layer heat block in the apparatus of the present invention, and FIG. 7A shows a configuration when both layers are brought into contact with each other, and FIG. The structure in the case of providing a material is shown.
  • the apparatus of this invention it is the figure which showed the other structure which hold
  • the temperature cycle apparatus includes a heat block 1 for heating the reaction vessel 4 as shown in FIG.
  • a plurality of wells 10 are formed in the heat block 1 to store and hold the reaction vessel 4.
  • the heat block 1 in this embodiment is a 96-hole heat block of 8 rows ⁇ 12 columns.
  • the heat block 1 is composed of two layers, an upper layer heat block 2 and a lower layer heat block 3.
  • the upper layer heat block 2 has a through hole 20 that constitutes a part of the well 10 of the heat block 1.
  • the through hole 20 penetrates the upper heat block 2 up and down, is formed in a shape corresponding to the shape of the upper peripheral side surface of the reaction vessel 4, and the reaction vessel 4 can be inserted therethrough.
  • the upper layer heat block 2 includes a heater 21 for changing and maintaining the temperature of the upper layer heat block 2, and a temperature sensor 22 for observing the temperature of the upper layer heat block 2.
  • the heater 21 and the temperature sensor 22 are installed at a position suitable for temperature control of the upper heat block 2.
  • the heaters 21 are installed at both ends in the width direction on the upper surface of the upper heat block 2.
  • the temperature sensor 22 is installed at one end in the length direction on the upper surface of the upper heat block 2.
  • the heater 21 and / or the temperature sensor 22 may be disposed on the side surface of the upper layer heat block 2 instead of being disposed on the upper surface of the upper layer heat block 2.
  • a storage recess (not shown) for storing the heater 21 and / or the temperature sensor 22 is formed in the upper heat block 2, and these 21 and 22 are stored in the storage recess to You may install in.
  • the heater 21 and the temperature sensor 22 are connected to the control unit 9. As a result, the temperature of the upper heat block 2 can be controlled to a desired temperature and can be changed over time.
  • positioning holes 23 penetrating vertically are formed in the squares of the upper heat block 2 in order to mount and position the lower heat block 3.
  • the lower layer heat block 3 is formed with a recess 30 constituting a part of the well 10 of the heat block 1.
  • the recess 30 is formed in a shape corresponding to the shape of the lower part of the reaction vessel 4.
  • the lower layer heat block 3 includes a Peltier element 31 for changing and maintaining the temperature of the lower layer heat block 3 and a temperature sensor 32 for observing the temperature of the lower layer heat block 3.
  • the Peltier element 31 is disposed on the lower surface of the lower layer heat block 3, and the temperature sensor 32 is embedded in the center of the lower layer heat block 3.
  • the Peltier element 31 and the temperature sensor 32 of the lower layer heat block 3 are connected to the control unit 9 similarly to the heater 21 and the temperature sensor 22 of the upper layer heat block 2. As a result, the temperature of the lower layer heat block 3 can be controlled and changed with time.
  • the temperature cycle apparatus of this invention controls the temperature of the upper layer heat block 2 and the temperature of the lower layer heat block 3 independently by the said structure.
  • the lower layer heat block 3 includes a positioning shaft 33 for positioning the upper layer heat block 2.
  • the shaft 33 is provided in the square on the upper surface of the lower layer heat block 3.
  • a spacer 6 is provided at the lower end of each shaft 33 to provide a space between the two layers when the upper heat block 2 is attached to the lower heat block 3.
  • the upper heat block 2 is attached to the lower heat block 3 by arranging the upper heat block 2 on the lower heat block 3 so that each positioning shaft 33 is fitted in each positioning hole 23. .
  • the upper layer heat block 2 is positioned with respect to the lower layer heat block 3. That is, as shown in FIG. 5, the through holes 20 of the corresponding upper layer heat block 2 are arranged directly above the respective recesses 30 formed in the lower layer heat block 3, and positioned so that they are in the same vertical line shape.
  • the well 10 for holding the reaction vessel 4 is constituted by the through hole 20 and the recess 30.
  • the spacer 6 is interposed between the upper layer heat block 2 and the lower layer heat block 3, a space 7 is provided between the layers 2 and 3.
  • the heat block 1 is constituted by the upper layer heat block 2 and the lower layer heat block 3, and the reaction vessel 4 in which the reaction solution 5 is accommodated is accommodated in the well 10.
  • FIG. 6 shows a state in which the reaction liquid 5 is accommodated in the well 10 of the heat block 1 configured as described above and the reaction container 4 with the cap 40 is accommodated and held.
  • the reaction vessel 4 When the reaction vessel 4 is housed in the well 10, the lower portion of the reaction vessel 4 is fitted into the recess 30 of the lower layer heat block 3 and is in close contact therewith.
  • the upper peripheral side surface of the reaction vessel 4 is in close contact with the through hole 20 of the upper heat block 2.
  • the cap 40 of the reaction vessel 4 is not inserted into the through hole 20 and is positioned above the upper heat block 2.
  • the reaction solution 5 in the reaction vessel 4 is located in the lower layer heat block 3 where the reaction solution 5 is incubated. Under the present circumstances, it is preferable that the liquid level 50 of the reaction liquid 5 exists in the same position as the upper surface of the lower layer heat block 3, or a position lower than the upper surface of the lower layer heat block 3, as FIG. 6 shows.
  • the height of the space 7 between the two layers 2 and 3 prevents heat conduction between the two layers 2 and 3, ensures temperature control according to the temperature profile of the lower layer heat block 3, and the reaction vessel 4 during incubation. It is sufficient if the height is sufficient to prevent condensation at the site between the two layers 2 and 3. Further, in order to prevent heat conduction on the lower surface of the upper layer heat block 2 and / or the upper surface of the lower layer heat block 3, when a coating such as Teflon is applied, a space 7 is not provided between both layers 2 and 3, as shown in FIG. Both layers 2 and 3 may be brought into contact with each other.
  • a heat insulating material 8 may be provided between the layers 2 and 3 in order to prevent heat conduction.
  • the reaction vessel 4 may be stored in the heat block 1 up to almost the upper end of the peripheral side surface.
  • the temperature cycle apparatus incubates the reaction solution 5 in the reaction vessel 4 while holding the reaction vessel 4 by the heat block 1 as described above. Specifically, the temperature cycle apparatus controls the temperature of the lower layer heat block 3 in accordance with the temperature profile input to the control unit, heats the entire lower part of the reaction vessel 4 by the lower layer heat block 3, and incubates the reaction solution 5. I do.
  • the temperature cycle apparatus controls the temperature of the upper layer heat block 2 while the lower layer heat block 3 is incubating the reaction solution 5, and maintains the temperature higher than that of the lower layer heat block 3.
  • the peripheral side surface is heated to prevent condensation from the reaction solution 5 in the reaction vessel 4.
  • the temperature of the lower heat block 3 is set at 95 ° C. for 30 seconds in the thermal denaturation stage, 30 seconds at 55 ° C. in the annealing stage, and in the extension reaction stage. Set at 72 ° C for 1 minute.
  • the temperature of the upper heat block 2 is set to be maintained at a constant temperature, for example, 105 ° C., higher than the upper limit value of the temperature of the lower heat block 3 (ie, 95 ° C.).
  • a Peltier element may be provided in the upper layer heat block 2 instead of the heater 21 so that the temperature of the upper layer heat block 2 is sequentially changed according to the temperature change of the lower layer heat block 3.
  • the temperature of the upper layer heat block 2 is set at 105 ° C. for 30 seconds at the thermal denaturation stage, at 65 ° 30 seconds at the annealing stage, and at the extension reaction stage. Set at 82 ° C for 1 minute. In this way, the temperature of the upper layer heat block 2 may be constantly maintained at a temperature higher than the temperature of the lower layer heat block 3 while being sequentially changed according to the temperature change of the lower layer heat block 3.
  • FIGS. 9I to IV In order to confirm the reactivity of the apparatus of the present invention, an apparatus having a structure in which the upper heat block 2 is provided at the positions shown in FIGS. 9I to IV was used.
  • I is the apparatus shown in FIG. 6 in the above embodiment of the present invention
  • II is the reaction between the upper heat block 2 and the lower heat block 3 with the upper heat block 2 positioned at the top of the reaction vessel.
  • III is an apparatus in which the upper heat block 2 does not hold the reaction container 4 and is disposed on the cap 40 of the reaction container 4
  • IV is an upper heat block 2 Indicates a device that is not used.
  • the amplification efficiency of each device was confirmed by a PCR amplification reaction with an amplification chain length of 8 kbp using lambda DNA (manufactured by Takara Bio Inc.) described below as a template.
  • the reaction was performed using TaKaRa Taq Hot Start Version (manufactured by TAKARA BIO INC.) And a half amount of a general PCR reaction solution described in the instruction manual (total reaction solution volume 25 ⁇ L).
  • total reaction solution volume 25 ⁇ L 0.5 ng / ⁇ L of lambda DNA 0.5 ⁇ L, primer F (SEQ ID NO: 1) and primer R (SEQ ID NO: 2) having a concentration of 10 pmol / ⁇ L were used at 0.5 ⁇ L each.
  • the prepared reaction solution 5 was dispensed in 25 ⁇ L aliquots into 0.2 mL reaction tubes (0.2 mL 8-strip tube, individual flat caps, manufactured by Takara Bio Inc.).
  • the reaction tube 4 into which the reaction solution 5 has been dispensed is set in each apparatus, and the temperature of the lower layer heat block 3 is heated at 94 ° C. for 1 minute, then at 94 ° C. for 30 seconds-65 ° C. for 10 minutes.
  • the reaction was performed at a temperature setting of repeating 30 times.
  • the temperature of the upper layer heat block 2 was 107 ° C.
  • the schematic diagram of the 96-well plate used for reaction is shown in FIG. In the figure, the hatched location indicates the reaction position.
  • FIG. 10 After completion of the reaction, the reaction liquids in rows A, H, and H in columns 1, 6, and 12 shown in FIG. 10 were extracted, and 1% agarose gel (Agarose L03 “TAKARA”, manufactured by Takara Bio Inc.) / TAE buffer. 3 ⁇ L of each reaction solution was applied. Using ⁇ -Hind III digest (manufactured by Takara Bio Inc.) as a marker, electrophoresis was performed with Mupid-2plus (manufactured by Advance Co.). The result is shown in FIG. That is, FIG. 11 is an electrophoretogram showing the PCR reactivity depending on the position of each device in the 96-well plate. In the figure, for example, the result after the reaction of the devices I to IV in the A row of one column is an electrophoretic photograph at the location of the device number below the location indicated as A-1. M represents an electrophoretic photograph of the marker.
  • ⁇ -Hind III digest manufactured by Takara Bio Inc.
  • Mupid-2plus manufactured by Advance Co
  • the device II is slightly amplified in the D to H rows and the 6 columns G and H rows in the device II, the 12 columns F to H rows in the device III, and all the matrices in the device IV. Was observed or not amplified at all. These results are considered to be caused by the fact that condensation in the reaction vessel 4 could not be prevented or temperature unevenness occurred in the lower layer heat block 3.
  • the apparatus I of the present invention gave good amplification results at all positions in the 96-well plate. This is considered to be due to the fact that the upper layer heat block 2 prevented condensation due to the reaction liquid in the reaction vessel and also suppressed the temperature unevenness of the lower layer heat block 3.
  • the upper layer heat block 2 is prevented from changing the concentration of the reaction solution 5 beyond that caused by the desired reaction, and the nucleic acid amplification efficiency is reduced due to the change in the concentration of the reaction solution. Is preventing. Furthermore, the upper heat block 2 prevents temperature unevenness due to a difference in reaction position on the heat block 1, and prevents a decrease in nucleic acid amplification efficiency due to a difference in reaction position. From the above, it has been clarified that the temperature cycle apparatus of the present invention can perform stable and reproducible PCR in a 96-well plate.
  • the temperature cycle apparatus of the present invention can be applied to enzyme reactions such as reverse transcription in addition to nucleic acid amplification.
  • a temperature cycle apparatus in which moisture in the reaction solution and other components are not condensed in the reaction vessel, and temperature unevenness depending on the position where the reaction vessel is installed can be prevented.
  • the apparatus of the present invention is very useful for carrying out the reaction of biological samples used in the field of molecular biology research and the like, in particular, amplification of nucleic acids.
  • SEQ ID NO: 1 Primer F to amplify lambda DNA.
  • SEQ ID NO: 2 Primer R to amplify lambda DNA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 分子生物学研究分野等で使用される生物学的試料の反応、特に核酸の増幅を実施するために有用な温度サイクル装置を提供すること。 反応液5をインキュベートするための温度サイクル装置であって、(1)反応液5を収容する反応容器4を保持して加熱するためのヒートブロック1を備え、ヒートブロック1は、下層ヒートブロック3と上層ヒートブロック2との2つの層で構成され、更に、(2)下層ヒートブロック3の温度と上層ヒートブロック2の温度とをそれぞれ独立に制御して、反応液5をインキュベートする際に、上層ヒートブロック2の温度を下層ヒートブロック3の温度より高く維持する温度制御手段を備える。これにより、反応液5中の水分やその他の成分の反応容器4内での凝結が起こらず、更に反応容器4の設置位置による温度ムラが生じないことから、PCRやその他の酵素反応を再現性よく実施することができる。

Description

温度サイクル装置
 本発明は、分子生物学研究分野等で使用される生物学的試料の反応、特に核酸の増幅を実施するために有用な温度サイクル装置に関する。
 分子生物学の研究においては、試料の分析等に種々の化学反応、例えば酵素反応が利用される。当該反応に供する試料の量に限りがある場合には、微量の試料で反応を実施できることが好適である。
 核酸増幅反応は、鋳型となる核酸に相補的及び/又は同一の配列を有する核酸の合成を反復する方法であり、PCR法、LCR法、NASBA法、ICAN法、SDA法、LAMP法といった、原理の異なる複数の方法が開発されている。これらはそれぞれに異なる特徴を有しており、目的等に応じて使い分けされているが、PCR法は最も多くの場面で利用されている。
 PCR法は鋳型となる核酸、一対のオリゴヌクレオチドプライマー、耐熱性DNAポリメラーゼを含有する反応液を「二本鎖核酸の変性」、「オリゴヌクレオチドプライマーの鋳型核酸へのアニーリング」、「鋳型核酸に相補的な核酸の合成」が順次起こるような温度サイクルに供することで実施される。この目的のために、反応液の温度を経時的に、かつ自動で変化させる反応装置(サーマルサイクラー)が開発された。
 通常、PCRは微量(10~200μL程度)の反応液で実施される。容量の大きな反応容器が使用された場合に、反応容器部位間で温度差があると低温の部位、例えば反応液と接触していない反応容器上部の壁面に水蒸気の凝結が生じ、増幅効率の低下や試料間での増幅効率のバラつきの原因となる。この問題を解決し、より正確な温度サイクルを実現するため、試料を収容する反応容器の上面を加熱された部材で覆う機構を有する装置(特開平6-233670号公報)や循環する空気により前記反応容器全体を加熱/冷却する装置(特表2000-511435号公報)が開発されてきた。
特開平6-233670号公報 特表2000-511435号公報
 後者の装置は反応容器周辺に空気が循環するための空間、空気の温度制御と循環のための手段を設けた複雑な構成が必要となるうえ、熱伝導に優れた反応容器(例えばガラス製容器)を使用する必要がある。これに対して前者の装置はヒートブロックとカバーとを主な構成要素とする単純な構成であり、生物化学分野で汎用されているマイクロチューブやマイクロタイタープレートを使用することができる。しかしながら、ヒートブロックとカバーとの間に空隙が生じるため、反応容器のこの部位の温度が低下して水蒸気等の凝結が起こりうる。また、反応容器を設置する場所により、例えばヒートブロックの中央部に設置した場合と、ヒートブロックの端部に設置した場合とでは、温度差が生じてしまう。そのため、PCRや酵素反応を行った場合、反応容器を設置する位置によって反応にムラができるという問題が生じる。更に反応容器の上面をカバーで覆うことにより、標的核酸の増幅に伴うシグナルの発生を増幅中に検出する核酸検出方法(リアルタイム-PCR)では当該シグナルの検出に問題が生じる。
 本発明者らは、反応液のインキュベーションに使用されるヒートブロックを上層ヒートブロックと下層ヒートブロックとで構成される2層構造とし、上層ヒートブロックの温度を下層ヒートブロックの温度より高く調節することで反応液由来の水蒸気等の凝結が妨げられ、再現性よくPCRを実施できることを見出した。
 すなわち、本発明は、反応液をインキュベートするための温度サイクル装置であって、(1)反応液を収容する反応容器を保持して加熱するためのヒートブロックを備え、ヒートブロックは、下層ヒートブロックと上層ヒートブロックとの2つの層で構成され、
更に、
(2)下層ヒートブロックの温度と上層ヒートブロックの温度とをそれぞれ独立に制御して、反応液をインキュベートする際に、上層ヒートブロックの温度を下層ヒートブロックの温度より高く維持する温度制御手段を備えることを特徴とする温度サイクル装置に、関する。
 本発明は、上層ヒートブロック及び下層ヒートブロックの2層で構成されたヒートブロックを備えた温度サイクル装置を提供する。
 前記ヒートブロックは、インキュベートされる反応液を収容した容器(反応容器)を保持できるくぼみ(ウェル)が形成された構造物である。前記ウェルは使用する反応容器に応じた形状とすればよく、例えば、マイクロチューブ及び/又はマイクロタイタープレート(96穴、386穴等)やキャピラリーを保持できるよう設計される。当該反応容器としては、1ウェルに保持される反応容器あたりに10~2000μLの容量のものが使用される。また、好ましくは、反応容器内の水分等が蒸発して反応容器外へ出ることを防止するため、反応容器はキャップやシールを付されたうえで本発明の装置に収納される。
 ヒートブロックは熱伝導率に優れた材質のものであることが望ましく、通常は熱伝導率のよい金属製(例えば、アルミニウム、銅合金など)のヒートブロックが使用される。上層ヒートブロック及び下層ヒートブロックを同じ材質にする構成、異なる材質にする構成、どちらの構成も本発明に適用できる。
 ヒートブロックは、反応容器が上層ヒートブロックを貫通して下層ヒートブロックに接触するようにして保持される構造に形成される。従って、通常は上層ヒートブロックの厚さは0.5~1cmの範囲、好ましくは0.6~0.8cmの範囲に設計される。下層ヒートブロックの厚さは、上層ヒートブロックと組み合わせた際に反応容器を収容できる範囲であれば特に限定はない。好適には、上層ヒートブロックと下層ヒートブロックとの2層で構成されたヒートブロックが、反応容器のほぼ上端まで(例えば、反応容器の全高の70%以上、好ましくは80%以上、更に好ましくは85%以上)ウェル内に収納できる構造であることが好ましい。
 前記ヒートブロックは、上層ヒートブロック及び下層ヒートブロックの2層の温度をそれぞれ独立して制御可能な温度制御手段を備えている。当該温度制御手段は、下層ヒートブロックの温度を変更及び維持するための第一温度手段と、上層ヒートブロックの温度を変更および維持するための第二温度手段と、これらの温度手段を独立に制御して経時的に両層の温度を変化させる制御手段からなる。また、制御手段は実行すべき温度プロファイルに関する情報を記憶しかつその実行を指示するコンピューターと、温度制御のためにヒートブロックの両層の実温度データを取得するセンサーとを含む。すなわち、前記コンピューターは入力された温度プロファイル情報とヒートブロックの両層の実温度データとに基づいてヒートブロックの両層の温度を前記プロファイルのとおりに制御する。なお、本発明の実施態様の一つとして、コンピューターを搭載することなく、適切なインターフェースを介して第一温度手段、第二温度手段及びセンサーを外部のコンピューターに接続することによりヒートブロックの両層の独立した温度制御を実施し得る装置を挙げることができる。
 前記センサーとしては、例えば電気抵抗の温度変化を利用した抵抗温度検出器を使用できる。センサーは、上層ヒートブロックおよび下層ヒートブロックのそれぞれに備えられ、両層の温度を独立して計測することを可能とする。更に、両層に複数のセンサーを配置してもよい。
 第一温度手段および第二温度手段には公知のヒーターやクーラーが使用できるが、好適にはペルチェ素子が使用される。また、ヒートブロック冷却時の放熱を促すため、ヒートシンクや冷却用ファンを装置に備えることもできる。第一温度手段は、上層ヒートブロックの温度制御を妨げないように、下層ヒートブロックの下面又は下面と面一になるようにヒートブロック内部に設けられることが好ましい。また、第二温度手段は、下層ヒートブロックの温度制御を妨げないように、上層ヒートブロックの上面又は上面と面一になるようにヒートブロック内部に設けられていることが好ましい。
 この2層構造のヒートブロックおよび温度制御手段を備えた温度サイクル装置において、反応液のインキュベートは、実質的には反応容器の下部を保持する下層ヒートブロックが行う。温度制御手段は、所定の温度プロファイル情報を用いて下層ヒートブロックにより反応液をインキュベートする。その際、温度制御手段は、上層ヒートブロックの温度を制御して、下層ヒートブロックより高い温度に維持する。すなわち、上層ヒートブロックは、下層ヒートブロックにより反応液がインキュベートされている間、インキュベート温度より高い温度で反応容器の上部を加熱する。
 上記のように、反応液のインキュベートの際に上層ヒートブロックの温度を下層ヒートブロックの温度より高く維持する温度サイクル装置において、上層ヒートブロックが下層ヒートブロックによる温度プロファイル通りの反応液のインキュベートを妨げないのであれば、両層を接触させてヒートブロックを構成してもよい。しかしながら、一般的には両層はともに熱伝導率の高い材質で構成されるため、両層を接触させると、上層ヒートブロックの熱が下層ヒートブロックに急速に伝わり、下層ヒートブロックの温度を温度プロファイル通りに制御できない虞がある。そこで、温度サイクル装置は、上層ヒートブロックおよび下層ヒートブロック間の熱伝導を防止するため熱伝導防止手段を備えることが好ましい。これによって、反応液のインキュベートの際に、上層ヒートブロックから下層ヒートブロックへの熱伝導を防止または緩和し、下層ヒートブロックの温度が温度プロファイル通りに制御され、適切に反応液がインキュベートされることを確保する。
 熱伝導防止手段としては、具体的には、上層ヒートブロックの下面及び/又は下層ヒートブロックの上面に熱伝導を妨げるためのコーティング(例えば、シリコン、テフロン(登録商標))を施す構成がある。また、上層ヒートブロック及び下層ヒートブロックの2層の間に、熱伝導を妨げるために断熱材(例えば、シリコン、ポリウレタン(耐熱性))を配置する構成としてもよい。また、上層ヒートブロック及び下層ヒートブロックの2層の間に、両層間の熱伝導を妨げる目的で空間を保持するような構成としてもよい。
 但し、断熱材または空間を設けたことにより、両層間の間隔(断熱材の厚さ、または空間の高さ)が大きすぎる場合、反応液をインキュベートする際に、保持された反応容器の両層間の部位の温度が、反応液の温度より低くなり、反応液の成分が凝結する温度に達する恐れがある。そのため、両層の間隔は、反応液のインキュベートの際に反応容器の両層間の部位の温度が、反応液由来の凝結が起こらない温度(露点温度)より高い温度、または反応液より高い温度に維持される範囲内でなければならない。よって、両層間の間隔は、下層ヒートブロックによる温度プロファイル通りのインキュベートを確保でき、かつ、反応容器の両層間の部位における反応液の凝結防止を確保できる最低限必要な間隔でよく、例えば反応容器の全高の15%以下であることが好ましい。
 なお、上層ヒートブロックの温度は、反応液がインキュベートされている間、下層ヒートブロックによる温度プロファイル通りのインキュベーションが確保できる範囲内で、下層ヒートブロックよりも高い温度に維持されるように設定されればよい。そして、必ずしも下層ヒートブロックの温度プロファイルに応じて逐次温度を変化させる必要はない。上層ヒートブロックの温度は下層ヒートブロックの温度よりも3℃以上、好ましくは5℃以上高くなるよう設定される。例えば、下層ヒートブロックの温度が40~100℃の範囲では上層ヒートブロックが60~120℃、好ましくは105~120℃に維持され、下層ヒートブロックの温度が40℃以下では上層ヒートブロックの温度が45~60℃に維持される装置が例示される。通常、上層ヒートブロックの温度の上限は115~120℃である。
 上記構成のヒートブロックを備えた装置を使用した反応液のインキュベーションにおいては、インキュベート温度が高温(例えば70℃以上)に達した場合であっても、反応容器上部の温度は反応容器中の反応液の温度より高く維持されることから、反応液中の水分又はその他の成分が反応容器上部に凝結することはない。従って反応液中の成分の濃度が所望の反応に起因するもの以上に変化することが防止され、再現性よく反応がおこる。
 本発明の装置では、下層ヒートブロックが温度制御された上層ヒートブロックで覆われることから、周辺温度による下層ヒートブロックの温度下降が軽減され、下層ヒートブロック全体の温度が均一化され、ヒートブロックの位置の違い(例えば中心部と周辺部間の位置の違い)に起因する温度ムラが抑制される。従って、ヒートブロック上の反応位置の違いによる反応効率のバラつきを防止できる。
 本発明の装置には、従来の温度サイクル装置に備えられていた、反応容器上面を覆って加熱するための温度手段を有するカバーは必ずしも必要ではない。しかし反応容器キャップの脱落や反応容器シールの剥離を防止するためのカバーを備えていてもよい。更にこのカバーは、上層ヒートブロックが本発明において果たしている機能を強化もしくは補完する目的で、その温度を上層ヒートブロックの温度と同程度に維持するための温度手段ならびにその制御手段を備えていてもよい。また、カバーによってウェル内に保持されている反応容器を下方に押し付けて、反応容器の下部と下層ヒートブロックとの密着性を高め、下層ヒートブロックの熱が反応容器に伝わり易いようにしてもよい。反応液の由来のシグナル(例えば蛍光)を光学的に検出する検出手段(例えば、分光蛍光光度計)を備えた装置の場合には、例えば光透過性のカバーやシグナルを通過させるための開口部を設けたカバーを使用すればよい。
 通常、本発明の装置は、上記各構成要素が筐体内に収納された装置とすることができる。当該装置は、前記ヒートブロック、温度制御手段を備える他、任意にコンピューターもしくは外部コンピューターとの接続に使用されるインターフェース、実行すべき温度プロファイルを入力するための入力手段(例えばキーボード)、温度プロファイルやその実行状況を表示する表示装置(例えば液晶ディスプレイ)を有していてもよい。更に、反応液の発する蛍光等のシグナルをモニターするための光学装置(グラスファイバー、CCDカメラ、レンズ、フィルター等)を搭載していてもよい。
 本発明の装置は、反応液のインキュベートの際に、反応液を収納する反応容器の上部、特にキャップやシールの内面側の結露が防止されることから、結露によって反応液に由来するシグナルの検出が阻害されることはなく、シグナルの検出が容易である。すなわち、本発明の装置は、反応容器中の反応の進行を光学的、経時的に検出する、特に反応容器の上方から検出する検出手段を備えた場合、有用である。
 本発明の装置を使用した場合には、反応液中の水分やその他の成分の反応容器内での凝結が起こらない。また、反応容器を設置する位置による温度のムラも防げることから、PCRやその他の酵素反応を再現性よく実施することができる。
本発明の装置の一実施形態を示す斜視図である。 本発明の装置の上層ヒートブロックの構成を示す図であって、図2Aは平面図であり、図2Bは正面図である。 本発明の装置の下層ヒートブロックの構成を示す正面図である。 本発明の装置において、上層ヒートブロックと下層ヒートブロックとの構成を示す図である。 本発明の装置において、上層ヒートブロックと下層ヒートブロックとによって構成されたヒートブロックに反応容器を収納して保持した状態を示す断面図である。 本発明の装置において、上層ヒートブロックと下層ヒートブロックとによって反応容器を保持する際に、両層間に空間を設けた場合の構成を示す図である。 本発明の装置において、上層ヒートブロックと下層ヒートブロックとによって反応容器を保持する状態を示す図であって、図7Aは両層を接触させた場合の構成を示し、図7Bは両層間に断熱材を設けた場合の構成を示す。 本発明の装置において、上層ヒートブロックと下層ヒートブロックとによって反応容器を保持する他の構成を示した図である。 反応性確認実験で用いた各装置の構成を示す図である。 反応性確認実験で用いた96穴プレートの反応位置を示す図である。 反応性確認実験で用いた各装置によるPCR反応後の電気泳動写真である。
 以下、本発明に係る温度サイクル装置の詳細な構成について、図面を参照して説明する。なお、本発明は、以下の実施例の範囲のみに何ら限定されるものではない。
 本願発明に係る温度サイクル装置は、図1に示されるように、反応容器4を加熱するためのヒートブロック1を備える。ヒートブロック1には、反応容器4を収納して保持するため複数のウェル10が形成される。本実施例におけるヒートブロック1は、8行×12列の96穴用ヒートブロックである。このヒートブロック1は、上層ヒートブロック2と下層ヒートブロック3との2つの層で構成される。
 上層ヒートブロック2は、図2に示されるように、ヒートブロック1のウェル10の一部を構成する貫通孔20が形成されている。貫通孔20は、図2Bに示されるように、上層ヒートブロック2を上下に貫通し、反応容器4の上部の周側面の形状に対応する形状に形成され、反応容器4が挿通可能である。
 この上層ヒートブロック2は、上層ヒートブロック2の温度を変更および維持するためのヒーター21と、上層ヒートブロック2の温度を観測するための温度センサー22とを備える。ヒーター21および温度センサー22は、上層ヒートブロック2の温度制御に適した位置に設置される。本実施例では、ヒーター21は、上層ヒートブロック2の上面で、幅方向の両端のそれぞれに設置される。そして、温度センサー22は、上層ヒートブロック2の上面で、長さ方向の一端に設置される。なお、ヒーター21及び/または温度センサー22を、上層ヒートブロック2の上面に配置するのではなく、上層ヒートブロック2の側面に設置してもよい。また、上層ヒートブロック2に、ヒーター21及び/または温度センサー22を収納するための収納凹部(図示せず)を形成し、これら21、22を、収納凹部に収納して、上層ヒートブロック2内部に設置してもよい。
 ヒーター21および温度センサー22は、制御部9に接続される。これによって、上層ヒートブロック2の温度を所望の温度に制御し、経時的に変化させることができる。
 さらに、上層ヒートブロック2の四角には、下層ヒートブロック3へ取付けおよび位置決めをするため、上下に貫通する位置決め穴23が形成されている。
 下層ヒートブロック3は、図3に示されるように、ヒートブロック1のウェル10の一部を構成する凹部30が形成される。凹部30は、反応容器4の下部の形状に対応する形状に形成される。
 下層ヒートブロック3は、下層ヒートブロック3の温度を変更および維持するためのペルチェ素子31と、下層ヒートブロック3の温度を観測するための温度センサー32とを備える。ペルチェ素子31は下層ヒートブロック3の下面に配置され、温度センサー32は下層ヒートブロック3の中心部に埋込み配置される。
 下層ヒートブロック3のペルチェ素子31および温度センサー32は、上層ヒートブロック2のヒーター21および温度センサー22と同様に、制御部9に接続される。これによって、下層ヒートブロック3の温度を制御し、経時的に変化させることができる。本発明の温度サイクル装置は、上記構成によって、上層ヒートブロック2の温度と下層ヒートブロック3の温度とをそれぞれ独立に制御する。
 さらに、下層ヒートブロック3は、上層ヒートブロック2の位置決めをするための位置決めシャフト33を備える。シャフト33は、下層ヒートブロック3の上面の四角に設けられる。各シャフト33の下端には、上層ヒートブロック2を下層ヒートブロック3に取り付けたときに、二層の間に空間を設けるためのスペーサ6が配置されている。
 図4に示されるように、各位置決めシャフト33が各位置決め穴23に嵌め込まれるように上層ヒートブロック2を下層ヒートブロック3の上に配置することで、上層ヒートブロック2を下層ヒートブロック3へ取り付ける。これによって、下層ヒートブロック3に対する上層ヒートブロック2の位置決めがなされる。すなわち、図5に示すように、下層ヒートブロック3に形成された各凹部30の真上に、対応する上層ヒートブロック2の貫通孔20が配置され、これらが同一鉛直線状になるように位置決めされ、貫通孔20と凹部30とによって反応容器4を保持するためのウェル10が構成される。このとき、上層ヒートブロック2と下層ヒートブロック3との間にスペーサ6が介在するので、両層2、3間に空間7が設けられる。こうして、図1に示されるように、上層ヒートブロック2と下層ヒートブロック3とによってヒートブロック1が構成され、反応液5が収容された反応容器4がウェル10に収納される。
 上記のように構成されたヒートブロック1のウェル10に、反応液5が収容され、キャップ40が付された反応容器4が収納されて保持される状態を6図に示す。反応容器4をウェル10に収納すると、反応容器4の下部は下層ヒートブロック3の凹部30に嵌め込まれて、密着する。そして、反応容器4の上部の周側面は上層ヒートブロック2の貫通孔20に密着する。反応容器4のキャップ40は、貫通孔20に挿入されず、上層ヒートブロック2の上方に位置する。
 反応容器4内の反応液5は、反応液5をインキュベートする下層ヒートブロック3内に位置する。この際、反応液5の液面50は、下層ヒートブロック3の上面と同じ位置、または図6に示されるように、下層ヒートブロック3の上面より低い位置にあることが好ましい。
 両層2、3間の空間7の高さは、両層2、3間の熱伝導を妨げ、下層ヒートブロック3の温度プロファイル通りの温度制御を確保し、かつ、インキュベートの際に反応容器4の両層2、3間の部位における凝結防止を確保できる高さであればよい。また、上層ヒートブロック2の下面及び/または下層ヒートブロック3の上面に熱伝導を妨げるため、テフロンなどのコーティングを施す場合、両層2、3間に空間7を設けず、図7Aに示すように、両層2、3を接触させてもよい。また、上層ヒートブロック2が下層ヒートブロック3による温度プロファイル通りの反応液5のインキュベートを妨げない場合は、コーティングを施すことなく、上層ヒートブロック2と下層ヒートブロック3とを接触させてヒートブロック1を構成してよい。また、図7Bに示すように両層2、3間に熱伝導を妨げるために断熱材8を設けるようにしてもよい。
 また、図8A、8B、8Cに示すように、反応容器4がその周側面のほぼ上端までヒートブロック1に収納される構成でもよい。
 温度サイクル装置は、上記のようにヒートブロック1により反応容器4を保持した状態で、反応容器内4の反応液5のインキュベートを行う。具体的には、温度サイクル装置が、制御部に入力された温度プロファイル通りに下層ヒートブロック3の温度を制御し、下層ヒートブロック3によって反応容器4の下部全体を加熱し、反応液5のインキュベートを行う。そして、温度サイクル装置は、下層ヒートブロック3が反応液5をインキュベートしている間、上層ヒートブロック2の温度を制御し、下層ヒートブロック3より高い温度に維持することで反応容器4の上部の周側面を加熱し、反応容器4内で反応液5に由来する凝結を防止する。
 例えば、本装置を用いてPCRにより核酸を増幅する場合に、下層ヒートブロック3の温度を、熱変性の段階では95℃で30秒、アニーリングの段階では55℃で30秒、伸長反応の段階では72℃で1分と設定する。この場合、上層ヒートブロック2の温度を、下層ヒートブロック3の温度の上限値(すなわち、95℃)より高い一定温度、例えば105℃に維持されるように設定する。
 また、上層ヒートブロック2にヒーター21の代わりにペルチェ素子を設け、下層ヒートブロック3の温度変化に応じて、上層ヒートブロック2の温度を逐次変化させるようにしてもよい。例えば、下層ヒートブロック3の温度設定が上記と同じ場合に、上層ヒートブロック2の温度を、熱変性の段階では105℃で30秒、アニーリングの段階では65°で30秒、伸長反応の段階では82℃で1分と設定する。こうして、上層ヒートブロック2の温度を、下層ヒートブロック3の温度変化に応じて逐次変化させながらも、常に下層ヒートブロック3の温度より高い温度に維持する構成でもよい。
[反応性確認実験]
 本発明の装置の反応性を確認するため、上層ヒートブロック2を図9I~IVに示される位置に設けた構成の装置を用いた。尚、図9中、Iは本発明の上記実施例における図6に示す装置、IIは上層ヒートブロック2を反応容器最上部に位置させ、上層ヒートブロック2と下層ヒートブロック3との間に反応容器4の全高の30%の空間7を設けた装置、IIIは上層ヒートブロック2が反応容器4を保持せず、反応容器4のキャップ40上に配置された装置、IVは上層ヒートブロック2を使用しない装置を示す。
 各装置の増幅効率の確認は、以下に記載のラムダDNA(タカラバイオ社製)を鋳型とした増幅鎖長8kbpのPCR増幅反応により行った。
 反応は、TaKaRa Taq Hot Start Version(タカラバイオ社製)を使用し、取扱説明書に記載の一般的なPCR反応液量の1/2量(トータル反応液量25μL)で行った。鋳型として2.5ng/μLラムダDNA0.5μL、プライマーF(配列番号1)及びプライマーR(配列番号2)は10pmol/μL濃度のものを各0.5μLずつ使用した。上記調製した反応液5は、25μLずつ0.2mL反応チューブ(0.2mL 8-strip tube, individual Flat Caps、タカラバイオ社製)に分注した。次に、反応液5を分注した反応チューブ4を各装置にセットし、下層ヒートブロック3の温度を、94℃で1分間加温後、94℃で30秒-65℃で10分のサイクルを30回繰り返す温度設定にて反応を行った。上層ヒートブロック2の温度は107℃で行った。尚、図10に反応に用いた96穴プレートの模式図を示す。図中、斜線で示した場所は反応位置を示す。
 反応終了後、図10に記載の1列、6列及び12列のA行~H行までの反応液をそれぞれ抜き出し、1%アガロースゲル(Agarose L03「TAKARA」、タカラバイオ社製)/TAEバッファーに反応液各々3μLをアプライした。マーカーとしてλ-Hind III digest(タカラバイオ社製)を使用し、Mupid-2plus(アドバンス社製)にて電気泳動を行った。その結果を図11に示す。すなわち、図11は各装置の96穴プレート内の位置によるPCRの反応性を示す電気泳動写真である。図中、例えば1列のA行の装置I~IVの反応後の結果は、A-1と記載した場所の下側の装置番号の箇所の電気泳動写真である。また、Mはマーカーの電気泳動写真を示す。
 図11から明らかなように、装置IIでは1列のD~H行と6列のG行とH行、装置IIIでは12列のF~H行、装置IVでは全ての行列において、わずかな増幅が認められるだけか全く増幅していなかった。これらの結果は、反応容器4内の凝結を防止できなかった、または、下層ヒートブロック3に温度ムラが生じたことが原因であると考えられる。これに対して、本発明の装置Iは、96穴プレート内の全ての位置において、良好な増幅結果が得られた。これは、上層ヒートブロック2が、反応容器内の反応液に由来する凝結を防止し、また、下層ヒートブロック3の温度ムラを抑制したことによるものであると考えられる。すなわち、本発明の装置Iでは、上層ヒートブロック2が、反応液5の濃度を所望の反応に起因するもの以上に変化することを防止して、反応液の濃度変化による核酸の増幅効率の低下を防止している。さらに、上層ヒートブロック2が、ヒートブロック1上の反応位置の違いによる温度ムラを防止し、反応位置の違いによる核酸の増幅効率の低下を防止している。以上により、本発明の温度サイクル装置では、96穴プレート内で安定した再現性のあるPCRが可能であることが明らかとなった。
 本発明の温度サイクル装置は、核酸の増幅の他に、逆転写反応などの酵素反応にも適当することができる。
 本発明により、反応液中の水分やその他の成分の反応容器内での凝結がなく、また、反応容器を設置する位置による温度のムラも防ぐことが可能な温度サイクル装置が提供される。本発明の装置は、分子生物学研究分野等で使用される生物学的試料の反応、特に核酸の増幅を実施するために非常に有用である。
1 ヒートブロック
2 上層ヒートブロック
20 貫通孔
21 ヒーター
22 温度センサー
23 位置決め穴
3 下層ヒートブロック
30 凹部
31 ペルチェ素子
32 温度センサー
33 位置決めシャフト
4 反応容器
40 キャップ
5 反応液
50 液面
6 スペーサ
7 空間 
8 断熱材
9 制御部
SEQ ID NO:1; Primer F to amplify lambda DNA.
SEQ ID NO:2; Primer R to amplify lambda DNA.

Claims (6)

  1.  反応液をインキュベートするための温度サイクル装置であって、
    (1)前記反応液を収容する反応容器を保持して加熱するためのヒートブロックを備え、前記ヒートブロックは、下層ヒートブロックと上層ヒートブロックとの2つの層で構成され、
    更に、
    (2)前記下層ヒートブロックの温度と前記上層ヒートブロックの温度とをそれぞれ独立に制御して、前記反応液をインキュベートする際に、前記上層ヒートブロックの温度を前記下層ヒートブロックの温度より高く維持する温度制御手段を備えることを特徴とする温度サイクル装置。
  2.  前記反応液は核酸を含有し、前記下層ヒートブロックは前記反応液をインキュベートし、前記上層ヒートブロックは前記核酸の増幅効率の低下を防止することを特徴とする請求項1記載の温度サイクル装置。
  3.  前記下層ヒートブロックと前記上層ヒートブロックとの間の熱伝導を妨げるための熱伝導防止手段を備えたことを特徴とする請求項1または請求項2に記載の温度サイクル装置。
  4.  前記熱伝導防止手段は、前記下層ヒートブロックと前記上層ヒートブロックとの間に設けられた空間であることを特徴とする請求項3に記載の温度サイクル装置。
  5.  前記温度制御手段は、前記下層ヒートブロックの温度を変化および維持するための第一温度手段と、前記上層ヒートブロックの温度を変化および維持するための第二温度手段とを備え、前記第一温度手段は前記下層ヒートブロックの下側に設けられ、前記第二温度手段は前記下層ヒートブロックの上側に設けられていることを特徴とする請求項1から請求項4のいずれか1項に記載の温度サイクル装置。
  6.  前記温度制御手段は、前記上層ヒートブロックの温度を前記下層ヒートブロックの温度より3℃以上高く維持することを特徴とする請求項1から請求項5のいずれか1項に記載の温度サイクル装置。
PCT/JP2010/063926 2009-08-20 2010-08-18 温度サイクル装置 WO2011021640A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011527688A JPWO2011021640A1 (ja) 2009-08-20 2010-08-18 温度サイクル装置
US13/389,479 US20120270309A1 (en) 2009-08-20 2010-08-18 Thermal cycler
CN201080036270.8A CN102471746B (zh) 2009-08-20 2010-08-18 温度循环装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-190713 2009-08-20
JP2009190713 2009-08-20

Publications (1)

Publication Number Publication Date
WO2011021640A1 true WO2011021640A1 (ja) 2011-02-24

Family

ID=43607091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063926 WO2011021640A1 (ja) 2009-08-20 2010-08-18 温度サイクル装置

Country Status (4)

Country Link
US (1) US20120270309A1 (ja)
JP (1) JPWO2011021640A1 (ja)
CN (1) CN102471746B (ja)
WO (1) WO2011021640A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520391A (zh) * 2012-05-30 2015-04-15 艾斯+艾斯专利责任有限公司 用于印刷油墨的组合物以及用于印刷目标物的方法
WO2016117958A1 (ko) * 2015-01-22 2016-07-28 (주)미코바이오메드 Dna 분석 장비용 온도 조절 장치
US20170058323A1 (en) * 2011-02-04 2017-03-02 Universal Bio Research Co., Ltd. Automatic response/light measurement device and method therefor
JP2017046675A (ja) * 2015-09-04 2017-03-09 パナソニックヘルスケアホールディングス株式会社 核酸増幅装置
JP2018088930A (ja) * 2012-06-28 2018-06-14 フルオレセントリック,インコーポレイテッド 化学的インジケータデバイス

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482856B (zh) * 2012-05-25 2015-05-01 Ind Tech Res Inst 聚合酶連鎖反應裝置
AU2013202793B2 (en) * 2012-07-31 2014-09-18 Gen-Probe Incorporated System, method and apparatus for automated incubation
CN106867892A (zh) * 2017-01-09 2017-06-20 杭州安杰思生物科技有限公司 一种金属试管pcr仪
CN108398973A (zh) * 2018-03-12 2018-08-14 郑州科蒂亚生物技术有限公司 一种样本孵育方法、装置及样本孵育器
EP3599023B1 (en) 2018-07-24 2021-03-10 F. Hoffmann-La Roche AG A method to monitor and control the temperature of a sample holder of a laboratory instrument
CN109321428B (zh) * 2018-09-20 2022-10-14 北京酷搏科技有限公司 一种热循环装置、方法及应用
KR102204931B1 (ko) * 2019-03-12 2021-01-20 퓨쳐이엔지 주식회사 독립적 온도 제어가 가능한 pcr용 블록
FR3130646A1 (fr) * 2021-11-15 2023-06-23 Biomerieux Système de préparation automatisée d’un échantillon biologique
CN114507592A (zh) * 2022-01-26 2022-05-17 深圳市潘道生物科技有限公司 一种便于清理的pcr测试仪
CN115369029A (zh) * 2022-09-23 2022-11-22 苏州英泽生物医药科技有限公司 一种快速pcr仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043740A2 (en) * 1997-03-28 1998-10-08 The Perkin-Elmer Corporation Improvements in thermal cycler for pcr
WO2000061797A1 (en) * 1999-04-08 2000-10-19 Hans-Knöll-Institut für Naturstoff-Forschung e.V. Rapid heat block thermocycler
US20040258568A1 (en) * 1996-11-08 2004-12-23 Eppendorf Ag Thermostated block with heat-regulating devices
WO2007102400A1 (ja) * 2006-03-06 2007-09-13 Sanyo Electric Co., Ltd. 核酸増幅生成物のリアルタイム検出装置
WO2008070198A2 (en) * 2006-05-17 2008-06-12 California Institute Of Technology Thermal cycling system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100236506B1 (ko) * 1990-11-29 2000-01-15 퍼킨-엘머시터스인스트루먼츠 폴리머라제 연쇄 반응 수행 장치
US6703236B2 (en) * 1990-11-29 2004-03-09 Applera Corporation Thermal cycler for automatic performance of the polymerase chain reaction with close temperature control
EP0636413B1 (en) * 1993-07-28 2001-11-14 PE Corporation (NY) Nucleic acid amplification reaction apparatus and method
US7133726B1 (en) * 1997-03-28 2006-11-07 Applera Corporation Thermal cycler for PCR
CN2767454Y (zh) * 2004-07-06 2006-03-29 北京工业大学 一种应用于pcr扩增的微流控芯片应用封装结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040258568A1 (en) * 1996-11-08 2004-12-23 Eppendorf Ag Thermostated block with heat-regulating devices
WO1998043740A2 (en) * 1997-03-28 1998-10-08 The Perkin-Elmer Corporation Improvements in thermal cycler for pcr
WO2000061797A1 (en) * 1999-04-08 2000-10-19 Hans-Knöll-Institut für Naturstoff-Forschung e.V. Rapid heat block thermocycler
WO2007102400A1 (ja) * 2006-03-06 2007-09-13 Sanyo Electric Co., Ltd. 核酸増幅生成物のリアルタイム検出装置
WO2008070198A2 (en) * 2006-05-17 2008-06-12 California Institute Of Technology Thermal cycling system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170058323A1 (en) * 2011-02-04 2017-03-02 Universal Bio Research Co., Ltd. Automatic response/light measurement device and method therefor
US10822646B2 (en) * 2011-02-04 2020-11-03 Universal Bio Research Co., Ltd. Reaction container control system
CN104520391A (zh) * 2012-05-30 2015-04-15 艾斯+艾斯专利责任有限公司 用于印刷油墨的组合物以及用于印刷目标物的方法
JP2018088930A (ja) * 2012-06-28 2018-06-14 フルオレセントリック,インコーポレイテッド 化学的インジケータデバイス
US11293855B2 (en) 2012-06-28 2022-04-05 XCR Diagnostics, Inc. Chemical indicator device with heat blocks
WO2016117958A1 (ko) * 2015-01-22 2016-07-28 (주)미코바이오메드 Dna 분석 장비용 온도 조절 장치
KR20160090926A (ko) * 2015-01-22 2016-08-02 (주)미코바이오메드 Dna 분석 장비용 온도 조절 장치
KR101698996B1 (ko) * 2015-01-22 2017-01-24 (주)미코바이오메드 Dna 분석 장비용 온도 조절 장치
JP2017046675A (ja) * 2015-09-04 2017-03-09 パナソニックヘルスケアホールディングス株式会社 核酸増幅装置

Also Published As

Publication number Publication date
JPWO2011021640A1 (ja) 2013-01-24
CN102471746A (zh) 2012-05-23
CN102471746B (zh) 2013-07-10
US20120270309A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
WO2011021640A1 (ja) 温度サイクル装置
US20230219091A1 (en) Evaporation management in digital microfluidic devices
US5897842A (en) Method and apparatus for thermal cycling and for automated sample preparation with thermal cycling
US7459302B2 (en) Side-wall heater for thermocycler device
JP2019198328A (ja) 自動インキュベーションのためのシステム、方法、および装置
Lagally et al. Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system
AU2017277331B2 (en) Rapid thermal cycling for sample analyses and processing
JP2002010777A (ja) 反応容器、反応装置および反応液の温度制御方法
EP2415855A1 (en) Liquid reflux high-speed gene amplification device
BRPI0707954A2 (pt) aparelho para regular a temperatura de uma amostra biológica e/ou quìmica e método de uso deste
CN102046291A (zh) 用于化学和生化反应的热控系统和方法
WO2010047619A1 (ru) Способ определения нуклеиновых кислот методом полимеразно-цепной реакции в режиме реального времени и устройство для его осуществления
WO2017213589A1 (en) Rapid thermal cycling for sample analyses and processing
US20120015365A1 (en) Methods for Testing the Accuracy and Thermal Reliability of a PCR Thermal Cycler, and a Means for Implementing Said Methods
US8389273B2 (en) Polymerase chain reaction method, polymerase chain reaction droplet device, and polymerase chain reaction droplet device array
US20120088234A1 (en) Device for performing pcrs
Peham et al. Long target droplet polymerase chain reaction with a microfluidic device for high-throughput detection of pathogenic bacteria at clinical sensitivity
KR20190054212A (ko) 유전자 증폭 장치 및 방법
WO1997040939A1 (en) Method and apparatus for thermal cycling and for automated sample preparation with thermal cycling
CN103282496B (zh) 聚合酶连锁反应的温度设定方法及装置
JP5009532B2 (ja) 断熱容器及び反応容器ユニット
US20240109070A1 (en) Device for heating sample
US20210299668A1 (en) Sequencing system with preheating
WO2002074898A2 (en) Gradient block temperature control device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036270.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809981

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527688

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13389479

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809981

Country of ref document: EP

Kind code of ref document: A1