WO2011021637A1 - 有機溶剤回収システム - Google Patents

有機溶剤回収システム Download PDF

Info

Publication number
WO2011021637A1
WO2011021637A1 PCT/JP2010/063923 JP2010063923W WO2011021637A1 WO 2011021637 A1 WO2011021637 A1 WO 2011021637A1 JP 2010063923 W JP2010063923 W JP 2010063923W WO 2011021637 A1 WO2011021637 A1 WO 2011021637A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic solvent
gas
desorption
exhaust gas
temperature
Prior art date
Application number
PCT/JP2010/063923
Other languages
English (en)
French (fr)
Inventor
勉 杉浦
和之 川田
Original Assignee
東洋紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009299104A external-priority patent/JP2011136304A/ja
Priority claimed from JP2010114236A external-priority patent/JP5573354B2/ja
Application filed by 東洋紡績株式会社 filed Critical 東洋紡績株式会社
Priority to CN2010800018965A priority Critical patent/CN102065980A/zh
Priority to KR1020127002410A priority patent/KR101156890B1/ko
Publication of WO2011021637A1 publication Critical patent/WO2011021637A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40086Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by using a purge gas

Definitions

  • the present invention relates to an organic solvent recovery system for recovering an organic solvent from exhaust gas containing an organic solvent, and in particular, industrial exhaust gas containing an organic solvent discharged from various factories, research facilities, etc. (hereinafter collectively referred to as production equipment).
  • the present invention relates to an organic solvent recovery system that efficiently recovers an organic solvent from a liquid.
  • a processing system for recovering an organic solvent from an exhaust gas containing an organic solvent As a processing system for recovering an organic solvent from an exhaust gas containing an organic solvent, a system using an adsorbing element containing an adsorbent is known. As a treatment system using this adsorbing element, an exhaust gas is brought into contact with an adsorbent to adsorb an organic solvent, and a high-temperature gas is blown onto the adsorbent to desorb the organic solvent to obtain a desorption gas containing a high concentration organic solvent.
  • An exhaust gas treatment device to be recovered is cited (see Patent Documents 1 and 2 below).
  • An object of the present invention is to provide an organic solvent recovery system and a recovery method having a configuration capable of further reducing energy used in the organic solvent recovery system.
  • the organic solvent recovery system recovers the organic solvent from the exhaust gas having an organic solvent temperature of about 50 ° C. to about 200 ° C.
  • the organic solvent contained in the gas containing the organic solvent is adsorbed by an adsorbing element containing an adsorbent to generate a clean gas, and the adsorbing element passes the exhaust gas having a temperature higher than that of the organic solvent-containing gas.
  • a condensing device that desorbs the organic solvent adsorbed on the adsorbing element and generates a desorbed gas, and cools and condenses the desorbed gas containing the desorbed gas or the exhaust gas to recover the organic solvent.
  • a cooling recovery device that desorbs the organic solvent adsorbed on the adsorbing element and generates a desorbed gas, and cools and condenses the desorbed gas containing the desorbed gas or the exhaust gas to recover the organic solvent.
  • the exhaust gas is a gas discharged from a production facility, and the clean gas is returned to the production facility.
  • the concentrating device includes a rotating shaft and a cylindrical adsorbent as the adsorbing element provided around the rotating shaft, By rotating the cylindrical adsorbent around the rotation axis, the adsorbing element that adsorbs the organic solvent in the organic solvent-containing gas continuously moves to the desorption unit in the adsorption unit.
  • a first temperature measuring device for measuring the temperature of the clean gas on the outlet side of the adsorption unit of the concentrator, and the desorption of the concentrator
  • a second temperature measuring device for measuring the temperature of the desorption gas at the outlet side of the section, and the temperature of the clean gas measured by the first temperature measuring device and the desorption measured by the second temperature measuring device
  • the time for the organic solvent-containing gas to pass through the adsorption part and the time for the exhaust gas to pass through the desorption part are controlled so that the temperature of the gas becomes a predetermined temperature.
  • the organic solvent-containing gas is a gas containing the organic solvent that has not been recovered in the cooling recovery device and the recovery method.
  • the amount of air that allows the exhaust gas and the desorption gas to pass through the cooling recovery device is 0%. % To 50%, and the desorption gas is 50% to 100%.
  • the air volume ratio for passing the exhaust gas and the desorption gas to the cooling recovery device is 0% for the exhaust gas and 100% for the desorption gas. It is.
  • the organic solvent is n-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, or n-decane. is there.
  • the organic solvent recovery system recovers the organic solvent from exhaust gas having an organic solvent temperature of about 50 ° C. to about 200 ° C.
  • the organic solvent in the organic solvent-containing gas containing the organic solvent is adsorbed by an adsorption element containing an adsorbent to generate a clean gas, and the adsorption element has a higher temperature than the organic solvent-containing gas.
  • a desorption part that passes the exhaust gas and desorbs the organic solvent adsorbed on the adsorption element to generate a desorption gas, and a part where the desorption process of the adsorption element in the desorption part is completed before the transition to the adsorption part
  • a condensing device having a purging unit that is transferred to a cooling unit that cools and condenses the desorbed gas or the exhaust gas containing the exhaust gas and recovers the organic solvent. And a device.
  • the purge portion outlet gas discharged from the purge portion is mixed into the organic solvent-containing gas introduced into the adsorption portion, and the organic solvent-containing gas is heated by receiving the thermal energy of the purge portion outlet gas. In the state, it is introduced into the adsorption part.
  • a part of the clean gas discharged from the adsorption unit is introduced into the purge unit.
  • a part of the purge section outlet gas is supplied to the desorption section together with the exhaust gas and / or to the cooling recovery apparatus together with the desorption gas.
  • the remaining portion of the purge section outlet gas is introduced into the adsorption section together with the organic solvent-containing gas, and the ratio of the air volume between the part of the purge section outlet gas and the remaining portion of the purge section outlet gas is adjusted. By doing so, the temperature of the organic solvent-containing gas introduced into the adsorption part is adjusted.
  • the volume ratio of the purge unit to the adsorption unit in the concentrator is about 5% to about 50%.
  • the exhaust gas is a gas discharged from a production facility, and the remaining clean gas is returned to the production facility.
  • the concentration device includes a rotating shaft and a cylindrical adsorbent as the adsorbing element provided around the rotating shaft, By rotating the cylindrical adsorbent around the rotating shaft, the adsorbing element that adsorbs the organic solvent in the organic solvent-containing gas in the adsorbing portion is continuously connected to the purge portion through the desorbing portion.
  • a first temperature measuring device that measures the temperature of the clean gas on the outlet side of the adsorption unit of the concentrator, and the desorption of the concentrator
  • a second temperature measuring device for measuring the temperature of the desorption gas on the outlet side of the unit
  • a third temperature measuring device for measuring the temperature of the adsorption unit inlet gas on the inlet side of the adsorption unit of the concentrator.
  • the time for the organic solvent-containing gas to pass through the adsorption part, the time for the exhaust gas to pass through the desorption part, and the purge part as the clean gas so that the temperature becomes a predetermined temperature, respectively. Time through is controlled.
  • the organic solvent-containing gas is a gas containing the organic solvent that has not been recovered in the cooling recovery apparatus and recovery method.
  • the amount of air that allows the exhaust gas and the desorption gas to pass through the cooling recovery apparatus is 0% for the exhaust gas. % To 50%, and the desorption gas is 50% to 100%.
  • the air volume ratio for passing the exhaust gas and the desorption gas to the cooling recovery device is 0% for the exhaust gas and 100% for the desorption gas. It is.
  • the organic solvent is n-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, or n-decane. is there.
  • the organic solvent recovery system 1A in the reference technology is an organic solvent recovery system that recovers the organic solvent from the exhaust gas (G1) discharged from the production facility 1000.
  • the concentration apparatus 200 includes a desorption part (desorption zone) 21 and an adsorption part (adsorption zone) 22.
  • An organic solvent-containing gas (G2) containing an organic solvent is introduced into the adsorption unit 22.
  • the organic solvent-containing gas (G2) comes into contact with the adsorbent, the organic solvent contained in the organic solvent-containing gas (G2) is adsorbed on the adsorbent.
  • the organic solvent-containing gas (G2) is cleaned and discharged as a clean gas (G3).
  • the desorption part 21 is introduced with a clean gas (G3) having a temperature higher than that of the organic solvent-containing gas (G2).
  • the organic solvent is desorbed from the adsorbent, whereby the clean gas (G3) is discharged as a desorption gas (G4) containing the organic solvent.
  • Pipe lines L2 and L3 are connected to the adsorption unit 22 of the concentrator 200.
  • the piping line L2 introduces the organic solvent-containing gas (G2) into the adsorption unit 22.
  • the piping line L3 leads the clean gas (G3) from the adsorption unit 22.
  • a piping line L7 that branches to the regenerative heater 100 is connected to the piping line L3.
  • the piping line L3 is provided with a valve V101 for adjusting the flow rate of clean gas (G3) to the supply air heating device 500, and the piping line L7 is a valve V102 for adjusting the flow rate of clean gas (G3) to the regenerative heater 100. Is provided.
  • the piping lines L8 and L5 are connected to the desorption part 21.
  • the piping line L8 introduces a high-temperature clean gas (G3) into the desorption part 21.
  • the piping line L5 derives the desorption gas (G4) from the desorption portion 21.
  • the regenerative heater 100 brings the clean gas (G3) to a high temperature state.
  • Piping lines L7 and L8 are connected to the regeneration heater 100.
  • the piping line L7 introduces the clean gas (G3), and the piping line L8 leads the hot clean gas (G3) to the desorption part 21 of the concentrator 20.
  • the cooler 300 and the recovery tank 400 constitute a liquid separation recovery device.
  • the cooler 300 condenses the desorption gas (G4) using cooling water or the like.
  • the cooler 300 separates the desorption gas (G4) or the like into a recovered liquid containing an organic solvent at a high concentration and an organic solvent-containing gas (G2) containing an organic solvent at a low concentration.
  • the recovered liquid containing the organic solvent at a high concentration is recovered in the recovery tank 400.
  • Piping lines L1, L2, and L6 are connected to the cooler 300.
  • the piping line L5 merges with the piping line L1.
  • the piping line L1 introduces the exhaust gas (G1) and the desorption gas (G4) into the cooler 300, and the piping line L2 concentrates the organic solvent-containing gas (G2) containing the separated organic solvent at a low concentration.
  • the pipe line L6 guides the separated recovered liquid to the recovery tank 400.
  • the supply air heating device 500 heats and raises the temperature of the clean gas (G3) to a predetermined temperature, and supplies the clean gas (G3) to the production facility 1000.
  • Piping lines L ⁇ b> 3 and L ⁇ b> 4 are connected to the supply air heating device 500.
  • the piping line L3 introduces the clean gas (G3) sent from the adsorption unit 22 of the concentrator 200, and the piping line L4 derives the clean gas (G3) heated to a predetermined temperature in the production facility 1000. To do.
  • the exhaust gas (G1) discharged from the production facility 1000 has a flow rate of about 770 NCMM, an organic solvent concentration of about 1000 ppm, and a temperature of about 110 ° C.
  • the cooler 300 is introduced in a state in which the exhaust gas (G1) discharged from the production facility 1000 and the desorption gas (G4) desorbed from the concentrator 20 are mixed.
  • the desorption gas (G4) has a flow rate of about 110 NCMM, an organic solvent concentration of about 2581 ppm, and a temperature of about 73 ° C.
  • the mixed gas of the exhaust gas (G1) and the desorption gas (G4) introduced into the cooler 300 has a flow rate of about 880 NCMM, an organic solvent concentration of about 1198 ppm, and a temperature of about 105 ° C.
  • the mixed gas of the exhaust gas (G1) and the desorption gas (G4) is separated in the cooler 300 into a recovered liquid containing an organic solvent at a high concentration and an organic solvent-containing gas (G2) containing an organic solvent at a low concentration.
  • the recovered liquid containing the organic solvent at a high concentration is recovered in the recovery tank 400.
  • the concentration of the organic solvent [NMP] is about 78 wt%.
  • the organic solvent-containing gas (G2) containing an organic solvent at a low concentration has an organic solvent concentration of about 343 ppm and a temperature of about 28 ° C.
  • the organic solvent-containing gas (G2) is led out to the adsorption unit 22 of the concentrator 200 through the piping line L2.
  • Clean gas (G3) derived by the adsorbing unit 22, the flow rate is about 770 NCMM, the organic solvent concentration is about 20 ppm, and the temperature is about 33 ° C.
  • a part of the clean gas (G3) is led out to the supply air heating device 500 through the pipe line L3, and the remaining part is led out to the regenerative heater 100 through the pipe line L7.
  • the flow rate of the clean gas (G3) to be supplied to the supply air heating device 500 and the regenerative heater 100 is appropriately controlled by the valve V101 and the valve V102.
  • the clean gas (G3) led to the regenerative heater 100 is heated to about 130 ° C. and then led to the desorption part 21 of the concentrator 200 through the piping line L8.
  • the clean gas (G3) introduced into the desorption part 21 desorbs the organic solvent from the adsorbent and is led to the cooler 300 through the piping lines L5 and L1 as a desorption gas (G4) containing the organic solvent.
  • the clean gas (G3) led to the supply air heating device 500 is heated to about 70 ° C. and then led to the production facility 1000 through the piping line L4.
  • the organic solvent recovery system 1B is an organic solvent recovery system that recovers an organic solvent from exhaust gas (G1) discharged from the production facility 1000.
  • the concentration apparatus 200 includes a desorption part (desorption zone) 21 and an adsorption part (adsorption zone) 22.
  • An organic solvent-containing gas (G2) containing an unrecovered organic solvent is introduced from the cooler 300 to the adsorbing unit 22, so that the organic solvent-containing gas (G2) comes into contact with the adsorbent, and the organic solvent-containing gas ( The organic solvent contained in G2) is adsorbed by the adsorbent.
  • the organic solvent-containing gas (G2) is cleaned and discharged as a clean gas (G3).
  • the organic solvent is desorbed from the adsorbent by introducing the exhaust gas (G1) having a temperature higher than that of the organic solvent-containing gas (G2) into the adsorbent, whereby the exhaust gas (G1) contains the organic solvent. It is discharged as desorption gas (G4).
  • Piping lines L2 and L3 are connected to the adsorption unit 22 of the concentrator 200.
  • the piping line L2 introduces the organic solvent-containing gas (G2) into the adsorption unit 22.
  • the piping line L3 leads the clean gas (G3) from the adsorption unit 22.
  • a first temperature measuring device T1 that measures the temperature of the clean gas (G3) is provided on the outlet side of the adsorption unit 22.
  • the piping lines L8 and L5 are connected to the desorption part 21.
  • the piping line L8 introduces exhaust gas (G1) from the production facility 1000.
  • the piping line L5 derives the desorption gas (G4) from the desorption portion 21.
  • a second temperature measuring device T2 for measuring the temperature of the desorption gas (G4) is provided on the outlet side of the desorption portion 21.
  • This concentrator 200 shows a case where a cylindrical adsorbent 210 having a cylindrical shape is used.
  • a rotating shaft 211 is arranged around the axis of the cylindrical adsorbent body 210 configured to allow gas to flow in the axial direction.
  • the rotary shaft 211 is rotationally driven by an actuator or the like.
  • activated alumina, silica gel, activated carbon material and zeolite are widely used as adsorbents, and among these, activated carbon and hydrophobic zeolite are particularly preferably used.
  • activated carbon and hydrophobic zeolite are excellent in the function of adsorbing and desorbing low-concentration organic compounds, and have been used as adsorbents in various devices for a long time.
  • Piping lines L2, L3, L5, L8 (see FIG. 2) not specifically shown in FIG. 3 are connected so as to be close to both axial end surfaces of the cylindrical adsorbent body 210, and the cylindrical adsorbent body is connected.
  • a part of 210 is used as the adsorption unit 22 for performing the adsorption process, and another part of the adsorption unit 22 is used as the desorption part 21 for performing the desorption process.
  • the organic solvent-containing gas (G2) is introduced into the adsorbing portion 22 of the cylindrical adsorbent body 210 from one side in the axial direction, and the clean gas (G3) is led out from the other side in the axial direction.
  • High temperature exhaust gas (G1) is introduced into the desorption part 21 of the cylindrical adsorbent body 210 from one axial direction, and desorption gas (G4) is derived from the other axial direction.
  • the cylindrical adsorbent 210 rotates at a predetermined speed in the direction of arrow A in the figure with the rotation shaft 211 as the center of rotation.
  • the portion where the adsorption process of the cylindrical adsorbent body 210 is completed moves to the zone where the desorption process is performed, and the part where the desorption process of the cylindrical adsorbent body 210 is completed moves to the zone where the adsorption process is performed.
  • the adsorption process and the desorption process are simultaneously performed, and the cleaning process can be continuously performed.
  • the time of the adsorption process and the time of the desorption process are controlled by the rotation speed of the concentrator 200. Further, concentration is performed so that the temperature of the clean gas (G3) measured by the first temperature measuring device T1 and the temperature of the desorption gas (G4) measured by the second temperature measuring device T2 are respectively predetermined temperatures. The time of the adsorption process and the time of the desorption process are controlled by the rotation speed of the apparatus 200.
  • a method for setting the temperatures of the clean gas (G3) and the desorption gas (G4) to a predetermined temperature it is also possible to introduce a heat exchange material such as aluminum before and after the adsorption element of the concentrator 200 or to the adsorption element itself. is there.
  • the regenerative heater 100 Referring to FIG. 2 again, the regenerative heater 100 is provided between the piping line L1 and the piping line L8 extending from the production facility 1000. When the temperature of the exhaust gas (G1) discharged from the production facility 1000 is sufficiently high, the regenerative heater 100 is not used. However, when the temperature of the exhaust gas (G1) does not reach the predetermined temperature when the production facility 1000 is in the initial operation state, it is used to heat the exhaust gas (G1) to the predetermined temperature.
  • the piping line L1 extending from the production facility 1000 is provided with a piping line L9 that branches from the piping line L1 and leads to the piping line L5.
  • the exhaust gas (G1) discharged from the production facility 1000 is sent to the desorption part 21 of the concentrator 20 through the piping line L1, the regenerative heater 100, and the piping line L8, but a part of the exhaust gas (G1) is piping. It is possible to lead out directly to the cooler 300 through the line L9.
  • the amount of exhaust gas (G1) delivered to the desorption section 21 and the amount delivered directly to the cooler 300 are controlled by a valve V111 provided in the piping line L1 and a valve V112 provided in the piping line L9, respectively.
  • the cooler 300 and the recovery tank 400 constitute a liquid separation recovery device.
  • the cooler 300 condenses the desorption gas (G4) or the like using cooling water or the like to separate the recovered liquid containing the organic solvent into a high concentration and the organic solvent-containing gas (G2) containing the organic solvent.
  • the recovered liquid containing the organic solvent at a high concentration is recovered in the recovery tank 400.
  • Piping lines L2, L5, and L6 are connected to the cooler 300.
  • the piping line L2 leads the organic solvent-containing gas (G2) containing the separated organic solvent to the adsorption unit 22 of the concentrator 200, and the piping line L5 is introduced with the desorption gas (G4) from the desorption unit 21,
  • the piping line L6 leads the separated recovered liquid to the recovery tank 400.
  • the supply air heating device 500 heats and raises the temperature of the clean gas (G3) to a predetermined temperature, and supplies the clean gas (G3) to the production facility 1000.
  • Piping lines L ⁇ b> 3 and L ⁇ b> 4 are connected to the supply air heating device 500.
  • the piping line L3 introduces the clean gas (G3) sent out from the adsorption unit 22 of the concentrator 200, and the piping line L4 derives the clean gas (G3) heated to a predetermined temperature to the production facility 1000. .
  • the temperature of the clean gas (G3) derived from the desorption unit 21 adsorption unit 22 is in a high temperature state, it is not necessary to heat the clean gas (G3) by the supply air heating device 500. .
  • the organic solvent [NMP (n-methyl-2-pyrrolidone) used in the lithium ion battery manufacturing facility as the production facility 1000 is the same as the organic solvent recovery system 1A described in the reference technology. )] Will be described below.
  • the exhaust gas (G1) discharged from the production facility 1000 has a flow rate of about 770 NCMM, an organic solvent concentration of about 1000 ppm, and a temperature of about 110 ° C.
  • the valve V111 is fully opened, the valve V112 is closed, and the exhaust gas (G1) discharged from the production facility 1000 is introduced into the 100% desorption section 21.
  • the regenerative heater 100 does not heat the exhaust gas (G1).
  • the desorption gas (G4) discharged from the desorption unit 21 has a flow rate of about 770 NCMM, an organic solvent concentration of about 2122 ppm, and a temperature of about 80 ° C. Since the valve V112 is closed and the exhaust gas (G1) discharged from the production facility 1000 is 100% introduced into the desorption part 21, the gas introduced into the cooler 300 is 100% desorption gas (G4).
  • the exhaust gas (G1) introduced directly is 0%.
  • the desorption gas (G4) is separated in the cooler 300 into a recovered liquid containing an organic solvent at a high concentration and an organic solvent-containing gas (G2) containing an organic solvent.
  • the recovered liquid containing the organic solvent at a high concentration is recovered in the recovery tank 400.
  • the concentration of the organic solvent [NMP] is about 91 wt%.
  • the organic solvent-containing gas (G2) containing an organic solvent has an organic solvent concentration of about 1142 ppm and a temperature of about 40 ° C. This organic solvent-containing gas (G2) is led out to the adsorption unit 22 of the concentrator 200 through the piping line L2.
  • the clean gas (G3) in which the organic solvent is adsorbed by the adsorption unit 22 of the concentrator 200 is led out to the supply air heater 500 through the piping line L3.
  • the clean gas (G3) derived from the adsorption unit 22 has a flow rate of about 770 NCMM, an organic solvent concentration of about 20 ppm, and a temperature of about 70 ° C.
  • the clean gas (G3) led to the supply air heating device 500 is not heated by the supply air heating device 500, and the clean gas (G3) having a temperature of about 70 ° C. is directly supplied to the production facility 1000 through the piping line L4. Derived.
  • the cooling temperature required for the cooler 300 can be increased from 28 ° C to 40 ° C
  • the high-temperature exhaust gas (G12) discharged from the production facility 1000 is sent to the desorption part 21 of the concentrator 200, whereby the regenerative heater 100 in the organic solvent recovery system 1A.
  • the use of the utility becomes unnecessary, and an increase in utility usage can be suppressed.
  • the organic solvent recovery system 1A it was necessary to heat the clean gas (G3) led out to the desorption part 21 by the regenerative heater 100 from 33 ° C to 130 ° C.
  • the exhaust gas (G21) in a high temperature state is sent to the desorption portion 21 of the concentrating device 200 in a high temperature state, so that the gas led out to the desorption portion 21 is heated. There is no need.
  • the concentration factor adsorption air amount / desorption air amount
  • desorption operation can be improved by using an adsorbent with high desorption efficiency.
  • the cooling temperature of the cooler 300 can be increased (28 ° C. ⁇ 40 ° C.) (see FIG. 4), and the utility usage of the cooler 300 can be reduced.
  • the temperature of the gas introduced into the cooler 300 can be reduced from 105 ° C to 80 ° C
  • the exhaust gas (G12) in a high temperature state discharged from the production facility 1000 is sent to the desorption part 21 of the concentrator 200, whereby heat exchange by the adsorbent is performed, and the gas temperature before being introduced into the cooler 300 (105 ° C. ⁇ 80 ° C.) can be reduced (see FIG. 4), and the utility usage of the cooler 300 can be reduced.
  • Introduction temperature of supply air heating device 500 can be increased from 33 ° C to 70 ° C
  • the exhaust gas (G12) in a high temperature state discharged from the production facility 1000 to the desorption part 21 of the concentrating device 200 heat exchange by the adsorbent is performed, and before introduction into the supply air heating device 500.
  • the gas temperature can be increased (33 ° C. ⁇ 70 ° C.) (see FIG. 4), and the utility usage of the supply air heating device 500 can be reduced.
  • the exhaust gas (G21) in a high temperature state discharged from the production facility 1000 is sent to the desorption part 21 of the concentrator 200, whereby the cooler 300 and the supply device
  • the utility usage of the air heating device 500 can be reduced.
  • the running cost of the entire system can be greatly reduced compared to the case of the organic solvent recovery system 1A.
  • the temperature of the cooler 300 can be increased compared to the case of the organic solvent recovery system 1A, so that the amount of condensed water is reduced and recovered. It becomes possible to improve the NMP concentration in the liquid (78 wt% ⁇ 91 wt%) (see FIG. 6).
  • the exhaust gas (G1) discharged from the production facility 1000 is led out to the 100% desorption section 21 and the desorption gas (G4) is led out to the 100% cooler 300
  • a part of the exhaust gas (G1) can be directly led to the cooler 300 through the piping line L9.
  • the assumed air volume ratio of the gas passing through the cooler 300 is about 0% to 50% for the exhaust gas (G1) and about 50% to 100% for the desorption gas (G4).
  • emitted from the production facility 1000 is used as exhaust gas (G1) and the purified gas is returned to the production facility 1000 is demonstrated
  • emitted from the production facility 1000 as exhaust gas (G1) is demonstrated. It is not necessary to use directly, and if it is the exhaust gas (G1) which has the same property, it is possible to collect
  • the organic solvent is not limited to this organic solvent and is liquefied by cooling at 1 ° C. to 50 ° C. Any organic solvent that can be recovered may be used. That is, the organic solvent is, for example, N, N-dimethylformamide, N, N-dimethylacetamide, or n-decane.
  • the organic solvent recovery system 1B based on the present invention can also be used for recovering an organic solvent having the same characteristics as NMP.
  • the organic solvent recovery system 1C in the embodiment is also an organic solvent recovery system that recovers the organic solvent from the exhaust gas (G1) discharged from the production facility 1000, similarly to the organic solvent recovery system 1A described above.
  • the organic solvent recovery system 1C includes a concentrator 200, a regenerative heater 100, a cooler 300, a recovery tank 400, and a heat exchanger 600.
  • the concentrating device 200 includes an adsorption element, and includes a desorption unit 21, an adsorption unit 22, and a purge unit 23.
  • the adsorption element By bringing a gas containing an organic solvent into contact with the adsorption element of the concentrator 200, the adsorption element adsorbs the organic solvent in the gas.
  • the adsorbing element desorbs the adsorbed organic solvent by bringing the adsorbing element having adsorbed the organic solvent into contact with a gas having a temperature higher than that of the gas containing the organic solvent.
  • the adsorption element is sequentially shifted to the adsorption unit 22 (adsorption state), the desorption unit 21 (desorption state), and the purge unit 23 (purge state), and after the purge unit 23 (purge state), Again, it moves to the adsorption part 22 (adsorption state). That is, the purge unit 23 is configured after the desorption unit 21 (desorption state) and before the adsorption unit 22 (adsorption state).
  • these transitions are realized by rotation of an adsorption element (cylindrical adsorbent) (details will be described later with reference to FIG. 8).
  • these transitions may be performed by operating a damper (and a valve) so that the adsorbing element is moved to the adsorbing unit 22 (adsorbing state), the desorbing unit 21 (desorbing state), and the purge unit 23 (purging state). It is realized by moving to.
  • a mixed gas (hereinafter referred to as “a mixed gas” of an organic solvent-containing gas (G 2) containing an organic solvent not recovered from the cooler 300 and a purge unit outlet gas (G 6) discharged from the purge unit 23 , Adsorber inlet gas (referred to as G5) is introduced.
  • the adsorbent inlet gas (G5) contacts the adsorbent in the adsorber 22 and the organic solvent contained in the adsorber inlet gas (G5) is adsorbed by the adsorbent. Thereby, adsorption part entrance gas (G5) is cleaned, and it discharges as clean gas (G3).
  • Piping lines L2 and L3 are connected to the suction part 22.
  • the piping line L2 introduces the adsorption unit inlet gas (G5) into the adsorption unit 22.
  • the piping line L3 leads the clean gas (G3) from the adsorption unit 22.
  • a first temperature measuring device T1 that measures the temperature of the clean gas (G3) is provided on the outlet side of the adsorption unit 22.
  • a third temperature measuring device T3 for measuring the temperature of the adsorption unit inlet gas (G5) is provided on the inlet side of the adsorption unit 22.
  • the piping line L11 branched to the purge part 23 is connected to the piping line L3.
  • the piping line L3 is provided with a valve V113 for adjusting the flow rate of clean gas (G3) to the heat exchanger 600, and the piping line L11 is provided with a valve V114 for adjusting the flow rate of clean gas (G3) to the purge unit 23. Is provided.
  • Pipe lines L11 and L12 are connected to the purge unit 23.
  • the piping line L11 introduces a part of the clean gas (G3) to the purge unit 23.
  • the piping line L12 leads the purge unit outlet gas (G6) from the purge unit 23.
  • the piping line L12 merges with the piping line L2.
  • the organic solvent is desorbed from the adsorbent by introducing the exhaust gas (G1) having a temperature higher than that of the adsorption part inlet gas (G5) into the adsorbent, whereby the exhaust gas (G1) contains the organic solvent. It is discharged as desorption gas (G4).
  • the piping lines L8 and L5 are connected to the attachment / detachment portion 21.
  • the piping line L8 introduces exhaust gas (G1) from the production facility 1000.
  • the piping line L5 derives the desorption gas (G4) from the desorption portion 21.
  • a second temperature measuring device T2 for measuring the temperature of the desorption gas (G4) is provided on the outlet side of the desorption portion 21.
  • This concentrator 200 is of a rotor type as an example, and uses a cylindrical adsorbent 210 having a cylindrical shape. As shown in the figure, when a cylindrical adsorbent body 210 having a cylindrical outer shape is used, a rotating shaft 211 is arranged around the axis of the cylindrical adsorbent body 210 configured to allow gas to flow in the axial direction. The rotary shaft 211 is rotationally driven by an actuator or the like.
  • activated alumina, silica gel, activated carbon material and zeolite are widely used as adsorbents, and among these, activated carbon and hydrophobic zeolite are particularly preferably used.
  • activated carbon and hydrophobic zeolite are excellent in the function of adsorbing and desorbing low-concentration organic compounds, and have been used as adsorbents in various devices for a long time.
  • Piping lines L2, L3, L5, L8, L11, and L12 are connected so as to be close to both end faces in the axial direction of the cylindrical adsorbent 210. Yes. A part of the cylindrical adsorbent 210 is used as the adsorbing part 22 for performing the adsorbing process, and another part of the cylindrical adsorbing body 210 is used as the desorbing part 21 for performing the desorbing process. Still another part of the adsorbent 210 is used as a purge unit 23 for performing a purge process.
  • the adsorbing portion inlet gas (G5) is introduced into the adsorbing portion 22 of the cylindrical adsorbing body 210 from one axial direction, and the clean gas (G3) is led out from the other axial direction.
  • High temperature exhaust gas (G1) is introduced into the desorption part 21 of the cylindrical adsorbent body 210 from one axial direction, and desorption gas (G4) is derived from the other axial direction.
  • a part of the clean gas (G3) is introduced into the purge portion 23 of the cylindrical adsorbent body 210 from one axial direction, and the purge portion outlet gas (G6) is led out from the other axial direction.
  • the cylindrical adsorbent 210 rotates at a predetermined speed in the direction of arrow A in the figure with the rotation shaft 211 as the center of rotation.
  • the part where the adsorption process of the cylindrical adsorbent body 210 is completed moves to the desorption part 21 which performs the desorption process
  • the part where the desorption process of the cylindrical adsorber 210 is completed goes to the purge part 23 which performs the purge process.
  • the portion that has moved and the purge processing has been completed moves to the suction section 22 that performs the suction processing.
  • the adsorption process, the desorption process, and the purge process are simultaneously performed, and the cleaning process can be continuously performed.
  • the purge unit 23 is not formed in the concentrator 200.
  • the adsorption element immediately after the desorption process, that is, at the initial stage of the adsorption process, the adsorption element is still at a high temperature, so the adsorption performance as an adsorbent is low.
  • the adsorption performance deteriorates due to the introduction of an organic solvent when the rotation shifts from the desorption part performing the desorption process to the adsorption part performing the adsorption process.
  • the purge unit 23 is configured after the desorption unit 21 and before the adsorption unit 22.
  • the adsorption element in the purge unit 23 is cooled. Since the adsorption element is cooled by the clean gas (G3), the adsorption efficiency of the adsorption element is high.
  • the clean gas (G3) introduced into the purge unit 23 is again introduced into the adsorption unit 22 as the adsorption unit inlet gas (G5) together with the organic solvent-containing gas (G2) as the purge unit outlet gas (G6).
  • the concentrating device 200 can increase the removal rate of the organic solvent in the adsorption unit 22.
  • the volume ratio of the purge unit 23 to the adsorption unit 22 is preferably about 5% to about 50%. If this ratio is less than about 5%, the desired purge effect cannot be obtained. If this ratio exceeds about 50%, the economy becomes worse.
  • the clean gas (G3) that has exchanged heat with the adsorption elements in the purge unit 23 is heated and led out from the purge unit 23 as a purge unit outlet gas (G6).
  • the purge portion outlet gas (G6) in the temperature rising state is mixed with the organic solvent-containing gas (G2) derived from the cooler 300 (see FIG. 2), thereby adjusting the temperature of the organic solvent-containing gas (G2). Increase the temperature.
  • the organic solvent is n-methyl-2-pyrrolidone or the like, a part of the organic solvent-containing gas (G2) derived from the cooler 300 may be mist.
  • the mist-like organic solvent-containing gas (G2) needs to be all gasified by being heated before being introduced into the adsorption unit 22.
  • the temperature of the mist-like organic solvent-containing gas (G ⁇ b> 2) can be raised using the purge portion outlet gas (G ⁇ b> 6) in the temperature rising state derived from the purge portion 23. .
  • the amount of energy used in other heating means (not shown) necessary for the temperature rise can be reduced. It becomes possible.
  • the time of the adsorption process, the time of the desorption process, and the time of the purge process are controlled by the rotation speed of the concentrator 200.
  • the temperature of the clean gas (G3) measured by the first temperature measuring device T1 the temperature of the desorption gas (G4) measured by the second temperature measuring device T2, and the inlet of the adsorption unit measured by the third temperature measuring device T3
  • the time of the adsorption process, the time of the desorption process, and the time of the purge process are controlled by the rotational speed of the concentrator 200 so that the temperature of the gas (G5) becomes a predetermined temperature.
  • heat such as aluminum before and after the adsorbing element of the concentrator 200 or on the adsorbing element itself. It is also possible to introduce an exchange material.
  • Regenerative heater 100 Referring to FIG. 7 again, regenerative heater 100 is provided between piping line L1 and piping line L8 extending from production facility 1000. When the temperature of the exhaust gas (G1) discharged from the production facility 1000 is sufficiently high, the regenerative heater 100 is not used. However, when the production facility 1000 is in the initial operation state and the temperature of the exhaust gas (G1) does not reach the predetermined temperature, the regenerative heater 100 is used to heat the exhaust gas (G1) to the predetermined temperature.
  • the piping line L1 extending from the production facility 1000 is provided with a piping line L9 that branches from the piping line L1 and leads to the piping line L5.
  • a part of the exhaust gas (G1) discharged from the production facility 1000 is sent to the desorption part 21 of the concentrator 200 through the piping line L1, the regenerative heater 100, and the piping line L8.
  • the remainder of the exhaust gas (G1) discharged from the production facility 1000 can be sent directly to the cooler 300 through the piping line L9.
  • the amount of exhaust gas (G1) delivered to the desorption part 21 and the amount delivered to the cooler 300 are respectively controlled by a valve V111 provided in the piping line L1 and a valve V112 provided in the piping line L9.
  • the cooler 300 and the recovery tank 400 constitute a cooling recovery device.
  • the cooler 300 condenses the desorption gas (G4) or the like using cooling water or the like to separate the recovered liquid containing the organic solvent into a high concentration and the organic solvent-containing gas (G2) containing the organic solvent. .
  • the recovered liquid containing the organic solvent at a high concentration is recovered in the recovery tank 400.
  • Piping lines L2, L6, and L10 are connected to the cooler 300.
  • the piping line L2 guides the organic solvent-containing gas (G2) containing the separated organic solvent to the adsorption unit 22 of the concentrator 200.
  • the piping line L6 leads the separated recovered liquid to the recovery tank 400.
  • the desorption gas (G4) is introduced into the pipe line L10 from the desorption part 21 through the pipe line L5 and the heat exchanger 600 described below.
  • Heat exchanger 600 The heat exchanger 600 is positioned between the piping line L3 and the piping line L4, and the heat exchanger 600 is also positioned between the piping line L5 and the piping line L10. In FIG. 7, two heat exchangers 600 are shown apart from each other, but the heat exchanger 600 exchanges heat energy between the piping lines L3 and L4 and heat energy between the piping lines L5 and L10. be able to.
  • the heat exchanger 600 raises the temperature of the clean gas (G3) derived from the adsorption unit 22 by heat exchange and then sends it to the production facility 1000.
  • the heat exchanger 600 lowers the temperature of the desorption gas G4 derived from the desorption unit 21 by heat exchange, and then sends it to the cooler 300.
  • By using the heat exchange of the heat exchanger 600 it is possible to reduce the amount of other energy used to bring the clean gas (G3) sent to the production facility to a predetermined temperature.
  • By the heat exchange of the heat exchanger 600 it is possible to reduce the amount of other energy used to bring the desorption gas (G4) sent to the cooler 300 to a predetermined temperature.
  • the organic solvent [NMP (n-methyl-2-pyrrolidone) used in the lithium ion battery manufacturing facility as the production facility 1000 is the same as the organic solvent recovery system 1A described in the reference technology. )] Will be described below.
  • the exhaust gas (G1) discharged from the production facility 1000 has a flow rate of about 770 NCMM, an organic solvent concentration of about 1000 ppm, and a temperature of about 110 ° C.
  • the valve V111 is fully opened, the valve V112 is closed, and the exhaust gas (G1) discharged from the production facility 1000 is introduced into the 100% desorption section 21.
  • the regenerative heater 100 does not heat the exhaust gas (G1).
  • the desorption gas (G4) discharged from the desorption unit 21 has a flow rate of about 770 NCMM, an organic solvent concentration of about 1803 ppm, and a temperature of about 93 ° C. Since the valve V112 is closed and the exhaust gas (G1) discharged from the production facility 1000 is 100% introduced into the desorption part 21, the gas introduced into the cooler 300 is 100% desorption gas (G4). The exhaust gas (G1) introduced directly is 0%.
  • the desorption gas (G4) is separated in the cooler 300 into a recovered liquid containing an organic solvent at a high concentration and an organic solvent-containing gas (G2) containing an organic solvent.
  • the recovered liquid containing the organic solvent at a high concentration is recovered in the recovery tank 400.
  • the concentration of the organic solvent [NMP] is about 89 wt%.
  • the organic solvent-containing gas (G2) containing an organic solvent has a flow rate of about 770 NCMM, an organic solvent concentration of about 857 ppm, and a temperature of about 37 ° C.
  • the purge portion outlet gas (G6) is mixed with the organic solvent-containing gas (G2) by the piping line L12 connected to the piping line L2.
  • the purge section outlet gas (G6) has a flow rate of about 100 NCMM, an organic solvent concentration of about 386 ppm, and a temperature of about 100 ° C.
  • the adsorption part inlet gas (G5) which is a mixture of the organic solvent-containing gas (G2) and the purge part outlet gas (G6), has a flow rate of about 870 NCMM, an organic solvent concentration of about 803 ppm, and a temperature of about 44 ° C.
  • the adsorption unit inlet gas (G5) is led to the adsorption unit 22 of the concentrator 200.
  • the clean gas (G3) in which the organic solvent is adsorbed by the adsorption unit 22 of the concentrator 200 has a flow rate of about 770 NCMM, an organic solvent concentration of about 12 ppm, and a temperature of about 53 ° C. Part of the clean gas (G3) is led to the purge unit 23 through the piping line L11. The remainder of the clean gas (G3) is led out to the heat exchanger 600 through the piping line L3.
  • the clean gas (G3) derived to the purge unit 23 is derived from the purge unit 23 in a state where the adsorption element in the purge unit 23 is cooled and the temperature is raised as the purge unit outlet gas (G6).
  • the purge unit 23 is configured after the desorption unit 21 and before the adsorption unit 22.
  • the adsorption element in the purge unit 23 is cooled. Since the adsorption element is cooled by the clean gas (G3), the adsorption efficiency of the adsorption element is high.
  • the clean gas (G3) introduced into the purge unit 23 is again introduced into the adsorption unit 22 as the adsorption unit inlet gas (G5) together with the organic solvent-containing gas (G2) as the purge unit outlet gas (G6).
  • the concentrating device 200 can increase the removal rate of the organic solvent in the adsorption unit 22.
  • the cooling temperature required for the cooler 300 can be increased from 28 ° C to 37 ° C
  • the high-temperature exhaust gas (G12) discharged from the production facility 1000 is sent to the desorption part 21 of the concentrator 200, whereby the regenerative heater 100 in the organic solvent recovery system 1A.
  • the use of the utility becomes unnecessary, and an increase in utility usage can be suppressed.
  • the organic solvent recovery system 1A it was necessary to heat the clean gas (G3) led out to the desorption section 21 by the regenerative heater 100 from 33 ° C to 130 ° C.
  • the exhaust gas (G12) in a high temperature state is sent to the desorption portion 21 of the concentrator 200 at a high temperature state, so that the gas led out to the desorption portion 21 is heated. There is no need.
  • concentration factor adsorption air amount / desorption air amount
  • the organic solvent recovery system 1C it is possible to improve the performance of the concentration apparatus 200 by economically reducing the concentration factor when compared with the organic solvent recovery system 1A.
  • the cooling temperature of the cooler 300 can be increased (28 ° C. ⁇ 37 ° C.), and the utility usage of the cooler 300 can be reduced.
  • the organic solvent is n-methyl-2-pyrrolidone or the like
  • a part of the organic solvent-containing gas (G2) led out from the cooler 300 is mist.
  • the mist-like organic solvent-containing gas (G2) needs to be in a gaseous state by being heated before being introduced into the adsorption unit 22.
  • the temperature of the mist-like organic solvent-containing gas (G2) can be increased by utilizing the purge portion outlet gas (G6) in the temperature rising state derived from the purge portion 23.
  • the temperature of the gas introduced into the cooler 300 can be reduced from 105 ° C to 73 ° C) Further, by sending the exhaust gas (G1) in a high temperature state discharged from the production facility 1000 to the desorption part 21 of the concentrator 200, heat exchange by the adsorbent is performed, and the gas temperature before being introduced into the cooler 300 (105 ° C. ⁇ 73 ° C.), and the utility usage of the cooler 300 can be reduced.
  • (Introduction temperature of heat exchanger 600 supply air heating device 500 can be increased from 33 ° C. to 53 ° C.) Further, the exhaust gas (G1) in a high temperature state discharged from the production facility 1000 is sent to the desorption part 21 of the concentrator 200, whereby heat exchange by the adsorbent is performed, and the gas before being introduced into the heat exchanger 600. The temperature can be increased (33 ° C. ⁇ 53 ° C.).
  • the heat exchanger 600 that can exchange heat with the piping lines L5 and L10 is provided between the piping lines L3 and L4, so that the clean gas (G3) sent to the production facility is exchanged by heat exchange of the heat exchanger 600. It is possible to reduce the amount of other energy used to obtain a predetermined temperature.
  • the exhaust gas (G1) in a high temperature state discharged from the production facility 1000 is sent to the desorption part 21 of the concentrating device 200, so that the running as the entire system is performed. Cost can be greatly reduced compared to the case of the organic solvent recovery system 1A.
  • the temperature of the cooler 300 can be increased compared to the case of the organic solvent recovery system 1A, so that the amount of water condensed is reduced and recovered.
  • the NMP concentration in the liquid can be improved (78 wt% ⁇ 89 wt%).
  • 110 ° C. is assumed as an example of the temperature of the exhaust gas (G1), but the temperature of the exhaust gas (G1) discharged from the production facility is shown. Is assumed to be 50 ° C. to 200 ° C. Therefore, when the temperature of the exhaust gas does not reach the predetermined temperature, the exhaust gas (G1) is heated using the regenerative heater 100 as necessary.
  • the exhaust gas (G1) discharged from the production facility 1000 is led out to the 100% desorption section 21 and the desorption gas (G4) is led out to the 100% cooler 300
  • a part of the exhaust gas (G1) can be directly led to the cooler 300 through the piping line L9.
  • the assumed air volume ratio of the gas passing through the cooler 300 is about 0% to 50% for the exhaust gas (G1) and about 50% to 100% for the desorption gas (G4).
  • emitted from the production facility 1000 is used as exhaust gas (G1) and the purified gas is returned to the production facility 1000 is demonstrated
  • emitted from the production facility 1000 as exhaust gas (G1) is demonstrated. It is not necessary to use directly, and if it is the exhaust gas (G1) which has the same property, it is possible to collect
  • the case of recovering [NMP (n-methyl-2-pyrrolidone)] as an organic solvent is described. Any organic solvent that can be recovered may be used. That is, the organic solvent is, for example, N, N-dimethylformamide, N, N-dimethylacetamide, or n-decane.
  • the organic solvent recovery system 1C based on the present invention can also be used for recovering these organic solvents having the same characteristics as NMP.
  • each time of the adsorption process, the desorption process, and the purge process is controlled by the rotation speed of the concentrator 200.
  • the adsorption process, the desorption process, and the purge process are performed at the rotational speed of the concentrator 200 so that the clean gas (G3), the desorption gas (G4), and the adsorption unit inlet gas (G5) have predetermined temperatures.
  • the case where each time is controlled is described.
  • the temperatures of the clean gas (G3), the desorption gas (G4), and the adsorption unit inlet gas (G5) are desorbed from the purge unit outlet gas (G6).
  • a piping line L13 branched from the piping line L12 and connected to the piping line L5 is provided.
  • the air volume of the purge portion outlet gas (G6) in the piping line L13 may be adjusted by the valve V115.
  • the temperatures of the clean gas (G3), the desorption gas (G4), and the adsorption unit inlet gas (G5) are set such that a part of the purge unit outlet gas (G6) is mixed with the exhaust gas (G1). It may be adjusted by introducing it.
  • a piping line L14 branched from the piping line L12 and connected to the piping line L8 is provided.
  • the air volume of the purge portion outlet gas (G6) in the piping line L14 may be adjusted by the valve V116.
  • both the piping lines L13 and L14 may be provided.
  • 1A, 1B Organic solvent recovery system 20,200 Concentrator, 21 Desorption part (desorption zone), 22 Adsorption part (adsorption zone), 100 Regenerative heater, 210 Cylindrical adsorbent, 211 Rotating shaft, 300 Cooler, 400 Recovery Tank, 500 Supply air heating device, 600 Heat exchanger, 1000 Production equipment, G1 exhaust gas, G2 Organic solvent-containing gas, G3 clean gas, G4 desorption gas, G5 adsorption part inlet gas, G6 purge part outlet gas, L1-L13 piping Line, T1-T3 Temperature measuring instrument, V101, V102, V110-V116 valves.

Abstract

【課題】有機溶剤回収システムに用いられるエネルギーを削減することが可能な構成を備える有機溶剤回収システムを提供することを目的とする。 【解決手段】この有機溶剤回収システム1Bにおいては、濃縮倍率を低くすることで、濃縮装置20の性能向上が図られ、冷却器300の冷却温度の上昇(28℃→40℃)、給気加熱装置500の導入温度の上昇(33℃→70℃)が可能となり、冷却器300および給気加熱装置500のユーティリティ使用量の削減が可能となる。その結果、システム全体として使用エネルギを削減することが可能となる。

Description

有機溶剤回収システム
 本発明は、有機溶剤を含有する排ガスから有機溶剤を回収する有機溶剤回収システムに関し、特に、各種工場や研究施設等(以下、生産設備と総称する)から排出される有機溶剤を含有する産業排ガスから有機溶剤を効率的に回収する有機溶剤回収システムに関する。
 有機溶剤を含有する排ガスから有機溶剤を回収する処理システムとして、吸着材を含有した吸着素子を利用したものが知られている。この吸着素子を利用した処理システムとしては、排ガスを吸着材に接触させて有機溶剤を吸着させ、これに高温のガスを吹き付けて有機溶剤を脱着させて高濃度の有機溶剤を含有する脱着ガスとして回収する排ガス処理装置が挙げられる(下記の特許文献1,2参照)。
特開平01-127022号公報 特開2007-44595号公報
 上記特許文献1,2においては、排ガス中の有機溶剤を濃縮し冷却凝縮にて回収する際に、吸着材を含有した吸着素子の脱着時の加熱、および高濃度の排ガスや脱着ガスを液化凝縮させる冷却等のエネルギーが必要となる。近年においては、有機溶剤回収システムにおける有機溶剤を効率的に回収するとともに、有機溶剤回収システムに用いられるこのエネルギーの削減(省エネ)が急務となってきている。
 本発明は、有機溶剤回収システムに用いられるエネルギーをより削減することが可能な構成を備える有機溶剤回収システムおよび回収方法を提供することを目的とする。
 この発明に基づいた有機溶剤回収システムおよび回収方法においては、有機溶剤を含有する温度が約50℃~約200℃の排ガスから上記有機溶剤を回収する有機溶剤回収システムであって、上記有機溶剤を含有する有機溶剤含有ガス中の上記有機溶剤を、吸着材を含有した吸着素子にて吸着し清浄ガスを生成する吸着部と、上記吸着素子に上記有機溶剤含有ガスよりも高温の上記排ガスを通過させ、上記吸着素子に吸着した上記有機溶剤を脱着し脱着ガスを生成する脱着部とを有する濃縮装置と、上記脱着ガスまたは上記排ガスを含む上記脱着ガス冷却し凝縮して上記有機溶剤を回収する冷却回収装置とを備えている。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記排ガスは、生産設備から排出されるガスであり、上記清浄ガスを上記生産設備に戻す。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記濃縮装置は、回転軸と、上記回転軸の周りに設けられた上記吸着素子としての筒状吸着体とを備え、上記回転軸周りに上記筒状吸着体を回転させることにより、上記吸着部において、上記有機溶剤含有ガス中の上記有機溶剤を吸着した吸着素子が連続的に上記脱着部に移動する。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記濃縮装置の上記吸着部の出口側における上記清浄ガスの温度を測定する第1温度測定器と、上記濃縮装置の上記脱着部の出口側における上記脱着ガスの温度を測定する第2温度測定器とを備え、上記第1温度測定器により測定される上記清浄ガスの温度および上記第2温度測定器により測定される上記脱着ガスの温度がそれぞれ所定の温度となるように、上記吸着部を上記有機溶剤含有ガスが通過する時間および上記脱着部を上記排ガスが通過する時間が制御される。
 上記有機溶剤含有ガスは、上記冷却回収装置および回収方法において未回収の上記有機溶剤を含有するガスであり、上記冷却回収装置へ上記排ガスおよび上記脱着ガスを通過させる風量割合が、上記排ガスが0%~50%であり、上記脱着ガスが50%~100%である。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記冷却回収装置へ上記排ガスおよび上記脱着ガスを通過させる風量割合が、上記排ガスが0%であり、上記脱着ガスが100%である。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記有機溶剤は、n-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N、N-ジメチルアセトアミド、またはn-デカンである。
 この発明に基づいた別の形態の有機溶剤回収システムおよび回収方法においては、有機溶剤を含有する温度が約50℃~約200℃の排ガスから上記有機溶剤を回収する有機溶剤回収システムであって、上記有機溶剤を含有する有機溶剤含有ガス中の上記有機溶剤を、吸着材を含有した吸着素子にて吸着し清浄ガスを生成する吸着部と、上記吸着素子に上記有機溶剤含有ガスよりも高温の上記排ガスを通過させ、上記吸着素子に吸着した上記有機溶剤を脱着し脱着ガスを生成する脱着部と、上記脱着部における上記吸着素子の脱着処理が完了した部分が上記吸着部への移行の前に移行するパージ部とを有する濃縮装置とを有する濃縮装置と、上記脱着ガスまたは上記排ガスを含む上記脱着ガス冷却し凝縮して上記有機溶剤を回収する冷却回収装置とを備えている。
 上記パージ部から排出されたパージ部出口ガスは、上記吸着部に導入される上記有機溶剤含有ガスに混入され、上記有機溶剤含有ガスは、上記パージ部出口ガスの熱エネルギーを受けて昇温した状態で上記吸着部に導入される。
 上記有機溶剤回収システムおよび回収方法の他の形態においては、上記吸着部から排出された上記清浄ガスの一部は上記パージ部に導入される。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記パージ部出口ガスの一部は、上記排ガスとともに上記脱着部に供給され、且つ/または上記脱着ガスとともに上記冷却回収装置に供給され、上記パージ部出口ガスの残部は、上記有機溶剤含有ガスとともに上記吸着部に導入され、上記パージ部出口ガスの上記一部と上記パージ部出口ガスの上記残部との風量の比が調節されることによって、上記吸着部に導入される上記有機溶剤含有ガスの温度が調節される。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記濃縮装置における上記パージ部の上記吸着部に対する体積割合は、約5%~約50%である。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記排ガスは、生産設備から排出されるガスであり、上記清浄ガスの残部は、上記生産設備に戻される。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記濃縮装置は、回転軸と、上記回転軸の周りに設けられた上記吸着素子としての筒状吸着体と、を備え、上記回転軸の周りに上記筒状吸着体を回転させることにより、上記吸着部において上記有機溶剤含有ガス中の上記有機溶剤を吸着した上記吸着素子が、上記脱着部を経て上記パージ部に連続的に移行する。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、前記濃縮装置の前記吸着部の出口側における前記清浄ガスの温度を測定する第1温度測定器と、前記濃縮装置の前記脱着部の出口側における前記脱着ガスの温度を測定する第2温度測定器と、前記濃縮装置の前記吸着部の入口側における前記吸着部入口ガスの温度を測定する第3温度測定器と、を備え、前記第1温度測定器により測定される前記清浄ガスの温度、前記第2温度測定器により測定される前記脱着ガスの温度、および前記第3温度測定器により測定される前記吸着部入口ガスの温度がそれぞれ所定の温度となるように、前記吸着部を前記有機溶剤含有ガスが通過する時間、前記脱着部を前記排ガスが通過する時間および前記パージ部を前記清浄ガスが通過する時間が制御される。
 上記有機溶剤含有ガスは、上記冷却回収装置および回収方法において未回収の上記有機溶剤を含有するガスであり、上記冷却回収装置へ上記排ガスおよび上記脱着ガスを通過させる風量割合は、上記排ガスが0%~50%であり、上記脱着ガスが50%~100%である。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記冷却回収装置へ上記排ガスおよび上記脱着ガスを通過させる風量割合が、上記排ガスが0%であり、上記脱着ガスが100%である。
 上記いずれかの有機溶剤回収システムおよび回収方法の他の形態においては、上記有機溶剤は、n-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またはn-デカンである。
 この発明に基づいた有機溶剤回収システムおよび回収方法によれば、有機溶剤回収システムに用いられるエネルギーをより削減することが可能となる。
参考技術における有機溶剤回収システムの構造を示す概念図である。 本実施の形態における有機溶剤回収システムの構造を示す概念図である。 本実施の形態における有機溶剤回収システムに採用される濃縮装置の構造を示す模式図である。 参考技術と本実施の形態とにおける有機溶剤回収システムのユーティリティ使用量の対比を示す図である。 参考技術と本実施の形態とにおける有機溶剤回収システムのランニングコストの対比を示す図である。 参考技術と本実施の形態とにおける有機溶剤回収システムのNMP濃度の対比を示す図である。 実施の形態における有機溶剤回収システムの構造を示す概念図である。 実施の形態における有機溶剤回収システムに採用される濃縮装置の構造を示す模式図である。 実施の形態の他の構成における有機溶剤回収システムの構造を示す概念図である。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一または対応する部分について図中同一の符号を付し、その説明は繰り返さない場合がある。また、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。
 (参考技術:有機溶剤回収システム1A)
 まず、図1を参照して、本発明の有機溶剤回収システムに対する参考技術を説明する。参考技術における有機溶剤回収システム1Aは、生産設備1000から排出される排ガス(G1)から有機溶剤を回収する有機溶剤回収システムであり、濃縮装置200、再生ヒータ100、冷却器300、回収タンク400、および、給気加熱装置500を備えている。
 (濃縮装置200)
 濃縮装置200は、脱着部(脱着ゾーン)21と吸着部(吸着ゾーン)22とを有している。吸着部22には、有機溶剤を含む有機溶剤含有ガス(G2)が導入される。吸着材に有機溶剤含有ガス(G2)が接触することで、有機溶剤含有ガス(G2)に含有される有機溶剤が吸着材に吸着される。これにより有機溶剤含有ガス(G2)が清浄化されて清浄ガス(G3)として排出される。
 脱着部21には、有機溶剤含有ガス(G2)よりも高温の清浄ガス(G3)が導入される。有機溶剤が吸着材から脱着され、これにより清浄ガス(G3)が有機溶剤を含有する脱着ガス(G4)として排出される。
 濃縮装置200の、吸着部22には配管ラインL2、L3が接続されている。配管ラインL2は吸着部22に有機溶剤含有ガス(G2)を導入する。配管ラインL3は、吸着部22から清浄ガス(G3)を導出する。配管ラインL3には、再生ヒータ100に分岐する配管ラインL7が接続されている。
 配管ラインL3には、給気加熱装置500への清浄ガス(G3)流量を調節するバルブV101が設けられ、配管ラインL7には、再生ヒータ100への清浄ガス(G3)流量を調節するバルブV102が設けられている。
 脱着部21には配管ラインL8、L5が接続されている。配管ラインL8は脱着部21に高温の清浄ガス(G3)を導入する。配管ラインL5は、脱着部21から脱着ガス(G4)を導出する。
 (再生ヒータ100)
 再生ヒータ100は、清浄ガス(G3)を高温状態にする。再生ヒータ100には、配管ラインL7、L8が接続されている。配管ラインL7は、清浄ガス(G3)を導入し、配管ラインL8は、高温の清浄ガス(G3)を濃縮装置20の脱着部21に導出する。
 (冷却器300および回収タンク400)
 冷却器300および回収タンク400により、分液回収装置が構成される。冷却器300は、冷却水等を用いて脱着ガス(G4)等を凝縮させる。冷却器300は、脱着ガス(G4)等を、有機溶剤を高濃度に含有する回収液と、有機溶剤を低濃度に含有する有機溶剤含有ガス(G2)とに分離する。有機溶剤を高濃度に含有する回収液は、回収タンク400に回収される。
 冷却器300には、配管ラインL1、L2、L6が接続されている。配管ラインL1には、配管ラインL5が合流している。配管ラインL1は、冷却器300に排ガス(G1)および脱着ガス(G4)を導入し、配管ラインL2は、分離された有機溶剤を低濃度に含有する有機溶剤含有ガス(G2)を濃縮装置200の吸着部22に導出し、配管ラインL6は、分離された回収液を回収タンク400に導出する。
 (給気加熱装置500)
 給気加熱装置500は、清浄ガス(G3)の温度を所定温度にまで加熱昇温させて、生産設備1000に清浄ガス(G3)を給気する。給気加熱装置500には、配管ラインL3、L4が接続されている。配管ラインL3は、濃縮装置200の吸着部22から送り出された清浄ガス(G3)を導入し、配管ラインL4は、生産設備1000に所定温度にまで加熱昇温された清浄ガス(G3)を導出する。
 (回収液の回収)
 上記構成からなる有機溶剤回収システム1Aを用いて、生産設備1000として、リチウムイオン電池製造設備で使用される有機溶剤[NMP(n-メチル-2-ピロリドン)]を回収するシステムについて以下説明する。
 生産設備1000から排出される排ガス(G1)は、流量が約770NCMM、有機溶剤濃度が約1000ppm、温度が約110℃である。冷却器300には、生産設備1000から排出される排ガス(G1)と、濃縮装置20から脱着された脱着ガス(G4)とが混合された状態で導入される。脱着ガス(G4)は、流量が約110NCMM、有機溶剤濃度が約2581ppm、温度が約73℃である。冷却器300に導入される排ガス(G1)と脱着ガス(G4)との混合ガスは、流量が約880NCMM、有機溶剤濃度が約1198ppm、温度が約105℃である。
 排ガス(G1)と脱着ガス(G4)との混合ガスが冷却器300において、有機溶剤を高濃度に含有する回収液と有機溶剤を低濃度に含有する有機溶剤含有ガス(G2)とに分離される。有機溶剤を高濃度に含有する回収液は、回収タンク400に回収される。有機溶剤[NMP]の濃度は約78wt%である。有機溶剤を低濃度に含有する有機溶剤含有ガス(G2)は、有機溶剤濃度が約343ppm、温度が約28℃である。有機溶剤含有ガス(G2)は、配管ラインL2により濃縮装置200の吸着部22に導出される。
 吸着部22により導出される清浄ガス(G3)、流量が約770NCMM、有機溶剤濃度が約20ppm、温度が約33℃である。清浄ガス(G3)の一部は、配管ラインL3を通じて給気加熱装置500に導出され、残部は、配管ラインL7を通じて再生ヒータ100に導出される。給気加熱装置500および再生ヒータ100へのそれぞれに供給すべき清浄ガス(G3)の流量は、バルブV101およびバルブV102により適切に制御される。
 再生ヒータ100に導出された清浄ガス(G3)は、温度が約130℃に加熱された後、配管ラインL8を通じて濃縮装置200の脱着部21に導出される。脱着部21に導入された清浄ガス(G3)は、有機溶剤を吸着材から脱着して、有機溶剤を含有する脱着ガス(G4)として配管ラインL5、L1を通じて冷却器300に導出される。
 給気加熱装置500に導出された清浄ガス(G3)は、温度が約70℃に加熱された後、配管ラインL4を通じて生産設備1000に導出される。
 (実施の形態:有機溶剤回収システム1B)
 次に、図2を参照して、本発明に基づいた実施の形態における有機溶剤回収システム1Bについて説明する。本実施の形態における有機溶剤回収システム1Bも、上述した有機溶剤回収システム1Aと同様に、生産設備1000から排出される排ガス(G1)から有機溶剤を回収する有機溶剤回収システムであり、濃縮装置200、再生ヒータ100、冷却器300、回収タンク400、および、給気加熱装置500を備えている。
 (濃縮装置200)
 濃縮装置200は、脱着部(脱着ゾーン)21と吸着部(吸着ゾーン)22とを有している。吸着部22には、冷却器300から未回収の有機溶剤を含む有機溶剤含有ガス(G2)が導入されることで、吸着材に有機溶剤含有ガス(G2)が接触し、有機溶剤含有ガス(G2)に含有される有機溶剤が吸着材に吸着される。
 これにより有機溶剤含有ガス(G2)が清浄化されて清浄ガス(G3)として排出される。脱着部21では、吸着材に有機溶剤含有ガス(G2)よりも高温の排ガス(G1)を導入することで、有機溶剤が吸着材から脱着され、これにより排ガス(G1)が有機溶剤を含有する脱着ガス(G4)として排出される。
 濃縮装置200の吸着部22には配管ラインL2、L3が接続されている。配管ラインL2は吸着部22に有機溶剤含有ガス(G2)を導入する。配管ラインL3は、吸着部22から清浄ガス(G3)を導出する。吸着部22の出口側には、清浄ガス(G3)の温度を測定する第1温度測定器T1が設けられている。
 脱着部21には配管ラインL8、L5が接続されている。配管ラインL8は生産設備1000から排ガス(G1)を導入する。配管ラインL5は、脱着部21から脱着ガス(G4)を導出する。脱着部21の出口側には、脱着ガス(G4)の温度を測定する第2温度測定器T2が設けられている。
 図3を参照して、濃縮装置200の具体的構成について説明する。この濃縮装置200は、円柱状の筒状吸着体210を利用した場合を示している。図に示すように、円柱状の外形を有する筒状吸着体210を利用する場合には、軸方向にガスが流動可能となるように構成された筒状吸着体210の軸中心に回転軸211を設け、この回転軸211をアクチュエータ等によって回転駆動する。
 筒状吸着体210には、吸着材としては、活性アルミナ、シリカゲル、活性炭素材やゼオライトが広く利用されており、中でも活性炭と疎水性ゼオライトが特に好適に利用されている。活性炭と疎水性ゼオライトは、低濃度の有機化合物を吸着、脱着する機能に優れており、古くから吸着材として各種の装置に利用されている。
 筒状吸着体210の軸方向の両端面に近接するように、図3においては具体的に図示していない配管ラインL2、L3、L5、L8(図2参照)を接続し、筒状吸着体210の一部を吸着処理を行なうための吸着部22として利用し、吸着部22の他の一部を脱着処理を行なうための脱着部21として利用する。
 筒状吸着体210の吸着部22には、軸方向の一方から有機溶剤含有ガス(G2)が導入され、軸方向の他方から清浄ガス(G3)が導出される。筒状吸着体210の脱着部21には、軸方向の一方から高温の排ガス(G1)が導入され、軸方向の他方から脱着ガス(G4)が導出される。
 この濃縮装置200においては、筒状吸着体210が回転軸211を回転中心として図中矢印A方向に所定の速度で回転する。これにより、筒状吸着体210の吸着処理が完了した部分は脱着処理を行なうゾーンへと移動するとともに、筒状吸着体210の脱着処理が完了した部分は吸着処理を行なうゾーンへと移動することになる。したがって、この濃縮装置200においては、同時に吸着処理と脱着処理とが行なわれることになり、連続的に清浄化処理を行なうことが可能となる。
 濃縮装置200の回転速度により、吸着工程の時間および脱着工程の時間が制御される。また、第1温度測定器T1により測定される清浄ガス(G3)の温度、および第2温度測定器T2により測定される脱着ガス(G4)の温度が、それぞれ所定の温度となるように、濃縮装置200の回転速度により、吸着工程の時間および脱着工程の時間が制御される。特に、清浄ガス(G3)、脱着ガス(G4)の温度を所定の温度にする方法として、濃縮装置200の吸着素子の前後や吸着素子自体にアルミ等の熱交換材を導入することも可能である。
 (再生ヒータ100)
 再び図2を参照して、再生ヒータ100は、生産設備1000から延びる配管ラインL1と配管ラインL8との間に設けられている。生産設備1000から排出される排ガス(G1)の温度が十分に高温の場合には再生ヒータ100を用いることはない。しかし、生産設備1000が稼動初期状態で、排ガス(G1)の温度が所定温度に達していない場合には、排ガス(G1)を所定温度にまで加熱するために用いられる。
 生産設備1000から延びる配管ラインL1には、配管ラインL1から分岐し、配管ラインL5に通じる配管ラインL9が設けられている。生産設備1000から排出される排ガス(G1)は、配管ラインL1、再生ヒータ100、および、配管ラインL8を通じて、濃縮装置20の脱着部21の送り出されるが、一部の排ガス(G1)が、配管ラインL9を通じて直接冷却器300への導出を可能としている。排ガス(G1)の脱着部21への送り出し量および冷却器300へ直接送り出される量は、それぞれ配管ラインL1に設けられたバルブV111および配管ラインL9に設けられたバルブV112により制御される。
 (冷却器300および回収タンク400)
 冷却器300および回収タンク400により、分液回収装置が構成される。冷却器300は、冷却水等を用いて脱着ガス(G4)等を凝縮させることで、有機溶剤を高濃度に含有する回収液と有機溶剤を含有する有機溶剤含有ガス(G2)とに分離する装置である。有機溶剤を高濃度に含有する回収液は、回収タンク400に回収される。
 冷却器300には、配管ラインL2、L5、L6が接続されている。配管ラインL2は、分離された有機溶剤を含有する有機溶剤含有ガス(G2)を濃縮装置200の吸着部22に導出し、配管ラインL5は、脱着部21から脱着ガス(G4)が導入され、配管ラインL6は、分離された回収液を回収タンク400に導出する。
 (給気加熱装置500)
 給気加熱装置500は、清浄ガス(G3)の温度を所定温度にまで加熱上昇させて、生産設備1000に清浄ガス(G3)を給気する。給気加熱装置500には、配管ラインL3、L4が接続されている。配管ラインL3は、濃縮装置200の吸着部22から送り出された清浄ガス(G3)を導入し、配管ラインL4は、生産設備1000に所定温度にまで加熱上昇された清浄ガス(G3)を導出する。なお、本実施の形態においては、脱着部21吸着部22から導出される清浄ガス(G3)の温度は高温状態であるため、給気加熱装置500により清浄ガス(G3)を加熱する必要はない。
 (有機溶剤の回収)
 上記構成からなる有機溶剤回収システム1Bにおいて、参考技術で説明した有機溶剤回収システム1Aと同様に、生産設備1000としてリチウムイオン電池製造設備で使用される有機溶剤[NMP(n-メチル-2-ピロリドン)]を回収するシステムについて以下説明する。
 生産設備1000から排出される排ガス(G1)は、流量が約770NCMM、有機溶剤濃度が約1000ppm、温度が約110℃である。バルブV111を全開状態にし、バルブV112を閉鎖状態にし、生産設備1000から排出される排ガス(G1)を100%脱着部21に導入する。ここでは、排ガス(G1)の温度は、十分に高温状態であることから、再生ヒータ100による排ガス(G1)の加熱は行なわない。
 脱着部21から排出される脱着ガス(G4)は、流量が約770NCMM、有機溶剤濃度が約2122ppm、温度が約80℃である。バルブV112を閉鎖状態にし、生産設備1000から排出される排ガス(G1)を脱着部21に100%導入していることから、冷却器300に導入されるガスは、脱着ガス(G4)が100%、直接導入される排ガス(G1)は0%である。
 脱着ガス(G4)が、冷却器300において有機溶剤を高濃度に含有する回収液と有機溶剤を含有する有機溶剤含有ガス(G2)とに分離される。有機溶剤を高濃度に含有する回収液は、回収タンク400に回収される。有機溶剤[NMP]の濃度は約91wt%である。有機溶剤を含有する有機溶剤含有ガス(G2)は、有機溶剤濃度が約1142ppm、温度が約40℃である。この有機溶剤含有ガス(G2)は、配管ラインL2により濃縮装置200の吸着部22に導出される。
 濃縮装置200の吸着部22により有機溶剤が吸着された清浄ガス(G3)は、配管ラインL3を通じて給気加熱装置500に導出される。吸着部22から導出される清浄ガス(G3)は、流量が約770NCMM、有機溶剤濃度が約20ppm、温度が約70℃である。
 給気加熱装置500に導出された清浄ガス(G3)は、給気加熱装置500により加熱されることはなく、温度が約70℃の清浄ガス(G3)がそのまま配管ラインL4を通じて生産設備1000に導出される。
 (作用・効果)
 上記構成を有する有機溶剤回収システム1Bの作用効果について、参考技術として説明した有機溶剤回収システム1Aと比較した場合について説明する。
 (冷却器300に必要な冷却温度の上昇が可能 28℃→40℃)
 本実施の形態における有機溶剤回収システム1Bによれば、生産設備1000から排出される高温状態の排ガス(G12)を濃縮装置200の脱着部21に送り込むことで、有機溶剤回収システム1Aにおける再生ヒータ100の使用が不要となり、ユーティリティ使用量の増加を抑制することが可能となる。
 具体的には、有機溶剤回収システム1Aにおいては、再生ヒータ100により脱着部21に導出する清浄ガス(G3)を33℃から130℃に加熱する必要があった。しかし、本実施の形態における有機溶剤回収システム1Bによれば、高温状態の排ガス(G21)を高温状態で濃縮装置200の脱着部21に送り込むことから、脱着部21に導出するガスの加熱を行なう必要がない。その結果、濃縮装置200における濃縮倍率(吸着風量/脱着風量)を低減することが可能となる。なお、脱着部21においては、NMPが高濃度含有した排ガス(G2)による脱着操作となるため、脱着効率の高い吸着材を用いることで、脱着操作の向上を図ることができる。
 このように、本実施の形態における有機溶剤回収システム1Bにおいては、有機溶剤回収システム1Aと比較した場合、経済的に濃縮倍率を低くすることで、濃縮装置200の性能向上を図ることが可能となり、冷却器300の冷却温度を上昇(28℃→40℃)させることが可能となり(図4参照)、冷却器300のユーティリティ使用量の削減を可能とする。
 (冷却器300への導入ガス温度の低減が可能 105℃→80℃)
 また、生産設備1000から排出される高温状態の排ガス(G12)を濃縮装置200の脱着部21に送り込むことで、吸着材による熱交換が行なわれることとなり、冷却器300への導入前のガス温度を低減(105℃→80℃)させることが可能となり(図4参照)、冷却器300のユーティリティ使用量の削減を可能とする。
 (給気加熱装置500の導入温度の上昇が可能 33℃→70℃)
 また、生産設備1000から排出される高温状態の排ガス(G12)を濃縮装置200の脱着部21に送り込むことで、吸着材による熱交換が行なわれることとなり、給気加熱装置500への導入前のガス温度を上昇(33℃→70℃)させることが可能となり(図4参照)、給気加熱装置500のユーティリティ使用量の削減を可能とする。
 このように、本実施の形態における有機溶剤回収システム1Bによれば、生産設備1000から排出される高温状態の排ガス(G21)を濃縮装置200の脱着部21に送り込むことにより、冷却器300および給気加熱装置500のユーティリティ使用量の削減を可能となる。その結果、図5に示すようにシステム全体としてのランニングコストを、有機溶剤回収システム1Aに場合と比較して大きく削減することが可能となる。
 (NMP回収液の濃度向上 78wt%→91wt%)
 また、本実施の形態における有機溶剤回収システム1Bによれば、有機溶剤回収システム1Aに場合と比較して、冷却器300の温度を上昇させることができるため、水の凝縮量が低減し、回収液中のNMP濃度を向上(78wt%→91wt%)させることが可能となる(図6参照)。
 なお、上記の実施の形態における有機溶剤回収システム1Bにおいては、排ガス(G1)の温度の一例として110度を想定した場合を示しているが、生産設備から排出される排ガス(G1)の温度としては、50℃~200℃が想定される。したがって、排ガスの温度が所定温度に達していない場合には、必要に応じて、再生ヒータ100を用いて排ガス(G1)の加熱を行なう。
 また、生産設備1000から排出された排ガス(G1)を100%脱着部21に導出し、脱着ガス(G4)を100%冷却器300に導出する場合について説明しているが、生産設備から排出される排ガス(G1)の一部を、配管ラインL9を通じて直接冷却器300に導出させることも可能である。冷却器300を通過させるガスの想定される風量割合は、排ガス(G1)が0%~50%、脱着ガス(G4)が50%~100%程度である。
 また、排ガス(G1)として生産設備1000から排出されたガスを用い、浄化されたガスを生産設備1000に戻す場合について説明しているが、排ガス(G1)として生産設備1000から排出されたガスを直接用いる必要はなく、同様の性質を有する排ガス(G1)であれば、本実施の形態における有機溶剤回収システム1Bを用いて、高濃度の有機溶剤を回収することが可能である。また、浄化されたガスを生産設備1000に戻す必要はなく、清浄されたガスを他の用途に用いることも可能である。
 また、有機溶剤として[NMP(n-メチル-2-ピロリドン)]を回収する場合について説明しているが、この有機溶剤に限定されることなく、1℃~50℃の冷却にて液化して回収できる有機溶剤であれば良い。即ち、有機溶剤としては、たとえば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またはn-デカンである。NMPと同様の特性を有する有機溶剤の回収に対しても、本発明に基づいた有機溶剤回収システム1Bを用いることが可能である。
 (実施の形態:有機溶剤回収システム1C)
 次に、図7を参照して、本発明に基づいた実施の形態における有機溶剤回収システム1Cについて説明する。実施の形態における有機溶剤回収システム1Cも、上述した有機溶剤回収システム1Aと同様に、生産設備1000から排出される排ガス(G1)から有機溶剤を回収する有機溶剤回収システムである。有機溶剤回収システム1Cは、濃縮装置200、再生ヒータ100、冷却器300、回収タンク400、および、熱交換器600を備えている。
 (濃縮装置200)
 濃縮装置200は、吸着素子を含んでおり、脱着部21と吸着部22とパージ部23とを有している。濃縮装置200の吸着素子に有機溶剤を含有するガスを接触させることで、吸着素子はガス中の有機溶剤を吸着する。有機溶剤を吸着したこの吸着素子に、有機溶剤を含有するガスよりも高温のガスを接触させることで、吸着素子は吸着した有機溶剤を脱着する。
 濃縮装置200においては、吸着素子は、吸着部22(吸着状態)、脱着部21(脱着状態)、およびパージ部23(パージ状態)へと順次移行され、パージ部23(パージ状態)の後は再び吸着部22(吸着状態)へと移行する。すなわち、パージ部23は脱着部21(脱着状態)の後であって吸着部22(吸着状態)の前に構成されている。
 これらの移行は、たとえばローター式の濃縮装置であれば、吸着素子(筒状吸着体)の回転によって実現される(図8を参照して詳細は後述する)。これらの移行は、たとえばバッチ式の濃縮装置であれば、ダンパー(およびバルブ)操作によって、吸着素子を吸着部22(吸着状態)、脱着部21(脱着状態)、およびパージ部23(パージ状態)に移行させることによって実現される。
 濃縮装置200の吸着部22には、冷却器300から未回収の有機溶剤を含む有機溶剤含有ガス(G2)と、パージ部23から排出されたパージ部出口ガス(G6)との混合ガス(以下、吸着部入口ガス(G5)と称する)が導入される。吸着部22における吸着材に吸着部入口ガス(G5)が接触し、吸着部入口ガス(G5)に含有される有機溶剤が吸着材に吸着される。これにより吸着部入口ガス(G5)が清浄化されて清浄ガス(G3)として排出される。
 吸着部22には配管ラインL2,L3が接続されている。配管ラインL2は吸着部22に吸着部入口ガス(G5)を導入する。配管ラインL3は、吸着部22から清浄ガス(G3)を導出する。吸着部22の出口側には、清浄ガス(G3)の温度を測定する第1温度測定器T1が設けられている。吸着部22の入口側には、吸着部入口ガス(G5)の温度を測定する第3温度測定器T3が設けられている。
 配管ラインL3には、パージ部23に分岐する配管ラインL11が接続されている。配管ラインL3には、熱交換器600への清浄ガス(G3)流量を調節するバルブV113が設けられ、配管ラインL11には、パージ部23への清浄ガス(G3)流量を調節するバルブV114が設けられている。
 パージ部23には、配管ラインL11,L12が接続されている。配管ラインL11はパージ部23に清浄ガス(G3)の一部を導入する。配管ラインL12は、パージ部23からパージ部出口ガス(G6)を導出する。配管ラインL12は、配管ラインL2に合流している。
 脱着部21では、吸着部入口ガス(G5)よりも高温の排ガス(G1)を吸着剤に導入することで、有機溶剤が吸着材から脱着され、これにより排ガス(G1)が有機溶剤を含有する脱着ガス(G4)として排出される。
 脱着部21には配管ラインL8,L5が接続されている。配管ラインL8は生産設備1000から排ガス(G1)を導入する。配管ラインL5は、脱着部21から脱着ガス(G4)を導出する。脱着部21の出口側には、脱着ガス(G4)の温度を測定する第2温度測定器T2が設けられている。
 ここで図8を参照して、濃縮装置200の具体的構成について説明する。この濃縮装置200は一例としてローター式であり、円柱状の筒状吸着体210を利用している。図に示すように、円柱状の外形を有する筒状吸着体210を利用する場合には、軸方向にガスが流動可能となるように構成された筒状吸着体210の軸中心に回転軸211を設け、この回転軸211をアクチュエータ等によって回転駆動する。
 筒状吸着体210には、吸着材としては、活性アルミナ、シリカゲル、活性炭素材やゼオライトが広く利用されており、中でも活性炭と疎水性ゼオライトが特に好適に利用されている。活性炭と疎水性ゼオライトは、低濃度の有機化合物を吸着、脱着する機能に優れており、古くから吸着材として各種の装置に利用されている。
 筒状吸着体210の軸方向の両端面に近接するように、図8においては具体的に図示していない配管ラインL2,L3,L5,L8,L11,L12(図7参照)が接続されている。筒状吸着体210の一部は、吸着処理を行なうための吸着部22として利用され、筒状吸着体210の他の一部は、脱着処理を行なうための脱着部21として利用され、筒状吸着体210のさらに他の一部は、パージ処理を行なうためのパージ部23として利用される。
 筒状吸着体210の吸着部22には、軸方向の一方から吸着部入口ガス(G5)が導入され、軸方向の他方から清浄ガス(G3)が導出される。筒状吸着体210の脱着部21には、軸方向の一方から高温の排ガス(G1)が導入され、軸方向の他方から脱着ガス(G4)が導出される。筒状吸着体210のパージ部23には、軸方向の一方から清浄ガス(G3)の一部が導入され、軸方向の他方からパージ部出口ガス(G6)が導出される。
 この濃縮装置200においては、筒状吸着体210が回転軸211を回転中心として図中矢印A方向に所定の速度で回転する。これにより、筒状吸着体210の吸着処理が完了した部分は脱着処理を行なう脱着部21へと移動し、筒状吸着体210の脱着処理が完了した部分はパージ処理を行なうパージ部23へと移動し、さらにパージ処理が完了した部分は吸着処理を行なう吸着部22へと移動する。この濃縮装置200においては、同時に吸着処理と脱着処理とパージ処理とが行なわれることになり、連続的に清浄化処理を行なうことが可能となる。
 ここで仮に、濃縮装置200においてパージ部23が形成されていないとする。この場合、脱着処理の直後、すなわち吸着処理の初期には吸着素子がまだ高温であるために吸着材としての吸着性能が低い。また、脱着処理を行う脱着部から吸着処理を行う吸着部へ回転移行する際の有機溶剤の持ち込みにより、吸着性能が低下する場合もある。
 本実施の形態の濃縮装置200においては、パージ部23が、脱着部21の後であって吸着部22の前に構成されている。清浄ガス(G3)の一部がパージ部23へ導入されることによって、パージ部23における吸着素子が冷却される。清浄ガス(G3)によって吸着素子が冷却されるために、吸着素子の冷却効率が高い。
 パージ部23に導入された清浄ガス(G3)は、パージ部出口ガス(G6)として有機溶剤含有ガス(G2)とともに吸着部入口ガス(G5)として再び吸着部22に導入される。このサイクルによって、濃縮装置200は吸着部22における有機溶剤の除去率を高めることができる。なお、パージ部23の吸着部22に対する体積割合は、約5%~約50%であるとよい。この割合が約5%を下回ると、所望のパージ効果を得ることができない。この割合が約50%を上回ると、経済性が悪くなる。
 また、パージ部23において吸着素子と熱交換をした清浄ガス(G3)は、昇温されてパージ部出口ガス(G6)としてパージ部23から導出される。昇温状態にあるパージ部出口ガス(G6)は、冷却器300(図2参照)から導出された有機溶剤含有ガス(G2)と混合されることによって、有機溶剤含有ガス(G2)の温度を昇温させる。ここで、有機溶剤がn-メチル-2-ピロリドン等である場合、冷却器300から導出された有機溶剤含有ガス(G2)の一部はミスト状となっている場合がある。
 ミスト状の有機溶剤含有ガス(G2)は、吸着部22に導入される前に、加熱されることによってすべてガス状にされる必要がある。有機溶剤回収システム1Cにおいては、パージ部23から導出された昇温状態にあるパージ部出口ガス(G6)を活用して、ミスト状にある有機溶剤含有ガス(G2)を昇温させることができる。パージ部出口ガス(G6)によってミスト状の有機溶剤含有ガス(G2)を昇温させることで、その昇温に必要な他の加熱手段(図示せず)におけるエネルギーの使用量を低減することが可能となる。
 濃縮装置200の回転速度により、吸着工程の時間、脱着工程の時間、およびパージ工程の時間が制御される。第1温度測定器T1により測定される清浄ガス(G3)の温度、第2温度測定器T2により測定される脱着ガス(G4)の温度、および第3温度測定器T3により測定される吸着部入口ガス(G5)の温度が、それぞれ所定の温度となるように、濃縮装置200の回転速度により、吸着工程の時間、脱着工程の時間およびパージ工程の時間が制御される。特に、清浄ガス(G3)、脱着ガス(G4)、または吸着部入口ガス(G5)の温度を所定の温度にする方法として、濃縮装置200の吸着素子の前後や吸着素子自体にアルミ等の熱交換材を導入することも可能である。
 (再生ヒータ100)
 再び図7を参照して、再生ヒータ100は、生産設備1000から延びる配管ラインL1と配管ラインL8との間に設けられている。生産設備1000から排出される排ガス(G1)の温度が十分に高温の場合には再生ヒータ100を用いることはない。しかし、生産設備1000が稼動初期状態で、排ガス(G1)の温度が所定温度に達していない場合には、排ガス(G1)を所定温度にまで加熱するために再生ヒータ100が用いられる。
 生産設備1000から延びる配管ラインL1には、配管ラインL1から分岐し、配管ラインL5に通じる配管ラインL9が設けられている。生産設備1000から排出される排ガス(G1)の一部は、配管ラインL1、再生ヒータ100、および配管ラインL8を通じて、濃縮装置200の脱着部21に送り出される。
 生産設備1000から排出される排ガス(G1)の残部は、配管ラインL9を通じて直接冷却器300へ送り出されることが可能となっている。排ガス(G1)の脱着部21への送り出し量および冷却器300への送り出し量は、配管ラインL1に設けられたバルブV111および配管ラインL9に設けられたバルブV112によりそれぞれ制御される。
 (冷却器300および回収タンク400)
 冷却器300および回収タンク400により、冷却回収装置が構成される。冷却器300は、冷却水等を用いて脱着ガス(G4)等を凝縮させることで、有機溶剤を高濃度に含有する回収液と有機溶剤を含有する有機溶剤含有ガス(G2)とに分離する。有機溶剤を高濃度に含有する回収液は、回収タンク400に回収される。
 冷却器300には、配管ラインL2,L6,L10が接続されている。配管ラインL2は、分離された有機溶剤を含有する有機溶剤含有ガス(G2)を濃縮装置200の吸着部22に導出する。配管ラインL6は、分離された回収液を回収タンク400に導出する。配管ラインL10は、脱着部21から配管ラインL5および次述する熱交換器600を通して脱着ガス(G4)が導入される。
 (熱交換器600)
 熱交換器600は、配管ラインL3と配管ラインL4との間に位置し、且つこの熱交換器600は、配管ラインL5と配管ラインL10との間にも位置している。図7においては2つの熱交換器600が離間して示されているが、熱交換器600は、配管ラインL3,L4間の熱エネルギーと、配管ラインL5,L10間の熱エネルギーとを交換することができる。
 熱交換器600は、吸着部22から導出された清浄ガス(G3)を熱交換によって昇温させた上で生産設備1000に送り出す。熱交換器600は、脱着部21から導出された脱着ガスG4を熱交換によって降温させた上で冷却器300に送り出す。熱交換器600の熱交換によって、生産設備に送り出す清浄ガス(G3)を所定の温度にするための他のエネルギーの使用量を低減することが可能となる。熱交換器600の熱交換によって、冷却器300に送り出す脱着ガス(G4)を所定の温度にするための他のエネルギーの使用量を低減することが可能となる。
 (有機溶剤の回収)
 上記構成からなる有機溶剤回収システム1Cにおいて、参考技術で説明した有機溶剤回収システム1Aと同様に、生産設備1000としてリチウムイオン電池製造設備で使用される有機溶剤[NMP(n-メチル-2-ピロリドン)]を回収するシステムについて以下説明する。
 生産設備1000から排出される排ガス(G1)は、流量が約770NCMM、有機溶剤濃度が約1000ppm、温度が約110℃である。バルブV111を全開状態にし、バルブV112を閉鎖状態にし、生産設備1000から排出される排ガス(G1)を100%脱着部21に導入する。ここでは、排ガス(G1)の温度は、十分に高温状態であることから、再生ヒータ100による排ガス(G1)の加熱は行なわない。
 脱着部21から排出される脱着ガス(G4)は、流量が約770NCMM、有機溶剤濃度が約1803ppm、温度が約93℃である。バルブV112を閉鎖状態にし、生産設備1000から排出される排ガス(G1)を脱着部21に100%導入していることから、冷却器300に導入されるガスは、脱着ガス(G4)が100%、直接導入される排ガス(G1)は0%である。
 脱着ガス(G4)が、冷却器300において有機溶剤を高濃度に含有する回収液と有機溶剤を含有する有機溶剤含有ガス(G2)とに分離される。有機溶剤を高濃度に含有する回収液は、回収タンク400に回収される。有機溶剤[NMP]の濃度は約89wt%である。有機溶剤を含有する有機溶剤含有ガス(G2)は、流量が約770NCMM、有機溶剤濃度が約857ppm、温度が約37℃である。
 この有機溶剤含有ガス(G2)には、配管ラインL2に接続された配管ラインL12により、パージ部出口ガス(G6)が混合される。パージ部出口ガス(G6)は、流量が約100NCMM、有機溶剤濃度が約386ppm、温度が約100℃である。有機溶剤含有ガス(G2)とパージ部出口ガス(G6)との混合からなる吸着部入口ガス(G5)は、流量が約870NCMM、有機溶剤濃度が約803ppm、温度が約44℃である。吸着部入口ガス(G5)は濃縮装置200の吸着部22に導出される。
 濃縮装置200の吸着部22により有機溶剤が吸着された清浄ガス(G3)は、流量が約770NCMM、有機溶剤濃度が約12ppm、温度が約53℃である。清浄ガス(G3)の一部は、配管ラインL11を通じてパージ部23に導出される。清浄ガス(G3)の残部は、配管ラインL3を通じて熱交換器600に導出される。
 パージ部23に導出された清浄ガス(G3)は、パージ部23における吸着素子を冷却し、パージ部出口ガス(G6)として昇温された状態でパージ部23から導出される。熱交換器600に導出された清浄ガス(G3)は、脱着部21から冷却器300へ送り出されている脱着ガス(G4)と熱交換し、昇温した状態で熱交換器600から生産設備1000へと導出される。
 (作用・効果)
 上記構成を有する有機溶剤回収システム1Cの作用効果について、参考技術として説明した有機溶剤回収システム1Aと比較した場合について説明する。
 本実施の形態における有機溶剤回収システム1Cによれば、パージ部23が、脱着部21の後であって吸着部22の前に構成されている。清浄ガス(G3)の一部がパージ部23へ導入されることによって、パージ部23における吸着素子が冷却される。清浄ガス(G3)によって吸着素子が冷却されるために、吸着素子の冷却効率が高い。
 パージ部23に導入された清浄ガス(G3)は、パージ部出口ガス(G6)として有機溶剤含有ガス(G2)とともに吸着部入口ガス(G5)として再び吸着部22に導入される。このサイクルによって、濃縮装置200は吸着部22における有機溶剤の除去率を高めることができる。
 (冷却器300に必要な冷却温度の上昇が可能 28℃→37℃)
 本実施の形態における有機溶剤回収システム1Cによれば、生産設備1000から排出される高温状態の排ガス(G12)を濃縮装置200の脱着部21に送り込むことで、有機溶剤回収システム1Aにおける再生ヒータ100の使用が不要となり、ユーティリティ使用量の増加を抑制することが可能となる。
 具体的には、有機溶剤回収システム1Aにおいては、再生ヒータ100により脱着部21に導出する清浄ガス(G3)を33℃から130℃に加熱する必要があった。しかし、本実施の形態における有機溶剤回収システム1Cによれば、高温状態の排ガス(G12)を高温状態で濃縮装置200の脱着部21に送り込むことから、脱着部21に導出するガスの加熱を行なう必要がない。その結果、濃縮装置200における濃縮倍率(吸着風量/脱着風量)を低減することが可能となる。なお、脱着部21においては、NMPが高濃度含有した排ガス(G12)による脱着操作となるため、脱着効率の高い吸着材を用いることで、脱着操作の向上を図ることができる。
 このように、本実施の形態における有機溶剤回収システム1Cにおいては、有機溶剤回収システム1Aと比較した場合、経済的に濃縮倍率を低くすることで、濃縮装置200の性能向上を図ることが可能となり、冷却器300の冷却温度を上昇(28℃→37℃)させることが可能となり、冷却器300のユーティリティ使用量の削減を可能とする。
 その上、有機溶剤がn-メチル-2-ピロリドン等である場合、冷却器300から導出された有機溶剤含有ガス(G2)の一部はミスト状となっている。ミスト状の有機溶剤含有ガス(G2)は、吸着部22に導入される前に、昇温されることによってガス状になっている必要がある。パージ部23から導出された昇温状態にあるパージ部出口ガス(G6)を活用して、ミスト状にある有機溶剤含有ガス(G2)を昇温させることができる。パージ部出口ガス(G6)によってミスト状の有機溶剤含有ガス(G2)昇温させることで、その昇温に必要な他の加熱手段(図示せず)におけるエネルギーの使用量を低減することが可能となる。
 (冷却器300への導入ガス温度の低減が可能 105℃→73℃)
 また、生産設備1000から排出される高温状態の排ガス(G1)を濃縮装置200の脱着部21に送り込むことで、吸着材による熱交換が行なわれることとなり、冷却器300への導入前のガス温度を低減(105℃→73℃)させることが可能となり、冷却器300のユーティリティ使用量の削減を可能とする。
 その上、配管ラインL3,L4間と熱交換が可能な熱交換器600が配管ラインL5,L10間に設けられていることによって、熱交換器600の熱交換によって、冷却器300に送り出す脱着ガス(G4)を所定の温度にするための他のエネルギー使用量の削減を可能とする。
 (熱交換器600給気加熱装置500の導入温度の上昇が可能 33℃→53℃)
 また、生産設備1000から排出される高温状態の排ガス(G1)を濃縮装置200の脱着部21に送り込むことで、吸着材による熱交換が行なわれることとなり、熱交換器600への導入前のガス温度を上昇(33℃→53℃)させることが可能となる。配管ラインL5,L10間と熱交換が可能な熱交換器600が配管ラインL3,L4間に設けられていることによって、熱交換器600の熱交換によって、生産設備に送り出す清浄ガス(G3)を所定の温度にするための他のエネルギー使用量の削減を可能とする。
 このように、本実施の形態における有機溶剤回収システム1Cによれば、生産設備1000から排出される高温状態の排ガス(G1)を濃縮装置200の脱着部21に送り込むことにより、システム全体としてのランニングコストを、有機溶剤回収システム1Aに場合と比較して大きく削減することが可能となる。
 (NMP回収液の濃度向上 78wt%→89wt%)
 また、本実施の形態における有機溶剤回収システム1Cによれば、有機溶剤回収システム1Aに場合と比較して、冷却器300の温度を上昇させることができるため、水の凝縮量が低減し、回収液中のNMP濃度を向上(78wt%→89wt%)させることが可能となる。
 なお、上記の実施の形態における有機溶剤回収システム1Cにおいては、排ガス(G1)の温度の一例として110℃を想定した場合を示しているが、生産設備から排出される排ガス(G1)の温度としては、50℃~200℃が想定される。したがって、排ガスの温度が所定温度に達していない場合には、必要に応じて、再生ヒータ100を用いて排ガス(G1)の加熱を行なう。
 また、生産設備1000から排出された排ガス(G1)を100%脱着部21に導出し、脱着ガス(G4)を100%冷却器300に導出する場合について説明しているが、生産設備から排出される排ガス(G1)の一部を、配管ラインL9を通じて直接冷却器300に導出させることも可能である。冷却器300を通過させるガスの想定される風量割合は、排ガス(G1)が0%~50%、脱着ガス(G4)が50%~100%程度である。
 また、排ガス(G1)として生産設備1000から排出されたガスを用い、浄化されたガスを生産設備1000に戻す場合について説明しているが、排ガス(G1)として生産設備1000から排出されたガスを直接用いる必要はなく、同様の性質を有する排ガス(G1)であれば、本実施の形態における有機溶剤回収システム1Cを用いて、高濃度の有機溶剤を回収することが可能である。また、浄化されたガスを生産設備1000に戻す必要はなく、清浄されたガスを他の用途に用いることも可能である。
 また、有機溶剤として[NMP(n-メチル-2-ピロリドン)]を回収する場合について説明しているが、この有機溶剤に限定されることなく、1℃~50℃の冷却にて液化して回収できる有機溶剤であれば良い。即ち、有機溶剤としては、たとえば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またはn-デカンである。NMPと同様の特性を有するこれらの有機溶剤の回収に対しても、本発明に基づいた有機溶剤回収システム1Cを用いることが可能である。
 また、上記の実施の形態における有機溶剤回収システム1Cにおいては、濃縮装置200の回転速度により、吸着工程、脱着工程、およびパージ工程の各時間が制御される。清浄ガス(G3)、脱着ガス(G4)、および吸着部入口ガス(G5)の温度が、それぞれ所定の温度となるように、濃縮装置200の回転速度により、吸着工程、脱着工程およびパージ工程の各時間が制御される場合について説明している。
 図9に示す有機溶剤回収システム1Dのように、清浄ガス(G3)、脱着ガス(G4)、吸着部入口ガス(G5)の各温度は、パージ部出口ガス(G6)の一部を、脱着ガス(G4)と混合した状態で冷却器300に導入することによって調節されてもよい。この場合、配管ラインL12から分岐し配管ラインL5に接続する配管ラインL13を設ける。配管ラインL13におけるパージ部出口ガス(G6)の風量は、バルブV115によって調節されるとよい。
 また、清浄ガス(G3)、脱着ガス(G4)、吸着部入口ガス(G5)の各温度は、パージ部出口ガス(G6)の一部を、排ガス(G1)と混合した状態で脱着部21に導入することによって調節されてもよい。この場合、配管ラインL12から分岐し配管ラインL8に接続する配管ラインL14を設ける。配管ラインL14におけるパージ部出口ガス(G6)の風量は、バルブV116によって調節されるとよい。なお、清浄ガス(G3)、脱着ガス(G4)、吸着部入口ガス(G5)の各温度を調節するために、配管ラインL13,L14の両方が設けられていてもよい。
 このように、今回開示した上記各実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
 1A,1B 有機溶剤回収システム、20,200 濃縮装置、21 脱着部(脱着ゾーン)、22 吸着部(吸着ゾーン)、100 再生ヒータ、210 筒状吸着体、211 回転軸、300 冷却器、400 回収タンク、500 給気加熱装置、600 熱交換器、1000 生産設備、G1 排ガス、G2 有機溶剤含有ガス、G3 清浄ガス、G4 脱着ガス、G5 吸着部入口ガス、G6 パージ部出口ガス、L1~L13 配管ライン、T1~T3 温度測定器、V101,V102,V110~V116 バルブ。
 

Claims (34)

  1.  有機溶剤を含有する排ガスから前記有機溶剤を回収する有機溶剤回収システムであって、
     前記有機溶剤を含有する有機溶剤含有ガス中の前記有機溶剤を、吸着材を含有した吸着素子にて吸着し清浄ガスを生成する吸着部と、前記吸着素子に前記有機溶剤含有ガスよりも高温の前記排ガスを通過させ、前記吸着素子に吸着した前記有機溶剤を脱着し脱着ガスを生成する脱着部とを有する濃縮装置と、
     前記脱着ガスまたは前記排ガスを含む前記脱着ガスを冷却し凝縮して前記有機溶剤を回収する冷却回収装置と、
    を備え、
     前記有機溶剤含有ガスは、前記冷却回収装置において未回収の前記有機溶剤を含有するガスである、有機溶剤回収システム。
  2.  前記排ガスは、生産設備から排出されるガスであり、
     前記清浄ガスを前記生産設備に戻す、請求項1に記載の有機溶剤回収システム。
  3.  前記排ガスは、温度が50℃~200℃である、請求項1又は2に記載の有機溶剤回収システム。
  4.  前記濃縮装置は、
     回転軸と、
     前記回転軸の周りに設けられた前記吸着素子としての筒状吸着体と、を備え、
     前記回転軸の周りに前記筒状吸着体を回転させることにより、前記吸着部において、前記有機溶剤含有ガス中の前記有機溶剤を吸着した前記吸着素子が連続的に前記脱着部に移動する、請求項1~3のいずれか一項に記載の有機溶剤回収システム。
  5.  前記濃縮装置の前記吸着部の出口側における前記清浄ガスの温度を測定する第1温度測定器と、
     前記濃縮装置の前記脱着部の出口側における前記脱着ガスの温度を測定する第2温度測定器と、を備え、
     前記第1温度測定器により測定される前記清浄ガスの温度および前記第2温度測定器により測定される前記脱着ガスの温度がそれぞれ所定の温度となるように、前記吸着部を前記有機溶剤含有ガスが通過する時間および前記脱着部を前記排ガスが通過する時間が制御される、請求項1~4のいずれか一項に記載の有機溶剤回収システム。
  6.  前記冷却回収装置へ前記排ガスおよび前記脱着ガスを通過させる風量割合が、前記排ガスが0%~50%であり、前記脱着ガスが50%~100%である、
    請求項1~5のいずれか一項に記載の有機溶剤回収システム。
  7.  前記冷却回収装置へ前記排ガスおよび前記脱着ガスを通過させる風量割合が、前記排ガスが0%であり、前記脱着ガスが100%である、
    請求項6に記載の有機溶剤回収システム。
  8.  前記有機溶剤は、n-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またはn-デカンから選ばれる少なくとも一種である、
    請求項1~7のいずれか一項に記載の有機溶剤回収システム。
  9.  有機溶剤を含有する排ガスから前記有機溶剤を回収する有機溶剤回収システムであって、
     前記有機溶剤を含有する有機溶剤含有ガスを接触させることで前記有機溶剤を吸着し且つ前記有機溶剤ガスよりも高温の排ガスを接触させることで吸着した前記有機溶剤を脱着する吸着素子を含み、前記吸着素子に前記有機溶剤含有ガスが導入されることによって前記有機溶剤を前記吸着素子に吸着させて清浄ガスを排出する吸着部と、前記吸着素子に前記排ガスが導入されることによって前記有機溶剤を前記吸着素子から脱着させて前記有機溶剤を含有する脱着ガスを排出する脱着部と、前記脱着部における前記吸着素子の脱着処理が完了した部分が前記吸着部への移行の前に移行するパージ部とを有する濃縮装置と、
     前記脱着ガスまたは前記排ガスを含む前記脱着ガスを冷却し凝縮して前記有機溶剤を回収する冷却回収装置と、
    を備え、
     前記有機溶剤含有ガスは、前記冷却回収装置において未回収の前記有機溶剤を含有するガスであり、
     前記パージ部から排出されたパージ部出口ガスは、前記吸着部に導入される前記有機溶剤含有ガスに混入され、
     前記有機溶剤含有ガスは、前記パージ部出口ガスの熱エネルギーを受けて昇温した状態で前記吸着部に導入される、
    有機溶剤回収システム。
  10.  前記吸着部から排出された前記清浄ガスの一部を前記パージ部に導入する、
    請求項9に記載の有機溶剤回収システム。
  11.  前記パージ部出口ガスの一部は、前記排ガスとともに前記脱着部に供給され、且つ/または前記脱着ガスとともに前記冷却回収装置に供給され、
     前記パージ部出口ガスの残部は、前記有機溶剤含有ガスとともに前記吸着部に導入され、
     前記パージ部出口ガスの前記一部と前記パージ部出口ガスの前記残部との風量の比が調節されることによって、前記吸着部に導入される前記有機溶剤含有ガスの温度が調節される、
    請求項9または10に記載の有機溶剤回収システム。
  12.  前記濃縮装置における前記パージ部の前記吸着部に対する体積割合は、5%~50%である、
    請求項9~11のいずれか一項に記載の有機溶剤回収システム。
  13.  前記排ガスは、生産設備から排出されるガスであり、
     前記清浄ガスの残部は、前記生産設備に戻される、
    請求項9~12のいずれか一項に記載の有機溶剤回収システム。
  14.  前記排ガスは、温度が50℃~200℃である、
    請求項9~13のいずれか一項に記載の有機溶剤回収システム。
  15.  前記濃縮装置は、
     回転軸と、
     前記回転軸の周りに設けられた前記吸着素子としての筒状吸着体と、を備え、
     前記回転軸の周りに前記筒状吸着体を回転させることにより、前記吸着部において前記有機溶剤含有ガス中の前記有機溶剤を吸着した前記吸着素子が、前記脱着部を経て前記パージ部に連続的に移行する、
    請求項9~14のいずれか一項に記載の有機溶剤回収システム。
  16.  前記濃縮装置の前記吸着部の出口側における前記清浄ガスの温度を測定する第1温度測定器と、
     前記濃縮装置の前記脱着部の出口側における前記脱着ガスの温度を測定する第2温度測定器と、
     前記濃縮装置の前記吸着部の入口側における前記吸着部入口ガスの温度を測定する第3温度測定器と、を備え、
     前記第1温度測定器により測定される前記清浄ガスの温度、前記第2温度測定器により測定される前記脱着ガスの温度、および前記第3温度測定器により測定される前記吸着部入口ガスの温度がそれぞれ所定の温度となるように、
    前記吸着部を前記有機溶剤含有ガスが通過する時間、前記脱着部を前記排ガスが通過する時間および前記パージ部を前記清浄ガスが通過する時間が制御される、
    請求項10~15のいずれか一項に記載の有機溶剤回収システム。
  17.  前記冷却回収装置へ前記排ガスおよび前記脱着ガスを通過させる風量割合は、前記排ガスが0%~50%であり、前記脱着ガスが50%~100%である、
    請求項9~16のいずれか一項に記載の有機溶剤回収システム。
  18.  前記冷却回収装置へ前記排ガスおよび前記脱着ガスを通過させる風量割合が、前記排ガスが0%であり、前記脱着ガスが100%である、
    請求項17に記載の有機溶剤回収システム。
  19.  前記有機溶剤は、n-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またはn-デカンから選ばれる少なくとも一種である、
    請求項9~18のいずれか一項に記載の有機溶剤回収システム。
  20.  有機溶剤を含有する排ガスから前記有機溶剤を回収する有機溶剤回収方法であって、
     前記有機溶剤を含有する有機溶剤含有ガス中の前記有機溶剤を、吸着材を含有した吸着素子にて吸着し清浄ガスを生成する吸着工程と、前記吸着素子に前記有機溶剤含有ガスよりも高温の前記排ガスを通過させ、前記吸着素子に吸着した前記有機溶剤を脱着し脱着ガスを生成する脱着工程とを有する濃縮工程と、
     前記脱着ガスまたは前記排ガスを含む前記脱着ガスを冷却し凝縮して前記有機溶剤を回収する冷却回収工程と、
    を有し、
     前記有機溶剤含有ガスは、前記冷却回収工程において未回収の前記有機溶剤を含有するガスである、有機溶剤回収方法。
  21.  前記排ガスは、生産設備から排出されるガスであり、
     前記清浄ガスを前記生産設備に戻す、請求項20に記載の有機溶剤回収方法。
  22.  前記排ガスは、温度が50℃~200℃である、請求項20又は21に記載の有機溶剤回収方法。
  23.  前記清浄ガスの温度および前記脱着ガスの温度がそれぞれ所定の温度となるように、吸着工程の時間および前記脱着工程の時間が制御される、請求項20~22のいずれか一項に記載の有機溶剤回収方法。
  24.  前記冷却回収工程へ前記排ガスおよび前記脱着ガスを通過させる風量割合が、前記排ガスが0%~50%であり、前記脱着ガスが50%~100%である、
    請求項20~23のいずれか一項に記載の有機溶剤回収方法。
  25.  前記冷却回収工程へ前記排ガスおよび前記脱着ガスを通過させる風量割合が、前記排ガスが0%であり、前記脱着ガスが100%である、
    請求項24に記載の有機溶剤回収方法。
  26.  前記有機溶剤は、n-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またはn-デカンから選ばれる少なくとも一種である、
    請求項20~25のいずれか一項に記載の有機溶剤回収方法。
  27.  有機溶剤を含有する排ガスから前記有機溶剤を回収する有機溶剤回収方法であって、
     前記有機溶剤を含有する有機溶剤含有ガスを接触させることで前記有機溶剤を吸着し且つ前記有機溶剤ガスよりも高温の排ガスを接触させることで吸着した前記有機溶剤を脱着する吸着素子を含み、前記吸着素子に前記有機溶剤含有ガスが導入されることによって前記有機溶剤を前記吸着素子に吸着させて清浄ガスを排出する吸着工程と、前記吸着素子に前記排ガスが導入されることによって前記有機溶剤を前記吸着素子から脱着させて前記有機溶剤を含有する脱着ガスを排出する脱着工程と、前記吸着素子に前記吸着工程から排出された前記清浄ガスの一部が導入されることによって前記吸着素子をパージするパージ工程とを有する濃縮工程と、
     前記脱着ガスまたは前記排ガスを含む前記脱着ガスを冷却し凝縮して前記有機溶剤を回収する冷却回収工程と、
    を有し、
     前記有機溶剤含有ガスは、前記冷却回収工程において未回収の前記有機溶剤を含有するガスであり、
     前記パージ工程から排出されたパージ部出口ガスは、前記吸着工程に導入される前記有機溶剤含有ガスに混入され、
     前記有機溶剤含有ガスは、前記パージ部出口ガスの熱エネルギーを受けて昇温した状態で前記吸着工程に導入される、
    有機溶剤回収方法。
  28.  前記パージ部出口ガスの一部は、前記排ガスとともに前記脱着工程に供給され、且つ/または前記脱着ガスとともに前記冷却回収工程に供給され、
     前記パージ部出口ガスの残部は、前記有機溶剤含有ガスとともに前記吸着工程に導入され、
     前記パージ部出口ガスの前記一部と前記パージ部出口ガスの前記残部との風量の比が調節されることによって、前記吸着工程に導入される前記有機溶剤含有ガスの温度が調節される、
    請求項27に記載の有機溶剤回収方法。
  29.  前記排ガスは、生産設備から排出されるガスであり、
     前記清浄ガスの残部は、前記生産設備に戻される、
    請求項27または28に記載の有機溶剤回収方法。
  30.  前記排ガスは、温度が50℃~200℃である、
    請求項27~29のいずれか一項に記載の有機溶剤回収方法。
  31.  前記清浄ガスの温度、前記脱着ガスの温度、および前記吸着工程に導入される前記有機溶剤含有ガスの温度がそれぞれ所定の温度となるように、
    前記吸着工程の時間、前記脱着工程の時間および前記パージ工程の時間が制御される、
    請求項27~30のいずれか一項に記載の有機溶剤回収方法。
  32.  前記冷却回収工程へ前記排ガスおよび前記脱着ガスを通過させる風量割合は、前記排ガスが0%~50%であり、前記脱着ガスが50%~100%である、
    請求項27~31のいずれか一項に記載の有機溶剤回収方法。
  33.  前記冷却回収工程へ前記排ガスおよび前記脱着ガスを通過させる風量割合が、前記排ガスが0%であり、前記脱着ガスが100%である、
    請求項32に記載の有機溶剤回収方法。
  34.  前記有機溶剤は、n-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、またはn-デカンから選ばれる少なくとも一種である、
    請求項27~33のいずれか一項に記載の有機溶剤回収方法。
     
PCT/JP2010/063923 2009-08-18 2010-08-18 有機溶剤回収システム WO2011021637A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800018965A CN102065980A (zh) 2009-08-18 2010-08-18 有机溶剂回收系统
KR1020127002410A KR101156890B1 (ko) 2009-08-18 2010-08-18 유기 용제 회수 시스템

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-189364 2009-08-18
JP2009189364 2009-08-18
JP2009299104A JP2011136304A (ja) 2009-12-29 2009-12-29 有機溶剤回収システム
JP2009-299104 2009-12-29
JP2010114236A JP5573354B2 (ja) 2010-05-18 2010-05-18 有機溶剤回収システム
JP2010-114236 2010-05-18

Publications (1)

Publication Number Publication Date
WO2011021637A1 true WO2011021637A1 (ja) 2011-02-24

Family

ID=43607088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063923 WO2011021637A1 (ja) 2009-08-18 2010-08-18 有機溶剤回収システム

Country Status (4)

Country Link
KR (1) KR101156890B1 (ja)
CN (1) CN102065980A (ja)
TW (1) TW201119728A (ja)
WO (1) WO2011021637A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000991A (ja) * 2015-06-15 2017-01-05 東洋紡株式会社 濃縮装置および有機溶剤回収システム
CN108057311A (zh) * 2018-01-26 2018-05-22 叶大煜 一种nmp气体处理设备及其处理工艺
WO2021132071A1 (ja) * 2019-12-26 2021-07-01 東洋紡株式会社 有機溶剤回収システム
JP7434891B2 (ja) 2019-12-26 2024-02-21 東洋紡エムシー株式会社 有機溶剤回収システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102380222B (zh) * 2011-11-02 2014-02-12 广州市纤维产品检测院 有机溶剂的回收系统
CN103398571B (zh) * 2013-07-24 2015-03-11 广东芬尼克兹节能设备有限公司 一种可高效回收有机废气的烘干系统
CN103521031A (zh) * 2013-10-28 2014-01-22 洛阳天宝环保科技有限公司 一种低浓度有机废气浓缩的装置及方法
KR101629789B1 (ko) 2015-02-12 2016-06-14 (주)신성이엔지 용제 이송 시스템
JP2018103376A (ja) * 2016-12-22 2018-07-05 セイコーエプソン株式会社 液体噴射ヘッド、及び、液体噴射装置
TW202131987A (zh) * 2019-12-25 2021-09-01 日商東洋紡股份有限公司 有機溶劑回收系統
KR102362907B1 (ko) * 2020-12-08 2022-02-14 송철환 유기 용제를 함유하는 배기 가스로부터 유기 용제를 회수하는 유기 용제 회수 시스템 및 유기 용제 회수 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155253A (ja) * 1994-12-07 1996-06-18 Sumitomo Metal Mining Co Ltd 濃縮式脱臭装置における濃縮倍率の制御方法
JPH09173758A (ja) * 1995-12-21 1997-07-08 Toho Kako Kensetsu Kk 高沸点溶剤回収装置
JP2001038144A (ja) * 1999-08-04 2001-02-13 Taikisha Ltd ガス処理装置
JP2001179034A (ja) * 1999-12-22 2001-07-03 Flair Japan Inc 空気またはガスの乾燥装置
JP2001310110A (ja) * 2000-04-28 2001-11-06 Seibu Giken Co Ltd ガス濃縮装置
JP2007050379A (ja) * 2005-08-19 2007-03-01 Air Liquide Japan Ltd 揮発性有機化合物の回収プロセス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815675B2 (ja) * 1989-05-31 1998-10-27 東芝機械株式会社 複合型折機
CN1108581A (zh) * 1994-03-14 1995-09-20 张明荣 有机废气净化回收方法及其装置
CN201061729Y (zh) * 2007-05-15 2008-05-21 李炳楠 一种可回收挥发性物质的装置
CN101259357A (zh) * 2007-12-14 2008-09-10 华南理工大学 从印刷行业废气中吸附回收有机溶剂的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08155253A (ja) * 1994-12-07 1996-06-18 Sumitomo Metal Mining Co Ltd 濃縮式脱臭装置における濃縮倍率の制御方法
JPH09173758A (ja) * 1995-12-21 1997-07-08 Toho Kako Kensetsu Kk 高沸点溶剤回収装置
JP2001038144A (ja) * 1999-08-04 2001-02-13 Taikisha Ltd ガス処理装置
JP2001179034A (ja) * 1999-12-22 2001-07-03 Flair Japan Inc 空気またはガスの乾燥装置
JP2001310110A (ja) * 2000-04-28 2001-11-06 Seibu Giken Co Ltd ガス濃縮装置
JP2007050379A (ja) * 2005-08-19 2007-03-01 Air Liquide Japan Ltd 揮発性有機化合物の回収プロセス

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000991A (ja) * 2015-06-15 2017-01-05 東洋紡株式会社 濃縮装置および有機溶剤回収システム
CN108057311A (zh) * 2018-01-26 2018-05-22 叶大煜 一种nmp气体处理设备及其处理工艺
WO2021132071A1 (ja) * 2019-12-26 2021-07-01 東洋紡株式会社 有機溶剤回収システム
JP7434891B2 (ja) 2019-12-26 2024-02-21 東洋紡エムシー株式会社 有機溶剤回収システム
JP7435367B2 (ja) 2019-12-26 2024-02-21 東洋紡エムシー株式会社 有機溶剤回収システム

Also Published As

Publication number Publication date
CN102065980A (zh) 2011-05-18
KR20120035200A (ko) 2012-04-13
KR101156890B1 (ko) 2012-06-21
TW201119728A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2011021637A1 (ja) 有機溶剤回収システム
JP5573354B2 (ja) 有機溶剤回収システム
JP2010069435A (ja) 溶剤回収設備
KR101146710B1 (ko) 연소배가스에서 온도변동 흡착공정을 이용한 이산화탄소를 회수 장치 및 그 운전방법
JP2012166155A (ja) 有機溶剤回収システム
JP4715970B2 (ja) 有機溶剤回収システム
JP2010184229A (ja) 二酸化炭素吸着材及びこれを用いた二酸化炭素回収装置
KR20150113367A (ko) 엔엠피 회수 정제 시스템
CN106422647B (zh) 低液化温度有机废气回收装置
JP2011125768A (ja) 溶剤回収方法、及び、溶剤回収装置
JP2009090979A (ja) 小型デシカント空調装置
JP4530944B2 (ja) 揮発性有機化合物の回収プロセス
KR102362907B1 (ko) 유기 용제를 함유하는 배기 가스로부터 유기 용제를 회수하는 유기 용제 회수 시스템 및 유기 용제 회수 방법
WO2021132071A1 (ja) 有機溶剤回収システム
JP5760440B2 (ja) 有機溶剤回収システム
JP2004344703A (ja) 二酸化炭素の処理方法及び二酸化炭素処理装置
JP6565357B2 (ja) 濃縮装置および有機溶剤回収システム
KR20180123579A (ko) 멀티스테이지 가스 흡착 분리 공정 및 시스템
JP2011136304A (ja) 有機溶剤回収システム
JP2009083851A (ja) 小型デシカント空調装置
JP2001149732A (ja) ガス収着装置
JP2009226319A (ja) ガス濃縮装置
CN210448618U (zh) 一种气体零气耗除油吸附式干燥系统
JPH0810550A (ja) 排ガスから潜熱を回収する方法およびその装置
JP2016101553A (ja) 有機溶剤回収システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001896.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127002410

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809978

Country of ref document: EP

Kind code of ref document: A1