WO2011021272A1 - 植物バイオマスの前処理方法 - Google Patents

植物バイオマスの前処理方法 Download PDF

Info

Publication number
WO2011021272A1
WO2011021272A1 PCT/JP2009/064441 JP2009064441W WO2011021272A1 WO 2011021272 A1 WO2011021272 A1 WO 2011021272A1 JP 2009064441 W JP2009064441 W JP 2009064441W WO 2011021272 A1 WO2011021272 A1 WO 2011021272A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant biomass
region
hot water
pressurized hot
kneading
Prior art date
Application number
PCT/JP2009/064441
Other languages
English (en)
French (fr)
Inventor
飯田一裕
田端一英
長瀬高志
池田貞雄
山田健二
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011527507A priority Critical patent/JPWO2011021272A1/ja
Priority to BR112012003719A priority patent/BR112012003719A2/pt
Priority to PCT/JP2009/064441 priority patent/WO2011021272A1/ja
Priority to US13/391,184 priority patent/US20120214205A1/en
Priority to CN2009801620066A priority patent/CN102575267A/zh
Publication of WO2011021272A1 publication Critical patent/WO2011021272A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/18Apparatus specially designed for the use of free, immobilized or carrier-bound enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/12Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/16Screw conveyor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/20Heating; Cooling
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a plant biomass pretreatment method for producing ethanol from plant biomass by enzymatic decomposition.
  • Patent Document 1 a woody biomass is conveyed while stirring and mixing with a screw in an excluder, heated with water vapor in the conveying process to swell the woody biomass, and the swollen treated woody biomass is an acid treatment device.
  • a technique of a pretreatment method in which an acid treatment is carried out by putting it into the water is shown.
  • acid treatment when acid treatment is used, there are problems of waste treatment and environmental load.
  • Cellulose and hemicellulose in plant cells exist in a form protected by lignin. Therefore, in order to enzymatically decompose cellulose and hemicellulose, it is necessary to break down lignin and expose cellulose and hemicellulose. In addition, cellulose and hemicellulose have a strong binding force, and in order to decompose this bond with an enzyme, it is necessary to decompose the structures of cellulose and hemicellulose in advance. Such a destruction process of lignin and a structural decomposition process of cellulose and hemicellulose are called pretreatment.
  • Patent Document 1 discloses a method of destroying lignin by shearing a wood chip under heating and pressurization with an extruder, and extruding it into the atmosphere to expand it. JP 2007-202518 A
  • Patent Document 1 breaks down lignin to expose cellulose, and the structural decomposition of cellulose and hemicellulose and the saccharification preparation step of mixing the enzyme into the processed product must be performed separately and independently. There is. Therefore, the efficiency is low, the manufacturing is troublesome, and the equipment cost is high.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a plant biomass pretreatment method capable of quickly performing plant biomass pretreatment with simple equipment.
  • a plant biomass pretreatment method is a plant biomass pretreatment method in which an enzyme is used to produce ethanol from plant biomass, and the plant biomass is preset. Coarsely pulverized to a size less than or equal to the size, a decomposing agent is added to the coarsely pulverized plant biomass, the plant biomass to which the decomposing agent has been added is subjected to pressurized hot water treatment, and the pressurized hot water treated plant biomass And pretreatment until the saccharification preparation for mixing the plant biomass with an enzyme for saccharifying the plant biomass is performed successively in an extruder (claim 1).
  • the plant biomass pretreatment method of the present invention the plant biomass is coarsely pulverized to a predetermined size or less, added with a decomposing agent, subjected to pressurized hot water treatment, and mixed with an enzyme before saccharification preparation. Since the processing is carried out successively in order in the extruder, each of the coarse pulverization, pressurized hot water treatment, and saccharification preparation, which has been conventionally carried out independently, can be performed consistently. Therefore, the pretreatment can be performed efficiently, the equipment cost can be reduced by simplifying the equipment, and the cost can be reduced.
  • the extruder has a passage in which a supply port for supplying plant biomass is formed at one end and a discharge port for discharging the pretreatment product is formed at the other end.
  • a cylinder that is disposed in a passage of the cylinder, a feeding unit that feeds the plant biomass toward the discharge port, a kneading unit that kneads the plant biomass, and a resistance that provides feeding resistance to the plant biomass
  • Pressurized hot water treatment region for treating biomass with pressurized hot water Cooling region for cooling plant biomass treated with pressurized hot water treatment in the pressurized hot water treatment region, and plant bios cooled in the cooling region
  • saccharification preparation area to scan the mixing of the enzyme it is characterized by having a discharge area for discharging the pretreated product of plant biomass enzyme was mixed with saccharification preparation region (claim 2).
  • the pretreatment method for plant biomass of the present invention is preferably at least one kind of special gear kneading or special fluffing in a high filling region of plant biomass formed on the upstream side of the resistor by the resistor of the screw train.
  • a screw train having the above screw segments is provided (claim 3).
  • the coarsely pulverized region has at least one kind of forward kneading disc, reverse kneading disc, orthogonal kneading disc, special gear kneading, and special fluffing.
  • a screw train having the above screw segments is provided (claim 4).
  • the pressurized hot water treatment region has a screw train having at least one screw segment of reverse full flight, special gear kneading or special fluffing.
  • a resistor having a special seal ring is provided at each of the upstream end and the downstream end of the pressurized hot water treatment region.
  • plant biomass is heated and pressurized to be sheared.
  • -It is characterized by kneading (Claim 5).
  • the resistor disposed in the pressurized hot water treatment region is more resistant to the downstream resistor than the upstream resistor. It is set so that it may have (Claim 6).
  • a decomposition material supply unit that supplies a decomposition agent into the pressurized hot water treatment region of the passage
  • a refrigerant supply unit that supplies a refrigerant into the cooling region
  • An enzyme supply section for supplying an enzyme is provided in each saccharification preparation region (claim 7).
  • a plurality of the decomposing agent supply units are provided at predetermined intervals along the passage of the cylinder, and the supply amount of the decomposing agent is from the downstream side. Is also set so that the number on the upstream side is larger (claim 8).
  • the supply amount of the decomposing agent is set to 5 to 150 parts by weight with respect to 100 parts by weight of the plant biomass. 9).
  • the extruder is heated and pressurized so that the pressure in the cylinder is 1 to 30 MPa, and the temperature of the pressurized hot water treatment region is 130 ° C. to 350 ° C. (Claim 10).
  • a screw train having at least one screw segment of a forward kneading disc, a reverse kneading disc and an orthogonal kneading disc is disposed in the discharge region. (Claim 11).
  • the cylinder is provided with a vent for discharging the gas in the passage in the discharge region, and the gas in the cylinder is discharged from the vent. (Claim 12).
  • saccharification is performed by roughly pulverizing plant biomass to a size not more than a preset size, adding hydrolyzing agent, pulverizing the mixture with an enzyme, and mixing with an enzyme. Since the pre-processing up to the charging is continuously performed in order in the extruder, each process of coarse pulverization, pressurized hot water processing, and saccharification charging, which were conventionally performed separately and independently, can be performed consistently. . Therefore, the pretreatment can be performed efficiently, the equipment cost can be reduced by simplifying the equipment, and the cost can be reduced.
  • the flowchart explaining the pre-processing method of a plant biomass processed material The figure which shows typically the structure of the cylinder and screw row
  • the figure which expands and shows a part of tooth part shown in FIG. The figure which shows another example of special gear kneading.
  • the figure seen from the arrow U1 direction of FIG. The schematic diagram which shows the gear fitting state of the special gear kneading of FIG. 12 in a cross section.
  • FIG. 24 The figure which expands and shows a part of tooth part shown in FIG.
  • the figure which shows an example of special fluffering The figure seen from the arrow U1 direction of FIG.
  • the figure which shows an example of a seal ring The figure seen from the arrow U1 direction of FIG. FIG. 24 is a sectional view taken along line AA in FIG. 23.
  • the figure which shows another example of a seal ring The figure seen from the arrow U1 direction of FIG. FIG. 27 is a sectional view taken along line BB in FIG. 26.
  • the figure seen from the arrow U1 direction of FIG. FIG. 30 is a sectional view taken along line CC of FIG. 29.
  • FIG. 1 is a flowchart for explaining a pretreatment method for a processed plant biomass according to the present invention
  • FIG. 2 is a diagram schematically showing a configuration of a cylinder and a screw train of a screw extruder used in the pretreatment method.
  • the pretreatment method of the plant biomass processed product according to the present invention includes a coarse pulverization step S1, a pressurized hot water treatment step S2, a cooling step S3, a saccharification charging step S4, and a discharge step S5.
  • a coarse pulverization step S1 a pressurized hot water treatment step S2, a cooling step S3, a saccharification charging step S4, and a discharge step S5.
  • the screw extruder uses a co-rotating twin screw extruder in which two parallel screw rows rotate in the same direction, and includes a cylinder 1 having a linearly extending passage 1a. ing.
  • a supply port 2 to which plant biomass (non-fluid material) such as wood chips is supplied is formed at one end of the passage 1 a, and a plant biomass processed product pretreated in the passage 1 a is discharged.
  • a discharge port 3 is formed at the other end of the passage 1a.
  • the screw train 9 is constituted by attaching various screw segments such as full flight screws 50 and 52 and kneading disks 54, 56 and 58 to the pair of screw shafts 7 in appropriate combination in series.
  • the screw train 9 is rotated integrally in the passage 1a by the rotation of the screw shaft 7 by the drive motor, and a plurality of feeding units for feeding the processed material toward the discharge port 3 by the rotation,
  • a feeding means including a shearing / kneading section for kneading and a resistor for imparting feeding resistance to the processed material is configured.
  • a coarse pulverization region 11, a pressurized hot water treatment region 12, a cooling region 13, a saccharification charging region 14, and a discharge region 15 are configured in series.
  • the pressurized hot water treatment region 12 is formed between the resistors 31 and 33 that are provided apart on the upstream side and the downstream side in the feeding direction of the passage 1a.
  • resistors 31, 32, and 33 are provided in the upstream, intermediate, and downstream portions of the pressurized hot water treatment region 12, respectively, and an upstream region 12A and a downstream region 12B are formed.
  • a decomposing agent supply unit 4 that supplies a decomposing agent to the pressurized hot water treatment region 12, a refrigerant supply unit 5 that supplies a refrigerant to the cooling region 13, and an enzyme supply that supplies enzymes to the saccharification preparation region 14 Part 6 is provided.
  • a plurality of the decomposing agent supply units 4 are provided at predetermined intervals in the longitudinal direction of the passage 1a.
  • the first supply unit 4a is provided in the upstream region 12A
  • the second supply unit is provided in the downstream region 12B. 4b is provided.
  • the relationship of the supply amount of the decomposing agent per unit time is set to the relationship (first supply unit 4a> second supply unit 4b).
  • the decomposing agent for example, water such as cold water or hot water, acid, alkali, solvent, rot fungus, supercritical fluid, etc. are used, supplied from the decomposing agent supply unit 4 into the passage 1a, and added to the processed plant biomass.
  • the decomposition agent supply unit 4 may be provided in the coarse pulverization region 11 to supply the decomposition agent to the coarse pulverization region 11.
  • a decomposing agent such as an acid or a rot fungus
  • the decomposing agent can be added simultaneously with the pulverization of the plant biomass processed product, and high efficiency can be achieved.
  • the refrigerant supply unit 5 supplies a refrigerant such as liquid nitrogen to the cooling region 13 in order to adjust the plant biomass processed product heated in the pressurized hot water treatment region 12 to an optimum temperature for the activity of the enzyme. Cooling.
  • the enzyme supply part 6 supplies an enzyme to a plant biomass processed material. The enzyme is mixed with the processed plant biomass in the saccharification charging region.
  • a plurality of refrigerant supply units 5 and enzyme supply units 6 may be provided at predetermined intervals in the longitudinal direction of the passage 1a.
  • the cylinder 1 is provided with a heater (not shown) so that the processed plant biomass can be heated in the pressurized hot water treatment region 12 to maintain a high temperature state.
  • An appropriate amount of plant biomass is supplied from the supply port 2 into the passage 1a according to time.
  • woody biomass such as wood chips is used.
  • the processed plant biomass material is mechanically crushed by shearing, friction, dispersion, diffusion, and kneading by rotation of the screw train 9, and a small coarse pulverized body having a predetermined size or less. And And the processed plant biomass processed into the coarsely pulverized product is fed from the coarsely pulverized region 11 to the pressurized hot water treated region 12 downstream.
  • the screw train 21 in the coarse pulverization region 11 is configured by appropriately combining, for example, a forward full flight 50, a forward feed double thread kneading disk 54, a reverse feed double thread kneading disk 56, and an orthogonal double thread kneading disk 58. ing. And in the high filling area
  • the special gear kneading 100 and the special fluffer ring 200 may disturb the flow of the processed plant biomass in the passage 1a and promote shearing, coarse pulverization, kneading, dispersion, and decomposition of the processed plant biomass. it can. And the supply to the downstream side can be strengthened and stabilized, and the occurrence of plugs can be prevented.
  • the temperature of the processed plant biomass in the coarse pulverization region is set to room temperature.
  • a decomposing agent such as water is supplied from the first supply part 4a and the second supply part 4b into the passage 1a and added to the processed plant biomass. And by the rotation of the screw row
  • the processed plant biomass is refined, kneaded, stirred, dispersed, and decomposed by the screw train 22 under pressurized hot water.
  • the screw train 22 in the pressurized hot water treatment region 12 has resistors 31, 32 that suppress the feeding of the plant biomass processed product to the most upstream part, the most downstream part, and the intermediate part of the pressurized hot water treatment region 12, respectively. 33, and a high filling region having a high filling rate of the processed plant biomass is formed on the upstream side of the resistors 31 to 33.
  • the sealing performance is enhanced by these resistors 31 to 33, and the pressure in the pressurized hot water treatment region 12 is maintained at a high pressure state (for example, 1 to 30 MPa) equal to or higher than the saturated water vapor pressure. .
  • the resistors 31 and 33 are provided with a special seal ring 300, and the space between the special seal ring 300 and the inner wall surface of the cylinder passage 1a is sealed with a plant biomass treatment product to create a sealed state, and a pressurized hot water treatment region 12 is boosted.
  • the temperature of the processed plant biomass in the pressurized hot water treatment region 12 can be maintained from 130 ° C. to 350 ° C. by heating with a heater and shear frictional heat with the screw train 9.
  • the pressurized hot water treatment region 12 can be placed under pressurized hot water (high pressure and high temperature), and hydrothermal treatment can be performed to swell and soften the processed plant biomass to which the decomposition agent has been added. Therefore, the hydrothermally treated plant biomass processed product can be easily pulverized by shearing and kneading with the screw train 22.
  • the temperature is maintained from room temperature to 80 ° C.
  • the pressure in the pressurized hot water treatment region 12 is set to be equal to or higher than the supercritical pressure.
  • the screw train 22 includes a special seal ring 300, a special gear kneading 100, a special fluffer ring 200, a forward feed full flight 50, a reverse feed full flight 52, a forward feed double thread kneading disk 54, and a reverse feed double thread kneading disk. 56, an orthogonal double thread kneading disk 58 and the like are appropriately combined.
  • the pressurized hot water treatment region 12 is divided into an upstream region 12A and a downstream region 12B by an intermediate resistor 32.
  • the plant biomass is fed from the high filling region formed by the resistors 31 to 33, the feeding region for feeding the plant biomass processed product from the upstream region 12A to the downstream region 12B, and the cooling region 13 from the downstream region 12B.
  • the screw train 22 is designed so that at least one of the special gear kneading 100 and the special fluffer ring 200 is arranged in each of the feeding regions for the purpose.
  • Each resistor 31 to 33 of the screw train 22 is constituted by a combination of a special seal ring 300, a reverse feed full flight 32, a special gear kneading 100, and a special fluffer ring 200.
  • the resistance relationship of each of the resistors 31 to 33 is such that the resistance increases as it moves downstream (the most upstream resistor 31 ⁇ the middle resistor 32 ⁇ the most downstream resistor 33). The relationship is set.
  • the plant biomass treatment product can be repeatedly compressed and expanded, and the efficiency of each treatment Can be achieved.
  • the first supply unit 4a is disposed on the upstream side in the upstream region 12A, and the second supply unit 4b is disposed on the upstream side in the downstream region 12B. Therefore, it is possible to ensure the distance for performing the hydrothermal treatment in each region as long as possible and effectively perform the hydrothermal treatment.
  • the decomposing agent is water
  • the supply amount of the decomposing agent is set to a ratio of 0.25 to 3 with respect to the processed plant biomass, and when the decomposing agent is an acid / alkali / solvent, the plant biomass processing is performed.
  • the ratio to the product is set to 0.01-1.
  • the pressurized hot water treatment region 12 is held at a high pressure and high temperature by the special seal ring 300, hydrothermal treatment for softening the processed plant biomass can be performed efficiently. Therefore, the plant biomass processed product is finely pulverized by the shearing, kneading, dispersing, and decomposing actions of the screw train 22 and becomes finer than the plant biomass processed product in the coarse pulverization region 11.
  • the first supply unit 4a and the second supply unit 4b are provided in the same number as the high filling regions formed in the pressurized hot water treatment region 12 in order to effectively perform the hydrothermal treatment.
  • the decomposition agent supply unit 4 may set the supply position according to conditions such as pressure and temperature in the pressurized hot water treatment region 12. By supplying the decomposing agent to an appropriate position, it is possible to rapidly refine, knead, agitate, disperse, and decompose the processed plant biomass, and to prevent supply of excess processing agent. .
  • the processed plant biomass processed in the pressurized hot water treatment area 12 is fed to the cooling area 13 located downstream.
  • a coolant such as liquid nitrogen is supplied from the coolant supply unit 5 into the passage 1a to cool the plant biomass processed product in the cooling region 13.
  • the screw train 23 is configured by combining only screw segments having a feeding function such as a progressive full flight 50 or the like.
  • a cooling step S3 is provided between the pressurized hot water treatment step S12 and the saccharification preparation step S4 so that the heated plant biomass processed product is cooled to an appropriate temperature so that saccharification by an enzyme is appropriately performed. I made it.
  • the temperature of the processed plant biomass in the cooling region 13 is cooled to 40 ° C. to 50 ° C. by the refrigerant.
  • an enzyme is supplied from the enzyme supply unit 6 into the passage 1a, and the saccharification charging region 14 performs a process of mixing the enzyme with the plant biomass processed product.
  • the screw train 24 in the saccharification preparation region 14 includes, for example, a special seal ring 300, a special gear kneading 100, a special fluffer ring 200, a forward feed full flight 50, a reverse feed full flight 52, a forward feed double thread kneading disk 54, and a reverse feed.
  • a double thread kneading disk 56, an orthogonal double thread kneading disk 58 and the like are appropriately combined.
  • a predetermined amount of the enzyme solution is supplied from the enzyme supply unit 6 into the passage 1a, and is added to the processed plant biomass in the saccharification preparation region 14 (for example, 40 FPU).
  • the processed plant biomass is highly viscous when processed up to the saccharification charging step S4, and may not be sufficiently mixed by, for example, an operator, but is mixed by the screw train 24 in the saccharification charging region 14, so that the plant Enzyme can be fully mixed with the processed biomass.
  • the plant biomass processed product is mixed with the enzyme in the saccharification preparation region 14, it is fed to the discharge region 15 located downstream.
  • the discharge step S5 a process of discharging the plant biomass mixed with the enzyme in the saccharification preparation region 14 as a pre-processed product and a process of degassing the gas component from the processed plant biomass after the saccharification preparation are performed.
  • the cylinder 1 is provided with a vent 8 for deaeration.
  • the vent 8 communicates between the discharge region 15 of the passage 1a and the outside so that a part of the gas component in the discharge region 15 can be discharged.
  • Processed plant biomass can be supplied.
  • the processed plant biomass discharged from the discharge port 3 is made ethanol through the same steps (saccharification, fermentation, purification) as before.
  • the screw train 25 in the discharge region 15 is configured by, for example, appropriately combining the screw segments of a forward feed double thread kneading disk 54, a reverse feed double thread kneading disk 56, and an orthogonal double thread kneading disk 58. . And in the downstream area
  • plant biomass is roughly pulverized to a preset size or less, subjected to pressurized hydrothermal treatment with the addition of a decomposition agent, and mixed with an enzyme until saccharification preparation Since these pretreatments are successively carried out in order in the extruder, each of the coarse pulverization, pressurized hot water treatment, and saccharification preparation, which has been conventionally carried out independently, can be carried out consistently. Therefore, the pretreatment can be performed efficiently, the equipment cost can be reduced by simplifying the equipment, and the cost can be reduced.
  • FIGS. 3A and 3B are diagrams illustrating an example of a forward full flight
  • FIGS. 4A and 4B are diagrams illustrating an example of a reverse full flight. 3B and 4B, the substantially circular inner wall surface of the passage 1a of the cylinder 1 is omitted.
  • the forward full flight 50 has a twist direction of the screw 50i in order to secure the downstream feeding capability
  • the reverse full flight 52 has a screw so that the downstream feeding capability is lowered.
  • the twist direction of 52i is set.
  • the progressive double-thread kneading disk 54 includes a substantially oval paddle 54e having a top 54x, and the top 54x is configured in series in a right downward direction.
  • the reverse feed 2 thread kneading disc 56 includes a substantially oval paddle 56e having a top portion 56x, and the top portion 56x is configured in series so as to rise to the right.
  • FIG. 7 (A) and 7 (B) are diagrams showing an example of the orthogonal double thread kneading disc 58.
  • FIG. The orthogonal two-thread thread kneading disk 28 is constituted by a substantially oval paddle 58e having a top portion 58x formed in series at an inclination angle of 90 °.
  • the orthogonal two-thread kneading disk 58 has no twist angle and thus has almost no feeding ability, but has a high shearing ability and a high dispersion ability and kneading ability.
  • the screw shaft 7 is inserted and fixed in the forward full flight 50, the reverse full flight 52, the forward double thread kneading disk 54, the reverse double thread kneading disk 56, and the orthogonal double thread kneading disk 58.
  • Through holes 51, 53, 55, 57, and 59 are formed along the central axis.
  • FIG. 8 is a diagram showing an example of the configuration of special gear kneading
  • FIG. 9 is a diagram of the special gear kneading shown in FIG. 8 as viewed from the direction of arrow U1, which is the feed direction of the processed plant biomass
  • FIG. 11 is a schematic view showing a gear fitting state of the special gear kneading in FIG. 8 in section
  • FIG. 11 is an enlarged view showing a part of the tooth portion shown in FIG.
  • the special gear kneading 100 includes a first rotating body 101 and a second rotating body 102 as shown in FIG. 8 or FIG.
  • Each of the first rotating body 101 and the second rotating body 102 has a configuration in which a plurality of tooth portions 112 are provided on a cylindrical shaft portion 111.
  • a hexagonal through hole 110 is formed in the shaft portion 111 along the central axis of the shaft portion 111.
  • the special gear kneading 100 can be rotated integrally with the screw shaft 7 by inserting and fixing the screw shaft 7 into the through hole 110.
  • the plurality of tooth portions 112 are provided so as to protrude at a predetermined interval in the axial direction of the shaft portion 111.
  • the six tooth portions 112 are arranged at a constant interval. Has been placed.
  • the number of the tooth portions 112 is not limited to the present embodiment, and may be one or more.
  • the plurality of tooth portions 112 are provided at predetermined intervals in the feeding direction U1 that is the axial length direction of the shaft portion 111.
  • the plurality of tooth portions 112 are arranged so as to form a total of four tooth portion groups in the feeding direction U1.
  • the number of tooth groups is not limited to the present embodiment, and may be a plurality of teeth.
  • the tooth portion 112 has a certain thickness width along the axial length direction of the shaft portion 111, and a front surface 113 along the radial direction of the shaft portion 111 is upstream of the feeding direction, which is the front side in the axial length direction.
  • a rear surface 114 is formed along the radial direction of the first shaft portion 111 on the downstream side in the feed direction, which is the rear side in the axial length direction.
  • the tooth portion 112 extends from the outer peripheral surface 115 of the shaft portion 111 toward the outer side in the axial radial direction and extends along the axial length direction, and the tooth surface 116, The top surface 118 is continuous between the upper ends of 117.
  • the tooth surfaces 116 and 117 are inclined so as to shift to the rear side in the rotational direction as they shift to the downstream side in the feeding direction, and have a predetermined twist angle (lead). . If the tooth surfaces 116 and 117 of a plurality of teeth 112 that are continuous at a predetermined interval in the axial length direction are connected in the axial length direction, a spiral lead indicated by an imaginary line T in FIG. When the first rotating body 101 or the second rotating body 102 rotates in the arrow direction, the feedability of the plant biomass processed material in the arrow U1 direction is ensured by the twist angles of the tooth surfaces 116 and 117 of the tooth portion 112.
  • the tooth surface 116 positioned on the front side in the rotation direction of the first rotating body 101 or the second rotating body 102 is axially extending from the shaft cylinder outer peripheral surface 115 as shown in FIG.
  • the tooth surface 117 located on the rear side in the rotation direction has a planar shape that extends from the outer peripheral surface 115 of the shaft cylinder toward the outer side in the radial direction and is inclined so as to move toward the front side in the rotation direction as it moves outward in the radial direction. In this embodiment, it is formed so as to be parallel to the vertical wall surface 116b of the tooth surface 116.
  • the top surface 118 has an arc shape centering on the axis O of the shaft portion 111, and has a predetermined gap between it and the inner wall surface of the passage 1a having a perfect circle shape as shown in FIG. And are formed to face each other.
  • the first rotating body 101 and the second rotating body 102 are arranged between the other shaft portion 111 between the tooth portions 112 arranged at a predetermined interval in the axial length direction of one shaft portion 111.
  • the tooth portions 112 of the first rotating body 101 and the tooth portions 112 of the second rotating body 102 are alternately arranged in the axial length direction.
  • a U-shaped and reverse U-shaped gap is formed between the first rotating body 101 and the second rotating body 102 so as to continue in the direction of the arrow U1 that is the feeding direction. The kneading performance and the dispersion performance in the special gear kneading 100 are ensured.
  • a predetermined distance d1 is provided between the rear surface 114 of the tooth portion 112 located on the upstream side in the feeding direction and the front surface 113 of the tooth portion 112 located on the downstream side in the feeding direction that partially faces the rear surface 114. Is formed.
  • the gear kneading 100 is disposed at a location where a high filling area is formed in the pressurized hot water treatment area 12 of the cylinder 1.
  • Each shaft portion 111 of the first rotating body 101 and the second rotating body 102 includes a boss portion 111a that protrudes in the axial length direction from the tooth portion 112 positioned at the forefront on the upstream side in the feeding direction.
  • the boss part 111a avoids colliding with the front surface 113 of the tooth part 112 positioned in the foremost state while the processed plant biomass fed from the upstream side in the feeding direction maintains its flow speed. It is possible to prevent a sudden compression force and frictional force from being locally applied to 112 and to reduce torque fluctuations acting on a motor that rotationally drives the screw shaft.
  • the first rotating body 101 and the second rotating body 102 include a tooth portion 112 of one shaft portion 111 and a tooth portion 112 of the other shaft portion 111.
  • the rotation timing is set so as to cross each other at an intermediate position between the first rotating body 102 and the second rotating body 102.
  • the tooth surface 116 formed on the front side in the rotation direction of the tooth portion 112 has the vertical wall surface portion 116b inclined at the inclination angle ⁇ toward the front side in the rotation direction. Therefore, the urging
  • FIG. 38 is a schematic diagram of a gear kneading 910 included in a known twin-screw extruder
  • FIG. 39 is an enlarged view of a main part of FIG.
  • the tooth portion 912 of the conventional gear kneading 910 protrudes radially from the shaft portion 911, and of the pair of tooth surfaces 916 and 917, the tooth surface is located on the front side in the rotational direction.
  • 916 has a planar shape that shifts to the rear side in the rotational direction as it moves outward in the radial direction.
  • the fluid material such as wood powder is blown toward the outside in the radial direction of the first rotating body 901 and the second rotating body 902 by centrifugal force, and as shown by the thin arrows in FIG. A force is applied locally, and a high-density and high-strength plug is generated in the outermost part of the passage 1a at an early stage. Then, the compression resistance and frictional force of the plug impede the rotation of the first rotating body 901 and the second rotating body 902, resulting in overload (motor torque over), which may make feeding difficult.
  • the tooth surface 116 positioned on the front side in the rotation direction of the tooth portion 112 is inclined at the inclination angle ⁇ toward the front side in the rotation direction. Since it has the tooth part 112 which has the vertical wall surface part 116b, the urging
  • the first rotating body 101 and the second rotating body 102 are rotated to move the tooth portions 112 adjacent to each other in the axial length direction in a direction opposite to each other to shear the plant biomass processed product, the direction toward the front side in the rotating direction. Since the vertical wall surface 116b inclined at the inclination angle ⁇ can be sheared, the force required to shear the plant biomass processed product can be reduced. Therefore, the driving force of the extruder can be further reduced, and the drive motor can be reduced in size.
  • the plant biomass processed material is fed from the upstream side in the feed direction.
  • the urging force can be applied so as to move toward the downstream side, the urging force toward the radially outer side can be reduced, and high compression can be prevented at the outermost portion in the passage 1a of the cylinder 1.
  • the case where the plurality of teeth 112 arranged at predetermined intervals in the axial length direction all have a constant twist angle (lead) has been described as an example.
  • the downstream feed amount can be made larger than the upstream side.
  • the filling rate and density of a plant biomass processed material can be varied according to the position of an axial length direction, and more effective processes, such as shear and diffusion, can be performed.
  • FIG. 20 is a diagram illustrating an example of special fluffing
  • FIG. 21 is a diagram of FIG. Note that the same components as those in the special gear kneading 100 described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the special fluffer ring 200 includes a first rotating body 201 and a second rotating body 202.
  • Each of the first rotating body 201 and the second rotating body 202 has a configuration in which a plurality of tooth portions 112 are provided on a cylindrical shaft portion 211.
  • the plurality of tooth portions 112 are provided so as to protrude at a predetermined interval in the axial direction of the shaft portion 211.
  • the six tooth portions 112 are arranged at a constant interval. Has been placed.
  • the first rotating body 201 is provided with a tooth portion 112 on the upstream side in the feed direction that is the front side in the axial direction of the shaft portion 211, and downstream in the feed direction that is the rear side in the axial direction.
  • the shaft portion 211 protrudes toward the side.
  • the 2nd rotary body 202 has the structure which the tooth
  • the tooth portion 112 of the first rotating body 201 faces the shaft portion 211 of the second rotating body 202, and the tooth portion 112 of the second rotating body 202 rotates first. It arrange
  • route bent in the shape of a crank is formed along the arrow U1 direction which is a feed direction, and the kneading
  • the first rotating body 201 includes a boss portion 211a that protrudes in the axial length direction from the tooth portion 112.
  • the second rotating body 202 is provided with a shaft portion 211 on the upstream side in the feeding direction from the tooth portion 112.
  • the boss portion 211a of the first rotating body 201 and the shaft portion 211 of the second rotating body 202 are positioned in the foremost state while the processed plant biomass fed from the upstream side in the feeding direction maintains its flow rate. Avoiding a collision with the front surface 113 of the tooth portion 112, preventing a sudden compressive force from being locally applied to the tooth portion 112, and reducing torque fluctuations acting on the motor that rotationally drives the screw shaft 7. be able to.
  • the first rotating body 201 and the second rotating body 202 include a tooth portion 112 of one shaft portion 211 and a tooth portion 112 of the other shaft portion 211, and the first rotating body 201 and the second rotating body 202.
  • the rotation timing is set so as to approach and intersect each other at an intermediate position with respect to the two rotator 202.
  • Stepped portions 121 and 122 are formed at the tip of the tooth portion 112.
  • stepped portions 121 are provided on all of the six tooth portions 112 arranged in the axial circumferential direction in each of the first rotating body 101 and the second rotating body 102.
  • the stepped portions 121 and 122 may not be provided on all the tooth portions 112 included in the special fluffer ring 200.
  • the arrangement position, interval, quantity, and the like of the tooth portions 112 having the stepped portions 121 and 122 are appropriately set according to the situation.
  • the stepped portion 121 is formed between the tooth surfaces 116 and 117 at the edge portion between the front surface 113 and the parietal surface 118 of the tooth portion 112, and the stepped portion 122 is formed between the rear surface 114 of the tooth portion 112 and the parietal surface.
  • An edge portion with the surface 118 is formed between the tooth surfaces 116 and 117. Therefore, the thickness width on the tooth tip side of each tooth portion 112 is narrower than the thickness width on the tooth root side.
  • the stepped portion 121 is formed by cutting out the edge portion between the front surface 113 and the parietal surface 118 of the tooth portion 112 in a step shape, and is constant in the axial length direction at a position radially inward of the parietal surface 118.
  • An axial length direction step surface 121a having a width and an axial diameter direction step surface 121b having a constant width in the axial diameter direction at a position downstream of the front surface 113 in the feeding direction are provided.
  • the stepped portion 122 is formed by cutting out the edge portion between the rear surface 114 of the tooth portion 112 and the parietal surface 118 in a step shape, and is constant in the axial length direction at a position radially inward of the parietal surface 118.
  • An axial length direction step surface 122a having a width and an axial diameter direction step surface 122b having a constant width in the axial diameter direction at a position upstream of the rear surface 114 in the feeding direction are provided.
  • the tooth portion 112 has the vertical wall surface portion 116b inclined at the inclination angle ⁇ toward the front side in the rotation direction.
  • the urging force toward the outside can be reduced. Therefore, it is possible to prevent a high-density and high-strength plug (agglomerate) from being generated by locally applying a compressive force / friction force to the processed plant biomass in the passage 1a of the cylinder 1.
  • the screw shaft 7 is prevented from being deformed in the axial direction, and the occurrence of wear and overload due to the tooth portion 112 coming into contact with the passage 1a of the cylinder 1 is prevented. be able to.
  • the tooth surface 116 of the tooth part 112 has a twist angle indicated by an imaginary line T, while preventing the plant biomass processed product from being highly compressed radially outward, toward the rear side in the axial direction. Can be sent.
  • the thickness width on the tooth tip side of the tooth portion 112 is narrower than the thickness width on the tooth root side, and the tooth surface 116 is The tooth tip side is narrower than the tooth base side of the tooth portion 112.
  • the stepped portions 121 and 122 can relieve the compressive force / friction force locally applied to the plant biomass processed product by the tooth portion 112, and the plant biomass processed product is rapidly dense at the outermost portion in the passage 1a. ⁇ Prevents high strength and prevents plugs.
  • the configuration of the special fluffer ring 200 is not limited to the above-described embodiment, and various changes and combinations are possible.
  • the case where the tooth portion 112 of the special fluffer ring 200 has the two stepped portions 121 and 122 has been described as an example, but either one of the stepped portions 121 and 122 or the stepped portion. It is also possible to adopt a configuration in which the portions 121 and 122 are not provided in the tooth portion 112. Further, for example, the tooth portion 112 may be provided with a chamfered portion 131 (see the description of the third embodiment of the special gear kneading 100 described later).
  • FIG. 22 is a view showing an example of a special seal ring
  • FIG. 23 is a view of FIG. 22 as viewed from the direction of arrow U1, which is the feed direction of the processed plant biomass
  • FIG. 24 is a view taken along line AA in FIG. FIG.
  • the special seal ring 300 includes a first rotating body 301 and a second rotating body 302 as shown in FIGS.
  • Each of the first rotating body 301 and the second rotating body 302 has a configuration including a cylindrical shaft portion 311 and a diameter-expanding portion 312 that is expanded on one end side of the shaft portion 311.
  • the first rotating body 301 is provided with an enlarged diameter portion 312 on the upstream side in the feed direction that is the front side in the axial direction of the shaft portion 311, and in the feed direction that is on the rear side in the axial direction.
  • the shaft portion 311 protrudes toward the downstream side.
  • the 2nd rotary body 302 has the structure by which the enlarged diameter part 312 is provided in the feed direction downstream of the axial part 311, and the axial part 311 protrudes toward the upstream of a feed direction.
  • the enlarged diameter portion 312 of the first rotating body 301 faces the shaft portion 311 of the second rotating body 302, and the enlarged diameter portion 312 of the second rotating body 302 is the first. It arrange
  • the first rotating body 301 and the second rotating body 302 have a part of the enlarged diameter portion 312 in the feeding direction at an intermediate position between the first rotating body 301 and the second rotating body 302. They are arranged in an overlapping manner, and the sealing performance between the upstream side and the downstream side in the feeding direction of the special seal ring 300 is ensured.
  • the first rotating body 301 includes a boss portion 311 a that protrudes in the axial length direction from the enlarged diameter portion 312.
  • the second rotating body 302 is provided with a shaft portion 311 on the upstream side in the feeding direction from the enlarged diameter portion 312.
  • the boss portion 311a of the first rotating body 301 and the shaft portion 311 of the second rotating body 302 have a diameter-enlarged portion 312 in a state where the processed plant biomass fed from the upstream side in the feeding direction maintains its flow rate. This avoids a collision with the front surface 313, prevents a sudden compression force from being locally applied to the enlarged diameter portion 312 and reduces torque fluctuations acting on the motor that drives the screw shaft 7 to rotate. it can.
  • a hexagonal through hole 310 is formed in the shaft portion 311 along the central axis of the shaft portion 311.
  • the special seal ring 300 can be rotated integrally with the screw shaft by inserting and fixing the screw shaft 7 of the extruder into the through hole 310.
  • the enlarged diameter portion 312 has a short-axis cylindrical shape having a predetermined diameter and a predetermined axial length that is continuous in the axial length direction of the axial portion 311, and the size thereof is the outer peripheral surface of the enlarged diameter portion 312. 316 is set to a size facing the inner wall surface of the passage 1a with a predetermined gap.
  • a lead groove 317 is recessed in the outer peripheral surface 316 of the enlarged diameter portion 312. As shown in FIG. 22, the lead groove 317 extends from the front surface 313 to the rear surface 134 of the enlarged diameter portion 312, and the upstream side in the feeding direction and the downstream side in the feeding direction of the enlarged diameter portion 31. Communicating between the two.
  • the lead groove 317 has a predetermined twist angle (lead) so that it moves to the rear side in the rotation direction as it moves to the downstream side in the feeding direction. In the present embodiment, it is formed so as to extend along a spiral virtual line T shown in FIG.
  • the lead groove 317 can pass the plant biomass processed product fed from the upstream side in the feeding direction with respect to the enlarged diameter portion 312 in the passage 1a. Therefore, it is possible to prevent the pressure upstream of the special seal ring 300 from being excessively increased in pressure, and to prevent a plug from being generated upstream of the feed direction.
  • the lead groove 317 can feed the plant biomass processed product to the downstream side in the feeding direction by the twist angle of the lead groove 317.
  • the twist angle of the lead groove 317 is zero, that is, when the lead groove 317 extends parallel to the central axis of the shaft portion 311, the feed capacity of the processed plant biomass is zero, and the special seal ring 300 is It will be solved while shearing the processed plant biomass.
  • At least one lead groove 317 is provided. In this embodiment, as shown in FIG. 23, a total of eight lead grooves 317 are arranged at equal intervals in the circumferential direction.
  • the lead groove 317 disturbs the flow of the processed plant biomass that passes between the inner wall surface of the passage 1 a and the special seal ring 300, and the processed processed plant biomass located upstream of the special seal ring 300. While mitigating fluctuations, a feed component in the flow direction can also be imparted, and there is a pressure / fluid relief element, and a smooth resistance / holding state of the processed plant biomass is possible.
  • the feeding resistance that suppresses the feeding of the processed plant biomass in the passage 1a of the cylinder 1 can be stabilized, and the pressure difference between the upstream side and the downstream side of the special seal ring 300 can be maintained. Therefore, for example, the pressurized hot water treatment region 12 formed between the resistor 31 and the resistor 33 of the cylinder 1 can be maintained, and the pressure fluctuation in the pressurized hot water region can be suppressed to increase the temperature and pressure. Can be maintained.
  • the lead groove 317 can guide a part of the processed plant biomass to the downstream side of the cylinder 1 while suppressing the supply of the processed plant biomass. Accordingly, it is possible to prevent an excessively high pressure on the upstream side of the special seal ring 300 and to prevent a plug (aggregate) from being generated on the upstream side of the special seal ring 300.
  • Stepped portions 321 and 322 are provided on the upstream side in the feeding direction and the downstream side in the feeding direction of the enlarged diameter portion 312, respectively.
  • the stepped portion 321 is formed so as to be circumferentially continuous at the edge portion between the front surface 313 and the outer peripheral surface 316, and the stepped portion 322 is continuously formed circumferentially at the edge portion between the rear surface 314 and the outer peripheral surface 316. It is formed to do.
  • the stepped portion 321 is formed by cutting out the edge portion between the front surface 313 and the outer peripheral surface 316 of the enlarged diameter portion 312 in a step shape, and extends in the axial direction at a position radially inward of the outer peripheral surface 316. It has an axial length direction step surface 321a having a constant width and an axial diameter direction step surface 321b having a constant width in the axial direction at a position downstream of the front surface 313 in the feeding direction.
  • the stepped portion 322 is formed by cutting out the edge portion between the rear surface 314 and the outer peripheral surface 316 of the enlarged diameter portion 312 in a stepped shape, and extends in the axial length direction at a position radially inward of the outer peripheral surface 316.
  • An axial length direction step surface 322a having a constant width and an axial diameter direction step surface 322b having a constant width in the axial diameter direction at a position upstream of the rear surface 314 in the feeding direction are provided.
  • the stepped portion 321 can relieve the compressive force / friction force locally applied to the plant biomass processed product by the enlarged diameter portion 312, and the plant biomass processed product is early in the outermost portion located radially outside in the passage 1 a. High density and high strength can be prevented, and plug generation can be prevented.
  • the stepped portion 321 can reduce the surface area of the front surface 313 of the enlarged diameter portion 312. Therefore, the compressive force / frictional force generated when the processed plant biomass fed from the upstream side in the feeding direction comes into contact with the front surface 313 of the enlarged diameter portion 312 can be made relatively small. Therefore, the torque for rotating the screw shaft 7 can be reduced, and the drive motor can be reduced in size.
  • the configuration of the lead groove 317 is not limited to the above-described embodiments, and the number of the lead grooves 317, the size of the grooves, the shape of the grooves, and the like can be changed as appropriate to make a relief element / filling.
  • the rate can be easily varied.
  • FIG. 12 is a view showing another example of special gear kneading
  • FIG. 13 is a view of the special gear kneading seen from the direction of the arrow U1 shown in FIG. 12
  • FIG. 14 is a gear fitting state of the special gear kneading.
  • FIG. 15 is a diagram schematically illustrating a part of the tooth portion.
  • the special gear kneading 100 is characterized in that a stepped portion 121 is formed at the tip portion of the tooth portion 112 as shown in FIGS.
  • stepped portions 121 are provided on all of the six tooth portions 112 arranged in the axial circumferential direction in each of the first rotating body 101 and the second rotating body 102.
  • the stepped portion 121 may not be provided on all the tooth portions 112 included in the special gear kneading 100.
  • the arrangement position, interval, quantity, and the like of the tooth portion 112 having the stepped portion 121 are appropriately set according to the situation.
  • the stepped portion 121 is formed between the tooth surfaces 116 and 117 at the edge portion between the front surface 113 and the crown surface 118 of the tooth portion 112.
  • the thickness width on the distal end side of 112 is narrower than the thickness width on the proximal end side.
  • the stepped portion 121 is formed by cutting out the edge portion between the front surface 113 and the parietal surface 118 of the tooth portion 112 in a step shape, and is more radial than the parietal surface 118.
  • An axial length direction step surface 121a having a constant width in the axial length direction at the inner position
  • an axial radial direction step surface 121b having a constant width in the axial diameter direction at a position downstream of the front surface 113 in the feeding direction.
  • the tooth portion 112 is formed by the stepped portion 121 such that the thickness width on the distal end side of the tooth portion 112 is narrower than the thickness width on the proximal end side, the passage where the plant biomass processed product becomes high density.
  • the feed component and the shear force on the radially outer side in 1a can be reduced. Therefore, the torque for rotating the screw shaft can be reduced, and the drive motor can be reduced in size.
  • the stepped part 121 can relieve the compressive force and frictional force locally applied to the plant biomass processed product by the tooth portion 112, and the plant biomass processed product is at the outermost portion located radially outside in the passage 1a. Can prevent high density and high strength at an early stage, and can prevent the occurrence of plugs.
  • FIG. 16 is a diagram showing another example of special gear kneading
  • FIG. 17 is a diagram of special gear kneading as seen from the direction of the arrow U1 shown in FIG. 16
  • FIG. 18 shows a gear fitting state of special gear kneading
  • FIG. 19 is a diagram schematically illustrating a part of the tooth portion.
  • the special gear kneading 100 is characterized in that a chamfered portion 131 is formed at the tip portion of the tooth portion 112 as shown in FIGS. 17 and 19 in particular.
  • the chamfered portion 131 may not be provided on all the tooth portions 112 included in the special gear kneading 100, and is provided on at least one of the plurality of tooth portions 112 arranged at a predetermined interval in the axial circumferential direction. It is only necessary to be provided on at least one of the plurality of tooth portions 112 arranged at a predetermined interval in the axial length direction.
  • the arrangement position, interval, quantity, and the like of the tooth portion 112 having the chamfered portion 131 are appropriately set according to the situation.
  • the chamfered portion 131 is provided on the three tooth portions 112 among the six tooth portions 112 arranged in the axial circumferential direction in each of the first rotating body 101 and the second rotating body 102.
  • the tooth portions 112 having the chamfered portions 131 and the tooth portions 112 not having the chamfered portions 131 are arranged so as to be alternately arranged in the axial circumferential direction.
  • the chamfered portion 131 is formed between the front surface 113 and the rear surface 114 of the tooth portion 112 at the edge portion between the tooth surface 116 and the crown surface 118, and the rear side in the rotational direction. It has a planar shape inclined so as to shift outward in the axial radial direction as it shifts to.
  • the chamfered portion 131 is provided at the tip portion of the tooth portion 112 and is inclined so as to move outward in the axial radial direction as it moves to the rear side in the rotational direction, it exists on the front side in the rotational direction of the tooth portion 112. A part of the processed plant biomass can be moved between the chamfered portion 131 and the inner wall surface of the passage 1a to the rear side in the rotation direction of the tooth portion 112.
  • the chamfered portion 131 can reduce the feed component and the shear force on the radially outer side in the passage 1a where the plant biomass processed product has a high density. Therefore, the torque for rotating the screw shaft 7 can be reduced, and the drive motor can be reduced in size.
  • the chamfered portion 131 can relieve the compressive force / friction force locally applied to the plant biomass processed product by the tooth portion 112, and the plant biomass processed product is at the outermost portion located radially outside in the passage 1a. It is possible to prevent high density and high strength at an early stage and prevent plugs from being generated.
  • a U-shaped and reverse U-shaped gap is formed between the first rotating body 101 and the second rotating body 102 so as to be continuous in the direction of the arrow U1 that is the feeding direction.
  • the chamfered portion 131 can prevent the high density and high strength of the processed plant biomass existing on the front side of the tooth portion 112 in the rotation direction. Accordingly, the distance d3 between the rear surface 114 of the tooth portion 112 located on the upstream side in the feeding direction and the front surface 113 of the tooth portion 112 located on the downstream side in the feeding direction that partially faces the rear surface 114 is made narrower. (D3 ⁇ d1, d3 ⁇ d2). Therefore, the processed plant biomass can be further refined between the plurality of tooth portions 112 arranged along the axial length direction.
  • the configuration of the special gear kneading 100 is not limited to the contents of the above-described embodiments, and various combinations are possible. For example, it is good also as a structure which has the tooth part 112 which has the stepped part 121, and the tooth part 112 which has the chamfered part 131, and the tooth part 112 has both the stepped part 121 and the chamfered part 131.
  • FIG. 25 is a view showing an example of a seal ring
  • FIG. 26 is a view of FIG. 25 as viewed from the direction of arrow U1, which is the feed direction of the processed plant biomass
  • FIG. 27 is a view taken along the line BB in FIG. It is.
  • the special seal ring 300 is characterized in that a concave portion 323 is provided on the outer peripheral surface 316 as shown in FIGS.
  • the recess 323 has an opening on the upstream side in the feeding direction, the downstream side in the feeding direction is narrower than the upstream side in the feeding direction, and has a shape communicating with the upstream portion of the lead groove 317.
  • a total of eight lead grooves 317 are provided on the outer peripheral surface 316 of the enlarged diameter portion 312, and the recesses 323 are provided at positions corresponding to the respective lead grooves 317.
  • the recess 323 has a depth substantially the same as the depth of the lead groove 317.
  • the stepped portion 321 has a semicircular shape that protrudes from the axial radial step surface 321 b toward the downstream side in the feeding direction.
  • a lead groove 317 is connected to the end of the recess 323 on the downstream side in the feeding direction.
  • the recessed part 323 can be moved to the outermost part in the passage 1a while stirring a part of the processed plant biomass. Therefore, the flow of the processed plant biomass between the special seal ring 300 and the passage 1a is made more complicated, and the upstream side and the downstream side of the special seal ring 300 are sealed, and upstream of the passage 1a. It is possible to maintain a pressure in a region formed between the seal ring 330 provided and the special seal ring 300 provided downstream.
  • the recessed part 323 has the semicircle shape which becomes narrow as it transfers to the feed direction downstream, the compressive force applied locally to plant biomass processed material by the outer peripheral surface 316 of the special seal ring 300 The frictional force can be alleviated, and the processed plant biomass can be prevented from becoming high density and high strength early in the outermost part, and the occurrence of plugs can be prevented.
  • the shape of the recessed part 323 is not limited to a semicircle shape, What is necessary is just a shape which can make the flow of processed plant biomass into a complicated flow, for example, semi-elliptical shape, triangular shape, etc. Different shapes may be used.
  • FIGS. 28 is a view showing an example of a seal ring
  • FIG. 29 is a view of FIG. 28 as viewed from the direction of arrow U1, which is the feed direction of the processed plant biomass
  • FIG. 30 is a view taken along the line CC in FIG.
  • FIG. 31 is an enlarged view showing a main part of FIG.
  • the special seal ring 300 is characterized in that at least one circumferential groove 324 is recessed in the outer peripheral surface 316 of the enlarged diameter portion 312. As shown in FIG. 28, the circumferential groove 324 is formed so as to extend along the circumferential direction of the outer peripheral surface 316. In this embodiment, two circumferential grooves 324 are provided at a predetermined interval in the axial direction. ing. As shown in FIG. 31, the circumferential groove 324 includes a concave curved surface portion 324a that forms the upstream portion of the circumferential groove 324 in the feeding direction, and a tapered portion 324b that forms the downstream portion of the circumferential groove 324 in the feeding direction. It has.
  • the concave curved surface portion 324a is formed to have a concave arc shape having a constant curvature radius sr in cross-sectional shape.
  • the tapered portion 324b is formed to have an inclined shape in which the cross-sectional shape gradually moves outward in the radial direction as it moves from the concave curved surface portion 324a toward the downstream side in the feeding direction at an inclination angle s ⁇ .
  • the pressure and resistance in the flow direction of the plant biomass processed product can be smoothed by repeatedly performing relaxation and rise of the pressure etc. of the plant biomass processed product by the plurality of circumferential grooves 324, and more Safe seal resistance (fluidity) can be obtained.
  • it is effective for sealing performance in a high temperature and high pressure region where the plant biomass processed product is rapidly densified.
  • the circumferential groove 324 may be one, or may be three or more. Moreover, it is good also as a structure which relieve
  • Examples 6 to 8> 32 to 34 are views showing the cross-sectional shape of the lead groove provided in the seal ring.
  • a lead groove 317 is recessed in the outer peripheral surface 316 of the enlarged diameter portion 312.
  • the lead groove 317 extends from the front surface 313 to the rear surface 134 of the enlarged diameter portion 312 and communicates between the upstream side in the feeding direction and the downstream side in the feeding direction of the enlarged diameter portion 312. .
  • the lead groove 317A of Example 6 shown in FIG. 32 has a groove shape with a substantially U-shaped cross section cut out from the outer peripheral surface 316 along the radial direction.
  • the lead groove 317E of the seventh embodiment shown in FIG. 33 has a substantially U-shaped cross section cut away from the outer peripheral surface 316 toward the rear side in the rotational direction so as to have a predetermined angle ⁇ s-E with respect to the radial direction. It has a letter-like groove shape.
  • the lead groove 317G of the eighth embodiment shown in FIG. 34 has a substantially V-shaped cross section cut away from the outer peripheral surface 316 toward the rear side in the rotation direction so as to have a predetermined angle ⁇ s-G with respect to the radial direction. It has a letter-like groove shape.
  • the feed force by stirring and flow by the lead grooves 317A, 317E, and 317G increases in the order of the lead grooves 317A, 317E, and 317G (317A ⁇ 317E ⁇ 317G), and the relief element is the condition and size of the groove.
  • the flow resistance of the processed plant biomass can be changed according to the outer diameter of the enlarged diameter portion 312.
  • screw segments described above do not necessarily have to be used at the same time, but are appropriately selected according to conditions and the like and attached to the screw shaft 7 for use.
  • the screw train, twist angle, pitch, L / D, number of screws and paddles, etc. arranged in the passage 1a of the cylinder 1 can be appropriately selected as necessary.
  • the present invention is not limited to this, and the present invention can be applied to a single screw or a triaxial or more extruder.
  • FIG. 35 is a schematic diagram showing another example of the twin screw extruder in the present embodiment.
  • the screw extruder may include a plurality of decomposing agent supply units 4, refrigerant supply units 5, and enzyme supply units 6 along the flow direction of the cylinder 1. According to this configuration, it is possible to supply the decomposing agent, the refrigerant, and the enzyme at an optimal timing according to the processing state of the plant biomass processed product in the passage 1a.
  • the screw extruder may have a configuration in which the diameter is expanded at a midway position of the cylinder 1 as shown in FIG. According to such a configuration, it is possible to slow down the flow rate in the passage 1a in the large-diameter portion on the downstream side, and to ensure a long time for the cooling step, the saccharification charging step, and the like.
  • the screw extruder may be configured to make a U-turn at a midway position of the cylinder 1 as shown in FIG. According to such a configuration, the length of the cylinder 1 can be ensured longer. For example, the saccharification and fermentation can be continued in the cylinder 1 following the saccharification preparation region 14.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

 植物バイオマスの前処理を簡単な設備で迅速に行うことができる植物バイオマスの前処理方法を提供する。 前記植物バイオマスを予め設定された大きさ以下に粗粉砕し、該粗粉砕された植物バイオマスに分解剤を添加し、該分解剤が添加された植物バイオマスを加圧熱水処理し、該加圧熱水処理された植物バイオマスと該植物バイオマスを糖化させるための酵素とを混ぜ合わせる糖化仕込みまでの前処理を押出機内で順番に連続して行う。

Description

植物バイオマスの前処理方法
 本発明は、酵素分解により植物バイオマスからエタノールを製造するための植物バイオマスの前処理方法に関する。
 植物バイオマスから糖類を生成し、その生成した糖類を発酵させてエタノールを製造する方法が従来から種々提案されている。
 特許文献1には、エクスクルーダ内でスクリューによって木質系バイオマスを攪拌混合しながら搬送し、その搬送過程で水蒸気により加温して木質系バイオマスを膨潤させ、膨潤処理された木質系バイオマスを酸処理装置に投入して酸処理する前処理方法の技術が示されている。しかしながら、酸処理を用いた場合、廃棄物処理や環境負荷の問題がある。
 そこで、酵素によりバイオマスに含まれているセルロースとヘミセルロースを分解して糖類を生成し、その糖類を発酵させることによりエタノールを生成する酵素法が提案されている。
 植物細胞中のセルロースとヘミセルロースは、リグニンに保護される形態で存在しているので、セルロースとヘミセルロースを酵素分解するには、リグニンを破壊してセルロースとヘミセルロースを露出させる必要がある。また、セルロースとヘミセルロースは、結合力が強く、この結合を酵素により分解するためには、予めセルロース及びヘミセルロースの構造を少し分解しておく必要がある。このようなリグニンの破壊処理、並びに、セルロース及びヘミセルロースの構造分解処理のことを前処理と呼んでいる。
 前処理として、希硫酸分解、水蒸気爆砕、アンモニア爆砕、熱水・超臨界水を用いる方法、微生物分解、微粉砕、化学薬品処理などが考案されている。特許文献1には、木材チップを押出機で加熱・加圧下で剪断し、大気に押し出して膨化させることにより、リグニンを破壊する方法が示されている。
特開2007-202518号公報
 特許文献1に記載された技術は、リグニンを破壊してセルロースを露出させるものであり、セルロースとヘミセルロースの構造分解や、処理物に酵素を混合する糖化仕込みの工程は別個に独立して行う必要がある。したがって、効率が悪く、製造に手間がかかり、また、設備費がかかるなど高コストであった。
 本発明は、上記する問題に鑑みてなされたものであり、植物バイオマスの前処理を簡単な設備で迅速に行うことができる植物バイオマスの前処理方法を提供することを目的とする。
 前記目的を達成すべく、本発明による植物バイオマスの前処理方法は、酵素を用いて植物バイオマスからエタノールを製造するための前処理を行う植物バイオマスの前処理方法において、前記植物バイオマスを予め設定された大きさ以下に粗粉砕し、該粗粉砕された植物バイオマスに分解剤を添加し、該分解剤が添加された植物バイオマスを加圧熱水処理し、該加圧熱水処理された植物バイオマスと該植物バイオマスを糖化させるための酵素とを混ぜ合わせる糖化仕込みまでの前処理を押出機内で順番に連続して行うことを特徴としている(請求項1)。
 本発明の植物バイオマスの前処理方法によれば、植物バイオマスを予め設定された大きさ以下に粗粉砕し、分解剤を添加して加圧熱水処理し、酵素と混ぜ合わせる糖化仕込みまでの前処理を、押出機内で順番に連続して行うので、従来は別個に独立して行っていた粗粉砕、加圧熱水処理、糖化仕込みの各処理を一貫して行うことができる。したがって、効率的に前処理を行うことができ、設備の簡単化により設備費を低減でき、低コスト化を図ることができる。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、前記押出機は、一端に植物バイオマスを供給する供給口が形成され他端に前処理物が吐出される吐出口が形成された通路を有するシリンダと、該シリンダの通路内に配置され、前記植物バイオマスを前記吐出口に向けて送給する送給部、前記植物バイオマスを混練する混練部、および植物バイオマスに送給抵抗を与える抵抗体を含むスクリュー列を備え、前記シリンダの通路内に上流側から下流側に順次、植物バイオマスを予め設定された大きさ以下に粗粉砕する粗粉砕領域と、粗粉砕領域で粗粉砕された植物バイオマスを加圧熱水処理する加圧熱水処理領域と、加圧熱水処理領域で加圧熱水処理された植物バイオマスを冷却する冷却領域と、冷却領域で冷却された植物バイオマスに酵素を混ぜ合わせる糖化仕込み領域と、糖化仕込み領域で酵素が混ぜ合わされた植物バイオマスを前処理物として排出する排出領域を有することを特徴としている(請求項2)。
 本発明の植物バイオマスの前処理方法は、好ましくは、スクリュー列の抵抗体によって抵抗体の上流側に形成される植物バイオマスの高充填領域に、特殊ギヤニーディングまたは特殊フラッファリングの少なくとも一種類以上のスクリューセグメントを有するスクリュー列が配設されていることを特徴としている(請求項3)。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、粗粉砕領域には、順ニーディングディスク、逆ニーディングディスク、直交ニーディングディスク、特殊ギヤニーディング、特殊フラッファリングの少なくとも一種類以上のスクリューセグメントを有するスクリュー列が配設されていることを特徴としている(請求項4)。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、加圧熱水処理領域には、逆フルフライト、特殊ギヤニーディングまたは特殊フラッファリングの少なくとも一種類以上のスクリューセグメントを有するスクリュー列が配設され、加圧熱水処理領域の上流端と下流端には、特殊シールリングを有する抵抗体がそれぞれ配設されており、加圧熱水処理領域では植物バイオマスを加熱加圧して剪断・混練することを特徴としている(請求項5)。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、加圧熱水処理領域に配設された抵抗体は、上流側の抵抗体よりも下流側の抵抗体の方が大きな抵抗力を有するように設定されていることを特徴としている(請求項6)。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、通路の加圧熱水処理領域内に分解剤を供給する分解材供給部と、冷却領域内に冷媒を供給する冷媒供給部と、糖化仕込み領域内に酵素を供給する酵素供給部とが各々設けられていることを特徴としている(請求項7)。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、前記分解剤供給部は、前記シリンダの通路に沿って所定間隔をおいて複数設けられており、分解剤の供給量は下流側よりも上流側の方が多くなるように設定されていることを特徴としている(請求項8)。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、前記分解剤の供給量は、植物バイオマス100重量部に対して5~150重量部に設定されていることを特徴としている(請求項9)。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、前記押出機は、前記シリンダ内の圧力が1~30MPa、前記加圧熱水処理領域の温度が130℃から350℃に加熱加圧されることを特徴としている(請求項10)。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、排出領域には、順ニーディングディスク、逆ニーディングディスク及び直交ニーディングディスクの少なくとも一種類以上のスクリューセグメントを有するスクリュー列が配設されていることを特徴としている(請求項11)。
 本発明の植物バイオマスの前処理方法によれば、好ましくは、前記シリンダは、前記通路内のガスを排出するベントを排出領域に備え、該ベントから前記シリンダ内のガスを排出することを特徴としている(請求項12)。
 本発明の植物バイオマスの前処理方法によれば、植物バイオマスを予め設定された大きさ以下に粗粉砕し、分解剤を添加して粉砕することにより加圧熱水処理し、酵素と混ぜ合わせる糖化仕込みまでの前処理を、押出機内で順番に連続して行うので、従来は別個に独立して行っていた粗粉砕、加圧熱水処理、糖化仕込みの各処理を一貫して行うことができる。したがって、効率的に前処理を行うことができ、設備の簡単化により設備費を低減でき、低コスト化を図ることができる。
植物バイオマス処理物の前処理方法を説明するフローチャート。 スクリュー押出機のシリンダとスクリュー列の構成を模式的に示す図。 順送りフルフライトの構成を示す図。 逆送りフルフライトの構成を示す図。 順送り2条ねじニーディングディスクの構成を示す図。 逆送り2条ねじニーディングディスクの構成を示す図。 直交2条ねじニーディングディスクの構成を示す図。 特殊ギヤニーディングの構成を示す図。 図8の矢印U1方向からみた図。 図8の特殊ギヤニーディングのギヤ嵌合状態を断面で示す模式図。 図9に示す歯部の一部を拡大して示す図。 特殊ギヤニーディングの他の一例を示す図。 図12の矢印U1方向からみた図。 図12の特殊ギヤニーディングのギヤ嵌合状態を断面で示す模式図。 図13に示す歯部の一部を拡大して示す図。 特殊ギヤニーディングの他の一例を示す図。 図16の矢印U1方向からみた図。 図16の特殊ギヤニーディングのギヤ嵌合状態を断面で示す模式図。 図17に示す歯部の一部を拡大して示す図。 特殊フラッファリングの一例を示す図。 図20の矢印U1方向からみた図。 シールリングの一例を示す図。 図22の矢印U1方向からみた図。 図23のA-A線断面図。 シールリングの他の一例を示す図。 図25の矢印U1方向からみた図。 図26のB-B線断面図。 シールリングの他の一例を示す図。 図28の矢印U1方向からみた図。 図29のC-C線断面図。 図28の要部を拡大して示す図。 シールリングに設けられるリード溝の断面形状を示す図。 シールリングに設けられるリード溝の断面形状を示す図。 シールリングに設けられるリード溝の断面形状を示す図。 本発明の二軸スクリュー押出機の他の実施例を示す模式図。 本発明の二軸スクリュー押出機の他の実施例を示す模式図。 本発明の二軸スクリュー押出機の他の実施例を示す模式図。 従来の二軸スクリュー押出機が有するギヤニーディングの模式図。 図38の要部を拡大して示す図。
1…シリンダ、1a…通路、2…供給口、3…吐出口、4…分解剤供給部、4a…第1供給部、4b…第2供給部、5…冷媒供給部、6…酵素供給部、11…粗粉砕領域、12…加圧熱水処理領域、12A…上流領域、12B…下流領域、13…冷却領域、14…糖化仕込み領域、15…排出領域、21~25…スクリュー列、31~35…抵抗体、50…順送りフルフライト、52…逆送りフルフライト、43…順送り2条ねじニーディングディスク、54…逆送り2条ねじニーディングディスク、45…直交2条ねじニーディングディスク、100…特殊ギヤニーディング、200…特殊フラッファリング、300…特殊シールリング、
 以下、本発明の実施例について図面を参照しつつ説明する。
<実施例1>
 図1は、本発明である植物バイオマス処理物の前処理方法を説明するフローチャート、図2は、前処理方法に用いられるスクリュー押出機のシリンダとスクリュー列の構成を模式的に示す図である。
 本発明である植物バイオマス処理物の前処理方法は、図1に示すように、粗粉砕工程S1、加圧熱水処理工程S2、冷却工程S3、糖化仕込み工程S4、排出工程S5を含み、これら各工程は、図2に示すスクリュー押出機のシリンダ1内で順番に連続して行われる。
 スクリュー押出機は、並設された二本のスクリュー列が同じ方向に回転する同方向回転式の二軸スクリュー押出機が用いられており、直線状に延在する通路1aを持つシリンダ1を備えている。
 シリンダ1は、例えば木材チップ等の植物バイオマス(非流動性材料)が供給される供給口2が通路1aの一方端部に形成され、通路1a内で前処理された植物バイオマス処理物が吐出される吐出口3が通路1aの他方端部に形成されている。
 シリンダ1の通路1a内には、図示していない駆動モータに連結された2本のスクリューシャフト7が対をなして平行に配置されている。これら一対のスクリューシャフト7にフルフライトスクリュー50、52、ニーディングディスク54、56、58等の各種スクリューセグメントを直列に適宜組み合わせて取り付けることによってスクリュー列9が構成されている。
 スクリュー列9は、駆動モータによるスクリューシャフト7の回転によって通路1a内で一体に回転し、その回転によって処理物を吐出口3に向けて送給する複数の送給部と、処理物を剪断・混練する剪断・混練部と、処理物に送給抵抗を与える抵抗体を含む送給手段を構成する。
 シリンダ1の通路1a内には、粗粉砕領域11、加圧熱水処理領域12、冷却領域13、糖化仕込み領域14、排出領域15が直列に構成される。加圧熱水処理領域12は、通路1aの送給方向上流側と下流側に離れて設けられた抵抗体31、33の間に形成される。本実施例では、加圧熱水処理領域12の上流部、中間部、下流部にそれぞれ抵抗体31、32、33が設けられており、上流領域12Aと下流領域12Bが形成されている。
 シリンダ1には、加圧熱水処理領域12に分解剤を供給する分解剤供給部4と、冷却領域13に冷媒を供給する冷媒供給部5と、糖化仕込み領域14に酵素を供給する酵素供給部6が設けられている。
 分解剤供給部4は、通路1aの長手方向に所定間隔をおいて複数設けられており、本実施例では、上流領域12Aに第1供給部4aが設けられ、下流領域12Bに第2供給部4bが設けられている。単位時間あたりの分解剤の供給量の関係は、(第1供給部4a>第2供給部4b)の関係に設定されている。分解剤は、例えば冷水や熱水などの水、酸、アルカリ、溶剤、腐朽菌、超臨界液等が用いられ、分解剤供給部4から通路1a内に供給され、植物バイオマス処理物に添加される。
 なお、分解剤供給部4を粗粉砕領域11に設けて、分解剤を粗粉砕領域11に供給してもよい。例えば酸や腐朽菌等の分解剤を粗粉砕領域11に供給することによって、植物バイオマス処理物の粉砕と同時に分解剤を添加することができ、高効率化を図ることができる。
 冷媒供給部5は、加圧熱水処理領域12にて高温化された植物バイオマス処理物を酵素の活動に最適な温度に調整すべく、例えば液体窒素等の冷媒を冷却領域13に供給して冷却する。酵素供給部6は、酵素を植物バイオマス処理物に供給する。酵素は、糖化仕込み領域において植物バイオマス処理物に混ぜ合わされる。冷媒供給部5、酵素供給部6は、それぞれが通路内1aの長手方向に所定間隔をあけて複数設けてもよい。
 シリンダ1には、図示していない加熱ヒータが設けられており、加圧熱水処理領域12において植物バイオマス処理物を加熱して高温状態を維持できるようになっている。植物バイオマスは、時間に応じて適切な量が供給口2から通路1a内に供給される。本実施例では、例えば木材チップなどの木質系バイオマスが用いられる。
 以下に各工程S1~S5について詳細に説明する。
 粗粉砕工程S1では、スクリュー列9の回転による剪断・摩擦・分散・拡散・混練により、チップ状の植物バイオマス処理物を機械的に破砕して、予め設定された大きさ以下の小さな粗粉砕体とする。そして、粗粉砕体とされた植物バイオマス処理物を、粗粉砕領域11から下流の加圧熱水処理領域12に送給する。
 粗粉砕領域11におけるスクリュー列21は、例えば順送りフルフライト50、順送り2条ねじニーディングディスク54、逆送り2条ねじニーディングディスク56、直交2条ねじニーディングディスク58を適宜組み合わせることによって構成されている。そして、粗粉砕領域11内において形成される植物バイオマス処理物の充填率が高い高充填領域、および下流の加圧熱水処理領域12に植物バイオマス処理物を送給するための送給領域に、特殊ギヤニーディング100と特殊フラッファリング200の少なくとも一方が配置される。
 特殊ギヤニーディング100と特殊フラッファリング200は、通路1a内において植物バイオマス処理物の流れに乱れを生じさせ、植物バイオマス処理物の剪断・粗粉砕化・混練・分散・分解を促進させることができる。そして、下流側への送給も強化・安定化でき、プラグの発生を防ぐことができる。なお、粗粉砕領域における植物バイオマス処理物の温度は室温とされる。
 加圧熱水処理工程S2では、第1供給部4aおよび第2供給部4bから通路1a内に例えば水等の分解剤が供給されて植物バイオマス処理物に添加される。そして、スクリュー列22の回転により、植物バイオマス処理物の加圧熱水処理が行われる。加圧熱水処理では、加圧熱水下でスクリュー列22により植物バイオマス処理物が微細化・混練・攪拌・分散・分解される。
 加圧熱水処理領域12におけるスクリュー列22は、加圧熱水処理領域12の最上流部と最下流部と中間部に、それぞれ植物バイオマス処理物の送給を抑制する抵抗体31、32、33を備えており、植物バイオマス処理物の充填率が高い高充填領域を抵抗体31~33の上流側に形成する。
 加圧熱水処理領域12は、これらの抵抗体31~33によってシール性が高められ、加圧熱水処理領域12における圧力が飽和水蒸気圧以上の高圧状態(例えば1~30MPa)に維持される。
 抵抗体31、33は、特殊シールリング300を備えており、特殊シールリング300とシリンダ通路1aの内壁面との間を植物バイオマス処理物でシールし、密閉状態を作り出し、加圧熱水処理領域12内を昇圧する。
 加圧熱水処理領域12では、ヒータによる加熱およびスクリュー列9による剪断摩擦熱により、加圧熱水処理領域12における植物バイオマス処理物の温度を、130℃から350℃に維持できる。
 したがって、加圧熱水処理領域12を加圧熱水下(高圧高温)にすることができ、分解剤が添加された植物バイオマス処理物を膨潤させて軟化させる水熱処理を行わせることができる。したがって、水熱処理された植物バイオマス処理物を、スクリュー列22による剪断・混練により、簡単に微粉砕することができる。
 なお、分解剤として腐朽菌が添加される場合には、室温から80℃に維持される。また、分解剤として超臨界水が添加される場合には、加圧熱水処理領域12における圧力は超臨界圧力以上とされる。
 スクリュー列22は、特殊シールリング300、特殊ギヤニーディング100、特殊フラッファリング200、順送りフルフライト50、逆送りフルフライト52、順送り2条ねじニーディングディスク54、逆送り2条ねじニーディングディスク56、直交2条ねじニーディングディスク58等を適宜組み合わせることによって構成されている。
 加圧熱水処理領域12は、中間部の抵抗体32によって、上流領域12Aと下流領域12Bに区画されている。抵抗体31~33によって形成される高充填領域、上流領域12Aから下流領域12Bに植物バイオマス処理物を送給するための送給領域、および下流領域12Bから冷却領域13に植物バイオマスを送給するための送給領域の各領域には、特殊ギヤニーディング100と特殊フラッファリング200の少なくとも一方が配置されるように、スクリュー列22のスクリュー設計がなされている。
 高充填領域に特殊ギヤニーディング100等を配置することによって、植物バイオマス処理物の微細化・混練・攪拌・分散・分解の迅速化を図ることができ、また、送給領域に特殊ギヤニーディング100等を配置することによって、植物バイオマス処理物に圧縮力・摩擦力が局所的に加えられるのを防ぎ、プラグの発生を防ぐことができる。
 スクリュー列22の各抵抗体31~33は、特殊シールリング300、逆送りフルフライト32、特殊ギヤニーディング100、特殊フラッファリング200との組み合わせによって構成されている。各抵抗体31~33の抵抗の関係は、下流側に移行するにしたがって抵抗が大きくなるように、(最上流部の抵抗体31<中間部の抵抗体32<最下流部の抵抗体33)の関係に設定されている。
 加圧熱水処理領域12では、下流側に行くほど植物バイオマス処理物の微細化・混練・分解が進行し、その剪断抵抗・混練拡散抵抗・流動抵抗が低下するので、下流側に移行するにしたがって、通路1aの内壁面との隙間を小さくして、適正な流れや充填率を上流領域12Aと下流領域12Bでそれぞれ確保し、分解剤との拡散・分散性確保と、分解の効率化が図れる。
 また、抵抗体31~33が流れ方向に沿って上流部、中間部、下流部に配設されているので、植物バイオマス処理物に圧縮と膨張を繰り返して作用させることができ、各処理の効率化が図れる。
 第1供給部4aは、上流領域12Aにおいてその上流側に配置され、第2供給部4bは、下流領域12Bにおいてその上流側に配置されている。したがって、各領域部において水熱処理が行われる距離を可能な限り長く確保し、水熱処理を効果的に行わせることができる。分解剤の供給量は、例えば分解剤が水の場合には、植物バイオマス処理物との比が0.25~3に設定され、分解剤が酸・アルカリ・溶剤の場合には、植物バイオマス処理物との比が0.01~1に設定される。
 加圧熱水処理領域12は、特殊シールリング300によって高圧高温に保持されているので、植物バイオマス処理物を軟化させる水熱処理を効率よく行うことができる。したがって、植物バイオマス処理物は、スクリュー列22の剪断・混練・分散・分解作用により微粉砕されて、粗粉砕領域11における植物バイオマス処理物よりも更に細かくなる。第1供給部4aと第2供給部4bは、水熱処理を効果的に行うべく、加圧熱水処理領域12内に形成される高充填領域と同数個装備されている。
 分解剤供給部4は、加圧熱水処理領域12における圧力・温度等の条件に応じて、その供給位置を設定してもよい。適切な位置に分解剤を供給することにより、植物バイオマス処理物の微細化・混練・攪拌・分散・分解を迅速に行わせることができ、余分な処理剤が供給されるのを防ぐことができる。加圧熱水処理領域12で処理された植物バイオマス処理物は、下流に位置する冷却領域13に送給される。
 冷却工程S3では、冷媒供給部5から通路1a内に液体窒素等の冷媒を供給して冷却領域13における植物バイオマス処理物を冷却する処理が行われる。スクリュー列23は、順送りフルフライト50等の送給機能を有するスクリューセグメントのみを組み合わせることによって構成されている。
 植物バイオマスは、加圧熱水処理領域12において高温化されているので、加圧熱水処理領域12から送給されてきた直後は温度が高く、酵素にとって好ましい温度ではない。したがって、かかる温度状況のまま、糖化仕込み工程S4において酵素を仕込むと、酵素による糖化が困難となるおそれがある。そこで、加圧熱水処理工程S12と糖化仕込み工程S4との間に、冷却工程S3を設けて、高温化した植物バイオマス処理物を適切な温度まで冷却し、酵素による糖化が適切に行われるようにした。なお、冷却領域13における植物バイオマス処理物の温度は、冷媒によって40℃~50℃まで冷却される。
 糖化仕込み工程S4では、酵素供給部6から通路1a内に酵素を供給して、糖化仕込み領域14で植物バイオマス処理物に酵素を混ぜ合わせる処理が行われる。
 糖化仕込み領域14におけるスクリュー列24は、例えば特殊シールリング300、特殊ギヤニーディング100、特殊フラッファリング200、順送りフルフライト50、逆送りフルフライト52、順送り2条ねじニーディングディスク54、逆送り2条ねじニーディングディスク56、直交2条ねじニーディングディスク58等を適宜組み合わせることによって構成されている。酵素供給部6から通路1a内に所定量の酵素液が供給され、糖化仕込み領域14内で植物バイオマス処理物に添加される(例えば40FPU)。
 植物バイオマス処理物は、糖化仕込み工程S4まで処理が進むと粘性が高く、例えば作業者等では十分に混ぜ合わせることができないおそれがあるが、糖化仕込み領域14でスクリュー列24によって混ぜ合わせるので、植物バイオマス処理物に酵素を十分に混ぜ合わせることができる。植物バイオマス処理物は、糖化仕込み領域14で酵素と混ぜ合わされると、下流に位置する排出領域15に送給される。
 排出工程S5では、糖化仕込み領域14で酵素が混ぜ合わされた植物バイオマスを前処理物として排出する処理が行われるとともに、糖化仕込み後の植物バイオマス処理物からガス成分を脱気させる処理が行われる。シリンダ1には、脱気用のベント8が設けられている。ベント8は、通路1aの排出領域15と外部との間を連通しており、排出領域15内のガス成分の一部を排出させることができるようになっている。
 ベント8からガス成分の一部を排出させることにより、植物バイオマス処理物における分解剤の含水率を適宜に調整し、また、不要なガス成分を除去して、後工程である糖化工程等に最適な状態の植物バイオマス処理物を供給することができる。吐出口3から吐出された植物バイオマス処理物は、従来と同様の工程(糖化、発酵、精製)を経てエタノールとされる。
 排出領域15におけるスクリュー列25は、例えば順送り2条ねじニーディングディスク54、逆送り2条ねじニーディングディスク56、直交2条ねじニーディングディスク58の各スクリューセグメントを適宜組み合わせることによって構成されている。そして、吐出口3から植物バイオマス処理物を吐出させるための下流領域には、特殊ギヤニーディング100と特殊フラッファリング200の少なくとも一方が配置されるように構成されている。
 上記した本発明の植物バイオマスの前処理方法によれば、植物バイオマスを予め設定された大きさ以下に粗粉砕し、分解剤を添加して加圧熱水処理し、酵素と混ぜ合わせる糖化仕込みまでの前処理を、押出機内で順番に連続して行うので、従来は別個に独立して行っていた粗粉砕、加圧熱水処理、糖化仕込みの各処理を一貫して行うことができる。したがって、効率的に前処理を行うことができ、設備の簡単化により設備費を低減でき、低コスト化を図ることができる。
[スクリュー形状]
 本実施例においてスクリュー列9を構成する各スクリューセグメントについて以下に説明する。
 図3(A)、(B)は、順送りフルフライトの一例を示す図、図4(A)、(B)は、逆送りフルフライトの一例を示す図である。なお、図3(B)、図4(B)では、シリンダ1の通路1aの略真円状の内壁面は省略されている。
 順送りフルフライト50は、下流側への送給能力を確保すべく、スクリュー50iのねじれ方向を設定したものであり、逆送りフルフライト52は、下流側への送給能力が低下する様にスクリュー52iのねじれ方向を設定したものである。
 順送り2条ねじニーディングディスク54の一例を図5(A)、(B)に示す。順送り2条ねじニーディングディスク54は頂部54xをもつ略卵形のパドル54eを備え、頂部54xを右下がりで直列に構成したものである。
 逆送り2条ねじニーディングディスク56の一例を図6(A)、(B)に示す。逆送り2条ねじニーディングディスク56は頂部56xをもつ略卵形のパドル56eを備え、頂部56xが右上がりで直列に構成したものである。
 図7(A)、(B)は、直交2条ねじニーディングディスク58の一例を示す図である。直交2条ねじニーディングディスク28は頂部58xをもつ略卵形のパドル58eを90°の傾斜角で直列に構成したものである。直交2条ねじニーディングディスク58は、ねじれ角がないため送給能力はほとんどないものの、高剪断能力をもち分散能力や混練能力が高い。
 順送りフルフライト50、逆送りフルフライト52、順送り2条ねじニーディングディスク54、逆送り2条ねじニーディングディスク56、直交2条ねじニーディングディスク58には、スクリューシャフト7を挿入して固定するための貫通孔51、53、55、57、59が中心軸に沿って穿設されている。
 次に、特殊ギヤニーディングの構成について説明する。図8は、特殊ギヤニーディングの構成の一例を示す図、図9は、図8に示す特殊ギヤニーディングを植物バイオマス処理物の送給方向である矢印U1方向からみた図、図10は、図8の特殊ギヤニーディングのギヤ嵌合状態を断面で示す模式図、図11は、図9に示す歯部の一部を拡大して示す図である。
 特殊ギヤニーディング100は、図8または図9に示すように、第1回転体101と第2回転体102とからなる。第1回転体101と第2回転体102は、それぞれ円筒形状の軸部111に複数の歯部112を備えた構成を有している。
 軸部111には、図9に示すように、六角状の貫通孔110が軸部111の中心軸に沿って穿設されている。特殊ギヤニーディング100は、貫通孔110にスクリューシャフト7を挿通して固定することにより、スクリューシャフト7と一体に回転できるようになっている。
 複数の歯部112は、図9に示すように、軸部111の軸周方向に所定間隔をおいて突出するように設けられており、本実施例では6本の歯部112が一定間隔で配置されている。歯部112の本数は本実施例に限定されるものではなく、1本以上であればよい。
 また、これら複数の歯部112は、図8に示すように、軸部111の軸長方向である送給方向U1に所定間隔をおいて設けられており、本実施例では、軸周方向に連続する6本の歯部112を一枚の歯部群とカウントした場合に、送給方向U1に合計で4枚の歯部群を形成するように配置されている。歯部群の枚数も本実施例に限定されるものではなく、複数枚であればよい。
 歯部112は、軸部111の軸長方向に沿って一定の厚み幅を有しており、軸長方向前側である送給方向上流側には、軸部111の径方向に沿う前面113が形成され、軸長方向後側である送給方向下流側には、第1軸部111の径方向に沿う後面114が形成されている。
 また、歯部112は、図9に示すように、軸部111の軸筒外周面115から軸径方向外側に向かって延出して軸長方向に沿う歯面116、117と、歯面116、117の上端部間に亘って連続する頭頂面118を備えている。
 歯面116、117は、図8に示すように、送給方向下流側に移行するにしたがって回転方向後側に移行するように傾斜しており、所定のねじれ角(リード)を有している。軸長方向に所定間隔をおいて連続する複数の歯部112の歯面116、117を、軸長方向につなげば、図8において、仮想線Tで示す螺旋状のリードが得られる。第1回転体101または第2回転体102が矢印方向に回転すると、歯部112の歯面116、117のねじれ角により、植物バイオマス処理物の矢印U1方向への送給性は確保される。
 これら一対の歯面116、117のうち、第1回転体101または第2回転体102の回転方向前側に位置する歯面116は、図11に示すように、軸筒外周面115から軸径方向外側に向かって滑らかに立ち上がる断面凹円弧状の湾曲面部116aと、湾曲面部116aに連続して軸部111から離反する方向である径方向外側に向かって延出し、径方向外側に移行するにしたがって回転方向前側に移行するように傾斜角度θで回転方向前側に傾斜した平面状の縦壁面部116bを有している。
 一方、回転方向後側に位置する歯面117は、軸筒外周面115から径方向外側に向かって延出し、径方向外側に移行するにしたがって回転方向前側に移行するように傾斜した平面形状を有しており、本実施例では、歯面116の縦壁面部116bと平行になるように形成されている。
 頭頂面118は、軸部111の軸心Oを中心とする円弧形状を有しており、図9に示すように、真円形状を有する通路1aの内壁面との間に所定の間隙を有して対向するように形成されている。
 第1回転体101及び第2回転体102は、図8に示すように、一方の軸部111の軸長方向に所定間隔をおいて配置された歯部112の間に、他方の軸部111の歯部112が位置するように平行に配置され、第1回転体101の歯部112と第2回転体102の歯部112とが軸長方向に交互に並ぶ。第1回転体101と第2回転体102との間には、図10に示すように、コ字形及び逆コ字形の隙間が送給方向である矢印U1方向に連続するように形成されており、特殊ギヤニーディング100における混錬性能及び分散性能が確保されている。そして、送給方向上流側に位置する歯部112の後面114と、その後面114に一部対向する送給方向下流側に位置する歯部112の前面113との間には、所定の間隔d1が形成されている。
 この間隔d1を狭くすることによって、植物バイオマス処理物の送給に対する抵抗性が増加し、植物バイオマス処理物の送給を抑制する抵抗体として機能させることもできる。したがって、ギヤニーディング100は、シリンダ1の加圧熱水処理領域12において高充填領域を形成する箇所に配置することも好ましい。
 第1回転体101および第2回転体102の各軸部111は、送給方向上流側の最前に位置する歯部112よりも、軸長方向に突出するボス部111aを備えている。ボス部111aは、送給方向上流側から送給される植物バイオマス処理物がその流れ速度を維持した状態で、最前に位置する歯部112の前面113に衝突するのを避けて、当該歯部112に急激な圧縮力・摩擦力が局所的に加えられるのを防止し、スクリューシャフトを回転駆動するモータに作用するトルク変動を小さくすることができる。
 そして、第1回転体101と第2回転体102は、例えば図9に示すように、一方の軸部111の歯部112と他方の軸部111の歯部112とが、第1回転体101と第2回転体102との中間位置において、互いに接近して交差するように、回転タイミングが設定されている。
 上記構成を有する特殊ギヤニーディング100によれば、歯部112の回転方向前側に形成された歯面116が、回転方向前側に向かって傾斜角度θで傾斜した縦壁面部116bを有しているので、第1回転101と第2回転体102の回転によって、植物バイオマス処理物に作用する軸径方向外側に向かう付勢力を低減させることができる。したがって、シリンダ1の通路1a内で植物バイオマス処理物が遠心力によって外方に移動されて圧縮力・摩擦力が局所的に加えられるのを防ぐことができ、プラグ(凝集塊)の発生を防止できる。
 図38は、既知の二軸押出機が有するギヤニーディング910の模式図、図39は、図38の要部を拡大して示す図である。従来のギヤニーディング910の歯部912は、図38および図39に示すように、軸部911から放射状に突出しており、一対の歯面916、917のうち、回転方向前側に位置する歯面916は、径方向外側に移行するにしたがって回転方向後側に移行する平面形状を有している。
 したがって、木粉などの被流動性材は、遠心力により第1回転体901及び第2回転体902の径方向外側に向かって飛ばされ、図39に細矢印で示すように、圧縮力・摩擦力が局所的に加えられ、通路1a内の最外部に高密度・高強度化されたプラグを早期に発生させる。そして、このプラグの圧縮抵抗・摩擦力などにより、第1回転体901及び第2回転体902の回転が阻害され、過負荷(モータトルクオーバ)となり、送給が困難となるおそれがある。
 これに対して、本発明の特殊ギヤニーディング100は、特に図11に示すように、歯部112の回転方向前側に位置する歯面116が、回転方向前側に向かって傾斜角度θで傾斜した縦壁面部116bを有する歯部112を有しているので、植物バイオマス処理物に作用する軸径方向外側に向かう付勢力を低減させることができ、シリンダ1の通路1a内におけるプラグの発生を有効に防ぐことができる。そして、プラグの発生を防止することで、スクリューシャフト7が軸径方向に変形されるのを防ぎ、歯部112がシリンダ1の通路1aに接触することによる摩耗・過負荷の発生を未然に防ぐことができる。
 また、第1回転体101と第2回転体102の回転により、軸長方向に隣り合う歯部112を互いに対向する方向に移動させて植物バイオマス処理物を剪断する場合に、回転方向前側に向かって傾斜角度θで傾斜した縦壁面部116bで剪断できるので、植物バイオマス処理物を剪断するのに必要とする力を小さくすることができる。したがって、押出機の駆動力をより小さくすることができ、駆動モータの小型化を図ることができる。
 また、歯部112の歯面116は、図8に仮想線Tで示すように、軸長方向に対して所定のねじれ角を有しているので、植物バイオマス処理物を送給方向上流側から下流側に向かって移動させるように付勢することができ、径方向外側に向かう付勢力を低減し、シリンダ1の通路1a内における最外形部で高圧縮化されるのを防ぐことができる。
 なお、上述の特殊ギヤニーディング100では、軸長方向に所定間隔をおいて配置される複数の歯部112が全て一定のねじれ角(リード)を有する場合を例に説明したが、軸長方向に配置される位置に応じてねじれ角の大きさを変更してもよい。例えば、送給方向上流側に位置する歯部112の歯面116、117のねじれ角を大きくし、送給方向下流側に位置する歯部112の歯面116、117のねじれ角を小さくすることにより、上流側よりも下流側の送り量を大きくすることができる。そして、植物バイオマス処理物の充填率・密度を軸長方向の位置に応じて可変化することができ、剪断・拡散等のより効果的な処理を行うことができる。
 次に、本発明の特徴的な構成である特殊フラッファリング200の一例を図20、図21に示す。図20は、特殊フラッファリングの一例を示す図、図21は、図20を植物バイオマス処理物の送給方向である矢印U1方向からみた図である。なお、上述の特殊ギヤニーディング100と同様の構成要素には、同一の符号を付することでその詳細な説明を省略する。
 特殊フラッファリング200は、第1回転体201と第2回転体202とからなる。第1回転体201と第2回転体202は、それぞれ円筒形状の軸部211に複数の歯部112を備えた構成を有している。複数の歯部112は、図21に示すように、軸部211の軸周方向に所定間隔をおいて突出するように設けられており、本実施例では6本の歯部112が一定間隔で配置されている。
 第1回転体201は、図20に示すように、軸部211の軸長方向前側である送給方向上流側に歯部112が設けられており、軸長方向後側である送給方向下流側に向かって軸部211が突出する構成を有している。そして、第2回転体202は、軸部211の送給方向下流側に歯部112が設けられており、送給方向上流側に向かって軸部211が突出する構成を有している。
 第1回転体201と第2回転体202は、第1回転体201の歯部112が第2回転体202の軸部211と対向し、かつ第2回転体202の歯部112が第1回転体201の軸部211と対向するように配置され、第1回転体201の歯部112と、第2回転体202の歯部112とが互いに送給方向に接近した位置に配置される。
 第1回転体201と第2回転体202との間には、送給方向である矢印U1方向に沿ってクランク状に折れ曲がる通路が形成されており、特殊フラッファリング200における混錬性能及び分散性能が確保されている。
 第1回転体201は、歯部112よりも軸長方向に突出するボス部211aを備えている。そして、第2回転体202は、歯部112よりも送給方向上流側に軸部211が設けられている。
 第1回転体201のボス部211aと、第2回転体202の軸部211は、送給方向上流側から送給される植物バイオマス処理物がその流れ速度を維持した状態で、最前に位置する歯部112の前面113に衝突するのを避けて、当該歯部112に急激な圧縮力が局所的に加えられるのを防止し、スクリューシャフト7を回転駆動するモータに作用するトルク変動を小さくすることができる。
 第1回転体201と第2回転体202は、例えば図21に示すように、一方の軸部211の歯部112と他方の軸部211の歯部112とが、第1回転体201と第2回転体202との中間位置において、互いに接近して交差するように、回転タイミングが設定されている。
 歯部112の先端部分には、段付部121、122が形成されている。図20、図21に示す例では、第1回転体101および第2回転体102においてそれぞれ軸周方向に配置された6個の歯部112の全てに段付部121が設けられている。段付部121、122は、特殊フラッファリング200が有する全ての歯部112に設けられていなくてもよい。段付部121、122を有する歯部112の配置位置、間隔、数量等は、状況に応じて適切に設定される。
 段付部121は、歯部112の前面113と頭頂面118とのエッジ部分において歯面116、117の間に亘って形成されており、段付部122は、歯部112の後面114と頭頂面118とのエッジ部分において歯面116、117の間に亘って形成されている。したがって、各歯部112の歯先側の厚み幅は、歯元側の厚み幅よりも狭くなっている。
 段付部121は、歯部112の前面113と頭頂面118とのエッジ部分を段差状に切り欠くことによって形成されており、頭頂面118よりも径方向内側の位置にて軸長方向に一定幅を有する軸長方向段差面121aと、前面113よりも送給方向下流側の位置にて軸径方向に一定幅を有する軸径方向段差面121bとを有している。
 段付部122は、歯部112の後面114と頭頂面118とのエッジ部分を段差状に切り欠くことによって形成されており、頭頂面118よりも径方向内側の位置にて軸長方向に一定幅を有する軸長方向段差面122aと、後面114よりも送給方向上流側の位置にて軸径方向に一定幅を有する軸径方向段差面122bとを有している。
 上記構成を有する特殊フラッファリング200によれば、歯部112が回転方向前側に向かって傾斜角度θで傾斜した縦壁面部116bを有しているので、植物バイオマス処理物に作用する軸径方向外側に向かう付勢力を低減させることができる。したがって、シリンダ1の通路1a内において、植物バイオマス処理物に圧縮力・摩擦力が局所的に加わることにより高密度・高強度のプラグ(凝集塊)が発生するのを防止できる。
 そして、プラグの発生を防止することで、スクリューシャフト7が軸径方向に変形されるのを防ぎ、歯部112がシリンダ1の通路1aに接触することによる摩耗・過負荷の発生を未然に防ぐことができる。
 また、第1回転体201と第2回転体202の回転により、軸長方向に隣り合う歯部112を互いに対向する方向に移動させて植物バイオマス処理物を剪断する場合に、回転方向前側に向かって傾斜角度θで傾斜した縦壁面部116bで剪断することができ、植物バイオマス処理物を剪断するのに必要とする力を小さくすることができる。したがって、押出機の駆動力をより小さくすることができ、駆動ユニットの小型化を図ることができる。
 また、歯部112の歯面116が、仮想線Tで示すねじれ角を有しているので、植物バイオマス処理物が径方向外側に高圧縮されるのを防ぎつつ、軸方向後側に向かって送給することができる。
 そして、歯部112には、段付部121、122が設けられているので、歯部112の歯先側の厚み幅が、歯元側の厚み幅よりも狭くなっており、歯面116は、歯部112の歯元側よりも歯先側の方が狭くなっている。
 したがって、植物バイオマス処理物が高密度となる通路1a内の最外形部における送り成分および剪断力を小さくすることができる。したがって、スクリューシャフト7を回転させるトルクを小さくすることができ、駆動モータの小型化を図ることができる。
 また、段付部121、122は、歯部112によって植物バイオマス処理物に局所的に加えられる圧縮力・摩擦力を緩和でき、通路1a内の最外形部において植物バイオマス処理物が早期に高密度・高強度化するのを防ぎ、プラグの発生を防止できる。
 特殊フラッファリング200の構成は、上記した実施例に限定される物ではなく、種々の変更や組み合わせが可能である。例えば、上述の実施例では、特殊フラッファリング200の歯部112が2つの段付部121、122を有する場合を例に説明したが、段付部121、122のいずれか一方、もしくは段付部121、122を歯部112に設けない構成とすることも可能である。また、例えば歯部112に面取り部131(後述する特殊ギヤニーディング100の実施例3の説明を参照)を設けた構成としてもよい。
 次に、本発明の特徴的な構成である特殊シールリング300の一例を図22~図24に示す。図22は、特殊シールリングの一例を示す図、図23は、図22を植物バイオマス処理物の送給方向である矢印U1方向からみた図、図24は、図23のA-A線矢視図である。
 特殊シールリング300は、図22~図24に示すように、第1回転体301と第2回転体302とからなる。第1回転体301と第2回転体302は、それぞれ円筒形状の軸部311と、軸部311の一方端部側で拡径された拡径部312とを備えた構成を有している。
 第1回転体301は、図22に示すように、軸部311の軸長方向前側である送給方向上流側に拡径部312が設けられており、軸長方向後側である送給方向下流側に向かって軸部311が突出する構成を有している。そして、第2回転体302は、軸部311の送給方向下流側に拡径部312が設けられており、送給方向上流側に向かって軸部311が突出する構成を有している。
 第1回転体301と第2回転体302は、第1回転体301の拡径部312が第2回転体302の軸部311と対向し、かつ第2回転体302の拡径部312が第1回転体301の軸部311と対向するように配置され、第1回転体301の拡径部312と、第2回転体302の拡径部312とが互いに送給方向に接近した位置に配置される。
 第1回転体301と第2回転体302は、図23に示すように、第1回転体301と第2回転体302との中間位置において、拡径部312の一部が送給方向に互いに重なり合って配置されており、特殊シールリング300における送給方向上流側と下流側との間のシール性能が確保されている。
 第1回転体301は、拡径部312よりも軸長方向に突出するボス部311aを備えている。そして、第2回転体302は、拡径部312よりも送給方向上流側に軸部311が設けられている。
 第1回転体301のボス部311aと、第2回転体302の軸部311は、送給方向上流側から送給される植物バイオマス処理物がその流れ速度を維持した状態で、拡径部312の前面313に衝突するのを避けて、当該拡径部312に急激な圧縮力が局所的に加えられるのを防止し、スクリューシャフト7を回転駆動するモータに作用するトルク変動を小さくすることができる。
 軸部311には、図23に示すように、六角状の貫通孔310が軸部311の中心軸に沿って穿設されている。特殊シールリング300は、貫通孔310に押出機のスクリューシャフト7を挿通して固定することにより、スクリューシャフトと一体に回転できるようになっている。
 拡径部312は、一定径で軸部311の軸長方向に連続する所定の軸方向長さを有した短軸円柱形状を有しており、その大きさは、拡径部312の外周面316が通路1aの内壁面との間に所定の間隙を有して対向する大きさに設定されている。
 拡径部312の外周面316には、リード溝317が凹設されている。リード溝317は、図22に示すように、拡径部312の前面313から後面134までの間に亘って延在して、拡径部31の送給方向上流側と送給方向下流側との間を連通している。
 リード溝317は、送給方向下流側に移行するにしたがって回転方向後側に移行するように、所定のねじれ角(リード)を有している。本実施例では、図22に示される螺旋状の仮想線Tに沿って延在するように形成されている。
 リード溝317は、通路1a内において、拡径部312よりも送給方向上流側から送給されてくる植物バイオマス処理物を通過させることができる。したがって、特殊シールリング300よりも送給方向上流側が過度に高圧化されるのを防ぎ、送給方向上流側でプラグが発生するのを防ぐことができる。
 リード溝317は、第1回転体301および第2回転体302が矢印方向に回転すると、リード溝317のねじれ角により、植物バイオマス処理物を送給方向下流側に送給することができる。リード溝317のねじれ角がゼロの場合、すなわち、リード溝317が軸部311の中心軸と平行に延在する場合には、植物バイオマス処理物の送り能力はゼロになり、特殊シールリング300は植物バイオマス処理物を剪断しながら解すことになる。リード溝317は、少なくとも1本以上が設けられており、本実施例では、図23に示すように、合計で8本のリード溝317が周方向に等間隔をおいて配置されている。
 リード溝317は、通路1aの内壁面と特殊シールリング300との間を通過する植物バイオマス処理物の流れに乱れを生じさせ、かつ、特殊シールリング300の上流側に位置する植物バイオマス処理物の変動を緩和しながら、流れ方向への送り成分も付与することができ、圧力・流動性のリリーフ的な要素を有し、植物バイオマス処理物の円滑な抵抗・保持状態が可能となる。
 したがって、シリンダ1の通路1a内における植物バイオマス処理物の送給を抑制する送給抵抗を安定させ、特殊シールリング300の上流側と下流側との圧力差を保持できる。したがって、例えばシリンダ1の抵抗体31と抵抗体33との間に形成される加圧熱水処理領域12の保圧をすることができ、加圧熱水領域内の圧力変動を抑えて高温高圧に維持できる。
 また、リード溝317によって、植物バイオマス処理物の送給を抑制しつつ、その一部をシリンダ1の下流側に導くことができる。したがって、特殊シールリング300の上流側が過度に高圧化するのを防ぎ、特殊シールリング300の上流側にプラグ(凝集塊)が発生するのを防ぐことができる。
 拡径部312の送給方向上流側と送給方向下流側には、それぞれ段付部321、322が設けられている。段付部321は、前面313と外周面316とのエッジ部において周状に連続するように形成されており、段付部322は、後面314と外周面316とのエッジ部において周状に連続するように形成されている。
 段付部321は、拡径部312の前面313と外周面316とのエッジ部を段差状に切り欠くことによって形成されており、外周面316よりも径方向内側の位置にて軸長方向に一定幅を有する軸長方向段差面321aと、前面313よりも送給方向下流側の位置にて軸径方向に一定幅を有する軸径方向段差面321bとを有している。
 段付部322は、拡径部312の後面314と外周面316とのエッジ部を段差状に切り欠くことによって形成されており、外周面316よりも径方向内側の位置にて軸長方向に一定幅を有する軸長方向段差面322aと、後面314よりも送給方向上流側の位置にて軸径方向に一定幅を有する軸径方向段差面322bとを有している。
 段付部321は、拡径部312によって植物バイオマス処理物に局所的に加えられる圧縮力・摩擦力を緩和でき、通路1a内の径方向外側に位置する最外形部において植物バイオマス処理物が早期に高密度・高強度化するのを防ぎ、プラグの発生を防止できる。
 また、段付部321は、拡径部312の前面313の表面積を小さくすることができる。したがって、送給方向上流側から送給されてきた植物バイオマス処理物が拡径部312の前面313に当接した際に生ずる圧縮力・摩擦力を比較的小さくすることができる。したがって、スクリューシャフト7を回転させるトルクを小さくすることができ、駆動モータの小型化を図ることができる。
 なお、リード溝317の構成は、上述の実施例に限定されるものではなく、リード溝317の溝数、溝の大きさ、溝の形状等を適宜変更することによって、リリーフ的な要素・充満率を容易に変動させることができる。
<実施例2>
 実施例2について図12~図15を参照して説明する。実施例2では、特殊ギヤニーディング100の他の例について説明する。図12は、特殊ギヤニーディングの他の一例を示す図、図13は、特殊ギヤニーディングを図12に示す矢印U1方向からみた図、図14は、特殊ギヤニーディングのギヤ嵌合状態を示す模式図、図15は、歯部の一部を拡大して示す図である。
 特殊ギヤニーディング100は、図12、図13に示すように、歯部112の先端部分に段付部121が形成されていることを特徴としている。図12~図15に示す例では、第1回転体101および第2回転体102においてそれぞれ軸周方向に配置された6個の歯部112の全てに段付部121が設けられている。
段付部121は、特殊ギヤニーディング100が有する全ての歯部112に設けられていなくてもよい。段付部121を有する歯部112の配置位置、間隔、数量等は、状況に応じて適切に設定される。
 段付部121は、例えば図12、図13に示すように、歯部112の前面113と頭頂面118とのエッジ部分において歯面116、117の間に亘って形成されており、各歯部112の先端側の厚み幅が、基端側の厚み幅よりも狭くなるようになっている。
 段付部121は、図14、図15に示すように、歯部112の前面113と頭頂面118とのエッジ部分を段差状に切り欠くことによって形成されており、頭頂面118よりも径方向内側の位置にて軸長方向に一定幅を有する軸長方向段差面121aと、前面113よりも送給方向下流側の位置にて軸径方向に一定幅を有する軸径方向段差面121bとを有している。
 歯部112は、段付部121によって、歯部112の先端側の厚み幅が、基端側の厚み幅よりも狭くなるように形成されているので、植物バイオマス処理物が高密度となる通路1a内の径方向外側の送り成分および剪断力を小さくすることができる。したがって、スクリューシャフトを回転させるトルクを小さくすることができ、駆動モータの小型化を図ることができる。
 そして、段付部121は、歯部112によって植物バイオマス処理物に局所的に加えられる圧縮力・摩擦力を緩和でき、通路1a内の径方向外側に位置する最外形部にて植物バイオマス処理物が早期に高密度・高強度化するのを防ぎ、プラグの発生を防止できる。
<実施例3>
 実施例3について図16~図19を参照して説明する。実施例3では、特殊ギヤニーディング100の更に他の例について説明する。図16は、特殊ギヤニーディングの他の一例を示す図、図17は、特殊ギヤニーディングを図16に示す矢印U1方向からみた図、図18は、特殊ギヤニーディングのギヤ嵌合状態を示す模式図、図19は、歯部の一部を拡大して示す図である。
 特殊ギヤニーディング100は、特に図17と図19に示されるように、歯部112の先端部分に面取り部131が形成されていることを特徴としている。面取り部131は、特殊ギヤニーディング100が有する全ての歯部112に設けられていなくてもよく、軸周方向に所定間隔をおいて配置された複数の歯部112のうちの少なくとも一つに設けられており、また、軸長方向に所定間隔をおいて配置された複数の歯部112のうちの少なくとも一つに設けられていればよい。
 面取り部131を有する歯部112の配置位置、間隔、数量等は、状況に応じて適切に設定される。図16~図19に示す例では、第1回転体101および第2回転体102においてそれぞれ軸周方向に配置された6個の歯部112のうち、3個の歯部112に面取り部131が設けられており、面取り部131を有する歯部112と面取り部131を有していない歯部112とが軸周方向に交互に並ぶように配置されている。
 面取り部131は、図16と図19に示すように、歯面116と頭頂面118とのエッジ部分において歯部112の前面113と後面114の間に亘って形成されており、回転方向後側に移行するにしたがって軸径方向外側に移行するように傾斜した平面形状を有している。
 面取り部131は、歯部112の先端部分に設けられており、回転方向後側に移行するにしたがって軸径方向外側に移行するように傾斜しているので、歯部112の回転方向前側に存在する植物バイオマス処理物の一部を、面取り部131と通路1aの内壁面との間を通過させて歯部112の回転方向後側に移動させることができる。
 また、面取り部131は、植物バイオマス処理物が高密度となる通路1a内の径方向外側の送り成分および剪断力を小さくすることができる。したがって、スクリューシャフト7を回転させるトルクを小さくすることができ、駆動モータの小型化を図ることができる。
 また、面取り部131は、歯部112によって植物バイオマス処理物に局所的に加えられる圧縮力・摩擦力を緩和でき、通路1a内の径方向外側に位置する最外形部にて植物バイオマス処理物が早期に高密度・高強度化するのを防ぎ、プラグの発生を防止できる。
 第1回転体101と第2回転体102との間には、図18に示すように、コ字形及び逆コ字形の隙間が送給方向である矢印U1方向に連続するように形成されている。面取り部131は、歯部112の回転方向前側に存在する植物バイオマス処理物の高密度・高強度化を防ぐことができる。したがって、送給方向上流側に位置する歯部112の後面114と、その後面114に一部対向する送給方向下流側に位置する歯部112の前面113との間の間隔d3を、より狭くすることができる(d3<d1、d3<d2)。したがって、軸長方向に沿って配置された複数の歯部112の間において、植物バイオマス処理物をより微細化することができる。
 特殊ギヤニーディング100の構成は、上記した各実施例の内容に限定されるものではなく、種々の組み合わせが可能である。例えば、段付部121を有する歯部112と、面取り部131を有する歯部112とを有する構成とし、また、歯部112が段付部121と面取り部131の両方を有する構成としてもよい。
<実施例4>
 実施例4について図25~図27を参照して説明する。実施例4では、特殊シールリング300の他の例について説明する。図25は、シールリングの一例を示す図、図26は、図25を植物バイオマス処理物の送給方向である矢印U1方向からみた図、図27は、図25のB-B線矢視図である。
 特殊シールリング300は、図25、図26に示すように、外周面316に凹部323を設けたことを特徴としている。凹部323は、送給方向上流側が前方に向かって開放されており、送給方向下流側が送給方向上流側よりも狭く、リード溝317の上流部に連通する形状を有している。
 拡径部312の外周面316には、合計で8本のリード溝317が設けられており、凹部323は、これらの各リード溝317に対応する位置に各々設けられている。
 凹部323は、例えば図26に示すように、リード溝317の溝深さとほぼ同様の深さを有している。そして、例えば図25に示すように、段付部321の軸径方向段差面321bから送給方向下流側に向かって突出する半円形状を有している。そして、凹部323の送給方向下流側の端部には、リード溝317が接続されている。
 凹部323は、植物バイオマス処理物の一部を攪拌させながら、通路1a内の最外形部に移動させることができる。したがって、特殊シールリング300と通路1aとの間における植物バイオマス処理物の流れを、より複雑な流れにして、特殊シールリング300の上流側と下流側との間をシールし、通路1aの上流に設けられたシールリング330と下流に設けられた特殊シールリング300との間に形成される領域の保圧をすることができる。
 また、凹部323は、送給方向下流側に移行するにしたがって狭くなる半円形状を有しているので、特殊シールリング300の外周面316によって植物バイオマス処理物に局所的に加えられる圧縮力・摩擦力を緩和でき、最外形部にて植物バイオマス処理物が早期に高密度・高強度化するのを防ぎ、プラグの発生を防止できる。
 なお、凹部323の形状は、半円形状に限定されるものではなく、植物バイオマス処理物の流れを複雑な流れにすることができる形状であればよく、例えば、半楕円状、三角状等の異形状でもよい。
<実施例5>
 次に、更に他の特殊シールリング300の例を図28~図31に示す。図28は、シールリングの一例を示す図、図29は、図28を植物バイオマス処理物の送給方向である矢印U1方向からみた図、図30は、図29のC-C線矢視図、図31は、図28の要部を拡大して示す図である。
 特殊シールリング300は、拡径部312の外周面316に少なくとも1本以上の周方向溝324が凹設されていることを特徴としている。周方向溝324は、図28に示すように、外周面316の周方向に沿って延在するように形成されており、本実施例では、軸長方向に所定間隔をおいて2本設けられている。周方向溝324は、図31に示すように、周方向溝324の送給方向上流側部分を形成する凹曲面部324aと、周方向溝324の送給方向下流側部分を形成するテーパ部324bを備えている。
 凹曲面部324aは、断面形状が一定の曲率半径srを有する凹円弧形状を有するように形成されている。テーパ部324bは、断面形状が傾斜角度sαで凹曲面部324aから送給方向下流側に向かって移行するにしたがって漸次径方向外側に移行する傾斜形状を有するように形成されている。
 したがって、通路1a内を上流側から下流側に向かって送給されてきた植物バイオマス処理物が、外周面316と対向する位置から周方向溝324と対向する位置に移動してきた場合に、周方向溝324の凹曲面部324aによって、植物バイオマス処理物に作用する圧力を急激に減圧させて、圧力や流れの変動を緩和させることができる。そして、周方向溝324のテーパ部324bによって、植物バイオマス処理物に作用する圧力や流れの変動を徐々に上昇させることができる。
 そして、この植物バイオマス処理物の圧力等の緩和と上昇を複数の周方向溝324によって、繰り返し行わせることによって、植物バイオマス処理物の流れ方向への圧力・抵抗を平滑化することができ、より安全なシール抵抗(流動性)を得ることができる。そして特に、植物バイオマス処理物が急激に高密度化される高温・高圧力領域のシール性に有効である。
 周方向溝324は、1本でもよく、また、3本以上であってもよい。また、回転方向後側に移行するにしたがって送給方向下流側に漸次移行するように、緩やかなねじれ角を付けて、植物バイオマス処理物に作用する圧力の変動を緩和する構成としてもよい。
<実施例6~8>
 図32~図34は、シールリングに設けられるリード溝の断面形状を示す図である。
 拡径部312の外周面316には、リード溝317が凹設されている。リード溝317は、拡径部312の前面313から後面134までの間に亘って延在して、拡径部312の送給方向上流側と送給方向下流側との間を連通している。
 図32に示す実施例6のリード溝317Aは、外周面316から径方向に沿って切り欠かれた断面が略コ字状の溝形状を有している。そして、図33に示す実施例7のリード溝317Eは、外周面316から径方向に対して所定角度θs-Eの角度を有するように回転方向後側に向かって切り欠かれた断面が略U字状の溝形状を有している。そして、図34に示す実施例8のリード溝317Gは、外周面316から径方向に対して所定角度θs-Gの角度を有するように回転方向後側に向かって切り欠かれた断面が略V字状の溝形状を有している。
 リード溝317A、317E、317Gによる攪拌や流れによる送り力は、リード溝317A、317E、317Gの順番で大きくなり(317A<317E<317G)、また、リリーフ的な要素は、溝の条件、大きさによって任意に設定することができ、拡径部312の外径に応じて、植物バイオマス処理物の流れ抵抗を変更することができる。
 以上、説明したスクリューセグメントは、その全てを必ず同時に使用する必要はなく、条件等に応じて適宜選択され、スクリューシャフト7に取り付けて使用される。
 以上、本発明の各実施例について図面を用いて詳述してきたが、具体的な構成はこれらに限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。
 例えば、シリンダ1の通路1aに配置されているスクリュー列、ねじれ角、ピッチ、L/D、スクリューやパドルの数等は必要に応じて適宜選択できるものである。また、二軸スクリュー押出機の場合を例に説明したが、これに限られず、単軸あるいは三軸以上の押出機にも適用できる。
 図35は、本実施の形態における二軸スクリュー押出機の他の一例を示す模式図である。スクリュー押出機は、図35に示すように、分解剤供給部4、冷媒供給部5、酵素供給部6を、シリンダ1の流れ方向に沿って複数備えていてもよい。かかる構成によれば、通路1a内における植物バイオマス処理物の処理状態に応じて、最適なタイミングで分解剤、冷媒、酵素を供給することができる。
 また、スクリュー押出機は、図36に示すように、シリンダ1の途中位置で拡径された構成としてもよい。かかる構成によれば、下流側の太径部分では通路1a内を流動する速度を遅くすることができ、冷却工程や糖化仕込み工程等の時間を長く確保することができる。
 また、スクリュー押出機は、図37に示すように、シリンダ1の途中位置でUターンさせる構成としてもよい。かかる構成によれば、シリンダ1の長さを、より長く確保でき、例えば糖化仕込み領域14に引き続き、糖化、発酵までシリンダ1内で行うこともできる。

Claims (12)

  1.  酵素を用いて植物バイオマスからエタノールを製造するための前処理を行う植物バイオマスの前処理方法において、
     前記植物バイオマスを予め設定された大きさ以下に粗粉砕し、該粗粉砕された植物バイオマスに分解剤を添加し、該分解剤が添加された植物バイオマスを加圧熱水処理し、該加圧熱水処理された植物バイオマスと該植物バイオマスを糖化させるための酵素とを混ぜ合わせる糖化仕込みまでの前処理を押出機内で順番に連続して行うことを特徴とする植物バイオマスの前処理方法。
  2.  前記押出機は、
     一端に植物バイオマスを供給する供給口が形成され他端に前処理物が吐出される吐出口が形成された通路を有するシリンダと、
     該シリンダの通路内に配置され、前記植物バイオマスを前記吐出口に向けて送給する送給部、前記植物バイオマスを混練する混練部、および植物バイオマスに送給抵抗を与える抵抗体を含むスクリュー列を備え、
     前記シリンダの通路内に上流側から下流側に順次、前記植物バイオマスを予め設定された大きさ以下に粗粉砕する粗粉砕領域と、該粗粉砕領域で粗粉砕された植物バイオマスを加圧熱水処理する加圧熱水処理領域と、該加圧熱水処理領域で加圧熱水処理された植物バイオマスを冷却する冷却領域と、該冷却領域で冷却された植物バイオマスに酵素を混ぜ合わせる糖化仕込み領域と、該糖化仕込み領域で酵素が混ぜ合わされた植物バイオマスを前処理物として排出する排出領域を有することを特徴とする請求項1に記載の植物バイオマスの前処理方法。
  3.  前記スクリュー列の抵抗体によって前記抵抗体の上流側に形成される植物バイオマスの高充填領域に、特殊ギヤニーディングまたは特殊フラッファリングの少なくとも一種類以上のスクリューセグメントを有するスクリュー列が配設されていることを特徴とする請求項2に記載の植物バイオマスの前処理方法。
  4.  前記粗粉砕領域には、順ニーディングディスク、逆ニーディングディスク、直交ニーディングディスク、特殊ギヤニーディング、特殊フラッファリングの少なくとも一種類以上のスクリューセグメントを有するスクリュー列が配設されていることを特徴とする請求項2または3に記載の植物バイオマスの前処理方法。
  5.  前記加圧熱水処理領域には、逆フルフライト、特殊ギヤニーディングまたは特殊フラッファリングの少なくとも一種類以上のスクリューセグメントを有するスクリュー列が配設され、前記加圧熱水処理領域の上流端と下流端には、特殊シールリングを有する抵抗体がそれぞれ配設されており、前記加圧熱水処理では前記植物バイオマスを加圧加熱下で剪断・混練することを特徴とする請求項2から請求項4のいずれか一項に記載の植物バイオマスの前処理方法。
  6.  前記加圧熱水処理領域に配設された抵抗体は、上流側の抵抗体よりも下流側の抵抗体の方が大きな抵抗力を有するように設定されていることを特徴とする請求項5に記載の植物バイオマスの前処理方法。
  7.  前記通路の加圧熱水処理領域内に分解剤を供給する分解材供給部と、前記冷却領域内に冷媒を供給する冷媒供給部と、前記糖化仕込み領域内に酵素を供給する酵素供給部とが各々設けられていることを特徴とする請求項2から請求項6のいずれか一項に記載の植物バイオマスの前処理方法。
  8.  前記分解剤供給部は、前記シリンダの通路に沿って所定間隔をおいて複数設けられており、分解剤の供給量は下流側よりも上流側の方が多くなるように設定されていることを特徴とする請求項2から請求項7のいずれか一項に記載の植物バイオマスの前処理方法。
  9.  前記分解剤の供給量は、植物バイオマス100重量部に対して5~150重量部に設定されていることを特徴とする請求項2から請求項8のいずれか一項に記載の植物バイオマスの前処理方法。
  10.  前記押出機は、前記シリンダ内の圧力が1~30MPa、前記加圧熱水処理領域の温度が130℃から350℃に加圧加熱されることを特徴とする請求項2から請求項9のいずれか一項に記載の植物バイオマスの前処理方法。
  11.  前記排出領域には、順ニーディングディスク、逆ニーディングディスク及び直交ニーディングディスクの少なくとも一種類以上のスクリューセグメントを有するスクリュー列が配設されていることを特徴とする請求項2から請求項10のいずれか一項に記載の植物バイオマスの前処理方法。
  12.  前記シリンダは、前記通路内のガスを排出するベントを前記排出領域に備え、該ベントから前記シリンダ内のガスを排出することを特徴とする請求項2から請求項11のいずれか一項に記載の植物バイオマスの前処理方法。
PCT/JP2009/064441 2009-08-18 2009-08-18 植物バイオマスの前処理方法 WO2011021272A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011527507A JPWO2011021272A1 (ja) 2009-08-18 2009-08-18 植物バイオマスの前処理方法
BR112012003719A BR112012003719A2 (pt) 2009-08-18 2009-08-18 método de pré-tratamento de biomassa de plantas
PCT/JP2009/064441 WO2011021272A1 (ja) 2009-08-18 2009-08-18 植物バイオマスの前処理方法
US13/391,184 US20120214205A1 (en) 2009-08-18 2009-08-18 Plant biomass pretreatment method
CN2009801620066A CN102575267A (zh) 2009-08-18 2009-08-18 植物生物质的前处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/064441 WO2011021272A1 (ja) 2009-08-18 2009-08-18 植物バイオマスの前処理方法

Publications (1)

Publication Number Publication Date
WO2011021272A1 true WO2011021272A1 (ja) 2011-02-24

Family

ID=43606737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064441 WO2011021272A1 (ja) 2009-08-18 2009-08-18 植物バイオマスの前処理方法

Country Status (5)

Country Link
US (1) US20120214205A1 (ja)
JP (1) JPWO2011021272A1 (ja)
CN (1) CN102575267A (ja)
BR (1) BR112012003719A2 (ja)
WO (1) WO2011021272A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130745A (ja) * 2009-12-25 2011-07-07 Japan Steel Works Ltd:The バイオマス材料の連続加圧熱水処理方法
KR20130114776A (ko) * 2012-04-10 2013-10-21 에스케이이노베이션 주식회사 바이오매스로부터 유기산의 제조 방법
WO2013182827A1 (fr) * 2012-06-08 2013-12-12 Institut National Polytechnique De Toulouse Procédé de traitement enzymatique d'une matière ligno-cellulosique solide
WO2015053026A1 (ja) * 2013-10-07 2015-04-16 昭和電工株式会社 スクリュー押出機
KR101843956B1 (ko) 2018-02-22 2018-05-14 한국화학연구원 연속 고압 전처리용 섬유질 바이오매스 제조 방법 및 이를 이용한 연속식 고압 전처리 방법
CN114832921A (zh) * 2022-05-30 2022-08-02 镇江新宇固体废物处置有限公司 一种基于氮气保护的危险废物预处理系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9809867B2 (en) 2013-03-15 2017-11-07 Sweetwater Energy, Inc. Carbon purification of concentrated sugar streams derived from pretreated biomass
US20150147786A1 (en) * 2013-11-24 2015-05-28 E I Du Pont De Nemours And Company High force and high stress destructuring for starch biomass processing
EP4098750A1 (en) * 2014-12-09 2022-12-07 Sweetwater Energy, Inc. Rapid pretreatment
WO2017095042A1 (en) * 2015-12-03 2017-06-08 Korea Research Institute Of Chemical Technology Development of biomass pretreatment technology via controlled feeding system of fibrous biomass into continuous high-pressure reactor
WO2018151833A1 (en) * 2017-02-16 2018-08-23 Sweetwater Energy, Inc. High pressure zone formation for pretreatment
AU2020412611A1 (en) 2019-12-22 2022-07-14 Apalta Patents OÜ Methods of making specialized lignin and lignin products from biomass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503126A (ja) * 1992-08-06 1996-04-09 ザ・テキサス・エイ・アンド・エム・ユニバーシティ・システム バイオマスの前処理方法
JP2007202518A (ja) * 2006-02-03 2007-08-16 Mitsui Eng & Shipbuild Co Ltd 木質系バイオマスチップの前処理方法及び前処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114488A (en) * 1985-01-31 1992-05-19 Wenger Manufacturing, Inc. Extrusion method and apparatus for acid treatment of cellulosic materials
JP2909577B2 (ja) * 1993-10-29 1999-06-23 トヨタ自動車株式会社 樹脂廃材の再生方法及び装置
US6251643B1 (en) * 1997-03-18 2001-06-26 2B Ag Method for using a vegetable biomass and a screw press to carry out said method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503126A (ja) * 1992-08-06 1996-04-09 ザ・テキサス・エイ・アンド・エム・ユニバーシティ・システム バイオマスの前処理方法
JP2007202518A (ja) * 2006-02-03 2007-08-16 Mitsui Eng & Shipbuild Co Ltd 木質系バイオマスチップの前処理方法及び前処理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKESHI INOI ET AL.: "Bagasse no Koso Toka no Tameno Kagakuteki Mae Shori sonohoka no Biomass eno Oyo", HAKKO KOGAKU, vol. 63, no. 3, 1985, pages 227 - 230 *
TAKESHI INOI ET AL.: "Bagasse no Koso Toka no Tameno Kagakuteki Mae Shori", HAKKO KOGAKU, vol. 62, no. 6, 1984, pages 421 - 424 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130745A (ja) * 2009-12-25 2011-07-07 Japan Steel Works Ltd:The バイオマス材料の連続加圧熱水処理方法
KR20130114776A (ko) * 2012-04-10 2013-10-21 에스케이이노베이션 주식회사 바이오매스로부터 유기산의 제조 방법
KR101926193B1 (ko) * 2012-04-10 2018-12-07 에스케이이노베이션 주식회사 바이오매스로부터 유기산의 제조 방법
WO2013182827A1 (fr) * 2012-06-08 2013-12-12 Institut National Polytechnique De Toulouse Procédé de traitement enzymatique d'une matière ligno-cellulosique solide
FR2991691A1 (fr) * 2012-06-08 2013-12-13 Toulouse Inst Nat Polytech Procede de traitement enzymatique d'une matiere ligno-cellulosique solide
US20150299751A1 (en) * 2012-06-08 2015-10-22 Institut National Polytechnique De Toulouse Method of enzymatic treatment of a solid lignocellulosic material
WO2015053026A1 (ja) * 2013-10-07 2015-04-16 昭和電工株式会社 スクリュー押出機
KR101843956B1 (ko) 2018-02-22 2018-05-14 한국화학연구원 연속 고압 전처리용 섬유질 바이오매스 제조 방법 및 이를 이용한 연속식 고압 전처리 방법
CN114832921A (zh) * 2022-05-30 2022-08-02 镇江新宇固体废物处置有限公司 一种基于氮气保护的危险废物预处理系统
CN114832921B (zh) * 2022-05-30 2023-09-01 镇江新宇固体废物处置有限公司 一种基于氮气保护的危险废物预处理系统

Also Published As

Publication number Publication date
US20120214205A1 (en) 2012-08-23
CN102575267A (zh) 2012-07-11
JPWO2011021272A1 (ja) 2013-01-17
BR112012003719A2 (pt) 2015-09-08

Similar Documents

Publication Publication Date Title
WO2011021272A1 (ja) 植物バイオマスの前処理方法
JP5263398B2 (ja) スクリューセグメント
JP5333591B2 (ja) シールリング
Kratky et al. Biomass size reduction machines for enhancing biogas production
EP2179048B1 (en) Process for concentrated biomass saccharification
US9605223B2 (en) Apparatus for rapid mixing of media and method
EP2602080A1 (en) Continuous kneading machine and kneading method
RU2441754C2 (ru) Многовальный экструдер
CN102227300B (zh) 挤出机和挤出机操作方法
US7425090B2 (en) Device for dispersing and melting flowable materials
Gu et al. Disruption of lignocellulosic biomass along the length of the screws with different screw elements in a twin-screw extruder
CN103462199A (zh) 一种膨化机
CN105363534A (zh) 一种旋转式流体物料处理机
JP2008173605A (ja) 有機質改質装置
JP2011206638A (ja) バイオマス粉砕物製造装置とこれを用いたバイオマス粉砕物製造方法
CN219816514U (zh) 棒状物料一级粉碎机构及棒状物料粉碎装置
CN104906999B (zh) 环模木屑制粒机
CN203467638U (zh) 一种膨化机
CN101890799A (zh) 组合叶轮磨盘式挤出塑化方法和装置
CN2620585Y (zh) 改性沥青高速剪切均化磨机
US9422663B1 (en) Apparatus and process for treatment of biocomponents
CN102489197A (zh) 分区域双轴搅拌增湿装置
CN201029424Y (zh) 饲料膨化机
WO2015098946A1 (ja) リグノセルロース系バイオマス処理装置、処理方法、処理物及び糖化方法
KR101863226B1 (ko) 화학적 방법과 물리적 방법을 동시에 수행할 수 있는 연속식 바이오매스 융합처리장치 및 이를 이용한 바이오매스 처리방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162006.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527507

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13391184

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09848471

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012003719

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012003719

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120217