WO2011020432A1 - 基于移动中继的切换方法和移动无线中继系统 - Google Patents

基于移动中继的切换方法和移动无线中继系统 Download PDF

Info

Publication number
WO2011020432A1
WO2011020432A1 PCT/CN2010/076099 CN2010076099W WO2011020432A1 WO 2011020432 A1 WO2011020432 A1 WO 2011020432A1 CN 2010076099 W CN2010076099 W CN 2010076099W WO 2011020432 A1 WO2011020432 A1 WO 2011020432A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
denb
mobile relay
mobile
epc
Prior art date
Application number
PCT/CN2010/076099
Other languages
English (en)
French (fr)
Inventor
黄亚达
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/389,519 priority Critical patent/US8730918B2/en
Priority to EP10809565.4A priority patent/EP2469926A4/en
Publication of WO2011020432A1 publication Critical patent/WO2011020432A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to a relay technology in a cellular wireless communication system, and more particularly to a mobile relay based handover method and a mobile wireless relay system. Background technique
  • the cellular wireless communication system is mainly composed of a user equipment (UE, User Equipment), an access network, and a core network (CN, Core Network).
  • a network composed of a base station, or a base station and a base station controller is called a Radio Access Network (RAN), and the RAN is responsible for access layer transactions, such as management of radio resources.
  • RAN Radio Access Network
  • the core network is responsible for non-access layer transactions, such as location updates, and is the anchor point for the user plane.
  • the wireless coverage of a fixed base station network is limited for various reasons, such as: blocking of wireless signals by various building structures, and the like, which inevitably has coverage holes in the coverage of the wireless network.
  • the communication quality of the UE is poor at the cell edge, and the error rate of the wireless transmission is increased.
  • one solution is to introduce a wireless network node in a cellular wireless communication system, called Following (relay).
  • Relay is a station that relays data between other network nodes through a wireless link, also called a Relay Node/Relay Station.
  • the working principle is shown in Figure 2.
  • the UE directly served by the base station is called a macro UE, and the UE served by the relay is called a relay UE.
  • the radio link between the base station and the UE is called a direct link, and includes a direct/downlink (DL/UL, downlink/uplink) direct link; between the relay and the UE.
  • the link is called an access link and includes a DL/UL access link.
  • the radio link between the base station and the relay is called a backhaul link and includes a DL/UL backhaul link.
  • the relay relays data in various ways, for example: directly amplifying the wireless signal from the base station; or performing corresponding processing on the data sent by the base station and forwarding the data to the UE, the processing may be demodulation or decoding; or the base station and the relay cooperate with the UE.
  • Send data on the contrary, Relay also relays data sent from the UE to the base station.
  • Relay which has the following characteristics:
  • the UE cannot distinguish between the relay and the cell under the fixed base station. That is, in the view of the UE, the cell under the relay is not different from the cell under the fixed base station.
  • the cell under such a relay can be called a relay cell.
  • the relay cell has the same physical cell identity (PCI, Physical Cell Identity) as all the cells, and broadcasts the same as the normal cell.
  • PCI Physical Cell Identity
  • the relay cell can separately allocate the scheduling radio resource to the UE.
  • the resource scheduling of the Relay is independent of the radio resource scheduling of the base station participating in the relay (also known as the Donor base station, that is, the base station connected by the relay through the backhaul link).
  • the interface and protocol stack between the Relay cell and the Relay UE are the same as the interface and protocol stack between the normal base station cell and the UE.
  • the current Long Term Evolution (LTE, Long Term Evolution) cellular wireless communication system uses an Internet Protocol (IP)-based flat architecture, evolved by a universal terrestrial radio access network (E- UTRAN, Evolved Universal Terrestrial Radio Access Network), Evolved Packet Core (EPC) nodes and other supporting nodes.
  • the EPC node includes: a Mobility Management Entity (MME), a S-GW (Serving Gateway), and a Packet Data Network Gateway (P-GW).
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • the control plane includes mobility management, non-access stratum signaling processing, and user mobility management context management; the S-GW is responsible for UE user plane data transmission, forwarding, and routing handover; and the base station (eNB) Logically connected to each other through the X2 interface to support the UE throughout the network. Internal mobility ensures seamless user switching; P-GW is a node that connects EPC and packet data network (such as the Internet), is responsible for IP address allocation of UE, and IP data packets are filtered into service data streams according to service type (Service Data Flows) and bind to the corresponding transport bearer, etc.
  • service type Service Data Flows
  • Each eNB is connected to the core network of the System Architecture Evolution (SAE) through the S1 interface, that is, it is connected to the MME through the control plane S1-MME interface, and is connected to the S-GW through the user plane S1-U interface, and the S1 interface supports Multipoint connection between eNB and MME and S-GW.
  • the MME and the S-GW are connected by the S11 interface
  • the S-GW and the P-GW are connected by the S5 interface
  • the eNBs are connected through the X2 interface.
  • Each eNB performs signaling and data transmission with the UE through the Uu interface.
  • the radio interface between the Relay and the eNB is the Un interface
  • the interface between the Relay and the UE is the same as the interface between the eNB and the UE. It is also a Uu interface.
  • a typical application scenario is to deploy a mobile relay on a train or a vehicle to facilitate the provision of better services for the UE in the traffic tool.
  • the mobile relay acts as an aggregation network element, and simultaneously moves a large number of UEs into a mobile relay-network element. This reduces the overhead of signaling during the air interface and network.
  • the main object of the present invention is to provide a mobile wireless relay system and a mobile relay-based handover method to implement mobile relay switching and support relay mobility.
  • the present invention provides a mobile relay based handover method.
  • a mobile relay Relay
  • the method includes:
  • the source host base station (DeNB) is connected as an intermediate node to the Relay access network and the evolved data core network (EPC), the Relay access network includes at least a target DeNB and a mobile relay; and the source DeNB will data from the Relay access network. Forwarding to the EPC, forwarding data from the EPC to the Relay access network.
  • EPC evolved data core network
  • the forwarding channel between the source DeNB and the target DeNB encapsulates data.
  • the forwarding channel is an evolved radio access bearer (E-RAB) terrestrial transmission channel of the mobile relay.
  • E-RAB evolved radio access bearer
  • the handover of the mobile relay is specifically: performing a handover preparation operation between the source DeNB and the target DeNB, and exchanging context information of the mobile relay at the source DeNB;
  • the target DeNB sets new Un configuration information of the mobile relay in the target cell, and sends the Un configuration information to the mobile relay through the source DeNB; the mobile relay performs according to the received Un configuration information. Un reconfigures and reconfigures the Un interface from the source DeNB to the target DeNB.
  • the method further includes:
  • the target DeNB After the mobile relay reconfigures the Un interface from the source DeNB to the target DeNB, the target DeNB negotiates a configuration of the transmission channel with the source DeNB and/or the EPC, and performs a channel switching operation to establish a relationship between the mobile relay and the EPC. Data transmission channel.
  • the present invention also provides a handover method based on mobile relay.
  • the method includes:
  • the EPC forwards the data of the user terminal (UE) of the mobile relay service by the source DeNB according to the control of the target DeNB, and transfers the data to be forwarded by the target DeNB.
  • the EPC includes at least a Mobility Management Entity (MME) serving a UE, and a Serving Network Element (S-GW) or a Packet Data Network Gateway (P-GW).
  • MME Mobility Management Entity
  • S-GW Serving Network Element
  • P-GW Packet Data Network Gateway
  • the data of the UE includes SI control plane signaling and SI user plane data of the UE.
  • the present invention also provides a mobile wireless relay system, the system comprising: a Relay Access Network and an EPC, the Relay access network includes at least a target DeNB and a mobile Relay, and the source DeNB serves as an intermediate node to connect the Relay access network and the EPC. ;
  • the source DeNB forwards data from the Relay access network to the EPC, and forwards data from the EPC to the Relay access network.
  • the forwarding channel between the source DeNB and the target DeNB encapsulates data, and the forwarding channel is an E-RAB ground transmission channel of the mobile relay.
  • the target DeNB is further configured to perform a handover preparation operation with the source DeNB, exchange context information of the mobile relay in the source DeNB, and set a new Un configuration information of the mobile relay in the target cell after the handover preparation is completed, And sending the Un configuration information to the mobile relay through the source DeNB;
  • the mobile relay is further configured to perform Un-reconfiguration according to the received Un configuration information, and reconfigure the Un interface from the source DeNB to the target DeNB.
  • the target DeNB is further configured to: after the mobile relay reconfigures the Un interface from the source DeNB to the target DeNB, negotiate a configuration of the transmission channel with the source DeNB and/or the EPC, and perform a channel switching operation to establish the mobile relay. Data transmission channel between the EPC and the EPC.
  • the mobile radio relay system and the mobile relay based handover method provided by the present invention connect the source host base station (DeNB) as an intermediate node to the relay access network and the EPC, and the relay access network includes at least the target DeNB and the mobile relay.
  • the EPC and the mobile relay forward the data of the respective served UE to the target DeNB through the source DeNB according to the instruction of the target DeNB.
  • the handover of the mobile relay is realized, and the movement of the relay can be supported.
  • 1 is a schematic structural diagram of a cellular wireless communication system in the prior art
  • 2 is a schematic diagram of a structure of a Relay network in the prior art
  • FIG. 3 is a schematic diagram of a network structure of an LTE cellular radio communication system in the prior art
  • FIG. 4 is a flowchart of a handover method based on a mobile relay according to the present invention
  • FIG. 5 is a schematic diagram 1 of a mobile relay handover according to the present invention.
  • FIG. 6 is a flowchart of handover of a mobile relay according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart of a mobile relay handover according to Embodiment 2 of the present invention.
  • FIG. 9 is a flowchart of a mobile relay handover according to Embodiment 4 of the present invention.
  • FIG. 10 is a schematic diagram of a user plane protocol stack before switching according to Embodiment 4 of the present invention
  • FIG. 1 is a schematic diagram of a user plane protocol stack after switching according to Embodiment 4 of the present invention
  • FIG. 11 is a schematic diagram of switching in Embodiment 4 of the present invention
  • FIG. 12 is a schematic diagram of a user plane protocol stack before switching according to Embodiment 4 of the present invention
  • FIG. 12b is a schematic diagram of a user plane protocol stack after switching according to Embodiment 4 of the present invention
  • FIG. 12c is a schematic diagram of a user plane protocol stack after switching in Embodiment 4 of the present invention
  • FIG. 13 is a schematic diagram 2 of a mobile relay switch according to the present invention
  • FIG. 15a is a schematic diagram 1 of a user plane protocol stack before handover according to Embodiment 5 of the present invention
  • FIG. 15b is a schematic diagram 1 of a user plane protocol stack after handover according to Embodiment 5 of the present invention
  • FIG. 16b is a second schematic diagram of a user plane protocol stack after switching according to Embodiment 5 of the present invention.
  • the present invention provides a mobile radio relay system, including: a mobile relay, and an eNB connected to the mobile relay, which is also referred to as a donor eNB (DeNB, Donor eNB), and the DeNB is divided into a source DeNB and Target DeNB, the so-called source DeNB is the mobile Relay
  • the eNB connected before the handover the target DeNB is the eNB connected after the mobile Relay handover.
  • the target DeNB and the mobile relay constitute a Relay access network, and the Relay access network may further include a UE served by the mobile relay.
  • the source DeNB is connected as an intermediate node to the Relay access network and the EPC; when performing the handover of the mobile relay, the source DeNB forwards the data from the Relay access network to the EPC, and forwards the data from the EPC to the Relay access. network.
  • a mobile relay-based handover method implemented by the mobile wireless relay system mainly includes the following steps:
  • Step 401 The source DeNB is connected as an intermediate node to the relay access network and the EPC, and the relay access network includes at least the target DeNB and the mobile relay.
  • Step 402 When performing the handover of the mobile relay, the source DeNB forwards the data from the Relay access network to the EPC, and forwards the data from the EPC to the Relay access network.
  • the source DeNB notifies the target DeNB according to the measurement report reported by the mobile relay or according to an internal algorithm decision to determine that the mobile relay needs to perform handover.
  • the source DeNB and the target DeNB interact to establish a mobile relay data channel between the source DeNB and the target DeNB, and switch the mobile relay to the target DeNB after the interaction.
  • the network triggers the handover according to an internal algorithm.
  • the source DeNB determines the target DeNB to be handed over by the mobile relay according to the measurement of the mobile relay.
  • the source DeNB is connected to the relay access network system and the core network EPC as an intermediate node, as shown in FIG. 5, wherein the relay access network includes at least a target DeNB and a mobile relay. It may also include a UE under the mobile Relay.
  • the data between the mobile relay and the EPC is transmitted between the source DeNB and the target DeNB.
  • the first embodiment of the present invention is a schematic diagram of a handover process of a mobile relay.
  • the mobile relay is in operation.
  • the UE is connected to the mobile relay through the Uu interface, and the mobile relay is connected to the source DeNB through the Un interface, and is connected through the source DeNB.
  • EPC EPC.
  • the measurement report is reported to the source DeNB, and the source DeNB finds the mobile relay according to the measurement report.
  • the source DeNB decides to initiate the handover, and switches the mobile relay to the cell with better radio environment.
  • the source DeNB and the target DeNB need to perform handover preparation, and are responsible for exchanging the context information of the mobile relay in the source DeNB, and at least include: Un-radio bearer information of the mobile relay, security related information of the mobile relay; and may also include the UE under the mobile relay. Part of the context information, such as the various business configurations of the UE.
  • the target DeNB sets the new Un configuration information of the mobile relay in the target cell, and sends the information to the mobile relay through the source DeNB.
  • the mobile relay After receiving the new Un configuration information, the mobile relay performs Un reconfiguration and reconfigures the Un interface from the source DeNB to the target DeNB, thereby completing the handover from the source DeNB to the target DeNB.
  • the target DeNB informs the source DeNB to delete the context information of the mobile Relay at the source DeNB.
  • the configuration of the reverse transmission channel may be required between the source DeNB and the target DeNB, and used for reverse transmission between the EPC and the mobile relay during handover execution.
  • Data transmission which will result in data that cannot be transmitted due to service interruption of the Un interface, and is forwarded to the target DeNB.
  • the source DeNB only needs to forward the data sent by the EPC to the mobile relay to the target DeNB, that is, only the downlink backhaul channel is established.
  • the target DeNB sets the new Un configuration information of the mobile relay in the target cell, and sends the information to the mobile relay through the source DeNB.
  • the mobile relay After receiving the new Un configuration information, the mobile relay performs Un-reconfiguration and reconfigures the Un interface from the source DeNB to the target DeNB. Then, the channel switching operation is performed, and the configuration of the transmission channel is negotiated between the target DeNB and the source DeNB, and is used to establish a data transmission channel of the mobile relay and the EPC after the handover is completed.
  • the handover procedure shown in FIG. 7 is different from that of FIG. 6. The difference is that FIG. 6 does not need to prepare for back-transmission when handover preparation, so the transmission channel between the target DeNB and the source DeNB can be directly established, and the final implementation does not need to be performed. Channel switching operation.
  • the source DeNB and the target DeNB need to complete the signaling interaction and transmission channel through the EPC. Switching and other operations.
  • some network elements of the EPC participate, for example, the MME serving the mobile relay, and assist the source DeNB and the target DeNB. Signaling interaction; when the source DeNB and the target DeNB perform channel switching, the operation of the channel switching is performed by the EPC.
  • the fourth embodiment of the present invention represent the control plane channel of the UE, and is used for transmitting UE-related control plane signaling; 122 and 124 represent The user plane channel of the UE is used to transmit user plane data related to the UE.
  • 121 and 122 are carried by the radio bearer of the Uu interface between the UE and the mobile relay (Radio Bearer M dedicated transmission, 121 transmitted by Signal Radio Bearer, 122 by data radio
  • 123 and 124 are respectively transmitted through the control plane and the user plane channel between the eNB and the EPC of the serving UE corresponding to the UE.
  • the serving base station of the UE is the mobile relay
  • the transmission channel between the mobile relay and the EPC is transmitted by the wireless carrier 101 on the Un interface.
  • 123 is the S1 application part of S1-MME in the LTE system.
  • 124 is the S1-U user-level GPRS (General Packet Radio Service) tunneling protocol (GTP-U, GPRS Tunnelling Protocol for the Userplane) tunnel connection.
  • the specific switching process includes the following steps:
  • Step 901 The mobile relay sends a measurement report to the source DeNB.
  • Step 902 The source DeNB triggers a handover procedure, and sends a handover request to the target DeNB.
  • the source DeNB determines that the mobile relay sends a handover request to the target DeNB when the signal of the mobile station in the source DeNB is worse than the signal of the cell under the target DeNB according to the measurement report.
  • the request carries at least the target cell identifier of the mobile relay, and the context information of the mobile relay in the source DeNB, and may also carry the context information related to the UE in the mobile relay, and the mobile relay is used as the maximum rate of the single network element (AMBR, Aggregate Maximum Bit Rate). ), and the configuration information of the backhaul channel, which is used in the LTE system.
  • Step 903 The target DeNB receives the handover request and accepts, saves the corresponding context information and configuration information, and returns a handover response to the source DeNB.
  • the switch response should carry at least the Unconfiguration information of the mobile relay in the target cell, such as the reconfiguration information, and the peer configuration information of the backhaul channel.
  • the source DeNB receives the handover response, the backhaul channel 131 is established.
  • the user plane data related to the entire mobile relay is transmitted in the reverse transmission channel, or the user plane data related to an evolved radio access bearer (E-RAB) under the mobile relay.
  • E-RAB evolved radio access bearer
  • the source DeNB The mobile relay is treated as a UE, and a reverse transmission channel is established for each Relay E-RAB (or may also be considered as an EPS bearer).
  • the UE-related control plane 123 and the user plane 124 are considered to be the user plane data of an E-RAB under the mobile relay or the mobile relay when transmitting on the Un interface, so the reverse transmission channel does not need to distinguish the UE data, in the handover process.
  • the medium DeNB has processed it.
  • the radio bearer 101 of the Un interface does not successfully transmit data, and the data (including the data of 123 and 124) sent by the EPC to the mobile relay is then forwarded through the 131 to the target DeNB.
  • the target DeNB temporarily buffers the data.
  • the mobile relay connects to the target DeNB and then sends it to the mobile relay, the data of the specific back-transmission start and back-transmission depends on the implementation.
  • Steps 904-905 The source DeNB sends the Un-reconfiguration information in the handover response to the mobile relay, and the mobile relay performs the re-configuration of the Un interface according to the reconfiguration information. After the reconfiguration is completed, the Un interface is connected to the target DeNB, and the mobile relay is sent. The reconfiguration complete message is sent to the target DeNB, indicating that the handover is complete.
  • Step 906 In the backhaul process, the target DeNB may receive the air interface sequence number information sent by the source DeNB, and is used to indicate the information of the data packet received by the target DeNB during the handover process; the data packet is represented by a serial number, and is used for After the handover is completed, the mobile relay indicates that the mobile relay is on the uplink. The data that the target DeNB did not successfully receive is transmitted.
  • the handover operation is completed, and then the target DeNB can initiate a channel handover procedure.
  • Step 907 The target DeNB sends a channel switch request to the MME of the EPC.
  • the MME serving the mobile relay and the MME of the UE are the same, and may actually be different.
  • the request carries the configuration information that needs to be switched to the new transmission channel. If the transmission channel still uses the GTP-U tunnel, the request carries the destination address and TEID of the transmission channel.
  • the transport channel can also be established for each E-RAB of the Mobile Relay (or can also be considered an EPS bearer), so there can be multiple.
  • the MME After receiving the channel switching request, the MME sends a bearer modification command to the source DeNB, and notifies the source DeNB to modify the configuration information of the transmission channel, where is the address of the downlink transmission channel end; the source DeNB returns a bearer modification response, where The address of the uplink transmission channel end, which is returned to the target DeNB through the channel switching response of the MME.
  • a new transmission channel 141 is established.
  • the E-RAB ID (or EPS bearer ID) of the mobile relay corresponds, and the correspondence is carried by the handover command during the handover.
  • the data sent by the EPC to the mobile relay is transmitted to the target DeNB through the transmission channel 141.
  • the target DeNB receives the data on 102 and transmits it according to the corresponding relationship of the E-RAB ID (or EPS bearer ID) on the corresponding transmission channel.
  • Step 911 The target DeNB sends a release command to the source DeNB, and the source DeNB releases the context information of the UE and the transmission channel 131.
  • a typical user plane protocol stack before and after handover as shown in Figures 10a and 10b, respectively, can be seen, the data between the mobile Relay and the UE S-GW/P-GW, Transmission between the source DeNB and the target DeNB through a dedicated transmission channel, as shown in the figure It is a GTP-U tunnel.
  • the source DeNB becomes the S-GW/P-GW of the mobile relay, and performs IP packet filtering according to the data packet sent by the EPC and the defined tunnel binding rule, according to the quality of service (QoS, QoS, of the different IP flows.
  • Quality of Service such as the QoS Class Identifier (QCI) parameter, transmits IP packets in separate GTP-U tunnels.
  • QCI Quality of Service
  • the control plane protocol stack is similar to the user plane protocol stack, but will be transmitted by the Un radio bearer.
  • IP/UDP/GTP-U replace it with IP/SCTP/S1-AP.
  • the source DeNB forwards the data sent by the EPC to the mobile relay to the target DeNB by means of IP routing.
  • the data sent by the target DeNB to the EPC is forwarded by the source DeNB.
  • the forwarding relationship of the IP route is negotiated between the source DeNB and the target DeNB, and can be negotiated during the handover process.
  • Protocol 1 Protocol 1
  • Protocol 2 Protocol refers to a protocol entity, such as a GTP-U tunnel, a TCP/SCTP connection, not a protocol type.
  • the architecture is called the Gateway architecture. Protocol 1 and Protocol 2 can be isomorphic or heterogeneous.
  • a typical homogeneous protocol can be a 2-segment tunneling protocol, that is, Protocol 1 is IP/UDP/GTP-U, and Protocol 2 is also IP/UDP/GTP-U.
  • Typical heterogeneous protocols such as: Protocol 1 is IP/UDP/GTP-U, Protocol 2 is GTP-U or other channel protocols.
  • Protocol 1 and Protocol 2 are connected through a transmission channel, and the middle may include a process of first translating to Protocol 3 and then translating back to Protocol 1 or Protocol 2, as shown in 12b, where the source DeNB and the target DeNB are both a Gateway.
  • the source DeNB performs the translation process between Protocol 1 and Protocol 2, and transmits the Protocol 2 between the DeNBs through the channel between the source DeNB and the target DeNB.
  • configuration information of the Protocol 2 needs to be transmitted between the source DeNB and the target DeNB, so that the target DeNB can reestablish the Protocol. 2. And the establishment of the protocol 3 is also negotiated.
  • the context information of the part of the gateway may be used as the context of the mobile relay in the handover preparation process, and first sent by the source DeNB to the target DeNB, and then the target DeNB establishes a corresponding Gateway structure.
  • the source DeNB is returned in the handover response, and a similar process can also be completed in the channel switching process. At this time, it is configured as a DeNB.
  • Protocol 2 and Protocol 3 negotiate the translation relationship between Protocol 2 and Protocol 3, and the translation relationship between Protocol 1 and Protocol 3 to ensure that the translation relationship between Protocol 1 and Protocol 2 remains unchanged.
  • Protocoll/2/3 is a tunneling protocol.
  • the translation relationship between Protocol 1/2 is TEID1->TEID2.
  • the new Protocol 3 needs to ensure that the translation relationship is TEID1->TEID3 and TEID3->TEID2.
  • This translation relationship can be a specific rule, such as: Keeping the same TEID for a hidden time between different protocols, or a simple mapping table. This relationship can be negotiated between the source DeNB and the target DeNB.
  • the mobile relay-based handover method when the mobile relay is switched, the EPC forwards the data of the UE served by the mobile relay to the source DeNB according to the control of the target DeNB, and transfers the data to the target DeNB. Operation when performing channel switching As shown in FIG. 13, the target DeNB notifies the EPC (such as the UE S-GW/P-GW) to transmit the relevant data to the target DeNB.
  • the specific switching process is as shown in FIG. 14 , which is different from the flow shown in FIG. 9 in that the channel switching process of steps 1407 to 1410 is to switch the user plane and the control plane sending channel of the UE.
  • the parameters of the control plane channel 125 and the user plane channel 126 are negotiated between the core network and the target DeNB through the channel switching process.
  • the parameter corresponding to 125 may be an S1-AP ID
  • the parameter corresponding to 126 may be the TEID and IP of the GTP-U. address. Therefore, in step 1407, the transmitted handover request is sent to the core network portion of the UE connection under the mobile Relay, as shown in the figure, the MME.
  • the S1-AP ID that identifies the connection 123 in the MME that is carried in the signaling, identifies the configuration information of the UE corresponding to the S-AP ID, and the label of the connection 125 of the target DeNB. It also carries the port identifier of the user plane channel 126 of the target DeNB, that is, the transport IP address and the GTP-U TEID.
  • the MME After receiving the handover request, the MME establishes an identifier in the MME according to the S1-AP ID identifier of 123, and sends the signaling sent on 123 to be sent at 125.
  • a bearer modification command is sent to the UE S-GW/P-GW, and corresponding configuration information of 124 is found according to the S1-AP ID identifier of 123, and the data flow direction sent to 124 is modified to be 126.
  • the UE S-GW/P-GW notifies the MME of the uplink transmission channel end address, that is, the transmission address and the TEID, by the bearer modification response; the transmission address and the TEID are returned by the MME to the target DeNB in the channel handover response.
  • the response also carries an identification number of 125 in the MME.
  • the above-mentioned channel switching process may be initiated for each UE in the mobile relay, or may be merged into one process, and all UEs under the entire mobile relay are uniformly channel-switched.
  • the target DeNB may carry the identifier of the mobile relay handover in the channel handover request to notify the EPC that the handover is only for the mobile relay handover service, and the UE does not move in the cell under the mobile relay to avoid some Unnecessary reconfiguration, such as the process of changing the algorithm or key in the original cell handover.
  • FIG. 15a and 15b a typical user plane protocol stack before and after handover is shown in FIG. 15a and 15b, and the protocol entities before handover are Protocol 1 and Protocol 2, and the switched protocol entity is Protocol 3 and Protocol 4.
  • the user plane protocol stack before and after the handover shown in Figs. 16a and 16b represents a special case, that is, Protocol 1 in Fig. 15a is equal to Protocol 2, so that the DeNB therein does not need to perform the translation operation of the protocol.
  • the protocol between the DeNB and the EPC (which may be the MME or the UE S-GW/P-GW) is changed from Protocol 1 to Protocl 3 by the flow in FIG. 14; and the Relay is moved.
  • the protocol stack on the Un interface is changed from Protocol 2 to Protocol 4.
  • Protocol 2 can also be unchanged, that is, Protocol 2 is equal to Protocol 4.
  • the target DeNB needs to notify the mobile relay through the target DeNB when the handover preparation and handover execution operations are performed.
  • the mobile relay performs handover, it not only reconfigures the Un wireless 7-port portion to the target DeNB, but also reconfigures Protocol 2 to Protocol 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

基于移动中继的切换方法和移动无线中继系统 技术领域
本发明涉及蜂窝无线通信系统中的中继技术, 尤其涉及一种基于移动 中继的切换方法和移动无线中继系统。 背景技术
蜂窝无线通信系统如图 1所示,主要由用户终端( UE, User Equipment )、 接入网和核心网 (CN, Core Network )组成。 基站、 或基站和基站控制器 组成的网络称为无线接入网 (RAN, Radio Access Network ), RAN负责接 入层事务, 例如无线资源的管理。 基站之间可以存在物理或者逻辑上的连 接, 且每个基站可与一个或多个的核心网节点连接。 核心网负责非接入层 事务, 例如位置更新等, 并且是用户面的锚点。
在蜂窝无线通信系统中, 固定基站网络的无线覆盖由于各种原因受到 限制, 例如: 各种建筑结构对无线信号的阻挡等原因造成在无线网络的覆 盖中无可避免的存在覆盖漏洞。 另外, 在小区的边缘地区, 由于无线信号 强度的减弱,以及相邻小区的干扰,导致 UE在小区边缘时,通信质量较差, 无线传输的错误率抬高。 为了提高数据传输吞吐量、 群组移动性、 临时网 络部署、 小区边缘地区的吞吐量以及新区域的覆盖, 目前一种解决方案是 在蜂窝无线通信系统中引入一种无线网络节点, 称为中继 (relay )。
Relay是具有在其他网络节点之间通过无线链路中继数据的站点,也称 中继节点 /中继站 (Relay Node/Relay Station ), 其工作原理如图 2所示。 其 中, 基站直接服务的 UE称为宏 UE ( Macro UE ), Relay服务的 UE称为中 继 UE ( Relay UE )。基站与 UE之间的无线链路称为直传链路 ( direct link ), 包含上行 /下行( DL/UL, downlink/uplink )直传链路; Relay与 UE之间的 链路称为接入链路(access link ), 包含 DL/UL接入链路; 基站与 Relay之 间的无线链路称为回程链路 ( backhaul link ) , 包含 DL/UL回程链路。
Relay中继数据的方式有多种, 例如: 直接放大来自基站的无线信号; 或者对基站发送的数据进行相应处理后转发给 UE, 该处理可以是解调或者 解码; 或者基站和 Relay合作向 UE发送数据, 相反, Relay也会中继从 UE 向基站发送的数据。
在众多的 Relay类型中, 有一种 Relay类型, 其特点如下:
UE无法区分 Relay和固定基站下的小区, 即在 UE看来, Relay下的小 区与固定基站下的小区没有区别,此类 Relay下的小区可以称为 Relay小区。 Relay小区与所有的小区一样, 有自身的小区物理标识 (PCI, Physical Cell Identity ), 与普通小区一样发送广播; 当 UE驻留在 Relay小区时, Relay 小区可以单独分配调度无线资源给 UE使用,且 Relay的资源调度与参与中 继的基站(又称 Donor基站, 即 Relay通过 backhaul link连接的基站)的无 线资源调度相互独立。 Relay小区和 Relay UE之间的接口和协议栈, 与普 通基站小区和 UE之间的接口和协议栈相同。
目前的长期演进( LTE , Long Term Evolution )蜂窝无线通信系统, 如 图 3所示, 釆用基于互联网协议(IP, Internet Protocol )的扁平化架构, 由 演进的通用地面无线接入网(E-UTRAN, Evolved Universal Terrestrial Radio Access Network )、 演进型数据核心网 (EPC, Evolved Packet Core )节点及 其他支撑节点组成。 其中, EPC节点包括: 移动管理实体(MME, Mobility Management Entity ), 月良务网关 ( S-GW, Serving Gateway ), 分组数据网络 网关 (P-GW, Packet Date Network Gateway )„ MME负责控制面信令, 包 括移动性管理、 非接入层信令的处理、 用户的移动管理上下文的管理等控 制面相关工作; S-GW负责 UE用户面数据的传送、 转发和路由切换等; 基 站(eNB )之间在逻辑上通过 X2接口互相连接, 用于支持 UE在整个网络 内的移动性, 保证用户的无缝切换; P-GW是连接 EPC和分组数据网 (如 互联网) 的节点, 负责 UE的 IP地址分配、 IP数据包按业务类型过滤成业 务数据流( Service Data Flows )并绑定到对应的传输承载等。
每个 eNB通过 S1接口,连接到系统架构演进( SAE, System Architecture Evolution )核心网, 即通过控制平面 S1-MME接口与 MME相连, 通过用 户平面 S1-U接口与 S-GW相连, S1接口支持 eNB与 MME和 S-GW之间 的多点连接。 MME和 S-GW之间由 S 11接口相连, S-GW和 P-GW之间由 S5接口相连, eNB之间通过 X2接口相连。 每个 eNB通过 Uu接口与 UE 进行信令和数据的传输; 引入 Relay后, Relay和 eNB之间的无线接口为 Un接口, Relay和 UE之间的接口, 与 eNB和 UE之间的接口相同, 也是 Uu接口。
目前的 Relay按种类分有 3类: 固定 Relay、 游牧 Relay、 移动 Relay。 固定 Relay和游牧 Relay都是定点部署的, 区别在于游牧 Relay可以即插即 用, 部署起来比固定 Relay方便。 移动 Relay自身具有一定的移动性, 典型 的应用场景是在火车或汽车等交通工具上部署移动 Relay, 以方便为交通工 具里的 UE提供较好的服务。在移动切换上,移动 Relay作为一个汇聚网元, 将大量 UE的同时移动, 汇聚成移动 Relay—个网元的移动, 这样可以减少 切换时的信令在空口和网络中的开销。
然而,基于上述移动 Relay的部署需求,现有技术还无法提供一种支持 移动 Relay的移动无线中继系统和基于移动 Relay的切换方法,从而给实际 应用带来不便。 发明内容
有鉴于此, 本发明的主要目的在于提供一种移动无线中继系统和基于 移动中继的切换方法, 以实现移动 Relay的切换, 支持 Relay的移动。
为达到上述目的, 本发明的技术方案是这样实现的: 本发明提供了一种基于移动中继的切换方法, 当移动中继 (Relay )发 生切换时, 该方法包括:
源宿主基站( DeNB )作为中间节点连接 Relay接入网和演进型数据核 心网( EPC ), 所述 Relay接入网至少包括目标 DeNB和移动 Relay; 所述源 DeNB将来自 Relay接入网的数据转发给所述 EPC, 将来自所述 EPC的数 据转发给 Relay接入网。
所述源 DeNB和目标 DeNB之间的转发通道封装数据。
所述转发通道是移动 Relay的演进的无线接入承载( E-RAB )地面传输 通道。
所述移动 Relay的切换具体为: 所述源 DeNB和目标 DeNB之间进行 切换准备操作, 交换所述移动 Relay在源 DeNB的上下文信息;
在切换准备完成后,所述目标 DeNB设置移动 Relay的在目标小区的新 的 Un配置信息, 并将所述 Un配置信息通过源 DeNB发送给移动 Relay; 所述移动 Relay根据接收的 Un配置信息执行 Un重配置, 并将 Un接 口从源 DeNB重配到目标 DeNB。
该方法进一步包括:
在移动 Relay将 Un接口从源 DeNB重配到目标 DeNB之后,所述目标 DeNB与源 DeNB和 /或 EPC之间协商传输通道的配置, 并执行通道切换操 作, 建立所述移动 Relay和 EPC之间的数据传输通道。
本发明还提供了一种基于移动中继的切换方法,当移动 Relay发生切换 时, 该方法包括:
EPC根据目标 DeNB的控制,将所述移动 Relay服务的用户终端( UE ) 的数据由通过所述源 DeNB转发, 转换到通过所述目标 DeNB转发。
所述 EPC至少包括服务于 UE的移动管理实体(MME ), 以及服务网 元 (S-GW )或分组数据网络网关 (P-GW )。 所述 UE的数据包括 UE的 SI控制面信令和 SI用户面数据。
本发明还提供了一种移动无线中继系统, 该系统包括: Relay接入网和 EPC , 所述 Relay接入网至少包括目标 DeNB和移动 Relay, 源 DeNB作为 中间节点连接 Relay接入网和 EPC;
在所述移动 Relay发生切换时,所述源 DeNB将来自 Relay接入网的数 据转发给所述 EPC, 将来自所述 EPC的数据转发给 Relay接入网。
所述源 DeNB和目标 DeNB之间的转发通道封装数据, 且所述转发通 道是移动 Relay的 E-RAB地面传输通道。
所述目标 DeNB进一步用于, 与源 DeNB之间进行切换准备操作, 交 换所述移动 Relay在源 DeNB的上下文信息;在切换准备完成后,设置移动 Relay 的在目标小区的新的 Un 配置信息, 并将所述 Un 配置信息通过源 DeNB发送给移动 Relay;
相应的, 所述移动 Relay进一步用于, 根据接收的 Un配置信息执行 Un重配置, 并将 Un接口从源 DeNB重配到目标 DeNB。
所述目标 DeNB进一步用于,在移动 Relay将 Un接口从源 DeNB重配 到目标 DeNB之后, 与源 DeNB和 /或 EPC之间协商传输通道的配置, 并执 行通道切换操作, 建立所述移动 Relay和 EPC之间的数据传输通道。
本发明所提供的一种移动无线中继系统和基于移动中继的切换方法, 将源宿主基站( DeNB )作为中间节点连接 Relay接入网和 EPC, Relay接 入网至少包括目标 DeNB和移动 Relay; 在执行移动 Relay的切换时, EPC 和移动 Relay根据目标 DeNB的指令, 将各自所服务的 UE的数据通过源 DeNB转发到目标 DeNB。 通过本发明, 实现了移动 Relay的切换, 能够支 持 Relay的移动。 附图说明
图 1为现有技术中蜂窝无线通信系统的结构示意图; 图 2为现有技术中 Relay网络结构的示意图;
图 3为现有技术中 LTE蜂窝无线通信系统的网络结构示意图; 图 4为本发明一种基于移动中继的切换方法的流程图;
图 5为本发明的移动 Relay切换示意图一;
图 6为本发明实施例一的移动 Relay切换流程图;
图 7为本发明实施例二的移动 Relay切换流程图;
图 8为本发明实施例三的 Relay切换流程图;
图 9为本发明实施例四的移动 Relay切换流程图;
图 10 a为本发明实施例四中切换前的用户面协议栈示意图一; 图 1 Ob为本发明实施例四中切换后的用户面协议栈示意图一; 图 11为本发明实施例四中切换后的用户面协议栈示意图二;
图 12a为本发明实施例四中切换前的用户面协议栈示意图二; 图 12b为本发明实施例四中切换后的用户面协议栈示意图三; 图 12c为本发明实施例四中切换后的用户面协议栈示意图四; 图 13为本发明的移动 Relay切换示意图二;
图 14为本发明实施例五的移动 Relay切换流程图;
图 15a为本发明实施例五中切换前的用户面协议栈示意图一; 图 15b为本发明实施例五中切换后的用户面协议栈示意图一; 图 16 a为本发明实施例五中切换前的用户面协议栈示意图二; 图 16b为本发明实施例五中切换后的用户面协议栈示意图二。 具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 为实现移动 Relay的切换,本发明提供了一种移动无线中继系统,包括: 移动 Relay、以及与移动 Relay相连的 eNB,又称为宿主 eNB ( DeNB, Donor eNB ), DeNB分为源 DeNB和目标 DeNB, 所谓源 DeNB即为移动 Relay 切换前所连接的 eNB ,所谓目标 DeNB即为移动 Relay切换后所连接的 eNB。 目标 DeNB和移动 Relay构成 Relay接入网, Relay接入网还可以包括移动 Relay所服务的 UE。 该系统中, 将源 DeNB作为中间节点连接 Relay接入 网和 EPC; 在执行移动 Relay的切换时, 源 DeNB将来自 Relay接入网的数 据转发给 EPC, 将来自 EPC的数据转发给 Relay接入网。
由该移动无线中继系统所实现的一种基于移动中继的切换方法,如图 4 所示, 主要包括以下步骤:
步骤 401 , 源 DeNB作为中间节点连接 Relay接入网和 EPC , Relay接 入网至少包括目标 DeNB和移动 Relay。
步骤 402, 在执行移动 Relay的切换时, 源 DeNB将来自 Relay接入网 的数据转发给 EPC, 将来自 EPC的数据转发给 Relay接入网。
源 DeNB根据移动 Relay上报的测量报告,或者根据内部算法决策,确 定移动 Relay需要执行切换时, 通知目标 DeNB。 源 DeNB和目标 DeNB之 间通过交互, 在源 DeNB和目标 DeNB之间建立移动 Relay数据的通道, 并在交互后将移动 Relay切换到目标 DeNB。
网络根据内部的算法触发切换,如源 DeNB根据移动 Relay的测量,判 决移动 Relay要切换的目标 DeNB。通过源 DeNB和目标 DeNB之间的交互 过程, 源 DeNB将作为一个中间节点连接 Relay接入网系统和核心网 EPC , 如图 5所示, 其中, Relay接入网至少包括目标 DeNB和移动 Relay, 还可 以包括移动 Relay下的 UE。 源 DeNB和目标 DeNB之间传输移动 Relay和 EPC之间的数据。
如图 6所示本发明实施例一, 为移动 Relay的切换流程示意图, 移动 Relay处于工作中, UE通过 Uu接口和移动 Relay先连接, 移动 Relay通过 Un接口和源 DeNB相连, 并通过源 DeNB连接 EPC。 在移动 Relay的移动 过程中, 上报测量报告给源 DeNB, 源 DeNB根据测量报告发现移动 Relay 位于源 DeNB 下驻留小区的信号比目标 DeNB 下的某小区信号差时, 源 DeNB决定发起切换, 将移动 Relay切换到无线环境更好的小区中。 首先, 源 DeNB和目标 DeNB之间需要进行切换准备, 负责交换移动 Relay在源 DeNB的上下文信息,至少包括:移动 Relay的 Un无线承载信息,移动 Relay 的安全相关信息; 还可能包括移动 Relay下 UE的部分上下文信息, 如 UE 的各种业务配置等等。切换准备完成后, 由目标 DeNB设置移动 Relay的在 目标小区的新的 Un配置信息,并通过源 DeNB发送给移动 Relay。移动 Relay 收到新的 Un配置信息后, 执行 Un重配置, 并将 Un接口从源 DeNB重配 到目标 DeNB , 从而完成从源 DeNB到目标 DeNB的切换。 在切换执行完 成后, 目标 DeNB通知源 DeNB删除移动 Relay在源 DeNB的上下文信息。
如图 7所示本发明实施例二,在一些实际场景中,源 DeNB和目标 DeNB 之间可能还需要协商反传通道的配置, 用于反传在切换执行时, EPC 和移 动 Relay之间的数据传输,将由于 Un接口的业务中断导致无法发送的数据, 反传给目标 DeNB。 在一些场景中, 源 DeNB只需将 EPC发给移动 Relay 的数据反传给目标 DeNB即可, 即只建立下行反传通道。 切换准备完成后, 由目标 DeNB设置移动 Relay的在目标小区的新的 Un配置信息, 并通过源 DeNB发送给移动 Relay。 移动 Relay收到新的 Un配置信息后, 执行 Un重 配置, 并将 Un接口从源 DeNB重配到目标 DeNB。 然后, 执行通道切换的 操作, 目标 DeNB和源 DeNB之间协商传输通道的配置, 用于建立切换完 成后移动 Relay和 EPC的数据传输通道。
图 7所示切换流程与图 6相比, 其区别在于, 图 6在切换准备时不需 要准备反传, 因此可以直接建立在目标 DeNB和源 DeNB之间的传输通道, 并且不需要执行最后的通道切换操作。
此外, 对于实际应用中源 DeNB和目标 DeNB之间没有直接连接的情 况, 源 DeNB和目标 DeNB之间需要通过 EPC完成信令的交互和传输通道 的切换等操作。 如图 8所示本发明实施例三的切换流程中, 在源 DeNB和 目标 DeNB执行切换准备时, EPC的一些网元会参与其中, 比如服务于移 动 Relay的 MME,协助完成源 DeNB和目标 DeNB的信令交互;在源 DeNB 和目标 DeNB执行通道切换时, 通道切换的操作由 EPC参与决策。
下面对图 8所示的切换流程进一步详细阐述, 如图 9所示本发明实施 例四, 121和 123表示 UE的控制面通道,用于传输 UE相关的控制面信令; 122和 124表示 UE的用户面通道, 用于传输 UE相关的用户面数据。 121 和 122由 UE和移动 Relay之间的 Uu接口的无线承载( Radio Bearer M专输, 121通过信令无线 7 载( Signal Radio Bearer )传输, 122通过数据无线 载
( Data Radio Bearer )传输。 123和 124分别通过 UE对应的服务 UE的 eNB 和 EPC之间的控制面和用户面通道传输。 在移动 Relay部署的场景下, UE 的服务基站就是移动 Relay, 移动 Relay和 EPC之间的传输通道在 Un接口 上由无线 载 101传输。 123在 LTE 系统里为 S1-MME的 S1应用部分
( Sl-AP, SI -Application Part )连接, 124为 S1-U的用户层面的通用分组 无线业务( GPRS , General Packet Radio Service )隧道协议( GTP-U, GPRS Tunnelling Protocol for the Userplane ) 隧道连接。 具体的切换流程包括以下 步骤:
步骤 901 , 移动 Relay向源 DeNB发送测量报告。
步骤 902, 源 DeNB触发切换过程, 向目标 DeNB发送切换请求。 源 DeNB根据测量报告发现移动 Relay对源 DeNB下所在的驻留小区 的信号比在目标 DeNB 下的某小区信号差时, 决定发起切换, 并向目标 DeNB发送切换请求。 该请求中至少携带移动 Relay的目标小区标识, 移动 Relay在源 DeNB的上下文信息, 还可以携带移动 Relay下的 UE相关的上 下文信息, 移动 Relay 作为单个网元的最大速率 ( AMBR , Aggregate Maximum Bit Rate ), 以及反传通道的配置信息, 在 LTE 系统中釆用的是 GTP-U隧道协议, 相关的配置参数有源 DeNB的 IP地址和 GTP-U的隧道 端点标识 (TEID, Tunnel End ID )„
步骤 903 , 目标 DeNB收到切换请求并接纳,保存对应的上下文信息和 配置信息, 并向源 DeNB回复切换应答。
切换应答中应至少携带移动 Relay在目标小区的 Un配置信息, 如重配 置信息, 还可以携带反传通道的对端配置信息。 源 DeNB收到切换应答后, 反传通道 131随即建立完成。
反传通道中传输的是整个移动 Relay相关的用户面数据, 或者是移动 Relay下某个演进的无线接入 载 ( E-RAB, Evolution Radio Access Bearer ) 相关的用户面数据, 此时, 源 DeNB将移动 Relay视为 UE, 为每个 Relay E-RAB (或者也可以认为是 EPS承载)都会建立反传通道。 而 UE相关的 控制面 123和用户面 124在 Un口传输时被认为是移动 Relay或移动 Relay 下某个 E-RAB的用户面数据, 所以反传通道并不需要区分 UE的数据, 在 切换过程中 DeNB已经处理。 但在切换过程中, Un接口的无线承载 101没 有成功发送的数据,以及之后 EPC发给移动 Relay的数据 (包括 123和 124 的数据)都被通过 131转发到目标 DeNB。目标 DeNB会暂时緩存这些数据, 当移动 Relay连接到目标 DeNB后再发送给移动 Relay, 具体反传的开始和 反传的数据取决于实现。
步骤 904〜905 , 源 DeNB将切换应答中的 Un重配置信息发送给移动 Relay, 移动 Relay根据重配置信息进行 Un接口的重配置; 重配置完成后, Un接口连接到目标 DeNB 上, 移动 Relay发送重配置完成消息给目标 DeNB, 表示切换完成。
步骤 906,在反传过程中, 目标 DeNB可能收到源 DeNB发来的空口序 列号信息, 用于指示在切换过程中目标 DeNB收到的数据包的信息; 数据 包以序列号表示, 用于移动 Relay在切换完成后, 指示移动 Relay在上行重 传目标 DeNB没有成功接收的数据。
上述操作执行完毕后, 切换操作随即完成, 随后目标 DeNB可以发起 通道切换流程。
步骤 907, 目标 DeNB向 EPC的 MME发送通道切换请求。 本实施例 中假设服务于移动 Relay的 MME和 UE的 MME是同一个, 实际上也可以 是不同的。
该请求中携带需要切换到新的传输通道的配置信息, 如果传输通道到 仍然使用 GTP-U隧道, 则请求中携带传输通道的目的端地址和 TEID。 传 输通道也可以是为移动 Relay的每个 E-RAB(或者也可以认为是 EPS承载) 建立的, 因此可以有多个。
步骤 908〜910, MME收到通道切换请求后, 向源 DeNB发送承载修改 指令, 通知源 DeNB修改传输通道的配置信息, 此处为下行的传输通道端 的地址; 源 DeNB返回承载修改应答, 其中携带上行传输通道端的地址, 该地址通过 MME的通道切换响应返回给目标 DeNB。
在此过程中 , 新的传输通道 141建立。 141和 102之间通过移动 Relay 的 E-RAB ID (或者 EPS bearer ID )对应, 对应关系在切换过程中由切换指 令中携带。 在源 DeNB侧, 根据步骤 908〜910中的配置信息, 将 EPC发给 移动 Relay的数据通过传输通道 141发送至目标 DeNB。 上行方面, 目标 DeNB收到 102上的数据, 根据 E-RAB ID (或者 EPS bearer ID ) 的对应关 系, 在对应的传输通道上发送。
步骤 911 , 目标 DeNB发送释放指令给源 DeNB , 由源 DeNB将 UE的 上下文信息和传输通道 131释放。
对应图 9 所示的切换流程, 一种典型的切换前后的用户面协议栈, 分 别如图 10a、 10b所示, 可以看出, 移动 Relay和 UE S-GW/P-GW之间的数 据, 在源 DeNB和目标 DeNB之间通过专用的传输通道传输, 图中所示的 是 GTP-U隧道。 切换后, 源 DeNB成为移动 Relay的 S-GW/P-GW, 根据 EPC发来的数据包, 以及定义的隧道绑定规则, 进行 IP包的过滤工作, 根 据不同 IP流的服务质量( QoS, Quality of Service ),比如 QoS等级标识( QCI ) 参数, 将 IP包分别在各个 GTP-U隧道内传输。
控制面协议栈与用户面协议栈类似, 只是将由 Un 无线承载传输
IP/UDP/GTP-U, 替换为 IP/SCTP/S1-AP即可。
如图 11所示,表示另一种典型的用户面协议栈 , 源 DeNB将 EPC发给 移动 Relay的数据通过 IP路由的方式, 转发给目标 DeNB。 反之, 由目标 DeNB发送给 EPC的数据由源 DeNB转发。 IP路由的转发关系,在源 DeNB 和目标 DeNB之间协商, 可以在切换过程中进行协商。
如图 12a、 12b、 12c所示,表示再一种典型的切换前后的用户面协议栈, 与图 10a、 10b相比, 切换前, 源 DeNB不仅执行 IP转发和分流操作, 还执 行协议的翻译操作, 从协议 1 ( Protocol 1 )翻译到协议 2 ( Protocol 2 )的过 程(本发明所指的 Protocol是指协议实体, 如 GTP-U隧道, TCP/SCTP连 接, 而非协议类型), 这种架构被称为 Gateway架构。 协议 1和协议 2可以 是同构的, 或者是异构的。 比较典型的同构协议可以是 2段隧道协议, 即 Protocol 1是 IP/UDP/GTP-U, Protocol 2也是 IP/UDP/GTP-U。 比较典型的 异构协议, 例如: Protocol 1为 IP/UDP/GTP-U, Protocol 2为 GTP-U或者其 它通道协议。 在切换以后, Protocol 1和 Protocol 2通过传输通道相连, 中 间可以包含先翻译到 Protocol3 , 再翻译回 Protocol 1或 Protocol 2的过程, 如 12b所示, 此时源 DeNB和目标 DeNB都是一个 Gateway。 也可以如 12c 所示, 切换后, 源 DeNB还是做 Protocol 1和 Protocol 2之间的翻译过程, 将 Protocol 2通过源 DeNB和目标 DeNB之间的通道传输在 DeNB之间传输。
除了移动 Relay的 Un接口上下文信息之外, 在源 DeNB和目标 DeNB 之间还需要传输 Protocol 2的配置信息,以使得目标 DeNB可以重建 Protocol 2。 并且还要协商 Protocol 3的建立, 这部分 Gateway的上下文信息, 可以 在切换准备过程中作为移动 Relay 的上下文, 先由源 DeNB 发送给目标 DeNB,再由目标 DeNB建立对应的 Gateway结构,该配置也属于目标 DeNB 和源 DeNB之间可以协商的配置, 当需要发生改变时, 即在目标 DeNB可 以对 Gateway配置修改后,在切换响应中回复源 DeNB,类似的过程也可以 在通道切换过程中完成, 此时作为 DeNB的配置。
协商 Protocol 2和 Protocol 3之间的翻译关系,以及 Protocol 1和 Protocol 3之间的翻译关系, 以保证 Protocol 1和 Protocol 2之间的翻译关系保持不 变。 典型的实现方式是 Protocoll/2/3都是隧道协议, 那么 Protocol 1/2之间 的翻译关系是 TEID1->TEID2 , 新的 Protocol 3 需要保证翻译关系为 TEID1->TEID3 , TEID3->TEID2。 这种翻译关系可以是某种特定规则, 例 如: 不同的 Protocol之间的隐射时保持相同的 TEID, 或者是简单的映射表 的形式。 这种关系在源 DeNB和目标 DeNB之间协商即可。
本发明提供的另一种基于移动中继的切换方法,当移动 Relay发生切换 时, EPC根据目标 DeNB的控制,将移动 Relay服务的 UE的数据由通过源 DeNB转发, 转换到通过目标 DeNB转发。 在执行通道切换时操作如图 13 所示, 目标 DeNB通知 EPC (如 UE S-GW/P-GW ), 将相关的数据发送至目 标 DeNB。 具体的切换流程如图 14所示实施例五, 相比图 9所示的流程, 其不同在于步骤 1407〜1410的通道切换过程,是切换 UE的用户面和控制面 发送通道。 通过通道切换过程在核心网和目标 DeNB之间协商建立控制面 通道 125和用户面通道 126的参数, 对应 125的参数可以是 Sl-AP ID, 对 应 126的参数可以是 GTP-U的 TEID和 IP地址。 因此, 在步骤 1407中, 发送的切换请求是发送到移动 Relay下 UE连接的核心网部分,如图所示是 MME。 并且信令中会携带的在 MME内标识连接 123的 Sl-AP ID, 标识要 修改该 Sl-AP ID对应 UE的配置信息, 以及在目标 DeNB的连接 125的标 识 , 同时携带在目标 DeNB的用户面通道 126的端口标识 , 即传输 IP地址 和 GTP-U TEID。
MME收到切换请求后, 根据 123的 S1-AP ID标识, 建立 125在 MME 内的标识, 并将在 123上发送的信令, 在 125上发送。 在步骤 1408中发送 承载修改指令给 UE S-GW/P-GW,根据 123的 S1-AP ID标识找到 124的对 应配置信息, 用于修改发送到 124的数据流向为 126。
随后, UE S-GW/P-GW通过承载修改应答将 126的上行传输通道端地 址, 即传输地址和 TEID, 通知给 MME; 该传输地址和 TEID由 MME在通 道切换响应中返回给目标 DeNB , 其中, 该响应还会携带 125在 MME内的 标识号。 当目标 DeNB收到通道切换响应后,就可以将 UE对应的控制面连 接原 123的数据在 125上发送给 UE的 MME; 对于用户面 124上的数据, 在 126上发送给 UE S-GW/P-GW。
上述的通道切换过程可以针对移动 Relay下的每个 UE——发起,也可 以合并为一个过程, 将整个移动 Relay下所有的 UE统一做通道切换。 上述 切换过程中, 目标 DeNB可以在通道切换请求中,携带移动 Relay切换的标 识, 以通知 EPC, 此类切换只是为移动 Relay切换服务, UE在移动 Relay 下的小区中并没有移动, 以避免一些不必要的重配置, 如原小区切换中会 有安全流程, 改变算法或者密钥的过程。
对应图 14所示的切换流程, 本发明一种典型的切换前后的用户面协议 栈, 分别如图 15a、 15b所示,切换前的协议实体为 Protocol 1和 Protocol 2, 切换后的协议实体为 Protocol 3和 Protocol 4。
图 16a、 16b所示切换前后的用户面协议栈, 表示了一种特殊情况, 即 图 15a中的 Protocol 1等于 Protocol 2, 因此其中的 DeNB也就不需要执行 协议的翻译操作。切换前后, DeNB和 EPC(可以是 MME或 UE S-GW/P-GW ) 之间的协议通过图 14中的流程由 Protocol 1变成 Protocl 3; 且移动 Relay 在切换前后, Un接口上的协议栈由 Protocol 2变成 Protocol 4。 在通常情况 下, Protocol 2也可以不变, 即 Protocol 2等于 Protocol 4, 因此为了完成切 换过程, 在切换准备和切换执行操作时, 目标 DeNB要将协商好的 Protocol 4通过目标 DeNB, 通知移动 Relay。 移动 Relay在执行切换时, 不但要将 Un 无线 7 载部分重配置到目标 DeNB , 并且要将 Protocol 2 重配置为 Protocol 4。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种基于移动中继的切换方法, 当移动中继 (Relay )发生切换时, 其特征在于, 该方法包括:
源宿主基站( DeNB )作为中间节点连接 Relay接入网和演进型数据核 心网( EPC ), 所述 Relay接入网至少包括目标 DeNB和移动 Relay; 所述源 DeNB将来自 Relay接入网的数据转发给所述 EPC, 将来自所述 EPC的数 据转发给 Relay接入网。
2、 根据权利要求 1所述基于移动中继的切换方法, 其特征在于, 所述 源 DeNB和目标 DeNB之间的转发通道封装数据。
3、 根据权利要求 2所述基于移动中继的切换方法, 其特征在于, 所述 转发通道是移动 Relay的演进的无线接入 7 载( E-RAB )地面传输通道。
4、 根据权利要求 1、 2或 3所述基于移动中继的切换方法, 其特征在 于, 所述移动 Relay的切换具体为:
所述源 DeNB 和目标 DeNB 之间进行切换准备操作, 交换所述移动 Relay在源 DeNB的上下文信息;
在切换准备完成后,所述目标 DeNB设置移动 Relay的在目标小区的新 的 Un配置信息, 并将所述 Un配置信息通过源 DeNB发送给移动 Relay; 所述移动 Relay根据接收的 Un配置信息执行 Un重配置, 并将 Un接 口从源 DeNB重配到目标 DeNB。
5、 根据权利要求 4所述基于移动中继的切换方法, 其特征在于, 该方 法进一步包括:
在移动 Relay将 Un接口从源 DeNB重配到目标 DeNB之后,所述目标 DeNB与源 DeNB和 /或 EPC之间协商传输通道的配置, 并执行通道切换操 作, 建立所述移动 Relay和 EPC之间的数据传输通道。
6、 一种基于移动中继的切换方法, 当移动 Relay发生切换时, 其特征 在于, 该方法包括:
EPC根据目标 DeNB的控制,将所述移动 Relay服务的用户终端( UE ) 的数据由通过所述源 DeNB转发, 转换到通过所述目标 DeNB转发。
7、 根据权利要求 6所述基于移动中继的切换方法, 其特征在于, 所述 EPC至少包括服务于 UE的移动管理实体( MME ), 以及服务网元( S-GW ) 或分组数据网络网关 (P-GW )。
8、 根据权利要求 6或 7所述基于移动中继的切换方法, 其特征在于, 所述 UE的数据包括 UE的 S1控制面信令和 S1用户面数据。
9、 一种移动无线中继系统, 其特征在于, 该系统包括: Relay接入网 和 EPC , 所述 Relay接入网至少包括目标 DeNB和移动 Relay, 源 DeNB作 为中间节点连接 Relay接入网和 EPC;
在所述移动 Relay发生切换时,所述源 DeNB将来自 Relay接入网的数 据转发给所述 EPC, 将来自所述 EPC的数据转发给 Relay接入网。
10、根据权利要求 9所述移动无线中继系统,其特征在于,所述源 DeNB 和目标 DeNB之间的转发通道封装数据, 且所述转发通道是移动 Relay的 E-RAB地面传输通道。
11、 根据权利要求 9或 10所述移动无线中继系统, 其特征在于, 所述目标 DeNB进一步用于, 与源 DeNB之间进行切换准备操作, 交 换所述移动 Relay在源 DeNB的上下文信息;在切换准备完成后,设置移动 Relay 的在目标小区的新的 Un 配置信息, 并将所述 Un 配置信息通过源 DeNB发送给移动 Relay;
相应的, 所述移动 Relay进一步用于, 根据接收的 Un配置信息执行 Un重配置, 并将 Un接口从源 DeNB重配到目标 DeNB。
12、 根据权利要求 11所述移动无线中继系统, 其特征在于, 所述目标 DeNB进一步用于, 在移动 Relay将 Un接口从源 DeNB重配到目标 DeNB 之后, 与源 DeNB和 /或 EPC之间协商传输通道的配置, 并执行通道切换操 作, 建立所述移动 Relay和 EPC之间的数据传输通道。
PCT/CN2010/076099 2009-08-18 2010-08-18 基于移动中继的切换方法和移动无线中继系统 WO2011020432A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/389,519 US8730918B2 (en) 2009-08-18 2010-08-18 Handover method based on mobile relay and mobile wireless relay system
EP10809565.4A EP2469926A4 (en) 2009-08-18 2010-08-18 INTERCELLULAR TRANSFER METHOD BASED ON MOBILE RELAY, AND MOBILE WIRELESS RELAY SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910091331.X 2009-08-18
CN200910091331XA CN101998554A (zh) 2009-08-18 2009-08-18 基于移动中继的切换方法和移动无线中继系统

Publications (1)

Publication Number Publication Date
WO2011020432A1 true WO2011020432A1 (zh) 2011-02-24

Family

ID=43606654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/076099 WO2011020432A1 (zh) 2009-08-18 2010-08-18 基于移动中继的切换方法和移动无线中继系统

Country Status (4)

Country Link
US (1) US8730918B2 (zh)
EP (1) EP2469926A4 (zh)
CN (1) CN101998554A (zh)
WO (1) WO2011020432A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932855A (zh) * 2011-08-11 2013-02-13 中兴通讯股份有限公司 一种中继节点的切换方法及系统
WO2013044979A1 (en) * 2011-09-30 2013-04-04 Nokia Siemens Networks Oy Mobile relay support in relay-enhanced access networks
WO2013055277A1 (en) 2011-10-10 2013-04-18 Telefonaktiebolaget L M Ericsson (Publ) A method and apparatus for mobile relay handover
CN103733683A (zh) * 2011-08-11 2014-04-16 交互数字专利控股公司 移动中继切换
EP2747482A1 (en) * 2011-09-13 2014-06-25 Huawei Technologies Co., Ltd Relay node handover method, base station and communications system
US9088922B2 (en) 2011-10-10 2015-07-21 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for mobile relay handover
US9344948B2 (en) 2012-09-10 2016-05-17 Fujitsu Limited Handover with mobile relays

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448131B (zh) * 2010-09-30 2015-04-29 华为技术有限公司 消息处理方法、装置及系统
WO2012134131A2 (ko) * 2011-03-28 2012-10-04 엘지전자 주식회사 이동 셀 핸드오버 방법 및 장치
EP2693785B1 (en) * 2011-03-31 2019-12-25 Nec Corporation Mobile communication system and relay station control method
CN102752819A (zh) * 2011-04-18 2012-10-24 中兴通讯股份有限公司 无线中继节点切换的处理方法及系统
CN102752820A (zh) * 2011-04-22 2012-10-24 中兴通讯股份有限公司 小区切换方法及系统
CN102752821A (zh) * 2011-04-22 2012-10-24 中兴通讯股份有限公司 小区切换方法、设备及系统
WO2012147270A1 (en) * 2011-04-28 2012-11-01 Panasonic Corporation Communication system, mobile terminal, router, and mobility management entity
EP2713526B1 (en) 2011-06-22 2017-11-08 Huawei Technologies Co., Ltd. Method, enode b, relay node and communication system for switching operation mode in relay network
CN102905323A (zh) * 2011-07-29 2013-01-30 中兴通讯股份有限公司 一种中继节点用户面无损切换处理方法及系统
JP5800024B2 (ja) * 2011-09-30 2015-10-28 富士通株式会社 リレーノード、無線通信システム、および無線通信方法
CN103096257B (zh) * 2011-10-27 2015-04-01 普天信息技术研究院有限公司 一种用户设备群组的切换方法
CN103096405B (zh) * 2011-11-04 2018-06-12 北京三星通信技术研究有限公司 支持组切换的方法及设备
GB2497078A (en) * 2011-11-24 2013-06-05 Sharp Kk Mobile relay handover in a wireless telecommunications system
US10154442B2 (en) * 2012-01-12 2018-12-11 Futurewei Technologies, Inc. System and method for wireless link configuration
CN103249081B (zh) * 2012-02-03 2017-06-23 上海贝尔股份有限公司 一种多个移动中继协作进行切换的方法与装置
CN103249098A (zh) * 2012-02-03 2013-08-14 上海贝尔股份有限公司 一种移动中继自决定小区切换的方法
CN103297947B (zh) * 2012-02-22 2018-06-26 中兴通讯股份有限公司 一种实现本地ip业务的方法及系统
CN103379564B (zh) * 2012-04-20 2016-08-03 电信科学技术研究院 一种小区内切换方法及装置
WO2013166637A1 (en) * 2012-05-07 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Base station and method in relay node mobility
CN103458398B (zh) * 2012-05-28 2017-02-08 电信科学技术研究院 一种数据的传输方法和设备
CN103491580A (zh) * 2012-06-13 2014-01-01 电信科学技术研究院 一种传输用户面数据的方法、系统和设备
US9445311B2 (en) 2012-06-22 2016-09-13 Lg Electronics Inc. Method and apparatus for transmitting indication in wireless communication system
US9538450B2 (en) * 2012-08-03 2017-01-03 Futurewei Technologies, Inc. System and method for mobile relay packet gateway relocation for path optimization
CN102801822B (zh) * 2012-08-15 2018-05-15 中兴通讯股份有限公司 一种本地网关地址更新方法及装置
CN102821170A (zh) * 2012-08-15 2012-12-12 中兴通讯股份有限公司 一种地址分配方法及宿主基站
CN102892155B (zh) * 2012-09-18 2019-07-30 中兴通讯股份有限公司 一种网关重定位的方法及移动性管理实体
CN102932859B (zh) * 2012-09-28 2015-06-10 三维通信股份有限公司 LTE-Advanced移动中继与eNode B的切换系统及方法
CN103731920B (zh) * 2012-10-10 2019-04-23 中兴通讯股份有限公司 Un子帧配置方法及装置
WO2014063319A1 (zh) 2012-10-24 2014-05-01 华为技术有限公司 一种协作通信处理方法、基站及系统
CN103841607A (zh) * 2012-11-21 2014-06-04 中兴通讯股份有限公司 一种网关重定位的方法、移动管理实体及宿主基站
US9672527B2 (en) * 2013-01-21 2017-06-06 Tejas Networks Limited Associating and consolidating MME bearer management functions
CN103974346A (zh) 2013-01-31 2014-08-06 中兴通讯股份有限公司 一种移动中继及x2接口代理增强、处理的方法
CN104936247B (zh) * 2014-03-20 2019-04-23 中国电信股份有限公司 用于重选中继终端的方法、基站和系统
CN106717110B (zh) * 2014-09-03 2019-12-31 株式会社Ntt都科摩 无线中继站
CN104468312B (zh) * 2014-11-20 2019-03-15 中兴通讯股份有限公司 一种无线中继站及其接入核心网的方法和系统
CN106162743A (zh) * 2015-04-08 2016-11-23 中兴通讯股份有限公司 数据传输方法及装置
EP4138455A1 (en) * 2016-06-22 2023-02-22 Huawei Technologies Co., Ltd. Communication path switching method and device
WO2020202341A1 (ja) * 2019-03-29 2020-10-08 本田技研工業株式会社 中継装置、プログラム、通信システム及び通信方法
CN113676960B (zh) * 2020-05-13 2023-04-25 维沃移动通信有限公司 切换方法及装置、终端设备及网络设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262269A (zh) * 2007-03-05 2008-09-10 华为技术有限公司 一种群节点切换方法、通信系统及移动中继站

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040082330A1 (en) * 2002-10-29 2004-04-29 Marin James Scott Method for handoff and redundancy using mobile IP
US8842631B2 (en) * 2005-11-30 2014-09-23 Qualcomm Incorporated Data state transition during handoff
US8140077B2 (en) * 2006-04-19 2012-03-20 Nokia Corporation Handover or location update for optimization for relay stations in a wireless network
US20080019320A1 (en) * 2006-07-18 2008-01-24 Nokia Corporation Method, device, computer program, and apparatus providing embedded status information in handover control signaling
KR101386212B1 (ko) * 2006-11-14 2014-04-21 한국전자통신연구원 이동 중계기를 고려한 핸드오버 방법
WO2008114449A1 (ja) * 2007-03-20 2008-09-25 Fujitsu Limited ハンドオーバ処理による転送遅延を軽減できる基地局及びその方法
WO2008114180A2 (en) * 2007-03-21 2008-09-25 Nokia Corporation Method, apparatus and computer program product for data forwarding at handover
US8514809B2 (en) * 2007-11-16 2013-08-20 Nokia Siemens Networks Oy Mapping quality of service for intersystem handover
JP5104260B2 (ja) * 2007-12-04 2012-12-19 富士通株式会社 移動通信システム
WO2009084082A1 (ja) * 2007-12-27 2009-07-09 Fujitsu Limited 通信方法、通信システムおよび基地局
US20120051349A1 (en) * 2009-04-09 2012-03-01 Oumer Teyeb Base Station Caching for an Efficient Handover in a Mobile Telecommunication Network with Relays
US9160566B2 (en) * 2009-04-10 2015-10-13 Qualcomm Incorporated QOS mapping for relay nodes
US8059586B2 (en) * 2009-06-04 2011-11-15 Motorola Mobility, Inc. Mobility management entity tracking for group mobility in wireless communication network
EP2838291B1 (en) * 2009-06-17 2017-10-04 Interdigital Patent Holdings, Inc. Method and apparatus for performing handover with a relay node
US8611333B2 (en) * 2009-08-12 2013-12-17 Qualcomm Incorporated Systems and methods of mobile relay mobility in asynchronous networks
US9674311B2 (en) * 2009-08-14 2017-06-06 Qualcomm Incorporated Robust header compression for relay nodes

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262269A (zh) * 2007-03-05 2008-09-10 华为技术有限公司 一种群节点切换方法、通信系统及移动中继站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OUMER TEYEB ET AL.: "Handover Framework for Relay Enhanced LTE Networks.", IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS ICC 2009, June 2009 (2009-06-01), DRESDEN, GERMANY, XP031515443 *
See also references of EP2469926A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932855A (zh) * 2011-08-11 2013-02-13 中兴通讯股份有限公司 一种中继节点的切换方法及系统
CN103733683A (zh) * 2011-08-11 2014-04-16 交互数字专利控股公司 移动中继切换
EP2747482A1 (en) * 2011-09-13 2014-06-25 Huawei Technologies Co., Ltd Relay node handover method, base station and communications system
EP2747482A4 (en) * 2011-09-13 2014-09-03 Huawei Tech Co Ltd RELAY NODE-EXTENSION METHOD, BASIC STATION AND COMMUNICATION SYSTEM
US9179376B2 (en) 2011-09-13 2015-11-03 Huawei Technologies Co., Ltd. Relay node handover method, base station, and communication system
WO2013044979A1 (en) * 2011-09-30 2013-04-04 Nokia Siemens Networks Oy Mobile relay support in relay-enhanced access networks
WO2013055277A1 (en) 2011-10-10 2013-04-18 Telefonaktiebolaget L M Ericsson (Publ) A method and apparatus for mobile relay handover
US9088922B2 (en) 2011-10-10 2015-07-21 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for mobile relay handover
US9344948B2 (en) 2012-09-10 2016-05-17 Fujitsu Limited Handover with mobile relays
US9532290B2 (en) 2012-09-10 2016-12-27 Fujitsu Limited Handover with mobile relays
US9794851B2 (en) 2012-09-10 2017-10-17 Fujitsu Limited Handover with mobile relays

Also Published As

Publication number Publication date
CN101998554A (zh) 2011-03-30
US8730918B2 (en) 2014-05-20
EP2469926A4 (en) 2016-04-20
US20120140700A1 (en) 2012-06-07
EP2469926A1 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
WO2011020432A1 (zh) 基于移动中继的切换方法和移动无线中继系统
CN106941733B (zh) 双连接中实现重配置的方法、主服务基站及辅服务基站
JP6177428B2 (ja) 小セルラー基地局アクセスシステム及びそのネットワークアクセスを実現する方法
US9088922B2 (en) Method and apparatus for mobile relay handover
US9380637B2 (en) Relay communication system supporting multiple hops and access method thereof
EP2605588B1 (en) Method for obtaining interface information of neighbor evolved nodeb/relay node, and wireless relay system
WO2015184889A1 (zh) 一种用户设备切换基站的方法及基站、用户设备
WO2016127646A1 (zh) 异构网中的基站切换方法与基站
WO2011000193A1 (zh) 一种无线中继系统中终端的移动性管理方法及系统
US20160373980A1 (en) Method and Relay Node for Mobile Relay Enablement
JP6384591B2 (ja) 基地局装置および基地局間ゲートウェイ装置
EP2934044B1 (en) Method and apparatus for transferring bearing in layered network.
WO2014026543A1 (zh) 一种数据转发方法及设备
WO2010124572A1 (zh) 中继数据的传输方法、装置及系统
US20140135006A1 (en) Method and System for Mobile Relay Enablement
WO2011023101A1 (zh) 一种无线连接的gtp-u实体间传输数据的方法和装置
KR20130041996A (ko) 기지국 사이의 핸드오버를 관리하기 위한 방법 및 장치
WO2010124641A1 (zh) 一种长期演进系统及其数据传输方法
TWI503016B (zh) A method for performing handover, the system and apparatus
WO2013070247A1 (en) Method and apparatus for managing mobility of a plurality of relay nodes
WO2011020413A1 (zh) 一种应用于无线中继的传输系统及传输方法
WO2014177083A1 (zh) 一种连接管理方法及接入网网元
WO2014177089A1 (zh) 一种连接移动性管理方法及节点设备
WO2014079342A1 (zh) 一种本地ip访问连接的释放方法和mrn
CN102131250B (zh) 一种基于无线传输系统的数据前转方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13389519

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010809565

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE