WO2011019184A2 - 나노 크기의 그래핀 구조 물질의 제조방법 및 그 제조장치 - Google Patents

나노 크기의 그래핀 구조 물질의 제조방법 및 그 제조장치 Download PDF

Info

Publication number
WO2011019184A2
WO2011019184A2 PCT/KR2010/005229 KR2010005229W WO2011019184A2 WO 2011019184 A2 WO2011019184 A2 WO 2011019184A2 KR 2010005229 W KR2010005229 W KR 2010005229W WO 2011019184 A2 WO2011019184 A2 WO 2011019184A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
microchannel
permanganate
sulfuric acid
graphite oxide
Prior art date
Application number
PCT/KR2010/005229
Other languages
English (en)
French (fr)
Other versions
WO2011019184A3 (ko
Inventor
권영진
박원형
신철민
지병규
권두효
Original Assignee
엔바로테크 주식회사
구자운
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔바로테크 주식회사, 구자운 filed Critical 엔바로테크 주식회사
Priority to EP10808333.8A priority Critical patent/EP2495216B1/en
Priority claimed from KR1020100076871A external-priority patent/KR101053933B1/ko
Publication of WO2011019184A2 publication Critical patent/WO2011019184A2/ko
Publication of WO2011019184A3 publication Critical patent/WO2011019184A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • C01B32/192Preparation by exfoliation starting from graphitic oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00867Microreactors placed in series, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00925Irradiation
    • B01J2219/00932Sonic or ultrasonic vibrations

Definitions

  • the present invention relates to a method for producing a nano-sized graphene structural material and an apparatus for manufacturing the same, and the present invention also relates to a method for producing graphite oxide, which is an intermediate used to prepare the graphene structural material, and an apparatus for manufacturing the same. .
  • Graphene is a recently discovered two-dimensional carbon nanostructure, a material of the form of a honeycomb crystal lattice of a single plate structure composed of sp 2 hybrid bonds of carbon atoms.
  • the graphene has the same shape as that in which hexagonal crystal lattice is stacked in a layered structure and the interlayer separation is completely completed in the graphite having a laminated structure.
  • the carbon nanotubes When the carbon nanotubes are cut in the longitudinal direction, they become graphene structures, and when the diameter of the walls of the carbon nanotubes is infinitely wide, they are similar to the graphene structures. Thus, the electrical, thermal and mechanical properties of graphene are comparable to those of carbon nanotubes.
  • Such graphene can be obtained by drawing from graphite like Andre James, surface growth method, reduction of graphite oxide sheet to hydrazine, chemical vapor deposition, incision of nanotubes by reaction of sulfuric acid and permanganic acid solution, etc. This is known but not all escape the laboratory recipe.
  • a Stoudenmaier method is known in which sulfuric acid, fuming nitric acid and potassium perchlorate are added to graphite powder to react for several days to produce graphite oxide.
  • Hummers (HUMMERS) in the United States Patent No. 2798878 has been improved by using the sulfuric acid, sodium nitrate and potassium permanganate to shorten the reaction time.
  • An object of the present invention is to provide a method and apparatus for producing a material having a nano-sized graphene structure and properties in large quantities safely and economically.
  • the present invention comprises the steps of preparing a graphite slurry by mixing graphite and sulfuric acid (first step); Injecting the graphite slurry into a microchannel unit in which one or more microchannels are sequentially provided (second step); Adding and mixing any one of permanganic acid, permanganate or permanganate sulfuric acid solution to the microchannel to react (third step); Adding water to the reaction mixture of the third step and mixing and reacting (fourth step); Adding an aqueous hydrogen peroxide solution to the reaction mixture of the fourth step and mixing the mixture to terminate the oxidation reaction (the fifth step); Washing and separating graphite oxide in the reaction mixture of the fifth step (sixth step); And drying the graphite oxide discharged through the sixth step (seventh step), wherein the first to fifth steps are all performed continuously.
  • a microchannel reactor loaded in a heat exchanger is used to precisely adjust the temperature locally and continuously introduce graphite slurry and permanganate sulfuric acid solution into the microchannel to cause oxidation reaction between the graphite layers.
  • the nano-sized graphene structural material obtained by the interlayer separation of graphite oxide has not only physical properties comparable to those of carbon nanotubes, but also carbon nanotubes having low dispersibility by functional groups such as remaining trace carboxyl groups or hydroxy groups. Since superior dispersibility can be easily obtained in the manufacturing process, polymer composite materials, fillers, secondary batteries, transistors, hydrogen gas storage are based on properties such as high thermal conductivity, electrical conductivity, high strength, high specific surface area, and flexibility. It can be applied to various fields such as containers, supercapacitors, top gates and biosensors.
  • FIG. 1 and 2 are schematic process diagrams for producing graphite oxide as one embodiment of the present invention
  • FIG. 3 is a schematic exploded perspective view and a partially exploded perspective view showing the configuration of the microchannel portion of FIG. 1,
  • FIG. 4 and FIG. 5 are schematic process diagrams for preparing the final nano-sized graphene structure material by delaminating the graphite oxide prepared in FIG. 3 by thermal shock in a vertical fluidized bed furnace.
  • the present invention comprises the steps of preparing a graphite slurry by mixing graphite and sulfuric acid (first step); Injecting the graphite slurry into a microchannel unit in which one or more microchannels are sequentially provided (second step); Adding and mixing any one of permanganic acid, permanganate or permanganate sulfuric acid solution to the microchannel to react (third step); Adding water to the reaction mixture of the third step and mixing and reacting (fourth step); Adding an aqueous hydrogen peroxide solution to the reaction mixture of the fourth step and mixing the mixture to terminate the oxidation reaction (the fifth step); Washing and separating graphite oxide in the reaction mixture of the fifth step (sixth step); And drying the graphite oxide discharged through the sixth step (seventh step), wherein the first to fifth steps are all performed continuously.
  • the graphite slurry has a graphite: sulfuric acid weight ratio of 1:10 to 1: 100, preferably 1:30 to 1:70, and if the graphite: sulfuric acid weight ratio is too high, the viscosity of the graphite slurry becomes high and the reactant in the microchannel is increased. While the transfer and mixing is not smooth, too low graphite to sulfuric acid weight ratio can result in low reaction efficiency and high waste sulfuric acid by-products.
  • the sulfuric acid has a concentration of 80% or more, preferably 80 to 98% sulfuric acid
  • the graphite slurry can be prepared by dispersing the graphite powder in sulfuric acid.
  • the graphite slurry is supplied to the microchannel unit by a metering pump connected to the microchannel unit, and the amount of the graphite slurry supplied may be strictly controlled by a quantitative method.
  • the permanganic acid or permanganate may be introduced into the microchannel portion together with a carrier gas such as nitrogen, and mixed with sulfuric acid introduced into the microchannel portion through the graphite slurry in the microchannel portion to provide a permanganate sulfate solution.
  • the permanganate sulfuric acid solution is prepared by continuously adding and mixing the permanganate supplied from the permanganate supply unit to the premixer in which sulfuric acid is continuously added, the permanganate sulfate solution thus prepared may be introduced into the microchannel portion. have.
  • the pre-mixer is preferably a reaction between the permanganate and sulfuric acid while maintaining a temperature of 0 to 54 °C, in particular dimanganese oxide (Mn 2 O 7 ) produced by the reaction of permanganate and sulfuric acid is 55 °C or more Because of the risk of explosion at temperature, it is necessary to continuously add and mix small amounts of permanganate and sulfuric acid.
  • the permanganate sulfuric acid solution is a permanganate: sulfuric acid weight ratio of 1: 2 to 1:50, preferably 1: 5 to 1:30, the permanganate is potassium permanganate or sodium permanganate, ammonium permanganate, calcium permanganate
  • the sulfuric acid may be prepared by dissolving the permanganate in sulfuric acid using sulfuric acid having a concentration of 80% or more, preferably 80 to 98%. If the permanganate: sulfuric acid weight ratio is less than the content range, the oxidation reaction may not be smooth, whereas if the permanganate: sulfuric acid weight ratio is large, the manufacturing cost may increase due to an increase in the raw material cost.
  • the permanganate The sulfuric acid solution is supplied to the microchannel unit by a metering pump connected to the microchannel unit, and the amount of the permanganate sulfate solution supplied can be strictly controlled by a quantitative method.
  • the reaction of the third step may be carried out while maintaining a temperature of 0 to 54 °C. If the reaction temperature is higher than 54 ° C., a problem of explosion of dimanganese oxide (Mn 2 O 7 ) generated by the reaction between sulfuric acid and permanganate may be caused.
  • Mn 2 O 7 dimanganese oxide
  • the fourth step and the fifth step may be performed while maintaining a temperature of 0 to 99 °C. If the temperature is less than 0 ° C out of the above temperature condition, freezing of the reaction mixture may be caused, whereas if it exceeds 99 ° C, the problem of breaking the reaction product graphite oxide may be caused.
  • the step of filtering the reaction mixture of the fourth step may further include between the fourth step and the fifth step.
  • the reaction of the fourth and fifth steps may be performed in any one of a microchannel or a mixing tank.
  • the reaction of the third to fifth steps may be performed under sonication in order to increase the expansion and peeling efficiency between the graphite layers.
  • the ultrasonic treatment is preferably carried out at 0.05W / cm 3 to about 5.0W / cm 3 for 0.2 to 500 hours. If the ultrasonic wave treatment is less than 0.05W / cm 3 outside the above conditions, the exfoliation efficiency is very low, whereas the ultrasonic wave treatment exceeding 5.0W / cm 3 causes particle breakdown due to the ultrasonic wave. The problem of getting smaller can be caused. In addition, when the ultrasonic treatment is less than 0.2 hours, the peeling efficiency is very insignificant, when processing for more than 500 hours may cause particle breakage caused by the ultrasonic wave to reduce the size of the particles.
  • the water has a graphite: water weight ratio of 1: 1 to 1: 100 based on graphite, and when the graphite: water weight ratio is out of the content range, the oxidation reaction is not smooth while the waste water is large. It may occur a lot and cause a problem of high manufacturing cost.
  • the water is supplied to the microchannel unit by a metering pump connected to the microchannel unit, the amount of water supplied can be strictly controlled by a quantitative method.
  • the hydrogen peroxide aqueous solution is not particularly limited in concentration of hydrogen peroxide, but in general, may be 1 to 10% by weight, preferably 2 to 7% by weight.
  • the weight ratio of graphite to aqueous hydrogen peroxide solution is not quantitative, but it is empirically based on the case where the concentration of hydrogen peroxide is 3% by weight, similar to the weight ratio of graphite: sulfuric acid, 1:10 to 1: 100, preferably 1:30 to 1:70. May be added.
  • the aqueous hydrogen peroxide solution terminates graphite oxidation by reducing excess permanganate. Excessive amounts are expensive to clean and dry, and small amounts do not terminate the reaction. After the aqueous hydrogen peroxide solution is added, the holding time may be within several tens of minutes.
  • the microchannel portion is formed by connecting one or more microchannels to each other, and the number of the microchannels may vary according to the reaction time, and the graphite slurry and permanganate which are raw materials For the oxidation reaction between sulfuric acid solutions it is necessary to have a residence time length of several days, preferably 0.2 hours to 24 hours.
  • the oxidation reaction between sulfuric acid solutions should be maintained at 0 ° C to 54 ° C, preferably 10 ° C to 54 ° C. At lower temperatures, the reaction efficiency is lower, whereas at higher temperatures the risk of explosion is high, and the microchannels must be tightly controlled within this temperature range to prevent the microchannels from exploding by local overheating.
  • the microchannel unit may be loaded into a heat exchanger having a cooling facility to be controlled at a predetermined range of temperature.
  • Each microchannel constituting the microchannel portion has a good thermal conductivity of 1 ⁇ m to several tens of mm and preferably 1 ⁇ m to several mm in order for the reaction mixture to be well mixed in the microchannel to improve reaction efficiency. It may be a good tubular reactor, and particularly preferably a reactor having an inner diameter of 1 ⁇ m to 1 mm for reaction efficiency and safe operation.
  • the reaction mixture can be moved in the microchannel, typically at a flow rate of 0.1 l / hr to 100 l / hr, preferably at a flow rate of l l / hr to 50 l / hr.
  • the sulfuric acid solution After the sulfuric acid solution is added to the graphite slurry, it can preferably be maintained for several days in water, most preferably for 0.2 to 24 hours.
  • Graphite slurry, permanganate sulfate solution, water and aqueous peroxide solution used in the present invention can supply the corresponding material to each microchannel by a respective metering pump.
  • the graphite slurry and the permanganate sulfuric acid solution are preferably supplied into the microchannel at a sufficient pressure and speed so that the reaction mixture forms a vortex in the microchannel by the corresponding metering pump.
  • Excess permanganic acid is reduced by the addition of aqueous hydrogen peroxide solution, and the reaction mixture is terminated at the outlet of the microchannel.
  • the reaction mixture which has terminated the reaction discharged to the outlet of the microchannel may be washed one or more times with pure water or water having a suitable pH, for example, washing water having a pH of 5 to 6, before drying, and preferably 200 ° C. or less. May be dried under reduced pressure within 96 hours at 80 °C or less. Such washing and drying may be performed separately from the previous step or may be carried out continuously.
  • the present invention is a graphite slurry supply unit for continuously supplying graphite slurry by mixing graphite and sulfuric acid;
  • a permanganate supply unit for continuously supplying any of permanganic acid, permanganate, or permanganic acid sulfuric acid solution;
  • a microchannel unit sequentially provided with one or more microchannels in which the graphite slurry supply unit and the permanganate supply unit are connected to each other, and the reaction mixture is maintained at a predetermined temperature range;
  • a water supply unit having an inlet connected to the microchannel unit and continuously supplying water;
  • a hydrogen peroxide aqueous solution supply unit having an inlet connected to the microchannel unit and continuously supplying an aqueous hydrogen peroxide solution;
  • a washing machine connected to the microchannel and washing the graphite oxide reaction mixture discharged after the oxidation reaction is terminated in the microchannel part; And it is connected to the washing machine, and provides a graphite oxide manufacturing apparatus comprising a dryer for drying under reduced pressure the graph
  • the graphite oxide production apparatus may further include a premixer disposed between the permanganate supply unit and the microchannel unit and continuously adding and mixing sulfuric acid and the permanganic acid or permanganate supplied from the permanganate supply unit, respectively. .
  • the microchannel portion may be formed by connecting a plurality of microchannels to each other, and the microchannel portion preferably has a residence time length of several days, preferably 0.2 to 24 hours in minutes.
  • the present invention comprises the steps of preparing a graphite slurry by mixing graphite and sulfuric acid (first step); Injecting the graphite slurry into a microchannel unit in which one or more microchannels are sequentially provided (second step); Adding and mixing any one of permanganic acid, permanganate or permanganate sulfuric acid solution to the microchannel to react (third step); Adding water to the reaction mixture of the third step and mixing and reacting (fourth step); Adding an aqueous hydrogen peroxide solution to the reaction mixture of the fourth step and mixing the mixture to terminate the oxidation reaction (the fifth step); Washing and separating graphite oxide in the reaction mixture of the fifth step (sixth step); Drying the graphite oxide discharged through the sixth step (seventh step); Supplying the graphite oxide prepared in step 7 into the fluidized bed furnace in a reducing atmosphere to reduce and exfoliate through thermal shock (step 8); Capturing the nano-sized graphene structural material produced in the eighth step (step 8);
  • the nano-sized graphene structure material is a two-dimensional carbon nano structure based on a single-layered graphene base material in the form of a hexagonal crystal lattice (honeycomb crystal lattice) of a single plate structure.
  • the substance is defined as a substance having no distinct peak except for traces in a range of 2 ⁇ or more.
  • the nano-sized graphene structural material has a thickness of 100 nm or less, a surface area of 300 to 3000 m 2 / g, and an amount of residual oxygen of 1.0 wt% or less relative to graphite.
  • Such graphite oxide becomes the nano-sized graphene structural material by the interlayer separation by thermal shock.
  • the graphite oxide may be converted into nano-sized graphene structural material in a thermal shock method using a fluidized bed furnace, in particular a vertical fluidized bed furnace.
  • the nano-sized graphene structural material may be prepared in a continuous manner, and the washed and dried graphite oxide is supplied into the fluidized bed furnace formed by the air gas. Heating of such a fluidized bed can be achieved by conventional methods by heaters or by microwaves.
  • the air flow may be achieved by the wind pressure of the reducing atmosphere gas supplied to the fluidized bed furnace, but may be formed by the convection of the atmosphere gas by heating.
  • Atmospheric gas may be generally used an inert carrier gas of nitrogen or argon, may be formed by adding hydrogen gas to the inert carrier gas of nitrogen or argon in order to increase the reduction efficiency of the graphite oxide, the temperature in the fluidized bed It may be maintained at 300 °C to 1200 °C, preferably at 500 to 1000 °C.
  • the graphite oxide flakes may be separated and separated by the thermal shock, and only nano-sized graphene structural materials sufficiently separated by the controlled airflow may be piggybacked in the airflow to the inlet of the collecting part disposed on the ceiling of the fluidized bed.
  • the nano-sized graphene structural material is separated by a cyclone dust collector if necessary and the separated atmospheric gas can be fed back into the fluidized bed furnace.
  • the present invention also provides a graphite oxide powder supply unit;
  • a fluidized bed furnace having a first inlet on which the graphite oxide powder supply unit is mounted and a second inlet on which a reducing gas is introduced, wherein a reducing atmosphere and a high temperature are maintained;
  • a nano-sized graphene structure material manufacturing apparatus including a collector equipped with an inlet in the ceiling of the fluidized bed.
  • the graphite oxide powder supply unit is connected to the upper end of the fluidized bed to drop the graphite oxide powder, and the graphite oxide powder supply unit is connected to the lower end of the fluidized bed to supply the graphite oxide powder You can also be connected to the upper end of the fluidized bed to drop the graphite oxide powder, and the graphite oxide powder supply unit is connected to the lower end of the fluidized bed to supply the graphite oxide powder You can also be connected to the upper end of the fluidized bed to drop the graphite oxide powder, and the graphite oxide powder supply unit is connected to the lower end of the fluidized bed to supply the graphite oxide powder You can also
  • the apparatus may further include a cyclone connected to the collector and separating the fluidized bed gas and the nano-sized graphene structural material and resupplying the separated fluidized bed gas into the fluidized bed.
  • the microchannel parts 5 and 15 are formed by connecting one or more microchannels, and the plurality of microchannel modules 5a, 5b, 5c, 5d, 5e, 5f, and 5g charged in the heat exchanger 23 are formed. It includes. Each microchannel comprises an inlet, a reaction section and an outlet.
  • the graphite slurry is fed in the graphite slurry supply units (1, 11) to continuously manufacture a mixture of sulfuric acid supplied from the sulfuric acid supply unit through the liquid metering pump and graphite supplied from the graphite supply unit through the powder metering pump.
  • the graphite slurry is prepared and forced into the microchannel or the mixing reactor from the graphite slurry supply units 1 and 11.
  • Permanganic acid or permanganate is forcibly injected into the microchannel part 5 from the permanganate supply unit 3 by using a carrier gas or the like.
  • the permanganate sulfate solution in which permanganate is mixed with sulfuric acid is prepared by mixing the sulfuric acid continuously supplied from the sulfuric acid supply unit 12 with the permanganate continuously supplied from the permanganate supply unit 13.
  • the permanganate sulfuric acid solution is forcedly injected from the premixer 14 into the microchannel unit 15.
  • the microchannel portions 5, 15 comprise a plurality of microchannel modules 5a, 5b, 5c, 5d, 5e, 5f, 5g surrounded by a heat exchanger 23 so that the temperature is precisely controlled.
  • Each microchannel module 5a, 5b, 5c, 5d, 5e, 5f, 5g has a channel 29, an inlet 25a and an outlet 25b, which are connected to each other to form one channel 29. .
  • Each microchannel plate 25 is inserted between two plate heat exchangers 23 having a heat medium inlet 27a and an outlet 27b to form each microchannel module (eg 5c).
  • Each microchannel module 5a, 5b, 5c, 5d, 5e, 5f, 5g is more preferably stacked again to save space. If necessary, insulation plates may be placed between the modules. Since the mixing is more important than the reaction rate near the beginning of the microchannel (eg 5a), it is preferable to operate at a relatively low temperature in the range of 0 ° C to 54 ° C in consideration of the variable by the inflow fluctuations, 5g) is preferably operated at the same temperature near 54 °C to maintain a high and stable reaction rate.
  • the graphite slurry and the permanganate sulfuric acid solution are mixed in the channels 29 of the microchannel portions 5, 15 and held for about 20 minutes to the outlet.
  • the outlets of the microchannels 5 and 15 are primarily connected to pure water supply units 7 and 17 to add water to the reaction mixture, followed by the hydrogen peroxide supply units 9 and 19 to supply hydrogen peroxide supply units 9. , 19) is added to the reaction mixture through a metering pump to terminate the oxidation reaction. Subsequently, the oxidation reaction is terminated, and the reaction mixture discharged is washed and dried to produce graphite oxide.
  • FIG. 4 and 5 illustrate a method of manufacturing a nano-sized graphene structural material according to the present invention.
  • the graphite oxide powder supplied from the graphite oxide powder supply units 32 and 32a is supplied and dropped through the feeders 33 and 33a located at the top or the bottom of the vertical fluidized bed 31 maintained at a high temperature of about 800 ° C.
  • the graphite oxide 34 that falls or rises when raised, is separated by a thermal shock, is separated, and is lifted up by the rising air flow formed in the vertical fluidized bed 31 to be sucked into the collecting pipe 35.
  • the graphene particles are separated using a cyclone 36, and the separated gas is supplied back to the fluidized bed 31 through a pipe 43, wherein the separated gas is nitrogen tank 39 and hydrogen tank ( The gas supplied from 40 is resupplied to the bottom of the fluidized bed together with the hydrogen atmosphere gas provided via mixer 42 and conduit 43.
  • the separated nano-sized graphene structural material 37 is collected in a reservoir 38 below the cyclone 36.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 나노 크기의 그래핀 구조 물질의 제조방법 및 그 제조장치에 관한 것으로, 마이크로채널에 흑연 황산슬러리와 과망간산염 황산 용액을 각각 강제 유입하여 흑연 층간에 산화반응을 일으키고 특히 마이크로채널에서 반응 중에 초음파를 처리하여 흑연 층간의 팽창 및 박리 효율을 높이며, 반응 종결부에 과산화수소 수용액을 주입하여 산화반응을 종결하고 배출되는 반응혼합물을 세척 및 건조하여 산화흑연을 제조하는 방법 및 그 제조장치와 제조된 산화흑연을 다시 유동상로 내에 공급시켜 열충격에 의한 층간분리에 의하여 나노크기의 그래핀 구조 물질을 제조하는 방법 및 그 제조장치를 제공하며, 본 발명에 따르면 산화흑연 제조 시 폭발 위험을 줄이고 대량으로 산화흑연을 제조할 수 있을 뿐 아니라, 탄소나노튜브와 필적할만한 물성을 갖고 월등한 분산성을 갖는 나노크기의 그래핀 구조 물질을 제조할 수 있다.

Description

나노 크기의 그래핀 구조 물질의 제조방법 및 그 제조장치
본 발명은 나노 크기의 그래핀 구조 물질의 제조방법 및 그 제조장치에 관한 것이며, 또한 본 발명은 상기 그래핀 구조 물질을 제조하는 데 사용하는 중간체인 산화흑연의 제조방법 및 그 제조장치에 관한 것이다.
그래핀은 최근에 발견된 2차원의 탄소나노구조로, 탄소원자가 sp2 혼성결합으로 이루어진 단일 평판구조의 육각형결정격자(honeycomb crystal lattice) 형태의 물질이다. 상기 그래핀은 육각형결정격자가 층상 구조로 쌓여 적층구조를 띤 흑연에서 층간분리가 완전하게 이루어진 형태와 동일하다.
2004년 맨체스터 대학의 안드레 제임(Andre Geim) 교수 팀이 "스카치테이프방법(Scotch tape method)"을 이용해 최초로 기계적으로 흑연에서 그래핀을 박리하는데 성공하였고, 또한 박리된 그래핀을 이용하여 양자홀 효과 연구를 통해 그래핀의 뛰어난 전기전도성을 밝힌 바 있다. 이후 2008년 미국 콜롬비아 대학의 제임스 혼(James Hone) 연구팀에 의해 그래핀의 뛰어난 강도가 확인되었으며, 2008년 미국 캘리포니아 리버사이드 대학의 알렉산더 발라딘(Alexander Balandin) 연구팀에 의해 그래핀의 열전도도가 탄소나노튜브보다 약 2배 높은 5300pW/mpK로 측정되었다.
카본나노튜브를 길이 방향으로 절개하면 그래핀 구조가 되고 카본나노튜브의 벽체의 직경이 무한히 넓어지면 그래핀 구조와 비슷하게 된다. 따라서 그래핀의 전기적, 열적과 기계적 특성은 카본나노튜브에 필적한다.
이러한 그래핀을 얻는 방법에는 안드레 제임처럼 흑연에서 인발해서 얻는 방법, 표면성장법, 산화흑연시트를 히드라진으로 환원하는 법, 화학증착법, 나노튜브를 황산과 과망간산의 용액과의 반응으로 절개하는 법 등이 알려져 있으나 모두 실험실적 제법을 벗어나지 못하고 있다.
한편, 흑연 플레이크에 산 등을 가하여 흑연 결정의 층간에 삽입(intercalation)하고 열충격을 가하여 웜(worm) 또는 어코디온(accordion) 형태의 팽창흑연을 제조하는 방법은 오래 전부터 알려져 있다. 이러한 웜 형태의 팽창흑연은 충진제로 사용되거나 압착 가공하여 이방 전도성을 띤 시트로 널리 사용되고 있다. 그러나 이러한 팽창 흑연은 흑연의 일부 층간이 느슨하게 된 구조로, 그래핀에 비하여 물성이 떨어지고 입자의 크기도 훨씬 크다.
산화흑연을 제조하는 방법에 대해서는 흑연 분말에 황산, 발연질산과 과염소산칼륨을 가하여 수일 동안 반응시켜 산화흑연을 제조하는 스타우덴마이어(Staudenmaier) 법이 알려져 있다. 또한, 미국특허 2798878호에서 허머스(HUMMERS)는 이를 개선하여 황산, 질산나트륨과 과망간산칼륨을 사용하여 반응시간을 단축한 바 있다.
한편, 황산, 질산나트륨과 과망간산칼륨의 혼합 반응은 발열반응이면서 상기 혼합 반응 중 황산과 과망간산칼륨 간의 반응에 의해 생성되는 칠산화이망간(Mn2O7)이 55℃ 이상의 온도에서 폭발의 위험성이 있기 때문에 일반적으로 아주 소량씩 배치 방법으로만 산화흑연을 제조할 수 있어 대량 생산에 한계가 있었다. 따라서, 이러한 문제점을 해결할 수 있고 산화흑연을 대량 생산할 수 있는 공정의 개발이 시급한 실정이다.
본 발명의 목적은 나노 크기의 그래핀 구조와 특성을 갖는 물질을 대량으로 안전하고 경제적으로 제조하는 방법 및 그 장치를 제공하는 데에 있다.
또한, 본 발명의 다른 목적은 나노 크기의 그래핀 구조 물질을 제조하기 위한 중간체인 산화흑연을 연속적으로 제조하는 방법 및 그 장치를 제공하는 데에 있다.
상기 목적을 달성하기 위하여, 본 발명은 흑연과 황산을 혼합하여 흑연 슬러리를 준비하는 단계(제1단계); 상기 흑연 슬러리를 하나 이상의 마이크로채널이 순차적으로 구비된 마이크로채널부에 투입하는 단계(제2단계); 상기 마이크로채널부에 과망간산, 과망간산염 또는 과망간산염 황산 용액 중 어느 하나를 투입하고 혼합하여 반응시키는 단계(제3단계); 제3단계의 반응혼합물에 물을 투입하고 혼합하여 반응시키는 단계(제4단계); 제4단계의 반응혼합물에 과산화수소 수용액을 투입하고 혼합하여 산화반응을 종결시키는 단계(제5단계); 제5단계의 반응혼합물 중 산화흑연을 세척하고 분리하는 단계(제6단계); 및 제6단계를 거쳐 배출된 산화흑연을 건조시키는 단계(제7단계)를 포함하고, 상기 제1단계 내지 제5단계가 모두 연속적으로 이루어지는 산화흑연의 제조방법을 제공한다.
본 발명에 따르면, 열교환기 내에 장입된 마이크로채널형 반응기를 사용하여 온도를 국지적으로 정밀하게 조정하고 상기 마이크로채널 내로 연속적으로 흑연 슬러리와 과망간산염 황산 용액을 각각 강제 유입시켜 흑연 층간에 산화반응을 일으키고 초음파 처리를 통해 흑연 층간의 팽창 및 박리 효율을 높임으로써 산화흑연 제조 시 폭발 위험을 줄이고 대량의 산화흑연을 경제적으로 생산할 수 있다.
또한, 이러한 산화흑연을 층간분리하여 얻는 나노 크기의 그래핀 구조 물질은 탄소나노튜브와 필적할 만한 물성을 가질 뿐만 아니라 잔존하는 미량의 카르복실기 또는 히드록시기와 같은 관능기에 의하여 낮은 분산성을 갖는 탄소나노튜브보다 월등한 분산성을 제조과정에서 손쉽게 얻을 수 있으므로, 높은 열전도성, 전기전도성, 높은 강도, 높은 비표면적, 유연성 등의 물성을 바탕으로 고분자 복합소재, 충전재, 2차전지, 트랜지스터, 수소가스 저장용기, 수퍼캐패시터, 탑게이트, 바이오센서 등 다양한 분야에 응용할 수 있다.
도 1 및 도 2는 본 발명의 한 실시양태로서 산화흑연을 만드는 개략적인 공정도이고,
도 3은 도 1의 마이크로채널부의 구성을 보여 주는 개략적인 분해 사시도와 부분 분해 확대 사시도이고,
도 4는 및 도 5는 도 3에서 제조된 산화흑연을 수직 유동상로에서 열충격에 의하여 층간 박리하여 최종 나노크기의 그래핀 구조 물질을 제조하는 개략적인 공정도이다.
본 발명은 흑연과 황산을 혼합하여 흑연 슬러리를 준비하는 단계(제1단계); 상기 흑연 슬러리를 하나 이상의 마이크로채널이 순차적으로 구비된 마이크로채널부에 투입하는 단계(제2단계); 상기 마이크로채널부에 과망간산, 과망간산염 또는 과망간산염 황산 용액 중 어느 하나를 투입하고 혼합하여 반응시키는 단계(제3단계); 제3단계의 반응혼합물에 물을 투입하고 혼합하여 반응시키는 단계(제4단계); 제4단계의 반응혼합물에 과산화수소 수용액을 투입하고 혼합하여 산화반응을 종결시키는 단계(제5단계); 제5단계의 반응혼합물 중 산화흑연을 세척하고 분리하는 단계(제6단계); 및 제6단계를 거쳐 배출된 산화흑연을 건조시키는 단계(제7단계)를 포함하고, 상기 제1단계 내지 제5단계가 모두 연속적으로 이루어지는 산화흑연의 제조방법을 제공한다.
상기 흑연 슬러리는 흑연:황산 중량비가 1:10 내지 1:100, 바람직하게는 1:30 내지 1:70인 것이 바람직하며, 흑연:황산 중량비가 너무 높으면 흑연 슬러리의 점도가 높아져 마이크로채널 내에 반응물의 이송과 혼합이 원활하지 않는 반면, 흑연:황산 중량비가 너무 낮으면 반응 효율성이 낮고 폐황산 부산물이 많이 발생할 수 있다.
상기 흑연은 일반적으로 입도가 클수록 좋고, 1㎛ 이상이면 사용가능하며, 예를들어 1 내지 300㎛의 흑연 분말을 사용할 수 있다. 흑연의 입도가 너무 낮으면 중량 밀도에 따른 팽창효과가 낮아 박리에 의한 그래핀이 잘 형성되지 않는 문제가 야기될 수 있다.
또한, 상기 황산은 농도가 80% 이상, 바람직하게는 80 내지 98%인 황산을 사용하며, 상기 흑연 슬러리는 황산에 흑연 분말을 분산하여 제조할 수 있다.
상기 흑연 슬러리는 마이크로채널부에 연결된 정량펌프에 의하여 마이크로채널부로 공급되며, 공급된 흑연 슬러리 양은 정량 방식 등에 의하여 엄격하게 조절될 수 있다.
상기 과망간산 또는 과망간산염은 질소 등과 같은 캐리어 가스와 함께 마이크로채널부로 투입되고, 흑연 슬러리를 통해 마이크로채널부에 유입된 황산과 마이크로채널부에서 혼합되어 과망간산염 황산 용액을 제공할 수 있다. 또한, 상기 과망간산염 황산 용액은 황산이 연속적으로 투입되는 예비혼합기에 과망간산염 공급유니트로부터 공급되는 과망간산염을 연속적으로 투입하고 혼합하여 준비되며, 이렇게 제조된 과망간산염 황산 용액이 마이크로채널부로 투입될 수 있다.
상기 예비혼합기는 0 내지 54℃의 온도를 유지하면서 과망간산염과 황산 간의 반응이 수행되는 것이 바람직하며, 특히 과망간산염과 황산의 반응에 의해 생성되는 칠산화이망간(Mn2O7)은 55℃ 이상의 온도에서 폭발의 위험성이 있기 때문에 과망간산염 및 황산을 소량씩 연속적으로 투입하고 혼합할 필요가 있다.
상기 과망간산염 황산 용액은 과망간산염:황산 중량비가 1:2 내지 1:50, 바람직하게는 1:5 내지 1:30인 것이 바람직하며, 상기 과망간산염은 과망간산칼륨 또는 과망간산나트륨, 과망간산암모늄, 과망간산칼슘 등을 포함하며, 상기 황산은 농도가 80% 이상, 바람직하게는 80 내지 98%인 황산을 사용하며, 상기 과망간산염을 황산에 용해시켜 제조할 수 있다. 만약, 과망간산염:황산 중량비가 상기 함량범위보다 작으면 산화반응이 원활하지 못한 반면, 크면 원재료비 상승으로 제조비용이 많이 드는 문제가 야기될 수 있다.
상기 과망간산염 황산 용액은 마이크로채널부에 연결된 정량펌프에 의하여 마이크로채널부로 공급되며, 공급된 과망간산염 황산 용액의 양은 정량 방식 등에 의하여 엄격하게 조절될 수 있다.
또한, 상기 제3단계의 반응은 0 내지 54℃의 온도를 유지하면서 수행될 수 있다. 만약, 상기 반응 온도가 54℃를 초과하면 황산과 과망간산염 간의 반응에 의해 생성되는 칠산화이망간(Mn2O7)의 폭발의 문제가 야기될 수 있다.
또한, 상기 제4단계 및 제5단계는 0 내지 99℃의 온도를 유지하면서 수행될 수 있다. 만약, 상기 온도 조건을 벗어나 0℃ 미만인 경우에는 반응혼합물의 동결 문제가 야기될 수 있는 반면, 99℃를 초과하면 반응 생성물인 산화흑연의 파괴 문제가 야기될 수 있다.
또한, 상기 제4단계의 반응혼합물을 여과하는 단계를 제4단계와 제5단계 사이에 더 포함할 수 있다. 그리고, 상기 제4단계 및 제5단계의 반응은 마이크로채널 또는 혼합탱크 중 어느 하나에서 수행될 수 있다.
또한, 상기 제3단계 내지 제5단계의 반응은 흑연 층간의 팽창 및 박리 효율을 높이기 위하여 초음파 처리 하에서 수행될 수 있다. 이때, 상기 초음파 처리는 0.05W/cm3 내지 5.0W/cm3에서 0.2 내지 500시간 동안 수행되는 것이 바람직하다. 만약, 상기 조건을 벗어나 0.05W/cm3 미만의 초음파를 처리할 경우 박리효율이 매우 미미한 반면, 5.0W/cm3를 초과한 초음파를 처리할 경우 초음파로 인한 입자 파괴가 발생하여 입자의 크기가 작아지는 문제가 야기될 수 있다. 또한, 초음파 처리를 0.2시간 미만으로 처리할 경우 박리효율이 매우 미미한 반면, 500시간을 초과하여 처리할 경우 초음파로 인한 입자 파괴가 발생하여 입자의 크기가 작아지는 문제가 야기될 수 있다.
상기 물은 흑연을 기준으로 흑연:물 중량비가 1:1 내지 1:100인 것이 바람직하며, 흑연:물 중량비가 상기 함량범위를 벗어나 작은 경우에는 산화반응이 원활하지 못한 반면, 큰 경우에는 폐수가 많이 발생하여 제조비용이 많이 드는 문제가 야기될 수 있다. 이때, 물은 마이크로채널부에 연결된 정량펌프에 의하여 마이크로채널부로 공급되며, 공급된 물의 양은 정량 방식 등에 의하여 엄격하게 조절될 수 있다.
상기 과산화수소 수용액은 과산화수소의 농도가 특별히 제한되지 않으나 일반적으로, 1 내지 10 중량%, 바람직하게는 2 내지 7 중량%일 수 있다. 흑연: 과산화수소 수용액의 중량비는 정량적은 아니나 경험칙에 의하여 과산화수소의 농도가 3 중량%인 경우를 기준으로 흑연: 황산 중량비와 비슷하게 1:10 내지 1:100, 바람직하게는 1:30 내지 1:70이 되도록 가할 수 있다. 과산화수소 수용액은 여분의 과망간산염을 환원하여 흑연 산화를 종결한다. 과량을 가하면 세척 및 건조하는 데 비용이 많이 들고 소량을 가하면 반응이 종결되지 않는다. 과산화수소 수용액 첨가 후 유지시간은 수십 분 이내일 수 있다.
상기 마이크로채널부는 하나 이상의 마이크로채널이 서로 연결되어 형성되며, 상기 마이크로채널의 개수는 반응 시간에 따라 변동될 수 있으며 원료물질인 흑연 슬러리와 과망간산염 황산 용액 간의 산화반응을 위해서는 수분에서 수 일, 바람직하게는 0.2시간 내지 24시간의 체류시간 길이를 구비할 필요가 있다.
그리고, 마이크로채널부 내에서 흑연 슬러리와 과망간산염 황산 용액 간의 산화반응은 0℃ 내지 54℃, 바람직하게는, 10℃ 내지 54℃로 유지하여야 한다. 상기 온도보다 낮은 온도에서는 반응 효율이 낮은 반면, 높은 온도에서는 폭발의 위험성이 높아 마이크로채널이 국지적인 과열에 의해 폭발하는 것을 방지하기 위하여, 상기 온도 범위 내에서 엄격하게 조절되어야 한다. 이때, 마이크로채널부는 바람직하게는 일정범위의 온도에서 제어되도록 냉각설비가 되어 있는 열교환기 내에 장입될 수 있다.
상기 마이크로채널부를 구성하는 각 마이크로채널은 반응혼합물이 마이크로채널 내에서 잘 섞여서 반응 효율이 좋도록 하기 위해서 내경 1㎛ 내지 수십㎜, 바람직하게는 1㎛ 내지 수㎜의 열전도성이 좋고 내식성과 내산성이 좋은 튜브 형의 반응기일 수 있으며, 특히 반응 효율성과 안전 운전을 위하여 가장 바람직하게는 내경 1㎛ 내지 1㎜인 반응기일 수 있다. 반응 혼합물은 마이크로채널 내에서, 전형적으로는 0.1ℓ/hr 내지 100ℓ/hr의 유량으로, 바람직하게는 1ℓ/hr 내지 50ℓ/hr의 유량으로 이동할 수 있다.
과망간산염 황산 용액이 흑연 슬러리에 첨가된 후 바람직하게는 수분에서 수 일 동안, 가장 바람직하게는 0.2시간 내지 24시간 동안 유지될 수 있다.
본 발명에서 사용된 흑연슬러리, 과망간산염 황산 용액, 물 및 과산화 수용액은 각각의 정량펌프에 의하여 각각의 마이크로채널에 해당 물질을 공급할 수 있다. 상기 흑연슬러리와 상기 과망간산염 황산 용액은 해당 정량펌프에 의하여 마이크로채널 내에서 반응혼합물이 와류를 형성할 수 있도록 충분한 압력과 속도로 마이크로채널 내로 공급되는 것이 바람직하다.
과산화수소 수용액의 투입에 의하여 여분의 과망간산이 환원되고 반응이 종결된 반응혼합물은 마이크로채널의 출구로 배출된다. 마이크로채널의 출구로 배출된 반응이 종결된 반응혼합물은 건조되기 전에 순수한 물 또는 적절한 pH를 가진 물, 예를 들면 pH가 5 내지 6인 세척수로 한차례 이상 세척할 수 있으며, 200℃ 이하, 바람직하게는 80℃ 이하에서 96시간 이내에서 감압 건조될 수 있다. 이러한 세척과 건조는 앞 단계와는 별도로 수행되거나 연속적으로 수행될 수 있다.
또한, 본 발명은 흑연과 황산을 혼합하여 흑연 슬러리를 연속적으로 공급하는 흑연 슬러리 공급유니트; 과망간산, 과망간산염 또는 과망간산 황산 용액 중 어느 하나를 연속적으로 공급하는 과망간산염 공급유니트; 상기 흑연 슬러리 공급유니트 및 상기 과망간산염 공급유니트가 각각 연결되는 투입구를 가지며 반응혼합물이 일정 온도 범위에서 유지되는 하나 이상의 마이크로채널이 순차적으로 구비된 마이크로채널부; 상기 마이크로채널부와 연결되는 투입구를 구비하며, 물을 연속적으로 공급하는 물 공급유니트; 상기 마이크로채널부와 연결되는 투입구를 구비하며, 과산화수소 수용액을 연속적으로 공급하는 과산화수소 수용액 공급유니트; 상기 마이크로채널과 연결되며, 마이크로채널부에서 산화반응이 종결되어 배출되는 산화흑연 반응혼합물을 세척하는 세척기; 및 상기 세척기와 연결되며, 세척기에서 세척된 산화흑연을 감압 건조하는 건조기를 포함하는 산화흑연 제조장치를 제공한다.
상기 산화흑연 제조장치는 과망간산염 공급유니트와 마이크로채널부 사이에 게재되며, 황산과 상기 과망간산염 공급유니트로부터 공급되는 과망간산 또는 과망간산염을 각각 연속적으로 투입하여 혼합하는 예비혼합기를 추가로 포함할 수 있다.
상기 마이크로채널부는 다수의 마이크로채널들이 서로 연결되어 형성될 수 있으며, 상기 마이크로채널부는 수분에서 수 일, 바람직하게는 0.2시간 내지 24시간의 체류시간 길이를 갖는 것이 바람직하다.
또한, 본 발명은 흑연과 황산을 혼합하여 흑연 슬러리를 준비하는 단계(제1단계); 상기 흑연 슬러리를 하나 이상의 마이크로채널이 순차적으로 구비된 마이크로채널부에 투입하는 단계(제2단계); 상기 마이크로채널부에 과망간산, 과망간산염 또는 과망간산염 황산 용액 중 어느 하나를 투입하고 혼합하여 반응시키는 단계(제3단계); 제3단계의 반응혼합물에 물을 투입하고 혼합하여 반응시키는 단계(제4단계); 제4단계의 반응혼합물에 과산화수소 수용액을 투입하고 혼합하여 산화반응을 종결시키는 단계(제5단계); 제5단계의 반응혼합물 중 산화흑연을 세척하고 분리하는 단계(제6단계); 제6단계를 거쳐 배출된 산화흑연을 건조시키는 단계(제7단계); 제7단계에서 제조된 산화흑연을 환원성 분위기의 유동상로 내로 공급하여 열충격을 통해 환원하고 박리시키는 단계(제8단계); 제8단계에서 생성된 나노 크기의 그래핀 구조 물질을 포집하는 단계(제9단계); 및 상기 나노 크기의 그래핀 구조 물질을 분리하는 단계(제10단계)를 포함하고, 상기 제1단계 내지 제5단계와 상기 제8단계 내지 제10단계가 모두 연속적으로 이루어지는 나노 크기의 그래핀 구조 물질의 제조방법을 제공한다.
상기 나노 크기의 그래핀 구조 물질이란 2차원의 탄소나노구조로 단일 평판구조의 육각형결정격자(honeycomb crystal lattice) 형태의 단층 그래핀 기본물질을 기준으로 단층 또는 다층의 두께 100 nm 이하의 그래핀 구조 물질로, XRD 분석에서 2θ가 2°이상인 범위에서 흔적 정도를 제외하고 뚜렷한 피크를 갖지 않는 물질로 정의한다. 이러한 나노 크기의 그래핀 구조 물질은 두께가 100 nm 이하, 표면적이 300 내지 3000 m2/g, 잔류 산소의 양이 흑연 대비 1.0 중량% 이하이다.
한편, 흑연은 그래핀이 층상 구조로 쌓여 있는 물질로, 층 간 간격이 3.35Å으로 일정하고 XRD 분석에서 2θ=26.5°에서 피크를 가짐에 반하여, 본 발명에 따른 산화흑연은 흑연을 산화시킨 물질로, 산화에 의해 각 그래핀 층에 카르복시산, 히드록실기, 에폭시기 등 산소를 포함하는 관능기가 부착된 형태로, 층상구조를 가지나 층간 간격이 흑연보다 늘어나 보통 2θ=6 - 15°에서 XRD 피크가 관찰되는 물질로 정의한다. 이러한 산화흑연은 열충격에 의한 층간분리에 의하여 상기 나노크기의 그래핀 구조 물질이 된다.
본 발명에 따라 산화흑연은 유동상로 특히, 수직 유동상로를 이용하는 열충격 방식으로 나노 크기의 그래핀 구조 물질로 변환될 수 있다. 보다 상세하게 설명하면, 상기 나노 크기의 그래핀 구조 물질은 연속방식으로 제조될 수 있으며, 세척 및 건조된 산화흑연이 분위기 가스에 의해 기류가 형성된 유동상로 내로 공급된다. 이러한 유동상로의 가열은 히터에 의한 통상의 방법이거나 마이크로웨이브에 의한 방법으로 달성될 수 있다.
또한, 상기 기류는 유동상로에 공급되는 환원 분위기 가스의 풍압에 의하여 달성할 수도 있으나 가열에 의한 분위기 가스의 대류에 의하여 형성시킬 수도 있다. 분위기 가스는, 일반적으로 질소 또는 아르곤의 불활성 캐리어 가스를 사용할 수 있으며, 산화흑연의 환원 효율을 높이기 위하여 질소 또는 아르곤의 불활성 캐리어 가스에 수소가스를 첨가하여 형성될 수 있으며, 유동상로 내의 온도는 300℃ 내지 1200℃에서 유지될 수 있으며, 바람직하게는 500 내지 1000℃에서 유지될 수 있다.
산화흑연 플레이크는 열충격에 의하여 층간분리가 일어나고 조절된 기류에 의하여 충분히 분리된 나노 크기의 그래핀 구조 물질만 기류에 편승하여 상기 유동상로 천정부에 배치된 포집부의 입구로 포집되고 분리될 수 있다. 나노 크기의 그래핀 구조 물질은 필요한 경우에 사이클론 집진기에 의하여 분리되고 분리된 분위기 가스는 상기 유동상로 내로 재공급될 수 있다.
그리고, 상기 제1단계 내지 제7단계는 앞서 설명한 바와 동일하므로, 이에 대한 상세한 설명을 생략한다.
또한, 본 발명은 산화흑연 분말 공급유니트; 상기 산화흑연 분말 공급유니트가 장착되는 제1투입구와 환원성 가스가 투입되는 제2투입구를 구비하며 환원성 분위기와 고온이 유지되는 유동상로; 및 상기 유동상로의 천정부에 입구가 장착된 포집기를 포함하는 나노크기의 그래핀 구조 물질의 제조장치를 제공한다.
상기 산화흑연 분말 공급유니트는 유동상로의 상단에 연결되어 구비되어 산화흑연 분말을 낙하할 수 있고, 또한 산화흑연 분말 공급유니트는 유동상로의 하단에 연결되어 구비되어 산화흑연 분말을 공급하여 상승시킬 수도 있다.
상기 제조장치는 상기 포집기에 연결되고 유동상로 가스와 나노크기의 그래핀 구조 물질을 분리하고 분리된 유동상로 가스를 상기 유동상로 내에 재공급하는 사이클론을 더 포함할 수 있다.
이하, 첨부된 도면을 참조하여 본 발명을 보다 상세하게 설명하도록 한다.
도 1 내지 도 3을 참조하여 본 발명의 일 실시양태로서 산화흑연 제조방법 및 장치를 설명한다.
먼저, 마이크로채널부(5, 15)는 하나의 이상의 마이크로채널이 연결되어 형성되며, 열교환기(23) 내에 장입된 다수의 마이크로채널 모듈(5a, 5b, 5c, 5d, 5e, 5f, 5g)을 포함한다. 각 마이크로채널은 입구, 반응부와 출구를 포함하여 이루어진다.
흑연 슬러리는 액체용 정량펌프를 통해 황산 공급유니트로부터 공급된 황산과 분말용 정량펌프를 통해 흑연 공급유니트로부터 공급된 흑연을 연속적으로 혼합하여 흑연 슬러리를 제조하는 흑연 슬러리 공급유니트(1, 11)에서 제조되며, 상기 흑연 슬러리는 흑연 슬러리 공급유니트(1, 11)로부터 마이크로채널 또는 혼합반응기에 강제 주입된다.
과망간산 또는 과망간산염은 캐리어 가스 등을 이용하여 과망간산염 공급유니트(3)로부터 마이크로채널부(5)에 과망간산 또는 과망간산염이 강제 주입된다. 또한, 과망간산염이 황산과 혼합된 과망간산염 황산 용액은 황산 공급유니트(12)로부터 연속적으로 공급된 황산과 과망간산염 공급유니트(13)로부터 연속적으로 공급된 과망간산염을 혼합하여 과망간산염 황산 용액을 제조하는 예비혼합기(14)로부터 마이크로채널부(15)에 과망간산염 황산 용액이 강제 주입된다.
마이크로채널부(5, 15)는 온도가 정밀하게 조절되도록 열교환기(23)로 둘러싸인 다수의 마이크로채널 모듈(5a, 5b, 5c, 5d, 5e, 5f, 5g)을 포함한다. 각각의 마이크로채널 모듈(5a, 5b, 5c, 5d, 5e, 5f, 5g)은 채널(29), 입구(25a)와 출구(25b)를 가지며 이들은 서로 연결되어 하나의 채널(29)을 형성한다.
각각의 마이크로채널 판(25)은 열매체 입구(27a)와 출구(27b)를 가지는 두 장의 평판 열교환기(23) 사이에 삽입되어 각각의 마이크로채널 모듈(예를 들면, 5c)을 형성한다. 각각의 마이크로채널 모듈(5a, 5b, 5c, 5d, 5e, 5f, 5g)은 다시 적층되는 것이 공간을 줄이기 위해서 보다 바람직하다. 필요하다면 모듈 사이에는 단열판이 게재될 수 있다. 마이크로채널의 시작부(예를 들면 5a) 인근은 반응속도보다 혼합이 중요하므로 유입변동에 의한 변수를 감안하여 0℃ 내지 54℃ 범위에서 비교적 낮은 온도로 운영하는 것이 바람직하고 반응기 후반부(예를 들면 5g)는 반응속도를 높게 안정적으로 유지하기 위하여 54℃ 근방의 동일 온도에서 운영하는 것이 바람직하다.
흑연 슬러리와 과망간산염 황산 용액은 마이크로채널부(5, 15)의 채널 내(29)에서 혼합되고 출구까지 20분 정도 유지된다. 마이크로채널부(5, 15)의 출구에는 1차적으로 순수 공급유니트(7, 17)를 연결하여 반응혼합물에 물을 첨가하고, 곧이어 과산화수소 공급유니트(9, 19)를 연결하여 과산화수소 공급유니트(9, 19)로부터 정량펌프를 통하여 3% 과산화수소 수용액을 반응혼합물에 첨가하고 혼합하여 산화반응을 종결시킨다. 뒤이어 산화반응이 종결되어 배출된 반응혼합물을 세척 및 건조하여 산화흑연을 제조한다.
도 4 및 도 5는 본 발명에 따른 나노 크기의 그래핀 구조 물질을 제조하는 방법을 설명한다.
먼저, 산화흑연 분말 공급유니트(32, 32a)로부터 공급된 산화흑연 분말을 800℃ 정도로 고온이 유지되는 수직 유동상로(31)의 상단 또는 하단에 위치한 투입기(33, 33a)를 통하여 공급하여 낙하 또는 상승시키면 낙하 또는 상승하던 산화흑연(34)은 열충격에 의하여 층간분리가 일어나고 박리되어 수직 유동상로(31)에 형성된 상승기류에 의하여 상승되어 포집관(35)으로 빨려 들어간다.
사이클론(36)을 이용하여 그래핀 입자를 분리하고, 분리된 기체는 배관(43)을 통하여 유동상로(31)로 재공급되며, 이때 상기 분리된 기체는 질소탱크(39)와 수소탱크(40)로부터 공급된 가스가 혼합기(42) 및 도관(43)을 거쳐 제공되는 수소 분위기 가스와 함께 유동상로의 저부로 재공급된다. 분리된 나노 크기의 그래핀 구조 물질(37)은 사이클론(36) 하부의 저장고(38)에 수집된다.
한편, 도 4 및 도 5의 동일한 참조부호는 동일한 구성 및 작용을 하는 동일부재를 의미한다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (26)

  1. 흑연과 황산을 혼합하여 흑연 슬러리를 준비하는 단계(제1단계);
    상기 흑연 슬러리를 하나 이상의 마이크로채널이 순차적으로 구비된 마이크로채널부에 투입하는 단계(제2단계);
    상기 마이크로채널부에 과망간산, 과망간산염 또는 과망간산염 황산 용액 중 어느 하나를 투입하고 혼합하여 반응시키는 단계(제3단계);
    제3단계의 반응혼합물에 물을 투입하고 혼합하여 반응시키는 단계(제4단계);
    제4단계의 반응혼합물에 과산화수소 수용액을 투입하고 혼합하여 산화반응을 종결시키는 단계(제5단계);
    제5단계의 반응혼합물 중 산화흑연을 세척하고 분리하는 단계(제6단계); 및
    제6단계를 거쳐 배출된 산화흑연을 건조시키는 단계(제7단계)를 포함하고, 상기 제1단계 내지 제5단계가 모두 연속적으로 이루어지는 산화흑연의 제조방법.
  2. 청구항 1에 있어서, 상기 과망간산염 황산 용액은 황산이 연속적으로 투입되는 예비혼합기에 과망간산염 공급유니트로부터 공급되는 과망간산염을 연속적으로 투입하고 혼합하여 준비된 것을 특징으로 하는 산화흑연의 제조방법.
  3. 청구항 2에 있어서, 상기 예비혼합기는 0 내지 54℃의 온도를 유지하면서 반응이 수행된 것을 특징으로 하는 산화흑연의 제조방법.
  4. 청구항 3에 있어서, 상기 과망간산염 황산 용액은 과망간산염:황산 중량비가 1:2 내지 1:50인 것을 특징으로 하는 산화흑연의 제조방법.
  5. 청구항 1에 있어서, 상기 제4단계 및 제5단계의 반응은 마이크로채널 또는 혼합탱크 중 어느 하나에서 수행된 것을 특징으로 하는 산화흑연의 제조방법.
  6. 청구항 1에 있어서, 상기 제3단계 내지 제5단계의 반응은 초음파 처리 하에서 수행된 것을 특징으로 하는 산화흑연의 제조방법.
  7. 청구항 6에 있어서, 상기 초음파 처리는 0.05W/cm3 내지 5.0W/cm3에서 0.2 내지 500시간 동안 수행된 것을 특징으로 하는 산화흑연의 제조방법.
  8. 청구항 1에 있어서, 상기 제3단계의 반응은 0 내지 54℃의 온도를 유지하면서 수행된 것을 특징으로 하는 산화흑연의 제조방법.
  9. 청구항 1에 있어서, 상기 제4단계 및 제5단계의 반응은 0 내지 99℃의 온도를 유지하면서 수행된 것을 특징으로 하는 산화흑연의 제조방법.
  10. 청구항 1에 있어서, 상기 흑연 슬러리는 흑연:황산 중량비가 1:10 내지 1:100인 것을 특징으로 하는 산화흑연의 제조방법.
  11. 청구항 1에 있어서, 상기 제4단계에서 물은 흑연을 기준으로 흑연:물 중량비가 1:1 내지 1:100인 것을 특징으로 하는 산화흑연의 제조방법.
  12. 청구항 1에 있어서, 상기 과산화수소 수용액은 1 내지 10 중량%인 것을 특징으로 하는 산화흑연의 제조방법.
  13. 청구항 12에 있어서, 상기 과산화수소 수용액은 흑연을 기준으로 흑연:과산화수소 수용액 중량비가 1:10 내지 1:100인 것을 특징으로 하는 산화흑연의 제조방법.
  14. 청구항 1 또는 청구항 2에 있어서, 상기 황산은 농도가 80% 내지 98%인 황산인 것을 특징으로 하는 산화흑연의 제조방법.
  15. 청구항 1에 있어서, 상기 마이크로채널부는 하나 이상의 마이크로채널이 서로 연결되어 형성되며, 각 마이크로채널의 내경이 1㎛ 내지 수십㎜인 것을 특징으로 하는 산화흑연의 제조방법.
  16. 청구항 1에 있어서, 상기 마이크로채널부는 0.2시간 내지 24시간의 체류시간 길이를 갖는 것을 특징으로 하는 산화흑연 제조장치.
  17. 청구항 1에 있어서, 상기 마이크로채널부는 열교환기 내에 장입된 것을 특징으로 하는 산화흑연의 제조방법.
  18. 흑연과 황산을 혼합하여 흑연 슬러리를 준비하는 단계(제1단계);
    상기 흑연 슬러리를 하나 이상의 마이크로채널이 순차적으로 구비된 마이크로채널부에 주입하는 단계(제2단계);
    상기 마이크로채널부에 과망간산, 과망간산염 또는 과망간산염 황산 용액 중 어느 하나를 투입하고 혼합하여 반응시키는 단계(제3단계);
    제3단계의 반응혼합물에 물을 투입하고 혼합하여 반응시키는 단계(제4단계);
    제4단계의 반응혼합물에 과산화수소 수용액을 투입하고 혼합하여 산화반응을 종결시키는 단계(제5단계);
    제5단계의 반응혼합물 중 산화흑연을 분리하고 세척하는 단계(제6단계);
    제6단계를 거쳐 배출된 산화흑연을 건조시키는 단계(제7단계)
    제7단계에서 제조된 산화흑연을 환원성 분위기의 유동상로 내로 공급하여 열충격을 통해 환원하고 박리시키는 단계(제8단계);
    제8단계에서 생성된 나노 크기의 그래핀 구조 물질을 포집하는 단계(제9단계); 및
    상기 나노 크기의 그래핀 구조 물질을 분리하는 단계(제10단계)를 포함하고, 상기 제1단계 내지 제5단계와 상기 제8단계 내지 제10단계가 모두 연속적으로 이루어지는 나노 크기의 그래핀 구조 물질의 제조방법.
  19. 청구항 18에 있어서, 상기 그래핀 구조 물질의 두께가 100 nm 이하이고, 표면적이 300 내지 3000 m2/g이며, 잔류 산소의 양은 1.0 중량% 이하인 것을 특징으로 하는 나노 크기의 그래핀 구조 물질의 제조방법.
  20. 흑연과 황산을 혼합하여 흑연 슬러리를 연속적으로 공급하는 흑연 슬러리 공급유니트;
    과망간산, 과망간산염 또는 과망간산 황산 용액 중 어느 하나를 연속적으로 공급하는 과망간산염 공급유니트;
    상기 흑연 슬러리 공급유니트 및 상기 과망간산염 공급유니트가 각각 연결되는 투입구를 가지며 반응혼합물이 일정 온도 범위에서 유지되는 하나 이상의 마이크로채널이 순차적으로 구비된 마이크로채널부;
    상기 마이크로채널부와 연결되는 투입구를 구비하며, 물을 연속적으로 공급하는 물 공급유니트;
    상기 마이크로채널부와 연결되는 투입구를 구비하며, 과산화수소 수용액을 연속적으로 공급하는 과산화수소 수용액 공급유니트;
    상기 마이크로채널과 연결되며, 마이크로채널부에서 산화반응이 종결되어 배출되는 산화흑연 반응혼합물을 세척하는 세척기; 및
    상기 세척기와 연결되며, 세척기에서 세척된 산화흑연을 감압 건조하는 건조기를 포함하는 산화흑연 제조장치.
  21. 청구항 20에 있어서, 상기 산화흑연 제조장치는 과망간산염 공급유니트와 마이크로채널부 사이에 게재되며, 황산과 상기 과망간산염 공급유니트로부터 공급되는 과망간산염을 각각 연속적으로 투입하여 혼합하는 예비혼합기를 추가로 포함하는 것을 특징으로 하는 산화흑연 제조장치.
  22. 청구항 20에 있어서, 상기 마이크로채널부는 다수의 마이크로채널들이 서로 연결되어 형성된 것을 특징으로 하는 산화흑연 제조장치.
  23. 청구항 20에 있어서, 상기 마이크로채널부 중 하나의 마이크로채널은 2시간 내지 24시간의 체류시간 길이를 갖는 것을 특징으로 하는 산화흑연 제조장치.
  24. 산화흑연 분말 공급유니트;
    상기 산화흑연 분말 공급유니트가 장착되는 제1투입구와 환원성 가스가 투입되는 제2투입구를 구비하며 환원성 분위기와 고온이 유지되는 유동상로; 및
    상기 유동상로의 천정부에 입구가 장착된 포집기를 포함하는 나노 크기의 그래핀 구조 물질의 제조장치.
  25. 청구항 24에 있어서, 상기 산화흑연 분말 공급유니트는 유동상로의 상단 또는 하단에 연결되어 구비된 것을 특징으로 하는 나노 크기의 그래핀 구조 물질의 제조장치.
  26. 청구항 24에 있어서, 상기 포집기에 연결되고 유동상로 가스와 나노크기의 그래핀 구조 물질을 분리하고 분리된 유동상로 가스를 상기 유동상로 내에 재공급하는 사이클론을 더 포함하는 나노 크기의 그래핀 구조 물질의 제조장치.
PCT/KR2010/005229 2009-08-10 2010-08-10 나노 크기의 그래핀 구조 물질의 제조방법 및 그 제조장치 WO2011019184A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10808333.8A EP2495216B1 (en) 2009-08-10 2010-08-10 Method and apparatus for producing a nanoscale material having a graphene structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090073152 2009-08-10
KR10-2009-0073152 2009-08-10
KR10-2010-0076871 2010-08-10
KR1020100076871A KR101053933B1 (ko) 2009-08-10 2010-08-10 나노 크기의 그래핀 구조 물질을 제조하는데 사용되는 산화흑연의 제조방법 및 그 제조장치

Publications (2)

Publication Number Publication Date
WO2011019184A2 true WO2011019184A2 (ko) 2011-02-17
WO2011019184A3 WO2011019184A3 (ko) 2011-06-16

Family

ID=43586632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005229 WO2011019184A2 (ko) 2009-08-10 2010-08-10 나노 크기의 그래핀 구조 물질의 제조방법 및 그 제조장치

Country Status (1)

Country Link
WO (1) WO2011019184A2 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102718183A (zh) * 2012-07-13 2012-10-10 常州大学 LiBH4/ RGO高储氢量复合储氢材料及其制备方法
WO2014003251A1 (en) 2012-06-28 2014-01-03 Idt International Co., Ltd. Apparatus for manufacturing nano-size graphene-structured material
WO2014003252A1 (en) 2012-06-28 2014-01-03 Idt International Co., Ltd. Method and apparatus for manufacturing graphite oxide
WO2014179708A1 (en) * 2013-05-02 2014-11-06 William Marsh Rice University Methods of producing graphene quantum dots from coal and coke
WO2016118214A3 (en) * 2014-11-06 2016-09-29 William Marsh Rice University Methods of making graphene quantum dots from various carbon sources
CN110732298A (zh) * 2019-11-21 2020-01-31 温州国仕邦高分子材料有限公司 微波辐射连续式水性树脂合成管道反应器
CN112079335A (zh) * 2019-06-12 2020-12-15 北京化工大学 一种纳米单质硫颗粒的制备方法
CN113845111A (zh) * 2021-09-12 2021-12-28 张英华 一种石墨鳞片层的分离方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107416804B (zh) * 2017-05-26 2019-05-10 东莞市悉达纳米科技有限公司 一种应用悬浮技术生产石墨烯的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798878A (en) 1954-07-19 1957-07-09 Nat Lead Co Preparation of graphitic acid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1675917A2 (en) * 2003-09-18 2006-07-05 Columbian Chemicals Company Thermally modified carbon blacks for various type applications and a process for producing same
DE102005029997B4 (de) * 2005-06-28 2009-08-13 Hilti Aktiengesellschaft Polyurethan-Graphitoxid-Verbundmaterial, Verfahren zu seiner Herstellung und seine Verwendung
US20090028777A1 (en) * 2007-07-27 2009-01-29 Aruna Zhamu Environmentally benign chemical oxidation method of producing graphite intercalation compound, exfoliated graphite, and nano-scaled graphene platelets
KR101040703B1 (ko) * 2007-12-12 2011-06-10 주식회사 엘지화학 복수개의 유입 또는 토출 포트를 구비하는 마이크로 채널반응기

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2798878A (en) 1954-07-19 1957-07-09 Nat Lead Co Preparation of graphitic acid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2495216A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2867162A4 (en) * 2012-06-28 2016-03-02 Standardgraphene Co Ltd DEVICE FOR PRODUCING A GRAPHIC STRUCTURE MATERIAL IN NANOGROSIS
WO2014003251A1 (en) 2012-06-28 2014-01-03 Idt International Co., Ltd. Apparatus for manufacturing nano-size graphene-structured material
WO2014003252A1 (en) 2012-06-28 2014-01-03 Idt International Co., Ltd. Method and apparatus for manufacturing graphite oxide
US9624108B2 (en) 2012-06-28 2017-04-18 Standardgraphene Co., Ltd. Apparatus for manufacturing nano-size graphene-structured material
US9266737B2 (en) 2012-06-28 2016-02-23 Standardgraphene Co., Ltd. Method and apparatus for manufacturing graphite oxide
CN102718183A (zh) * 2012-07-13 2012-10-10 常州大学 LiBH4/ RGO高储氢量复合储氢材料及其制备方法
WO2014179708A1 (en) * 2013-05-02 2014-11-06 William Marsh Rice University Methods of producing graphene quantum dots from coal and coke
CN105339301A (zh) * 2013-05-02 2016-02-17 威廉马歇莱思大学 用于从煤和焦炭制备石墨烯量子点的方法
US9919927B2 (en) 2013-05-02 2018-03-20 William Marsh Rice University Methods of producing graphene quantum dots from coal and coke
WO2016118214A3 (en) * 2014-11-06 2016-09-29 William Marsh Rice University Methods of making graphene quantum dots from various carbon sources
CN112079335A (zh) * 2019-06-12 2020-12-15 北京化工大学 一种纳米单质硫颗粒的制备方法
CN110732298A (zh) * 2019-11-21 2020-01-31 温州国仕邦高分子材料有限公司 微波辐射连续式水性树脂合成管道反应器
CN110732298B (zh) * 2019-11-21 2024-02-23 温州国仕邦高分子材料有限公司 微波辐射连续式水性树脂合成管道反应器
CN113845111A (zh) * 2021-09-12 2021-12-28 张英华 一种石墨鳞片层的分离方法

Also Published As

Publication number Publication date
WO2011019184A3 (ko) 2011-06-16

Similar Documents

Publication Publication Date Title
KR101337970B1 (ko) 나노 크기의 그래핀 구조 물질의 제조방법 및 그 제조장치
WO2011019184A2 (ko) 나노 크기의 그래핀 구조 물질의 제조방법 및 그 제조장치
Li et al. Recent Advances of Two‐Dimensional (2 D) MXenes and Phosphorene for High‐Performance Rechargeable Batteries
EP3056468B1 (en) Graphene production method
US20160200581A1 (en) Graphene, method and apparatus for preparing graphene
WO2014003252A1 (en) Method and apparatus for manufacturing graphite oxide
CN102070142A (zh) 一种利用化学氧化还原制备石墨烯的方法
WO2015027841A1 (zh) 球形羟基氧化钴的制备方法
CN102698666A (zh) 基于红外线辐照的石墨烯/纳米粒子复合材料的制备方法
WO2014003251A1 (en) Apparatus for manufacturing nano-size graphene-structured material
Shan et al. Electrochemical preparation of hydroxylated boron nitride nanosheets for solid–state flexible supercapacitors using deep eutectic solvent and water mixture as electrolytes
US11339054B2 (en) Continuous process and apparatus for producing graphene
CN107082416B (zh) 一种基于臭氧氧化制备石墨烯的方法
CN105720268B (zh) 一种锂离子电池负极材料及其制备方法
WO2017048027A1 (ko) 공정흑연을 이용한 그래핀 제조방법
CN106517175A (zh) 一种环氧基液晶接枝氧化石墨烯化合物的制备方法
WO2015167042A1 (ko) 산화흑연의 제조 방법, 및 그래핀 구조물질 및 그의 제조 방법
KR101265712B1 (ko) 그래핀 구조 물질을 제조하는 장치
CN106379896B (zh) 一种石墨烯及其制备方法
CN114368745A (zh) 氧化石墨烯、制备方法及应用
CN109553107B (zh) 纳米颗粒材料的连续性、批量化的制备方法和制备装置
CN110002437A (zh) 一种石墨烯纳米管的制备方法
KR102581150B1 (ko) 다공성 탄소의 제조방법
CN110395717A (zh) 一种褶皱石墨烯的制备方法
CN109553106B (zh) 一种包覆材料或空心材料的制备方法和制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808333

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010808333

Country of ref document: EP