WO2011019020A1 - 膵島イメージング用分子プローブ及びその前駆体、並びに、それらの使用 - Google Patents

膵島イメージング用分子プローブ及びその前駆体、並びに、それらの使用 Download PDF

Info

Publication number
WO2011019020A1
WO2011019020A1 PCT/JP2010/063489 JP2010063489W WO2011019020A1 WO 2011019020 A1 WO2011019020 A1 WO 2011019020A1 JP 2010063489 W JP2010063489 W JP 2010063489W WO 2011019020 A1 WO2011019020 A1 WO 2011019020A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
molecular probe
islet
imaging
polypeptide
Prior art date
Application number
PCT/JP2010/063489
Other languages
English (en)
French (fr)
Inventor
稲垣暢也
佐治英郎
豊田健太郎
木村寛之
小川祐
平尾佳
永川健児
松田洋和
Original Assignee
国立大学法人京都大学
アークレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, アークレイ株式会社 filed Critical 国立大学法人京都大学
Priority to KR1020117013264A priority Critical patent/KR101321461B1/ko
Priority to EP10808203.3A priority patent/EP2418216B1/en
Priority to CN201080004504.0A priority patent/CN102282164B/zh
Publication of WO2011019020A1 publication Critical patent/WO2011019020A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/57563Vasoactive intestinal peptide [VIP]; Related peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a molecular probe for islet imaging, a precursor thereof, and use thereof.
  • pancreatic islets in the onset of diabetes, the amount of pancreatic islets (especially, the amount of ⁇ -cells in the pancreas) decreases prior to abnormal glucose tolerance, so diabetes is already difficult to treat after reaching the stage of detecting and recognizing dysfunction. It has become a stage.
  • a decrease in the amount of pancreatic islets and / or pancreatic ⁇ cells can be detected at an early stage, diabetes may be prevented or treated. Therefore, a non-invasive islet imaging technique for performing diabetes prevention / diagnosis, in particular, a non-invasive islet imaging technique for measuring the amount of islets and / or pancreatic ⁇ cells is desired.
  • a molecular probe that enables non-invasive imaging of pancreatic islets, preferably pancreatic ⁇ cells and measurement of pancreatic ⁇ cell mass, is particularly desired.
  • GLP-1R agonist Exendin-4 derivatives and GLP-1R antagonist Exendin-4 (9) are used to image GLP-1R positive tumors.
  • -39) derivatives have been studied (for example, Non-Patent Document 2).
  • GLP-1R glucagons-like peptide-1 receptor
  • the present invention provides a molecular probe for islet imaging capable of non-invasive three-dimensional imaging of islets.
  • the present invention is a precursor of a molecular probe used for islet imaging, A polypeptide represented by any of the following formulas (1) to (4): A polypeptide in which one to several amino acids are deleted, added or substituted from the polypeptides of the following formulas (1) to (4), which can bind to islets after labeling and deprotection, or A polypeptide having 80% or more homology with the amino acid sequence of a polypeptide of the following formulas (1) to (4), comprising a polypeptide capable of binding to an islet after labeling and deprotection,
  • the molecular probe relates to a molecular probe precursor for islet imaging, which is a molecular probe used for imaging of islets.
  • the present invention provides a molecular probe for islet imaging, A polypeptide represented by any of the following formulas (5) to (8): A polypeptide in which one to several amino acids have been deleted, added or substituted from the polypeptides of the following formulas (5) to (8), which can bind to islets, or
  • the present invention relates to a molecular probe for islet imaging, comprising a polypeptide having 80% or more homology with an amino acid sequence of a polypeptide of the following formulas (5) to (8), which comprises a polypeptide capable of binding to an islet.
  • Z-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (5) (SEQ ID NO: 5)
  • Z-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (6) (SEQ ID NO: 6)
  • Z-SKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (7) (SEQ ID NO: 7)
  • Z-KQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (8) [In the above formulas (5) to (8), “X” represents a lysine residue in which the side chain amino group is labeled with a radionuclide, and the radionuclide includes 11 C, 13 N, 15 O, 18 F, 64 Cu, 67 Ga, 68 Ga, 75 Br, 76 Br, 77 Br, 99m Tc, 123 I, 124 I, 125 I or 131 I, and “Z-” is an N-terminal ⁇ -amino group I
  • islet imaging preferably islet three-dimensional imaging, more preferably non-invasive islet imaging, such as by positron emission tomography (PET) or single photon radiation computed tomography (SPECT), etc.
  • PET positron emission tomography
  • SPECT single photon radiation computed tomography
  • FIG. 1A and 1B are graphs showing an example of the results of changes over time in the body distribution of the molecular probe of the present invention.
  • 2A and 2B are graphs showing an example of the results of changes over time in the biodistribution of the molecular probe of Reference Example 1.
  • FIG. 3A and 3B are graphs showing an example of the results of changes over time in the biodistribution of the molecular probe of Reference Example 2.
  • FIG. FIG. 4 is a graph showing an example of the results of a blocking experiment using the molecular probe of Example 1.
  • FIG. 5 is an image showing an example of a result of imaging analysis of a pancreas section using the molecular probe of Example 1.
  • FIG. 6 is a PET image showing an example of the result of islet imaging (PET) using the molecular probe of Example 1.
  • FIG. 7A and 7B are graphs showing other examples of the results of changes over time in the biodistribution of the molecular probe of the present invention.
  • FIG. 8 is a graph showing an example of the result of Binding Assay in the example.
  • 9A and 9B are graphs showing other examples of the results of changes over time in the biodistribution of the molecular probe of the present invention.
  • FIG. 10 is an image showing an example of the result of imaging analysis of a pancreas section using the molecular probe of Example 3.
  • FIG. 11 is an example of a SPECT image using the molecular probe of Example 4.
  • the diameter of the islets is, for example, about 50 to 500 ⁇ m for humans.
  • a molecular probe that can specifically accumulate on the islets and cause contrast with surrounding organs is required. It is believed that. For this reason, various molecular probes have been researched and developed.
  • the accumulation rate of Lys 40 (Ahx-DTPA- 111 In) Exendin-4 (9-39) in the islets is about 0.4%, and the accumulation rate in GLP-1R positive tumor cells is also 7.5%.
  • Lys 40 (Ahx-DTPA- 111 In) Exendin-4 (9-39) has a low affinity for GLP-1R. For this reason, for example, there is a need for new molecular probes that can specifically accumulate in pancreatic islets and cause contrast with surrounding organs.
  • non-invasive three-dimensional imaging of pancreatic islets can be performed by PET, SPECT or the like. It is based on the knowledge that it becomes possible and can ensure quantitativeness. That is, the present invention preferably exhibits the effect of enabling non-invasive three-dimensional imaging of pancreatic islets. In addition, since the present invention can preferably be accumulated more specifically in the islets compared to the molecular probes described in Non-Patent Documents 1 and 2, it is possible to perform imaging for quantitative determination of islets. Play.
  • the precursor of the molecular probe for imaging of the present invention is useful for the prevention / early detection / diagnosis of diabetes, preferably the very early detection / diagnosis of diabetes.
  • a precursor of a molecular probe used for imaging of pancreatic islets comprising a polypeptide represented by any one of the following formulas (1) to (4), a polypeptide represented by the following formulas (1) to (4): A polypeptide in which one to several amino acids have been deleted, added or substituted, and can bind to islets after labeling and deprotection, or the amino acid sequence of a polypeptide of the following formulas (1) to (4) A polypeptide having a homology of 80% or more and a polypeptide capable of binding to an islet after labeling and deprotection, wherein the molecular probe is a molecular probe used for imaging of an islet.
  • Probe precursor * -DLSK * QMEEEAVRLFIEWLK * NGGPSSGAPPPSK-NH 2 (1) (SEQ ID NO: 1) * -LSK * QMEEEAVRLFIEWLK * NGGPSSGAPPPSK-NH 2 (2) (SEQ ID NO: 2) * -SK * QMEEEAVRLFIEWLK * NGGPSSGAPPPSK-NH 2 (3) (SEQ ID NO: 3) * -K * QMEEEAVRLFIEWLK * NGGPSSGAPPPSK-NH 2 (4) (SEQ ID NO: 4) [In the above formulas (1) to (4), “*-” indicates that the ⁇ -amino group at the N-terminus is protected by a protecting group or modified by a modifying group having no charge, “K * ” indicates that the amino group of the side chain of lysine is protected by a protecting group, and “—NH 2 ” indicates that the C-terminal carboxyl group is amidated.
  • the modifying group having no charge is an acetyl group, a benzyl group, a benzyloxymethyl group, an o-bromobenzyloxycarbonyl group, a t-butyl group, a t-butyldimethylsilyl group, a 2-chlorobenzyl group, Selected from the group consisting of 2,6-dichlorobenzyl group, cyclohexyl group, cyclopentyl group, isopropyl group, pivalyl group, tetrahydropyran-2-yl group, tosyl group, trimethylsilyl group and trityl group, [1] or [2 ] Molecular probe precursor for islet imaging according to the above;
  • a method for producing a molecular probe for islet imaging [6] The method for producing a molecular probe for islet imaging according to [5], wherein the labeled compound containing an aromatic ring contains a group represented by the following formula (I): [In the formula (I), A represents either an aromatic hydrocarbon group or an aromatic heterocyclic group, and R 1 represents 11 C, 13 N, 15 O, 18 F, 64 Cu, 67 Ga, 68 Ga. , 75 Br, 76 Br, 77 Br, 99m Tc, 111 In, 123 I, 124 I, 125 I or 131 I, wherein R 2 is a hydrogen atom or one or more substituents different from R 1 Indicates a group.
  • a molecular probe for islet imaging which can be obtained by the production method according to any one of [4] to [6];
  • a molecular probe for islet imaging wherein the polypeptide is represented by any one of the following formulas (5) to (8), and one to several amino acids from the following formulas (5) to (8): Is a polypeptide that is deleted, added or substituted and is capable of binding to an islet, or a polypeptide having 80% or more homology with the amino acid sequence of a polypeptide of the following formulas (5) to (8):
  • a molecular probe for islet imaging comprising a polypeptide capable of binding to the islet, Z-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (5) (SEQ ID NO: 5) Z-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (6) (SEQ ID NO: 6) Z-SKQMEEEAVRLFIEWLKNGGPSSG
  • a kit for preparing a molecular probe for islet imaging comprising the molecular probe precursor for islet imaging according to any one of [1] to [3]; [11] The kit according to [10], further comprising a compound used for labeling the molecular probe precursor for pancreatic islet imaging, the compound including an aromatic ring having halogen or radioactive halogen; [12] The kit according to [11], wherein the compound containing an aromatic ring is a compound having a group represented by the following formula (IV): [In the formula (IV), A represents either an aromatic hydrocarbon group or an aromatic heterocyclic group, R 6 represents a halogen-containing or a halogen-containing substituent, and R 7 represents a hydrogen atom or R 6 .
  • a kit for imaging pancreatic islets comprising the molecular probe for pancreatic islet imaging according to any one of [7] to [9];
  • An islet imaging method comprising labeling and deprotecting the molecular probe precursor for islet imaging according to any one of [1] to [3];
  • a method for imaging pancreatic islets comprising detecting a signal of the molecular probe for pancreatic islet imaging from a subject administered with the molecular probe for pancreatic islet imaging according to any one of [7] to [9];
  • the method for imaging an islet according to [14] or [15] further comprising determining the state of the islet from a result of islet imaging using the molecular probe;
  • pancreatic islet imaging is molecular imaging of an islet and includes imaging the spatial and / or temporal distribution of the islet in vivo.
  • pancreatic islet imaging is preferably performed using pancreatic ⁇ cells as a target molecule, more preferably using a GLP-1 receptor of the pancreatic islet as a target molecule from the viewpoint of prevention, treatment, and diagnosis related to diabetes. is there.
  • islet imaging is preferably non-invasive and three-dimensional imaging from the viewpoint of quantitative determination of islet volume and application to humans. The imaging method is not particularly limited as long as non-invasive islet imaging is possible.
  • PET positron emission tomography
  • SPECT single photon radiation computed tomography
  • MRI magnetic resonance imaging
  • PET and SPECT are preferable from the viewpoint of using the molecular probe precursor of the present invention to quantify the amount of islets.
  • the molecular probe precursor of the present invention has a polypeptide represented by any one of the above formulas (1) to (4) and a deletion of one to several amino acids from the polypeptides of the above formulas (1) to (4).
  • An added or substituted polypeptide that can bind to islets after labeling and deprotection, or has an amino acid sequence of 80% or more of the amino acid sequence of the polypeptide of the above formulas (1) to (4) A polypeptide comprising a polypeptide capable of binding to an islet after labeling and deprotection, wherein the molecular probe is a molecular probe precursor for islet imaging that is a molecular probe used for islet imaging, preferably the above formula A polypeptide represented by any one of (1) to (4), a polypeptide in which one to several amino acids have been deleted, added or substituted from the polypeptide of the above formulas (1) to (4) and labeled Islets after conversion and deprotection A polypeptide capable of binding, or a polypeptide having 80% or more homology with the amino acid sequence of the polypeptide of the above formulas (1) to (4), and capable of binding to an islet after labeling and deprotection
  • the molecular probe is a molecular probe precursor for
  • the molecular probe precursor of the present invention is a polypeptide used for islet imaging, and includes a polypeptide represented by any one of the above formulas (1) to (4).
  • the amino acid sequences of the polypeptides of the above formulas (1) to (4) are the amino acid sequences described in SEQ ID NOs: 1 to 4 in the sequence listing, respectively.
  • the N-terminal ⁇ -amino group of the polypeptides of the above formulas (1) to (4) has a protective group bonded to protect the amino group, or has no charge. It is modified by The C-terminal carboxyl group of the polypeptides of the above formulas (1) to (4) is amidated with an amino group from the viewpoint of improving the binding property to pancreatic ⁇ cells.
  • the C-terminal lysine side not protected by the protecting group The amino group of the chain can be labeled. That is, the amino group of the side chain of the 32nd lysine of the polypeptide of the above formula (1), the amino group of the side chain of the 31st lysine of the polypeptide of the above formula (2), The amino group of the side chain of the 30th lysine of the polypeptide and the amino group of the side chain of the 29th lysine of the polypeptide of the above formula (4) are labeled.
  • the first to 31st amino acid sequences in the above formula (1) are attached to the protecting group bonded to the amino group of the side chain of lysine and the ⁇ -amino group at the N-terminus. Except for the protecting or modifying group to which it is attached, it matches the amino acid sequence of exendin (9-39).
  • Exendin (9-39) is known to bind to GLP-1R (glucagon-like peptide-1 receptor) expressed on pancreatic ⁇ cells.
  • GLP-1R glyco-like peptide-1 receptor
  • a molecular probe obtained by labeling and deprotecting the molecular probe precursor of the present invention (hereinafter also referred to as “molecular probe of the present invention”) can also bind to pancreatic islets, preferably pancreatic ⁇ cells.
  • the molecular probe precursor of the present invention is a polypeptide used for islet imaging, wherein one to several amino acid sequences are deleted or added from the polypeptides of the above formulas (1) to (4).
  • it can include a substituted polypeptide that can bind to the islet after labeling and deprotection.
  • the one to several pieces are 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2, and one piece. Can be included.
  • the polypeptide when the polypeptide has one to several amino acid sequences deleted, added or substituted from the polypeptides of the above formulas (1) to (4), Preferably includes protection of the N-terminal ⁇ -amino group by a group or modification of the N-terminal ⁇ -amino group by a modifying group and amidation of the C-terminal carboxyl group, including one lysine to be labeled
  • the amino group in the side chain of the other lysine is preferably protected by a protecting group.
  • the molecular probe precursor of the present invention is a polypeptide used for islet imaging, and has 80% or more homology with the amino acid sequence of the polypeptides of the above formulas (1) to (4).
  • Polypeptides can include polypeptides that can bind to islets after labeling and deprotection.
  • the homology may be calculated by an algorithm usually used by those skilled in the art, for example, BLAST or FASTA.
  • the number of identical amino acid residues of two polypeptides to be compared is determined as one polypeptide. It may be based on the number obtained by dividing by the total length.
  • the homology may include 85% or more, 90% or more, or 95% or more.
  • the N-terminal ⁇ - it is preferable to include protection of the amino group or modification of the ⁇ -amino group at the N-terminus with a modifying group and amidation of the carboxyl group at the C-terminus, including one lysine to be labeled and other lysines
  • the side chain amino group is preferably protected by a protecting group.
  • a polypeptide having 80% or more homology with the amino acid sequence of the polypeptide of the above formulas (1) to (4) is labeled and deprotected, and then the polypeptide of the above formula (1) to (4) is used. It is preferable to have the same action and effect as a polypeptide obtained by labeling and deprotecting and more preferably the same action as a polypeptide obtained by labeling and deprotecting the polypeptide of formula (1). To have an effect.
  • the expression “capable of binding to islets” means that the molecular probe of the present invention is preferably capable of binding to pancreatic ⁇ -cells from the viewpoint of quantitative determination of islet amount and use for examination / diagnosis. It is more preferable to be specific to ⁇ cells, and more preferable to be specific to the extent that signals do not overlap with other organs / tissues at least in signal detection in noninvasive imaging for humans.
  • the molecular probe precursor of the present invention can be produced, for example, by peptide synthesis according to a conventional method such as the Fmoc method, and the peptide synthesis method is not particularly limited.
  • the molecular probe precursor of the present invention is used for islet imaging, and is preferably used for noninvasive islet imaging from the viewpoint of human examination / diagnosis, from the same viewpoint. It is preferably used for islet imaging for quantifying the amount of islets. Furthermore, the molecular probe precursor of the present invention is preferably used for islet imaging for the prevention, treatment or diagnosis of diabetes. These islet imaging may be performed by, for example, PET or SPECT.
  • the protecting group in the molecular probe precursor of the present invention is used during the labeling of a specific amino group of the molecular probe of the present invention, that is, the amino group of the lysine side chain located on the C-terminal side in the molecular probe precursor of the present invention.
  • other amino groups that protect other amino groups and can perform such functions can be used.
  • the protecting group is not particularly limited, and for example, 9-fluorenylmethyloxycarbonyl group (Fmoc), tert-butoxycarbonyl group (Boc), benzyloxycarbonyl group (Cbz), 2,2,2-trichloro Ethoxycarbonyl group (Troc), allyloxycarbonyl group (Alloc), amino group, alkyl group of 3 to 20 carbons, 9-fluoreneacetyl group, 1-fluorenecarboxylic acid group, 9-fluorenecarboxylic acid group, 9- Fluorenone-1-carboxylic acid group, benzyloxycarbonyl group, xanthyl group (Xan), trityl group (Trt), 4-methyltrityl group (Mtt), 4-methoxytrityl group (Mmt), 4-methoxy2,3,3 6-trimethyl-benzenesulfonyl group (Mtr), mesitylene-2-sulfoni Group (
  • the N-terminal ⁇ -amino group in the molecular probe precursor of the present invention is obtained by canceling the positive charge of the N-terminal ⁇ -amino group and labeling and deprotecting the molecular probe precursor of the present invention. May be modified with a non-charged modifying group from the viewpoint of suppressing the accumulation of the kidney in the kidney.
  • a non-charged modifying group from the viewpoint of suppressing the accumulation of the kidney in the kidney.
  • the modifying group having no charge for example, those described as the protecting group can be used.
  • modifying groups having no charge include, for example, o-bromobenzyloxycarbonyl group, t-butyldimethylsilyl group, 2-chlorobenzyl (Cl-z) group, cyclohexyl group, cyclopentyl group, isopropyl group, and pivalyl.
  • Group, tetrahydropyran-2-yl group, trimethylsilyl group and the like can be used.
  • the modifying groups include acetyl group, benzyl group, benzyloxymethyl group, o-bromobenzyloxycarbonyl group, t-butyl group, t-butyldimethylsilyl group, 2-chlorobenzyl group, 2,6-dichlorobenzyl.
  • Group, cyclohexyl group, cyclopentyl group, isopropyl group, pivalyl group, tetrahydropyran-2-yl group, tosyl group, trimethylsilyl group and trityl group are preferred.
  • a protecting group different from the protecting group used for the amino group of the lysine side chain is preferred, and an acetyl group is more preferred.
  • the molecular probe precursor of the present invention is preferably a molecular probe precursor for labeling the amino group of the side chain of the C-terminal lysine with a labeling compound containing an aromatic ring having a radionuclide.
  • the molecular probe precursor of the present invention is preferably a molecular probe precursor for labeling the lysine side chain amino group located on the C-terminal side with the labeling compound.
  • Radionuclides for example, 11 C, 13 N, 15 O, 18 F, 64 Cu, 67 Ga, 68 Ga, 75 Br, 76 Br, 77 Br, 82 Rb, 99m Tc, 111 In, 123 I, 124 I, 125 I and 131 I.
  • the radionuclide is preferably a positron emitting nuclide such as 11 C, 13 N, 15 O, 18 F, 62 Cu, 64 Cu, 68 Ga, 75 Br, 76 Br, 82 Rb, 124 I, etc. .
  • the radionuclide is preferably a ⁇ -ray emitting nuclide such as 67 Ga, 99m Tc, 77 Br, 111 In, 123 I, or 125 I.
  • radioactive halogen nuclides such as 18 F, 75 Br, 76 Br, 77 Br, 123 I, and 124 I are more preferable, and 18 F, 123 I, and 124 I are particularly preferable.
  • the “compound containing an aromatic ring having a radionuclide” refers to a compound having a radionuclide and an aromatic hydrocarbon group or an aromatic heterocyclic group, preferably represented by the following formula (I): And compounds having the group represented.
  • A represents either an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon group is preferably an aromatic hydrocarbon group having 6 to 18 carbon atoms, such as a phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,4-xylyl group, p -Cumenyl, mesityl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 9-phenanthryl, 1-acenaphthyl, 2-azurenyl Group, 1-pyrenyl group, 2-triphenylenyl group, o-biphenylyl group, m-biphenylyl group, p-biphenylyl group, terphenyl group and the like.
  • the aromatic heterocyclic group is preferably a 5- to 10-membered heterocyclic group having 1 or 2 nitrogen atoms, oxygen atoms or sulfur atoms.
  • R 1 represents 11 C, 13 N, 15 O, 64 Cu, 67 Ga, 68 Ga, 99m Tc, or a substituent containing radioactive halogen, such as a radioactive halogen atom or a radioactive halogen. of C 1 -C 3 alkyl group, and a radioactive halogenated C 1 -C 3 alkoxy group.
  • radioactive halogen include 18 F, 75 Br, 76 Br, 77 Br, 123 I, 124 I, 125 I, and 131 I.
  • the “C 1 -C 3 alkyl group” means an alkyl group having 1 to 3 carbon atoms, and examples thereof include a methyl group, an ethyl group, and a propyl group.
  • the “radiohalogenated C 1 -C 3 alkyl group” refers to an alkyl group having 1 to 3 carbon atoms and having a hydrogen atom substituted by a radioactive halogen.
  • the “C 1 -C 3 alkoxy group” means an alkoxy group having 1 to 3 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, and a propoxy group.
  • the “radiohalogenated C 1 -C 3 alkoxy group” means an alkoxy group having 1 to 3 carbon atoms and having a hydrogen atom substituted with a radioactive halogen.
  • R 1 is preferably a substituent at any of the ortho, meta, and para positions, more preferably a substituent at either the meta position or the para position.
  • R 2 represents a hydrogen atom or one or more substituents different from R 1 .
  • R 2 may be a hydrogen atom or a substituent, but is preferably a hydrogen atom, that is, in the above formula (I), A is preferably not substituted with a substituent other than R 1. .
  • R 2 is a plurality of substituents, they may be the same or different. Examples of the substituent include a hydroxyl group, an electron withdrawing group, an electron donating group, a C 1 -C 6 alkyl group, a C 2 -C 6 alkenyl group, a C 2 -C 6 alkynyl group, and the like.
  • Examples of the electron withdrawing group include a cyano group, a nitro group, a halogen atom, a carbonyl group, a sulfonyl group, an acetyl group, and a phenyl group.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the “C 1 -C 6 alkyl group” means an alkyl group having 1 to 6 carbon atoms, such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl.
  • C 2 -C 6 alkenyl group refers to an alkenyl group having 2 to 6 carbon atoms, such as a vinyl group, a 1-propenyl group, a 2-propenyl group, and an isopropenyl group.
  • 1-butenyl group, 2-butenyl group and 3-butenyl group refers to an alkenyl group having 2 to 6 carbon atoms, such as a vinyl group, a 1-propenyl group, a 2-propenyl group, and an isopropenyl group.
  • C 2 -C 6 alkynyl group means an alkynyl group having 2 to 6 carbon atoms, such as an ethynyl group, a 1-propynyl group, a 2-propynyl group, and a 1-butynyl group.
  • a substituent a hydroxyl group and an electron withdrawing group are preferable.
  • Examples of the labeled compound containing an aromatic ring having a radionuclide include [ 18 F] fluorobenzoyl group ([ 18 F] FB), [ 123 I] iodobenzoyl group ([ 123 I] IB), [ 124 I] iodobenzoyl group ( [124 I] IB), [ 125 I] iodobenzoyl group ([125 I] IB), [131 I] iodobenzoyl group ([131 I] IB), [123 I] iodo p-hydroxyphenylpropionyl group, [124 I] iodo A compound having a p-hydroxyphenylpropionyl group, [ 125 I] iodo p-hydroxyphenylpropionyl group or [ 131 I] iodo p-hydroxyphenylpropionyl group is preferred, and more preferably [ 18 F] N-succinimidyl 4-fluorobenzoate (
  • the molecular probe precursor of the present invention is a C-terminal lysine labeled.
  • a chelate moiety capable of binding to the metal radioisotope (metal nuclide) or a linker moiety responsible for binding to the peptide may be bound to the side chain amino group.
  • chelate compound examples include diethylenetriaminepentaacetic acid (DTPA), 6-hydrazinopyridine-3-carboxylic acid (HYNIC), tetraazacyclododecanetetraacetic acid (DOTA), dithisosemicarbazone (DTS), diaminedithiol (DADT), mercaptoacetylglycylglycylglycine ( MAG3), monoamidemonoaminedithiol (MAMA), diamidedithiol (DADS), propylene diamine dioxime (PnAO) and the like.
  • DTPA diethylenetriaminepentaacetic acid
  • HYNIC 6-hydrazinopyridine-3-carboxylic acid
  • DTS dithisosemicarbazone
  • DADT diaminedithiol
  • MAG3 monoamidemonoaminedithiol
  • MAMA monoamidemonoaminedithiol
  • DADS diamidedithiol
  • PnAO
  • the molecular probe precursor of the present invention has an affinity between a molecular probe obtained by labeling and deprotection and an islet, preferably an affinity between the molecular probe and pancreatic ⁇ cells, more preferably a GLP of the molecular probe and an islet.
  • affinity with the -1 receptor it is preferable that diethylenetriaminepentaacetic acid (DTPA) is not bound to the amino group of the lysine side chain located on the C-terminal side, more preferably a metal radioisotope (metal The chelate moiety capable of binding to the nuclide) is not bound.
  • DTPA diethylenetriaminepentaacetic acid
  • HYNIC 6-hydrazinopyridine-3-carboxylic acid
  • DOTA dithisosemicarbazone
  • DADT diaminedithiol
  • MAG3 mercaptoacetylglycylglycylglycine
  • MAMA monoamidemonoaminedithiol
  • DADS diamidedithiol
  • PnAO propylene-di
  • the molecular probe of the present invention can be prepared by labeling the molecular probe precursor of the present invention according to an imaging method and then deprotecting the protecting group.
  • radionuclides used for labeling include 11 C, 13 N, 15 O, 18 F, 64 Cu, 67 Ga, 68 Ga, 75 Br, 76 Br, 77 Br, 99m Tc, 123 I, and 124 I. , 125 I, 131 I and the like.
  • positron emitting nuclides such as 11 C, 15 O, 18 F and 124 I are used for PET, and ⁇ such as 99m Tc, 123 I and 125 I are used for SPECT.
  • the radiation-emitting nuclide can be labeled by a known method.
  • 18 F for example, it can be labeled by a method using [ 18 F] SFB ([ 18 F] N-succinimidyl 4-fluorobenzoate) or the like.
  • 123 I and 124 I for example, [ 123/124 I] SIB ([ 123/124 I] N-succinimidyl 3-iodobenzoate) and [ 123/124 I] iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide ester It can be labeled according to the method used.
  • 125 I and 131 I for example, [ 125/131 I] SIB ([ 125/131 I] N-succinimidyl 3-iodobenzoate) and [ 125/131 I] iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide ester It can be labeled according to the method used. Moreover, when labeling using a metal nuclide, labeling using the said chelate compound is mentioned, for example.
  • the amino group of the side chain of the 32nd lysine of the polypeptide of the above formula (1), the polypeptide of the above formula (2) The amino group of the side chain of the 31st lysine, the amino group of the side chain of the 30th lysine of the polypeptide of the above formula (3), and the side chain of the 29th lysine of the polypeptide of the above formula (4)
  • the amino group of is labeled.
  • the labeling method in the present invention is not limited to these methods. Deprotection after labeling can be performed by a known method according to the type of the protecting group. Therefore, this invention relates to the manufacturing method of the molecular probe of this invention as another aspect, Comprising: Labeling and deprotecting the molecular probe precursor of this invention are related.
  • the method for producing a molecular probe of the present invention preferably includes labeling the amino group of the side chain of the C-terminal lysine with a labeling compound containing an aromatic ring having a radionuclide.
  • the labeling compound containing the aromatic ring preferably contains a group represented by the above formula (I).
  • the labeled compound containing an aromatic ring having a radionuclide is a succinimidyl ester compound in which the group represented by the above formula (I) is bonded to succinimide via an ester bond.
  • the succinimidyl ester compound represented by the following formula (II) is more preferable.
  • R 1 and R 2 are the same as in the above formula (I).
  • R 3 is preferably a bond, a C 1 -C 6 alkylene group or a C 1 -C 6 oxyalkylene group.
  • the “C 1 -C 6 alkylene group” means an alkylene group having 1 to 6 carbon atoms, such as a methylene group, an ethylene group, a propylene group, a butylene group, a pentyl group, a hexyl group. And a linear or branched alkylene group such as a group.
  • C 1 -C 6 oxyalkylene group means an oxyalkylene group having 1 to 6 carbon atoms, such as an oxymethylene group, an oxyethylene group, an oxypropylene group, and an oxybutylene. Group, oxypentyl group and the like.
  • R 3 is a bond from the viewpoint of the affinity between the molecular probe and the islet, preferably the affinity between the molecular probe and the pancreatic ⁇ cell, more preferably the affinity between the molecular probe and the islet GLP-1 receptor.
  • a methylene group and an ethylene group are preferable, and a bond is more preferable.
  • Labeled compounds containing an aromatic ring having a radionuclide include [ 18 F] fluorobenzoyl group ([ 18 F] FB), [ 123 I] iodobenzoyl group ([ 123 I] IB), [ 124 I] iodobenzoyl group ([[ 124 I] IB), [ 125 I] iodobenzoyl group ([ 125 I] IB), [ 131 I] iodobenzoyl group ([ 131 I] IB), [ 123 I] iodo p-hydroxyphenylpropionyl group, [ 124 I] iodo p A compound having a -hydroxyphenylpropionyl group, [ 125 I] iodo p-hydroxyphenylpropionyl group or [ 131 I] iodo p-hydroxyphenylpropionyl group is preferred, more preferably [ 18 F] N-succinimidyl 4-fluo
  • the labeled compound having the group represented by the above formula (I) and / or the labeled compound containing the aromatic ring having the radionuclide is synthesized using an automatic synthesizer.
  • the synthesis of a labeled compound having a group represented by the above formula (I) and / or an aromatic ring having the above radionuclide, and the molecular probe precursor of the present invention using the labeled compound Body labeling and deprotection may be performed by one automated synthesizer.
  • the present invention relates to a molecular probe for islet imaging that can be obtained by the method for producing a molecular probe of the present invention.
  • the molecular probe for imaging of the present invention it is possible to perform three-dimensional imaging of islets, preferably non-invasive three-dimensional imaging of islets.
  • the molecular probe of the present invention includes, for example, metal nuclides such as 62 Cu, 64 Cu, 67 Ga, 68 Ga, 82 Rb, 99m Tc, 11 C, 13 N, 15 O, 18 F, 75 Br, 76 Br, 77 Br, 123 I, 124 I , 125 I, 131 may nuclide bonded such I, preferably 11 C, 13 N, 15 O , 18 F, 75 Br, 76 Br, 77 Br, 123 I, 124 I and the like are bonded, and more preferably, 18 F, 123 I, 124 I and the like are bonded.
  • metal nuclides such as 62 Cu, 64 Cu, 67 Ga, 68 Ga, 82 Rb, 99m Tc, 11 C, 13 N, 15 O, 18 F, 75 Br, 76 Br, 77 Br, 123 I, 124 I , 125 I, 131 may nuclide bonded such I, preferably 11 C, 13 N, 15 O , 18 F, 75 Br, 76
  • the N-terminal ⁇ -amino group may be modified with a non-charged modification group.
  • an acetyl group is preferred.
  • the molecular probe of the present invention has the affinity between the molecular probe and the pancreatic islet, preferably the affinity between the molecular probe and the pancreatic ⁇ cell, more preferably the affinity between the molecular probe and the GLP-1 receptor of the pancreatic islet.
  • DTPA is the amino group of the lysine side chain located on the C-terminal side, that is, the amino group of the side chain of the 32nd lysine of the polypeptide of the above formula (1), the 31st of the polypeptide of the above formula (2)
  • the chelate moiety capable of binding to the metal radioisotope (metal nuclide) is not bound to the amino group of the side chain of lysine.
  • the present invention provides a molecular probe for islet imaging, a polypeptide represented by any one of the following formulas (5) to (8), and a polypeptide represented by the following formula (5) to (8):
  • a molecular probe for islet imaging comprising a polypeptide having homology and capable of binding to islets, a polypeptide represented by any one of the following formulas (5) to (8), preferably the following formula (5 )
  • a polypeptide in which 1 to several amino acids are deleted, added or substituted, and capable of binding to islets or a polypeptide of the following formulas (5) to (8)
  • Amino acid sequence and more than 80% phase Sex a polypeptide related to pancreatic islets molecular probe for imaging consisting of
  • Z-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (5) (SEQ ID NO: 5)
  • Z-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (6) (SEQ ID NO: 6)
  • Z-SKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (7) (SEQ ID NO: 7)
  • Z-KQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH 2 (8) [In the above formulas (5) to (8), “X” represents a lysine residue in which the side chain amino group is labeled with a radionuclide, and the radionuclide is 11 C, 13 N, 15 O, 18 F, 64 Cu, 67 Ga, 68 Ga, 75 Br, 76 Br, 77 Br, 99m Tc, 123 I, 124 I, 125 I or 131 I, “Z-” is the N-terminal ⁇ -amino group unmod
  • the radionuclide is 11 C, 13 N, 15 O, 18 F, 64 Cu, 67 Ga, 68 Ga, 75 Br, 76 Br, 77 Br, 99m Tc, 123 I, 124 I, 125 I or 131 I .
  • nuclides that emit positrons such as 11 C, 13 N, 15 O, 18 F, 64 Cu, 68 Ga, 75/76 Br, 82 Rb, and 124 I are preferable.
  • nuclides that emit single photons such as ⁇ rays such as 67 Ga, 99m Tc, 77 Br, and 123 I are preferable.
  • the ⁇ -amino group at the N-terminus of the molecular probe of the present invention is unmodified, that is, remains as an amino group or is modified with a modifying group having no charge.
  • the N-terminal ⁇ -amino group is preferably unmodified, that is, an amino group. From the viewpoint of suppression, it is preferably modified with a modifying group having no charge.
  • the modifying group having no charge is as described above.
  • the molecular probe of the present invention is a polypeptide used for islet imaging, and includes a polypeptide represented by any one of the above formulas (5) to (8).
  • the amino acid sequences of the polypeptides of the above formulas (5) to (8) are the amino acid sequences described in SEQ ID NOs: 5 to 8 in the sequence listing, respectively.
  • the first to 31st amino acid sequences in the above formula (5) (SEQ ID NO: 5 in the sequence listing) are exendin (except for the case where the N-terminal ⁇ -amino group is bonded to the modifying group). It matches the amino acid sequence of 9-39).
  • the side chain amino group of lysine labeled with the radionuclide is preferably bonded to a group containing an aromatic ring represented by the following formula (III).
  • A represents either an aromatic hydrocarbon group or an aromatic heterocyclic group, and the aromatic hydrocarbon group and the aromatic heterocyclic group are as described above.
  • R 5 represents a hydrogen atom or one or more substituents different from R 4, and examples thereof include the same as R 2 .
  • R 4 represents a substituent containing 11 C, 13 N, 15 O, 18 F, 75 Br, 76 Br, 77 Br, 123 I, 124 I, 125 I or 131 I.
  • R 4 includes 11 C atom, 13 N atom, 15 O atom, 18 F atom, 75 Br atom, 76 Br atom, 77 Br atom, 123 I atom, 124 I atom, 125 I atom, 131 I atom, [ 18 F] fluorine-substituted C 1 -C 3 alkyl group, [18 F] C 1 -C 3 alkoxyl group substituted with fluorine, [123 I] C 1 -C 3 alkyl group substituted with iodine, [124 I] C 1 -C 3 alkyl group substituted with iodine, [125 I] C 1 -C 3 alkyl group substituted with iodine, [131 I] C 1 -C 3 alkyl group substituted with iod
  • Examples of the C 1 -C 3 alkyl group include a methyl group, an ethyl group, and a propyl group.
  • Examples of the C 1 -C 3 alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • R 4 is preferably a substituent at any of the ortho, meta, and para positions, more preferably a substituent at either the meta position or the para position.
  • R 3 is, like the above-mentioned formula (II), bond, is preferably one of C 1 -C 6 alkylene group and C 1 -C 6 oxyalkylene group, islets, From the viewpoint of affinity with pancreatic ⁇ cells, more preferably with islet GLP-1 receptor, a bond, a methylene group, and an ethylene group are more preferable, and a bond is more preferable.
  • the group containing an aromatic ring represented by the following formula (III) is an islet, preferably a pancreatic ⁇ cell, more preferably 7 to 20 carbon atoms in terms of affinity with the GLP-1 receptor of the islet. Preferably, it is 7 or more and 13 or less, more preferably 7 or more and 9 or less.
  • the group having a radionuclide bonded to the side chain amino group of lysine labeled with a radionuclide preferably has 13 or less carbon atoms, more preferably 10 or less, Preferably it is 9 or less. Moreover, the minimum is 1 or more, for example, and 7 or more is preferable. Accordingly, the group having a radionuclide bonded to the side chain amino group of lysine labeled with a radionuclide preferably has 1 to 13 carbon atoms, more preferably 7 to 10 carbon atoms, and still more preferably. Is 7 or more and 9 or less.
  • the present invention relates to a method for imaging pancreatic islets comprising labeling the molecular probe precursor of the present invention and then deprotecting the protecting group.
  • the imaging method of the present invention may include imaging a pancreatic islet using the molecular probe of the present invention.
  • the imaging method of the present invention is preferably a pancreatic ⁇ cell imaging method from the viewpoint of examination / diagnosis applications. Precursor labeling and deprotection are as described above, and islet imaging is also as described above.
  • the imaging method of the present invention may further include determining the state of the islet from the result of islet imaging using the molecular probe. Determining the state of islets from the results of islet imaging using a molecular probe includes, for example, determining the presence or absence of islets by analyzing an image of islet imaging, determining increase or decrease in the amount of islets.
  • the present invention includes detecting the signal of the molecular probe for imaging of the present invention that has been administered to a subject in advance and / or the signal of the molecular probe for imaging of the present invention that has been previously bound to an islet,
  • the present invention relates to an islet imaging method.
  • the signal of the molecular probe of the present invention can be detected by, for example, measurement using PET and / or measurement using SPECT.
  • the imaging method of the present invention may include a step of reconstructing the detected signal, converting it into image data, and displaying it.
  • the measurement using PET and the measurement using SPECT include, for example, taking an image and measuring the amount of islet.
  • the measurement using SPECT includes, for example, measuring ⁇ -rays emitted from a subject administered the molecular probe of the present invention (hereinafter also referred to as “subject”) with a gamma camera.
  • the measurement by the gamma camera includes, for example, measuring the radiation ( ⁇ rays) emitted from the radionuclide used for labeling the molecular probe of the present invention in a certain unit of time, and preferably the direction in which the radiation is emitted and Includes measuring the quantity of radiation in fixed time units.
  • the imaging method of the present invention may further include representing the measured distribution of the molecular probe of the present invention obtained by measurement of radiation as a cross-sectional image, and reconstructing the obtained cross-sectional image.
  • Subjects include humans and / or non-human mammals.
  • the measurement using PET includes, for example, simultaneously counting, with a PET detector, a pair of annihilation radiations generated by the combination of positrons and electrons from a subject administered with the molecular probe of the present invention. Delineating a three-dimensional distribution of the position of the radionuclide emitting the positron based on the measured results.
  • X-ray CT or MRI measurement may be performed together with SPECT measurement or PET measurement.
  • SPECT or PET functional image
  • CT or an image obtained by MRI morphological image
  • the imaging method of the present invention can include administering the molecular probe of the present invention to a subject, and performing measurement by means such as PET or SPECT after a lapse of a certain time from the administration of the molecular probe. Administering a sufficient amount of the molecular probe of the present invention to obtain the desired contrast. Further, as described above, since the imaging method of the present invention can be performed after a predetermined time has elapsed after the probe of the present invention is administered to a subject, the imaging method of the present invention targets the molecular probe of the present invention. It may not include administering.
  • the measurement using PET or the like includes, for example, taking an image and measuring the amount of pancreatic islet. Administration subjects include humans and / or mammals other than humans.
  • Administration to the subject may be local or systemic.
  • the administration route can be appropriately determined according to the condition of the subject, and examples thereof include intravenous, arterial, intradermal, intraperitoneal injection or infusion.
  • the molecular probe of the present invention is preferably administered together with a carrier.
  • a carrier for example, an aqueous solvent and a non-aqueous solvent can be used.
  • the aqueous solvent include potassium phosphate buffer, physiological saline, Ringer's solution, distilled water and the like.
  • the non-aqueous solvent include polyethylene glycol, vegetable oil, ethanol, glycerin, dimethyl sulfoxide, propylene glycol and the like.
  • the dose of the molecular probe of the present invention for islet imaging or islet amount measurement can be, for example, 1 ⁇ g or less.
  • the time from administration to measurement can be appropriately determined according to, for example, the binding time of the molecular probe to the islet, the type of the molecular probe, the decomposition time of the molecular probe, and the like.
  • the present invention provides a method for measuring the amount of pancreatic islets, wherein the molecular probe precursor of the present invention is labeled and deprotected to prepare the molecular probe of the present invention, and the molecular probe is used.
  • the present invention relates to a method for measuring the amount of islet including calculating the amount of islet from the result of the islet imaging.
  • the method for measuring the amount of islets of the present invention may include performing islet imaging using the prepared molecular probe of the present invention. Labeling and deprotection are as described above, and islet imaging is also as described above.
  • the calculation of the amount of islets from the result of islet imaging using a molecular probe can be performed, for example, by analyzing an image of islet imaging. Further, it is possible for a person skilled in the art to quantify the object to be imaged from the result of imaging, for example, using a calibration curve or an appropriate program.
  • the method for measuring the amount of pancreatic islets according to the present invention is preferably a method for measuring the amount of pancreatic ⁇ cells from the viewpoint of use for examination and diagnosis.
  • the present invention provides a method for measuring the amount of pancreatic islets, the signal of the molecular probe for imaging of the present invention administered to a subject in advance and / or the molecular probe for imaging of the present invention previously bound to the pancreatic islet. And a method for measuring the amount of islet including calculating the amount of islet from the detected signal of the molecular probe for imaging.
  • the method for measuring the amount of islet according to the present invention may further include presenting the calculated amount of islet.
  • Presenting the calculated amount of islets includes, for example, storing or outputting the calculated amount of islets to the outside.
  • Outputting to the outside includes, for example, displaying on a monitor and printing.
  • the present invention relates to a method for preventing or treating or diagnosing diabetes.
  • the method for preventing or treating or diagnosing diabetes according to the present invention comprises preparing a molecular probe for islet imaging by labeling and deprotecting the molecular probe precursor for imaging according to the present invention, and the molecule for islet imaging. Imaging a pancreatic islet using a probe, and determining the state of the pancreatic islet based on the obtained pancreatic islet image and / or pancreatic islet amount, and diagnosing diabetes based on the diagnosis Can include.
  • pancreatic islets As described above, in the onset of diabetes, the amount of pancreatic islets (especially, the amount of ⁇ -cells in the pancreas) decreases prior to abnormal glucose tolerance, but diabetes has already been treated after dysfunction is detected and recognized. Is at a difficult stage.
  • a decrease in the amount of pancreatic islets and / or pancreatic ⁇ cells can be detected at an early stage.
  • a new method for preventing, treating and diagnosing diabetes can be constructed.
  • the target of diabetes prevention / treatment / diagnosis includes humans and / or mammals other than humans.
  • the method for preventing diabetes according to the present invention can include periodically measuring the amount of islets and checking for a tendency to decrease the amount of islets.
  • the treatment method of diabetes of this invention can include evaluating the therapeutic effect including the medication and diet therapy performed with respect to a subject paying attention to the change of the amount of islets.
  • the method for diagnosing diabetes according to the present invention can include imaging of islets or measuring the amount of islets, comparing with a reference size or amount, or determining the degree of progression of diabetes.
  • the present invention relates to a method for ultra-early diagnosis of diabetes as another preferred embodiment.
  • the ultra-early diagnosis method for diabetes according to the present invention is based on, for example, Ningen Dock, imaging of islets and / or measurement of islet amount by the method of the present invention in a health checkup, and the obtained islet image and / or islet amount. Determining the state of the islets can be included.
  • the method for treating diabetes according to the present invention comprises performing islet imaging and / or measurement of the amount of islets by the method of the present invention, and evaluating the functional recovery of the islets based on the obtained islet image and / or islet amount. Can be included.
  • the present invention relates to a kit for preparing a molecular probe for islet imaging, which includes the molecular probe precursor of the present invention.
  • kits for preparing the molecular probe of the present invention include a kit for preparing the molecular probe of the present invention, a kit for performing the imaging method of the present invention, a kit for performing the method for measuring the amount of islets of the present invention, Examples include kits for the prevention or treatment or diagnosis of diabetes.
  • the kit of the present invention preferably includes an instruction manual according to each form.
  • the kit of the present invention may include, for example, a compound used for labeling the molecular probe precursor for islet imaging, and a compound containing an aromatic ring having halogen or radioactive halogen.
  • the compound containing an aromatic ring is preferably a compound having a group represented by the following formula (IV).
  • A represents either an aromatic hydrocarbon group or an aromatic heterocyclic group, and the aromatic hydrocarbon group and the aromatic heterocyclic group are as described above.
  • R 7 represents a hydrogen atom or one or more substituents different from R 6, and examples thereof include the same as R 2 .
  • R 6 represents a substituent containing halogen or radioactive halogen.
  • R 6 is preferably a substituent at any of the ortho, meta, and para positions, and more preferably a substituent at either the meta position or the para position.
  • the labeling compound containing an aromatic ring having a radionuclide is preferably a succinimidyl ester compound in which the group represented by the above formula (IV) is bonded to succinimide via an ester bond, and more preferably the following formula ( It is a succinimidyl ester compound represented by V).
  • R 6 and R 7 are the same as in the above formula (IV).
  • R 3 like the above-mentioned formula (II) and (III), bond, may be either C 1 -C 6 alkylene group and C 1 -C 6 oxyalkylene group
  • Labeled compounds containing an aromatic ring having a radionuclide include, for example, [ 18 F] fluorobenzoyl group, [ 123 I] iodobenzoyl group, [ 124 I] iodobenzoyl group, [ 125 I] iodobenzoyl group, [ 131 I] iodobenzoyl group.
  • kits of the present invention may include, for example, an instruction manual describing the labeling method of the molecular probe
  • the kit containing the molecular probe precursor for imaging according to the present invention preferably further contains a starting material for the labeled compound.
  • a starting material for the labeled compound examples include ethyl 4- (trimethylammonium triflate) benzoate, ethyl 4- (tosyloxy) benzoate, ethyl 4- (methylsulfonyloxy) benzoate and the like.
  • Examples of the starting material for [ 123/124/125 / 131I ] N-succinimidyl 3-iodobenzoate include 2,5-dioxopyrrolidin-1-yl 3- (tributylstannyl) benzoate.
  • the present invention relates to a kit containing the molecular probe of the present invention as yet another aspect.
  • the kit of the present embodiment include a kit for performing the imaging method of the present invention, a kit for performing the method for measuring an islet amount of the present invention, a kit for preventing or treating or diagnosing diabetes of the present invention, and the like. It is done. In each of these embodiments, it is preferable to include an instruction manual according to each form.
  • the molecular probe for imaging of the present invention is preferably included in the form of an injection solution. Therefore, the kit of the present invention preferably includes an injection solution containing the molecular probe for imaging of the present invention.
  • the injection solution contains the molecular probe for imaging of the present invention as an active ingredient, and may further contain a pharmaceutical additive such as a carrier.
  • a pharmaceutical additive refers to a compound that has been approved as a pharmaceutical additive in the Japanese Pharmacopoeia, the American Pharmacopoeia, the European Pharmacopoeia, and the like.
  • the carrier include an aqueous solvent and a non-aqueous solvent.
  • kits of the present invention may further include a container for containing the molecular probe for imaging of the present invention, and the injection liquid containing the molecular probe for imaging of the present invention and the molecular probe for imaging of the present invention is a container. It may be filled. Examples of the container include a syringe and a vial.
  • the kit of the present invention can further include, for example, components for preparing a molecular probe such as a buffer and an osmotic pressure regulator, and instruments used for administration of the molecular probe such as a syringe.
  • components for preparing a molecular probe such as a buffer and an osmotic pressure regulator
  • instruments used for administration of the molecular probe such as a syringe.
  • the kit containing the molecular probe precursor of the present invention further includes, for example, a labeled compound automatic synthesizer, a labeled compound having the group represented by the above formula (I) using the labeled compound automatic synthesizer, and An instruction manual describing a method for synthesizing a labeled compound containing an aromatic ring having the radionuclide may be included.
  • the automatic synthesizer may be, for example, an automatic synthesizer capable of labeling and deprotecting a molecular probe precursor for islet imaging using the synthesized labeled compound in addition to the synthesis of the labeled compound.
  • the kit may further contain a reagent containing a radionuclide used for the synthesis of the labeled compound.
  • reagent containing a radionuclide examples include 11 C, 13 N, 15 O, 18 F, 64 Cu, 67 Ga, 68 Ga, 75 Br, 76 Br, 77 Br, 99m Tc, 111 In, 123 I, 124
  • a reagent containing a radioisotope such as I, 125 I or 131 I can be mentioned.
  • the present invention provides an automatic peptide synthesizer for synthesizing the molecular probe precursor of the present invention, a labeled compound having a group represented by the above formula (I), and / or the above formula (I). It is related with the kit containing the automatic synthesis apparatus of the labeled compound which has group represented by this.
  • the automatic synthesizer may be an automatic synthesizer capable of labeling and deprotecting a molecular probe precursor using the synthesized labeled compound in addition to the synthesis of the labeled compound.
  • the kit may include an instruction manual describing a method for synthesizing the molecular probe precursor of the present invention.
  • the instruction manual may further describe, for example, a method for synthesizing a labeled compound having a group represented by the above formula (I), a labeling method using the compound, a deprotection method, and the like.
  • the kit may further contain a reagent containing a radionuclide used for the synthesis of the labeled compound.
  • an automatic synthesizer for synthesizing the molecular probe precursor of the present invention, synthesizing the labeled compound, and labeling and deprotecting the molecular probe precursor for islet imaging using the labeled compound.
  • a kit including an instruction manual describing a method for producing the molecular probe for imaging of the present invention using the automatic synthesizer.
  • the instruction manual preferably describes, for example, a method for synthesizing the molecular probe precursor, a method for synthesizing the labeled compound, a method for labeling and deprotecting the molecular probe precursor using the labeled compound, and the like.
  • the kit may further contain a reagent containing a radionuclide used for the synthesis of the labeled compound.
  • the present invention relates to an imaging reagent containing the molecular probe of the present invention.
  • the imaging reagent of the present invention contains the molecular probe of the present invention as an active ingredient, and may further contain a pharmaceutical additive such as a carrier.
  • the carrier is as described above.
  • Example 1 A book of the above formula (1) in which a protecting group is bound to the N-terminal ⁇ -amino group of SEQ ID NO: 1 and the 4th and 19th lysine residues, and the C-terminal carboxyl group is amidated.
  • the biodistribution of mice was measured using the molecular probe precursor of the invention.
  • the molecular probe of the present invention was prepared as follows.
  • the polypeptide was synthesized using an automated peptide synthesizer (Model 433A) manufactured by Applied Biosystems according to the attached software.
  • the amino acids having functional groups in the side chains are Asp (OBu), Ser (OBu), Lys (Boc), Gln (Trt), Glu (OBu), Arg (Pbf), Asn (Trt), and Trp (Boc), respectively.
  • Lys (Mmt) was used as the 4th and 19th lysines.
  • the protecting group (Mmt group) was removed, and the amino groups in the side chains of the released 4th and 19th lysine residues were converted to Fmoc. Subsequently, the removal of all protecting groups other than the Fmoc group of the 4th and 19th lysine residues and the excision of the peptide from the resin were performed using 92.5% TFA-2.5% TIS-2.5% H 2 O. -Performed by a conventional process using -2.5% ethanedithiol. After completion of the reaction, the carrier resin was removed by filtration, and dry ether was added to precipitate the crude product, followed by filtration.
  • [ 18 F] FB fluorobenzoyl group
  • SEQ ID NO: 19 a molecular probe of the following formula (19) which is amidated and the N-terminal ⁇ -amino group is unmodified (amino group).
  • FIG. 1A is a graph showing the change over time of the accumulation of molecular probes in each organ
  • FIG. 1B is an enlarged graph of FIG. 1A.
  • the accumulation of the molecular probe prepared in Example 1 (molecular probe represented by the above formula (19)) in the pancreas was 9.3% dose / g, 5 minutes after administration, It was 6.9% dose / g 15 minutes after administration, and 9.7% dose / g 30 minutes after administration.
  • the molecular probe prepared in Example 1 accumulated more in the pancreas than in the stomach, intestine, liver, and spleen, which are adjacent organs of the pancreas, in any time zone.
  • the amount of accumulation in the stomach and intestine between 5 and 60 minutes after administration is as low as around 2% dose / g, and the amount of accumulation in the pancreas relative to the amount in the stomach and intestine between 5 and 30 minutes after administration. was about 4 times or more.
  • the accumulation amount in the liver can be suppressed to 4% dose / g or less after 15 minutes after administration, and the accumulation amount in the pancreas is more than 2.5 times the accumulation amount in the liver after 30 minutes after administration. there were. That is, it can be said that the molecular probe prepared in Example 1 specifically accumulated in the pancreas.
  • radioactivity accumulation in bone was low, suggesting that it did not undergo defluorination metabolism in vivo.
  • the molecular probe of Example 1 (the molecular probe represented by the above formula (19)) is considered suitable for imaging of pancreatic ⁇ cells.
  • Reference Example 1 As Reference Example 1, a protective group (Fmoc) is bonded to the N-terminal ⁇ -amino group of SEQ ID NO: 20 and the 19th lysine residue, and the C-terminal carboxyl group is amidated, and the following formula (20)
  • a molecular probe was prepared from the molecular probe precursor and the biodistribution of the mouse was measured using the molecular probe. That is, in the amino acid sequence of SEQ ID NO: 20, [ 18 F] FB (fluorobenzoyl group) is bonded to the amino group of the fourth lysine side chain, and the C-terminal carboxyl group is amidated, The distribution in the mouse was measured using the molecular probe (SEQ ID NO: 21) represented by 21).
  • the molecular probe prepared in Example 1 (the molecular probe represented by the above formula (19)) is a molecular probe of the above formula (20).
  • the amount of accumulation in the pancreas is large. The accumulation amount in the stomach and intestine which are adjacent organs was small.
  • the molecular probe prepared in Example 1 has a lower accumulation in the liver and kidney than the molecular probe in Reference Example 1 and the molecular probe in Reference Example 2, and the molecular probe prepared in Example 1
  • the accumulation amount in the kidney was less than half of the accumulation amount in the kidney of the molecular probes of Reference Examples 1 and 2 above. From this, it can be said that the molecular probe prepared in Example 1 specifically accumulated in the pancreas.
  • the pancreas / liver ratio (the accumulation amount of the pancreas / the accumulation of the liver) for each probe The amount is shown in Table 4 below, and the pancreas / kidney ratio (the amount of pancreas accumulated / the amount of kidney accumulated) is shown in Table 5 below.
  • the molecular probe of Example 1 had higher pancreas / liver ratio and pancreas / kidney ratio than the molecular probe of Reference Example 1 and the molecular probe of Reference Example 2.
  • the molecular probe of Example 1 in which the ratio of the amount of accumulation in the pancreas with respect to the peripheral organs of the pancreas is small and the accumulation of the peripheral organs of the pancreas is small, a clear pancreas image can be obtained when imaging. It was suggested that
  • a three-dimensional imaging image of the mouse islet is obtained by administering the molecular probe of Reference Example 1 to the mouse.
  • a non-invasive three-dimensional imaging image of the mouse islet is obtained.
  • the molecular probe prepared in Example 1 in which the side chain of the C-terminal lysine was labeled was the molecular probe of Reference Example 1 prepared using the molecular probe precursor of the above formula (20) and the above formula ( Compared with the molecular probe of Reference Example 2 prepared using the molecular probe precursor of 22), the accumulation amount in the pancreas is large and the accumulation amount in the stomach and intestine which are adjacent organs of the pancreas is small. It was suggested that the molecular probe prepared in Example 1 enables non-invasive three-dimensional imaging of islets.
  • the molecular probe precursor of the present invention enables non-invasive pancreatic three-dimensional imaging, particularly non-invasive pancreatic ⁇ -cell three-dimensional imaging in humans.
  • the prepared molecular probe of the above formula (19) (5 ⁇ Ci) was administered intravenously to an unanesthetized mouse without prior administration of a cold probe.
  • the weight and radioactivity of each organ were measured, and the accumulation amount (% dose / g) was calculated from the radioactivity per unit weight.
  • An example of the result is shown in FIG. 4 together with the result of pre-administration.
  • FIG. 4 is a graph showing the accumulation amount (% dose / g) with pre-administration and the accumulation amount (% dose / g) of control (no pre-administration).
  • a cold probe to inhibit the binding to the receptor (GLP-1 receptor)
  • the uptake of the molecular probe of the above formula (19) into the pancreas is inhibited by about 75%.
  • MIP-GFP mouse Uses a transgenic mouse having a genetic background of ICR mice and expressing GFP (green fluorescent protein) under the control of MIP (mouse insulin I gene promoter) (hereinafter referred to as “MIP-GFP mouse”) Two-dimensional imaging analysis was performed.
  • MIP-GFP mouse mouse insulin I gene promoter
  • a section was cut out from the excised pancreas, the section was placed on a slide glass, and a cover glass was placed thereon.
  • the fluorescence and radioactivity (autoradiography) of the sections were measured using an image analyzer (trade name: Typhoon 9410, manufactured by GE Healthcare) (exposure time: 15 hours). An example of the result is shown in FIG.
  • FIG. 5 shows an example of the result of image analysis of a pancreatic section of a MIP-GFP mouse 30 minutes after administration of the molecular probe of the above formula (19), where (a) shows a fluorescent signal and (b) shows an radioactive signal. It is.
  • a fluorescent GFP signal and a radioactive signal were detected by the image analyzer in the pancreas section of the MIP-GFP mouse, respectively.
  • the localization of the radioactive signal detected from the labeled molecular probe of the formula (19) was consistent with the GFP signal. From this, it was confirmed that the molecular probe of the above formula (19) was specifically accumulated in pancreatic ⁇ cells.
  • FIG. 6A is a coronal view of three-dimensional imaging
  • FIG. 6B is a transverse view of three-dimensional imaging.
  • the white circles in FIGS. 6A and 6B indicate the position of the pancreas.
  • the contrast of FIG. 6A and B is the same.
  • the position of the pancreas could be clearly determined non-invasively by using the molecular probe of the above formula (19). That is, it was confirmed that non-invasive three-dimensional imaging of pancreatic islets is possible with the molecular probe of the present invention.
  • a molecular probe precursor of the above formula (24) was prepared in the same manner as in Example 1 except that the protecting group (Fmoc) of the N-terminal ⁇ -amino group was deprotected and acetylated.
  • the obtained molecular probe precursor (540 ⁇ g) of the above formula (24) was dissolved in Borate Buffer (pH 7.8), and [ 18 F] SFB was added thereto to adjust the reaction solution to pH 8.5 to 9.0 for labeling. Made. Thereafter, deprotection reaction was performed by adding DMF and Piperidine to obtain the target product (molecular probe labeled with the 32nd lysine residue of SEQ ID NO: 5).
  • [ 18 F] FB fluorobenzoyl group
  • SEQ ID NO: 25 a molecular probe of the following formula (25) in which the group is acetylated and the C-terminal carboxyl group is amidated.
  • Ac indicates that the ⁇ -amino group at the N-terminal is acetylated.
  • Table 6 An example of the results is shown in Table 6 below and FIGS.
  • FIG. 7A is a graph showing the change over time of the accumulation of molecular probes in each organ
  • FIG. 7B is an enlarged graph of FIG. 7A.
  • accumulation of the molecular probe of the above formula (25) prepared in Example 2 in the pancreas was 7.0% dose / g 5 minutes after administration, and 6. 5 minutes after administration. It was 5% dose / g, and 7.3% dose / g 30 minutes after administration.
  • the molecular probe of the above formula (25) prepared in Example 2 accumulated more in the pancreas than in the stomach or intestine, which are adjacent organs of the pancreas, in any time zone.
  • the accumulation amount of the stomach is low at around 2% dose / g in any time zone, and the accumulation amount of the intestine is low at around 1.7% dose / g in any time zone, and accumulation in the stomach and intestine is low.
  • the amount of accumulation in the pancreas relative to the amount was more than 3 times. From 15 minutes after administration, the accumulation amount in the liver could be suppressed to 4% dose / g or less, and from 30 minutes after administration, the accumulation amount in the pancreas was more than twice as much as the accumulation amount in the liver. That is, it can be said that the molecular probe of the above formula (25) prepared in Example 2 specifically accumulated in the pancreas. In addition, radioactivity accumulation in bone was low, suggesting that it did not undergo defluorination metabolism in vivo. Thus, the molecular probe of the above formula (25) is considered suitable for imaging pancreatic ⁇ cells.
  • the molecular probe of Example 2 in which the N-terminal ⁇ -amino group is acetylated is an N-terminal ⁇ -amino group.
  • the molecular probe of Example 1 in which the amino group was not acetylated molecular probe of the above formula (19)
  • accumulation in the kidney was suppressed.
  • pancreas / liver ratio (pancreas accumulation amount / liver accumulation amount) is shown in Table 4 above
  • pancreas / kidney ratio pancreas accumulation amount / The amount of kidney accumulation
  • the molecular probe of the above formula (25) prepared in Example 2 is the molecular probe of Reference Example 1 and the molecular probe of Reference Example 2.
  • the amount of accumulation in the pancreas was larger than that in the pancreas, and the amount of accumulation in the stomach and intestine which are adjacent organs of the pancreas was small.
  • the molecular probe of the above formula (25) prepared in Example 2 has a lower accumulation in the kidney than the molecular probes in Reference Examples 1 and 2, and the molecular probe prepared in Example 2 enters the kidney.
  • the molecular probe of Reference Example 1 (the molecular probe of the above formula (21)) and the molecular probe of the above Reference Example 2 (the molecular probe of the above formula (23)) are less than half of the amount accumulated in the kidney. It was. This also indicates that the molecular probe of the above formula (25) prepared in Example 2 was specifically accumulated in the pancreas. Therefore, it was suggested that the molecular probe of the above formula (25) prepared in Example 2 can perform noninvasive three-dimensional imaging of islets.
  • the molecular probe precursor of the present invention enables non-invasive pancreatic three-dimensional imaging, particularly non-invasive pancreatic ⁇ -cell three-dimensional imaging in humans.
  • Example 3 [Binding Assay] Example 1 except that [ 127 I] N-succinimidyl 3-iodobenzoate ([ 127 I] SIB) was used instead of [ 18 F] SFB for the molecular probe precursor of the above formula (18) prepared in Example 1. Labeling and deprotection were carried out in the same manner as in 1 to obtain a molecular probe of the following formula (26) (SEQ ID NO: 26).
  • the islets isolated from the mice were collected in a 50 ml tube, centrifuged (2000 rpm, 2 minutes), and then washed once with 20 ml of cold PBS.
  • Add 15 mL trypsin-EDTA (3 mL trypsin-EDTA (0.05% / 0.53 mM) plus 12 mL 0.53 mM EDTA (pH 7.4 (NaOH)) containing PBS) and shake at 37 ° C. Incubate for 1 minute and place immediately on ice. Then, after pipetting vigorously 20 times without foaming with a 10 mL pipette with a dropper, cold PBS was added to a final volume of 30 mL.
  • the plate was washed twice with 30 mL of cold PBS. The supernatant was removed to obtain a pancreatic islet cell sample. The obtained islet cell sample was stored at ⁇ 80 ° C.
  • the islet cell sample was suspended with Buffer (20 mM HEPES (pH 7.4), 1 mM MgCl 2 , 1 mg / ml bacitracin, 1 mg / ml BSA) so as to be 100 ⁇ L / tube.
  • Buffer (20 mM HEPES (pH 7.4), 1 mM MgCl 2 , 1 mg / ml bacitracin, 1 mg / ml BSA) so as to be 100 ⁇ L / tube.
  • the final concentration of [ 125 I] -labeled Exendin (9-39) was 0.05 ⁇ Ci / tube. Subsequently, using a suction device in which a pre-moistened glass fiber filter (Whatman GF / C filter) was set, B / F separation was performed by suction, and then the filter was washed three times with 5 ml of ice-cold PBS. The filter was placed in a tube and the radioactivity was measured with a ⁇ counter. The result is shown in FIG.
  • FIG. 8 is a graph showing an example of the result of analysis using SigmaPlot 11 (trade name).
  • the molecular probe of the above formula (26) inhibited the binding between GLP-1R and [ 125 I] -labeled Exendin (9-39) in a concentration-dependent manner.
  • the IC 50 of the molecular probe of the above formula (26) was 3.52 ⁇ 10 ⁇ 9 M, and the molecular probe of the above formula (26) showed high affinity for the islet GLP-1 receptor.
  • the molecular probe of the above formula (26) can be said to have the same degree of affinity for GLP-1 receptor in pancreatic islets as Exendin (9-39), which is a GLP-1 receptor antagonist.
  • FIG. 9A is a graph showing the change over time of the accumulation of molecular probes in each organ
  • FIG. 9B is an enlarged graph of FIG. 9A.
  • the accumulation of the molecular probe of the formula (27) prepared in Example 3 in the pancreas was 7.7% dose / g 5 minutes after administration and 12.12 minutes after administration. It was 3% dose / g, 8.7% dose / g 30 minutes after administration, and 10.9% dose / g 60 minutes after administration. Further, the molecular probe of the above formula (27) accumulated more in the pancreas than in the stomach or intestine, which are adjacent organs of the pancreas, in any time zone.
  • the amount of accumulation in the stomach and intestine between 5 and 30 minutes after administration is as low as 4% dose / g or less, and the amount of accumulation in the pancreas in this time zone is more than 3 times the amount accumulated in the stomach and intestine. there were.
  • the accumulation amount of the molecular probe of the above formula (27) in the liver after 30 minutes after administration was 5% dose / g or less. From the above, it can be said that the molecular probe of the above formula (27) specifically accumulated in the pancreas.
  • the molecular probe of the above formula (27) did not undergo deiodination metabolism in vivo. Thereby, it is considered that the molecular probe of the above formula (27) is suitable for imaging of pancreatic ⁇ cells, particularly noninvasive imaging of pancreatic ⁇ cells.
  • FIG. 10 is an example of the result of image analysis of a pancreatic section of a MIP-GFP mouse administered with the molecular probe of the above formula (27), and the fluorescence of a section 30 minutes after administration of the molecular probe of the above formula (27). Images showing signal (a) and radioactive signal (b) are shown.
  • a fluorescent GFP signal and a radioactive signal were detected by the image analyzer in the pancreas section of the MIP-GFP mouse, respectively. Further, the localization of the radioactive signal detected from the molecular probe of the above formula (27) was consistent with the GFP signal. From this, it was confirmed that the molecular probe of the above formula (27) was specifically accumulated in pancreatic ⁇ cells.
  • 125 I, 123 I and 131 I are all ⁇ -ray emitting nuclides. Furthermore, 125 I and 123 I have the same nuclear spin number. Therefore, even when the radioactive iodine atom ( 125 I) used for labeling the molecular probe of the above formula (27) is 123 I or 131 I, the molecular probe of the above formula (27) It is estimated that the behavior is almost the same. Even when 124 I is used, it is estimated that the behavior is almost the same as that of the molecular probe of the above formula (27).
  • 125 I of the molecular probe of the above formula (27) is 123 I, 124 I, or 131 I, for example, non-invasive three-dimensional pancreatic ⁇ cells in SPECT, PET, etc. It was suggested that imaging, preferably pancreatic ⁇ -cell quantification, is possible.
  • Example 4 In the amino acid sequence of SEQ ID NO: 5, the amino group in the side chain of the 32nd lysine residue is labeled with a 3- [ 123 I] iodobenzoyl group (hereinafter also referred to as “[ 123 I] IB label”), and the C-terminal A molecular probe (SEQ ID NO: 28) of the following formula (28) was prepared in which the carboxyl group was amidated and the N-terminal ⁇ -amino group was not acetylated. A molecular probe of the following formula (28) was prepared in the same manner as in Example 3 except that [ 123 I] SIB was used instead of [ 125 I] SIB.
  • [Three-dimensional imaging] SPECT imaging of mice was performed using the molecular probe of the above formula (28).
  • the molecular probe of the above formula (28) (243 ⁇ Ci / 120 ⁇ L) was administered to anesthetized 6-week-old ddY mice (male, body weight of about 30 g) by intravenous injection, and SPECT imaging was performed.
  • SPECT imaging was performed using a gamma camera (product name: SPECT2000H-40, manufactured by Hitachi Medical) under the following imaging conditions for 30 to 32 minutes after administration of the molecular probe.
  • the obtained image was subjected to reconstruction processing under the following reconstruction conditions.
  • Imaging conditions Collimator: LEPH pinhole collimator detector collection angle: 11.25 ° / 360 ° in 60 seconds Collection time: 60 seconds x 32 frames, 32 minutes Reconstruction condition ⁇ br/>
  • Preprocessing filter Butterworth filter (order: 10, cutoff frequency: 0.13)
  • FIG. 11A is a transverse view
  • FIG. 11B is a coronal view
  • FIG. 11C is a sagittal view.
  • the white circles in FIGS. 11B and 11C indicate the position of the pancreas.
  • the contrast of FIG. 11A to C is the same.
  • the position of the pancreas could be confirmed non-invasively in the mouse by using the molecular probe of the above formula (28). That is, it was confirmed that non-invasive three-dimensional imaging of pancreatic islets is possible with the molecular probe of the present invention.
  • the pancreas size was smaller than that of humans and the position of the pancreas was confirmed non-invasively in a mouse where the organs were densely packed, the pancreas size was larger than that of the mouse, and the organ was It was suggested that a non-congested human can, for example, more clearly determine the position of the islets and the size of the pancreas and further measure the expression level of the probe in the pancreas. Therefore, it was suggested that the molecular probe for imaging of the present invention can perform non-invasive pancreatic three-dimensional imaging, particularly non-invasive pancreatic ⁇ -cell three-dimensional imaging in humans.
  • the present invention is useful in, for example, the medical field, the field of molecular imaging, and the field related to diabetes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Endocrinology (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Nuclear Medicine (AREA)

Abstract

膵島イメージング用分子プローブ前駆体の提供。下記式(1)~(4)のいずれかで表されるポリペプチド又は前記ポリペプチドと相同性を有するポリペプチド。 *-DLSK* QMEEEAVRLFIEWLK* NGGPSSGAPPPSK-NH2(1) *-LSK* QMEEEAVRLFIEWLK* NGGPSSGAPPPSK-NH2(2) *-SK* QMEEEAVRLFIEWLK* NGGPSSGAPPPSK-NH2(3) *-K* QMEEEAVRLFIEWLK* NGGPSSGAPPPSK-NH2(4) [上記式(1)~(4)において、「*-」はN末端のα-アミノ基が保護基により保護されているか又は電荷を有さない修飾基により修飾されていることを示し、「K*」はリジン(lysine)の側鎖のアミノ基が保護基により保護されていることを示し、「-NH2」はC末端のカルボキシル基がアミド化されていることを示す。]

Description

膵島イメージング用分子プローブ及びその前駆体、並びに、それらの使用
 本発明は、膵島イメージング用分子プローブ及びその前駆体、並びに、それらの使用に関する。
 現在、日本における2型糖尿病は推定820万人を越えて増加し続けている。この対策として耐糖能検査を基準とした糖尿病発症前の介入が行われているが、充分な成果が得られていない。その原因として、耐糖能検査で機能異常が明らかとなる境界型の段階では膵島の障害はすでに高度に進行しており、介入開始時期としては遅い可能性がある。
 すなわち、糖尿病の発症過程では、膵島量(とりわけ、膵β細胞量)が耐糖能異常に先行して減少するため、機能異常が検出・自覚される段階に至ってからでは、糖尿病はすでに治療が難しい段階となっている。一方、膵島量及び/又は膵β細胞量の減少を早期に発見することができれば、糖尿病を予防・治療できる可能性がある。したがって、糖尿病の予防・診断を行うために非侵襲の膵島イメージング技術、とりわけ膵島量及び又は膵β細胞量を測定するための非侵襲の膵島イメージング技術が望まれている。その中でも、膵島、好ましくは、膵β細胞のイメージングや膵β細胞量の測定を非侵襲的に可能とする分子プローブが特に望まれている。
 膵島のイメージング用分子プローブの設計において、β細胞に特異的な機能タンパク質を中心に膵島細胞における様々な標的分子が検討されている。中でも、標的分子として、膵β細胞に分布し、7回膜貫通型のG-タンパク質共役受容体であるGLP-1R(グルカゴン様ペプチド1受容体)が検討されている。そして、膵島β細胞のイメージング用分子プローブとして、例えば、GLP-1RアンタゴニストであるExendin-4(9-39)の誘導体が検討されている(例えば、非特許文献1)。
 また、その他にGLP-1Rのイメージング用プローブとしては、GLP-1R陽性の腫瘍をイメージングするために、GLP-1RアゴニストであるExendin-4の誘導体や、GLP-1RアンタゴニストであるExendin-4(9-39)の誘導体が検討されている(例えば、非特許文献2)。
 しかしながら、非侵襲的な膵島の三次元イメージングが可能なさらなる膵島イメージング用分子プローブが求められている。
H. Kimura et al. Development of in vivo imaging agents targeting glucagons-like peptide-1 receptor (GLP-1R) in pancreatic islets. 2009 SNM Annual Meeting, abstract, Oral Presentations No.326 M. Beche et al. Are radiolabeled GLP-1 receptor antagonists useful for scintigraphy? 2009 SNM Annual Meeting, abstract, Oral Presentations No.327
 そこで、本発明は、非侵襲的な膵島の三次元イメージングが可能な膵島イメージング用分子プローブを提供する。
 本発明は、膵島のイメージングに用いられる分子プローブの前駆体であって、
 下記式(1)~(4)のいずれかで表されるポリペプチド、
 下記式(1)~(4)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって、標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、
 下記式(1)~(4)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、標識化及び脱保護後に膵島に結合可能なポリペプチドを含み、
 前記分子プローブは、膵島のイメージングに用いられる分子プローブである、膵島イメージング用分子プローブ前駆体に関する。
 *-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (1)  (配列番号1)
  *-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (2)  (配列番号2)
   *-SKQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (3)  (配列番号3)
    *-KQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (4)  (配列番号4)
[上記式(1)~(4)において、「*-」は、N末端のα-アミノ基が、保護基により保護されているか、又は、電荷を有さない修飾基により修飾されていることを示し、「K*」は、リジン(lysine)の側鎖のアミノ基が保護基により保護されていることを示し、「-NH2」は、C末端のカルボキシル基がアミド化されていることを示す。]
 本発明は、その他の態様として、膵島イメージング用分子プローブであって、
 下記式(5)~(8)のいずれかで表されるポリペプチド、
 下記式(5)~(8)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって、膵島に結合可能なポリペプチド、又は、
 下記式(5)~(8)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、膵島に結合可能なポリペプチドを含み、膵島イメージング用分子プローブに関する。
 Z-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (5)  (配列番号5)
  Z-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (6)  (配列番号6)
   Z-SKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (7)  (配列番号7)
    Z-KQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (8)  (配列番号8)
[上記式(5)~(8)において、「X」は、側鎖のアミノ基が放射性核種で標識されたリジン残基を示し、前記放射性核種は、11C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、99mTc、123I、124I、125I又は131Iであり、「Z-」は、N末端のα-アミノ基が、非修飾であるか、又は、電荷を有さない修飾基により修飾されていることを示し、「-NH2」は、C末端のカルボキシル基がアミド化されていることを示す。]
 本発明によれば、例えば、ポジトロン放射断層撮影法(PET)やシングルフォトン放射線コンピュータ断層撮影法(SPECT)などにより、膵島のイメージング、好ましくは膵島の三次元イメージング、より好ましくは非侵襲の膵島イメージングが可能となる。
図1A及びBは、本発明の分子プローブの体内分布の経時変化の結果の一例を示すグラフである。 図2A及びBは、参考例1の分子プローブの体内分布の経時変化の結果の一例を示すグラフである。 図3A及びBは、参考例2の分子プローブの体内分布の経時変化の結果の一例を示すグラフである。 図4は、実施例1の分子プローブを用いたblocking実験の結果の一例を示すグラフである。 図5は、実施例1の分子プローブを用いた膵臓切片のイメージング解析の結果の一例を示す画像である。 図6は、実施例1の分子プローブを用いた膵島イメージング(PET)の結果の一例を示すPET画像である。 図7A及びBは、本発明の分子プローブの体内分布の経時変化の結果のその他の例を示すグラフである。 図8は、実施例におけるBinding Assayの結果の一例を示すグラフである。 図9A及びBは、本発明の分子プローブの体内分布の経時変化の結果のその他の例を示すグラフである。 図10は、実施例3の分子プローブを用いた膵臓切片のイメージング解析の結果の一例を示す画像である。 図11は、実施例4の分子プローブを用いたSPECT画像の一例である。
 膵島の直径は、例えば、ヒトの場合、50~500μm程度である。このような膵島を生体内において非侵襲的にイメージング化又は定量化するためには、例えば、膵島に特異的に集積して周囲臓器とのコントラストを生じさせることが可能な分子プローブが必要であると考えられている。このため、様々な分子プローブの研究・開発が行われている。
 例えば、非特許文献2では、GLP-1R陽性腫瘍細胞及び膵島細胞における、Exendin-4(9-39)の誘導体の誘導体であるLys40(Ahx-DTPA-111In)Exendin-4(9-39)のGLP-1R親和性の研究が行われている。そして、Lys40(Ahx-DTPA-111In)Exendin-4(9-39)の膵島への集積率は0.4%程度であり、GLP-1R陽性腫瘍細胞への集積率も7.5%程度であり、すなわち、Lys40(Ahx-DTPA-111In)Exendin-4(9-39)はGLP-1Rへの親和性が低いという結果が得られている。このため、例えば、膵島に特異的に集積して周囲臓器とのコントラストを生じさせることが可能な新たな分子プローブが求められていることが現状である。
 本発明は、上記イメージング用分子プローブ前駆体を標識化及び脱保護することにより得られる分子プローブ及び上記イメージング用分子プローブによれば、例えば、PETやSPECT等により非侵襲で膵島の三次元イメージングが可能となり、かつ定量性を確保できる、という知見に基づく。すなわち、本発明は、膵島の非侵襲的な三次元イメージングを可能にするという効果を好ましくは奏する。また、本発明は、好ましくは、非特許文献1及び2に記載されている分子プローブと比較して膵島により特異的に集積させることができるため、膵島の定量用イメージングを行うことができるという効果を奏する。
 また、上述したとおり、糖尿病の発症過程では、耐糖能異常に先行して膵島量が減少することが知られている。このため、膵島イメージング及び又は膵島量の測定を行うことにより、例えば、糖尿病の発症前や初期の状態で、膵島の微小な変化を見つけることができることから、糖尿病の超早期発見・診断が可能になる。このため、本発明のイメージング用分子プローブの前駆体は、糖尿病の予防・早期発見・診断、好ましくは糖尿病の超早期発見・診断に有用である。
 すなわち、本発明は、
[1] 膵島のイメージングに用いられる分子プローブの前駆体であって、下記式(1)~(4)のいずれかで表されるポリペプチド、下記式(1)~(4)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、下記式(1)~(4)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチドを含み、前記分子プローブは、膵島のイメージングに用いられる分子プローブである、膵島イメージング用分子プローブ前駆体、
 *-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (1)  (配列番号1)
  *-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (2)  (配列番号2)
   *-SKQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (3)  (配列番号3)
    *-KQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (4)  (配列番号4)
[上記式(1)~(4)において、「*-」はN末端のα-アミノ基が保護基により保護されているか又は電荷を有さない修飾基により修飾されていることを示し、「K*」はリジン(lysine)の側鎖のアミノ基が保護基により保護されていることを示し、「-NH2」はC末端のカルボキシル基がアミド化されていることを示す。];
[2] C末端のリジンの側鎖のアミノ基を、放射性核種を有する芳香環を含む標識化合物により標識化するための、[1]記載の膵島イメージング用分子プローブ前駆体;
[3] 前記電荷を有さない修飾基が、アセチル基、ベンジル基、ベンジルオキシメチル基、o-ブロモベンジルオキシカルボニル基、t-ブチル基、t-ブチルジメチルシリル基、2-クロロベンジル基、2,6-ジクロロベンジル基、シクロヘキシル基、シクロペンチル基、イソプロピル基、ピバリル基、テトラヒドロピラン-2-イル基、トシル基、トリメチルシリル基及びトリチル基からなる群から選択される、[1]又は[2]に記載の膵島イメージング用分子プローブ前駆体;
[4] 膵島イメージング用分子プローブの製造方法であって、[1]から[3]のいずれかに記載の膵島イメージング用分子プローブ前駆体を標識化及び脱保護することを含む、膵島イメージング用分子プローブの製造方法;
[5] 前記膵島イメージング用分子プローブ前駆体の標識化が、C末端のリジンの側鎖のアミノ基を放射性核種を有する芳香環を含む標識化合物により標識化することを含む、[4]記載の膵島イメージング用分子プローブの製造方法;
[6] 前記芳香環を含む標識化合物が、下記式(I)で表される基を含む、[5]記載の膵島イメージング用分子プローブの製造方法、
Figure JPOXMLDOC01-appb-C000004
[前記式(I)において、Aは芳香族炭化水素基及び芳香族複素環基のいずれかを示し、R111C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、99mTc、111In、123I、124I、125I又は131Iを含む置換基を示し、R2は水素原子又はR1とは異なる1又は複数の置換基を示す。];
[7] 膵島イメージング用分子プローブであって、[4]から[6]のいずれかに記載の製造方法により得られうる、膵島イメージング用分子プローブ;
[8] 膵島イメージング用分子プローブであって、下記式(5)~(8)のいずれかで表されるポリペプチド、下記式(5)~(8)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって膵島に結合可能なポリペプチド、又は、下記式(5)~(8)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって膵島に結合可能なポリペプチドを含む膵島イメージング用分子プローブ、
 Z-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (5)  (配列番号5)
  Z-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (6)  (配列番号6)
   Z-SKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (7)  (配列番号7)
    Z-KQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (8)  (配列番号8)
[上記式(5)~(8)において、「X」は側鎖のアミノ基が放射性核種で標識されたリジン残基を示し、前記放射性核種は11C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、99mTc、123I、124I、125I又は131Iであり、「Z-」はN末端のα-アミノ基が非修飾であるか又は電荷を有さない修飾基により修飾されていることを示し、「-NH2」はC末端のカルボキシル基がアミド化されていることを示す。];
[9] 前記放射性核種で標識されたリジンの側鎖のアミノ基が、下記式(III)で表される芳香環を含む基と結合している、[8]記載の膵島イメージング用分子プローブ、
Figure JPOXMLDOC01-appb-C000005
[前記式(III)において、Aは芳香族炭化水素基及び芳香族複素環基のいずれかを示し、R411C、13N、15O、18F、75Br、76Br、77Br、123I、124I、125I又は131Iを含む置換基を示し、R5は水素原子又はR4とは異なる1又は複数の置換基を示し、R3は結合手、C1-C6アルキレン基及びC1-C6オキシアルキレン基のいずれかを示す。];
[10] 膵島イメージング用分子プローブを調製するためのキットであって、[1]から[3]のいずれかに記載の膵島イメージング用分子プローブ前駆体を含む、キット;
[11] さらに、前記膵島イメージング用分子プローブ前駆体の標識化に使用する化合物であって、ハロゲン又は放射性ハロゲンを有する芳香環を含む化合物を含む、[10]記載のキット;
[12] 前記芳香環を含む化合物が、下記式(IV)で表される基を有する化合物である、[11]記載のキット、
Figure JPOXMLDOC01-appb-C000006
[前記式(IV)において、Aは芳香族炭化水素基及び芳香族複素環基のいずれかを示し、R6はハロゲン又は放射性ハロゲンを含む置換基を示し、R7は水素原子又はR6とは異なる1又は複数の置換基を示す。];
[13] 膵島のイメージングを行うためのキットであって、[7]から[9]のいずれかに記載の膵島イメージング用分子プローブを含むキット;
[14] [1]から[3]のいずれかに記載の膵島イメージング用分子プローブ前駆体を標識化及び脱保護することを含む、膵島のイメージング方法;
[15] [7]から[9]のいずれかに記載の膵島イメージング用分子プローブを投与された被検体から前記膵島イメージング用分子プローブのシグナルを検出することを含む、膵島のイメージング方法;
[16] さらに、前記分子プローブを用いた膵島イメージングの結果から膵島の状態を判定することを含む、[14]又は[15]に記載の膵島のイメージング方法;
[17] [1]から[3]のいずれかに記載の膵島イメージング用分子プローブ前駆体を標識化及び脱保護して膵島イメージング用分子プローブを調製すること、及び、
 前記分子プローブを用いた膵島イメージングの結果から膵島量を算出することを含む、膵島量の測定方法;
[18] [7]から[9]のいずれかに記載の膵島イメージング用分子プローブを投与された被検体から前記膵島イメージング用分子プローブのシグナルを検出すること、及び、検出した膵島イメージング用分子プローブのシグナルから膵島量を算出することを含む膵島量の測定方法;
[19] さらに、算出した膵島量を提示することを含む、[17]又は[18]に記載の膵島量の測定方法;
に関する。
 [膵島イメージング]
 本明細書において「膵島イメージング」とは、膵島の分子イメージング(molecular imaging)であって、in vivoの膵島の空間的及び/又は時間的分布を画像化することを含む。また、本発明において、膵島イメージングは、糖尿病に関する予防・治療・診断の観点から、膵β細胞を標的分子とすることが好ましく、より好ましくは膵島のGLP-1受容体を標的分子とすることである。さらに、本発明において、膵島イメージングは、膵島量の定量性及びヒトに適用するという観点から、非侵襲で三次元のイメージングであることが好ましい。イメージングの方法としては、非侵襲の膵島イメージングが可能な方法であれば特に制限されず、例えば、ポジトロン放射断層撮影法(PET)、シングルフォトン放射線コンピュータ断層撮影法(SPECT)、磁気共鳴映像法(MRI)、X線・可視光・蛍光・近赤外光・超音波などを利用する方法が挙げられる。これらの中でも、本発明の分子プローブ前駆体を利用し、膵島量の定量を行う観点からはPET及びSPECTが好ましい。
 [本発明の分子プローブ前駆体]
 本発明の分子プローブ前駆体は、上記式(1)~(4)のいずれかで表されるポリペプチド、上記式(1)~(4)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、上記式(1)~(4)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチドを含み、前記分子プローブは膵島のイメージングに用いられる分子プローブである膵島イメージング用分子プローブ前駆体であって、好ましくは上記式(1)~(4)のいずれかで表されるポリペプチド、上記式(1)~(4)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、上記式(1)~(4)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって標識化及び脱保護後に膵島に結合可能なポリペプチドからなり、前記分子プローブは膵島のイメージングに用いられる分子プローブである膵島イメージング用分子プローブ前駆体である。
 本発明の分子プローブ前駆体は、膵島イメージングに用いるポリペプチドであって、上記式(1)~(4)のいずれかで表されるポリペプチドを含む。上記式(1)~(4)のポリペプチドのアミノ酸配列は、それぞれ、配列表の配列番号1~4に記載のアミノ酸配列である。上記式(1)のポリペプチドの第4番目及び第19番目のリジンの側鎖のアミノ基、上記式(2)のポリペプチドの第3番目及び第18番目のリジンの側鎖のアミノ基、上記式(3)のポリペプチドの第2番目及び第17番目のリジンの側鎖のアミノ基、上記式(4)のポリペプチドの第1番目及び第16番目のリジンの側鎖のアミノ基には、アミノ基を保護するための保護基が結合している。また、上記式(1)~(4)のポリペプチドのN末端のα-アミノ基には、該アミノ基を保護するために保護基が結合しているか、又は、電荷を有さない修飾基により修飾されている。上記式(1)~(4)のポリペプチドのC末端のカルボキシル基は、膵β細胞との結合性の向上の観点から、アミノ基によりアミド化されている。
 上記式(1)~(4)のポリペプチドを含む本発明の分子プローブ前駆体を後述するアミノ基を標識化する標識システムで標識化すると、保護基により保護されていないC末端のリジンの側鎖のアミノ基が標識化されうる。すなわち、上記式(1)のポリペプチドの第32番目のリジンの側鎖のアミノ基、上記式(2)のポリペプチドの第31番目のリジンの側鎖のアミノ基、上記式(3)のポリペプチドの第30番目のリジンの側鎖のアミノ基、及び、上記式(4)のポリペプチドの第29番目のリジンの側鎖のアミノ基が標識化される。
 ここで、上記式(1)(配列表の配列番号1)における第1番目から第31番目のアミノ酸配列は、リジンの側鎖のアミノ基に結合する保護基及びN末端のα-アミノ基に結合する保護基又は修飾基を除けば、エキセンジン(9-39)のアミノ酸配列と一致する。エキセンジン(9-39)は、膵β細胞上に発現するGLP-1R(グルカゴン様ペプチド-1の受容体)に結合することが知られている。本発明の分子プローブ前駆体を標識化及び脱保護して得られる分子プローブ(以下、「本発明の分子プローブ」ともいう。)も、膵島、好ましくは膵β細胞に結合可能である。
 本発明の分子プローブ前駆体は、その他の実施形態として、膵島イメージングに用いるポリペプチドであって、上記式(1)~(4)のポリペプチドから1~数個のアミノ酸配列が欠失、付加又は置換したポリペプチドであって、標識化及び脱保護後に膵島に結合可能なポリペプチドを含み得る。ここで、前記1~数個とは、1~10、1~9、1~8、1~7、1~6、1~5、1~4、1~3、1~2、及び1個を含みうる。この実施形態の本発明の分子プローブ前駆体においても、上記式(1)~(4)のポリペプチドから1~数個のアミノ酸配列が欠失、付加又は置換したポリペプチドである場合は、保護基によるN末端のα-アミノ基の保護又は修飾基によるN末端のα-アミノ基の修飾、及び、C末端のカルボキシル基のアミド化を含むことが好ましく、標識化されるリジンを1つ含み、その他のリジンを含む場合はその他のリジンの側鎖のアミノ基は保護基により保護されていることが好ましい。上記式(1)~(4)のポリペプチドから1~数個のアミノ酸配列が欠失、付加又は置換したポリペプチドは、これらを標識化及び脱保護した後、上記式(1)~(4)のポリペプチドを標識化及び脱保護して得られるポリペプチドと同様の作用効果を有することが好ましく、より好ましくは上記式(1)のポリペプチドを標識化及び脱保護して得られるポリペプチドと同様の作用効果を有することである。
 本発明の分子プローブ前駆体は、さらにその他の実施形態として、膵島イメージングに用いるポリペプチドであって、上記式(1)~(4)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、標識化及び脱保護後に膵島に結合可能なポリペプチドを含み得る。ここで、前記相同性とは、当業者が通常用いるアルゴリズム、例えば、BLAST又はFASTAなどで算出されるものでよく、あるいは、比較する2つのポリペプチドの同一アミノ酸残基の数を一方のポリペプチド全長で除して得られる数に基づいてもよい。前記相同性は、85%以上、90%以上、95%以上を含みうる。この実施形態の本発明の分子プローブ前駆体においても、上記式(1)~(4)のポリペプチドと80%以上の相同性を有するポリペプチドである場合は、保護基によるN末端のα-アミノ基の保護又は修飾基によるN末端のα-アミノ基の修飾、及び、C末端のカルボキシル基のアミド化を含むことが好ましく、標識化されるリジンを1つ含み、その他のリジンを含む場合はその他のリジンの側鎖のアミノ基は保護基により保護されていることが好ましい。上記式(1)~(4)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドは、これらを標識化及び脱保護した後、上記式(1)~(4)のポリペプチドを標識化及び脱保護して得られるポリペプチドと同様の作用効果を有することが好ましく、より好ましくは上記式(1)のポリペプチドを標識化及び脱保護して得られるポリペプチドと同様の作用効果を有することである。
 本明細書において「膵島に結合可能」とは、膵島量の定量性及び検査・診断の用途の観点から、本発明の分子プローブが膵β細胞に結合可能であることが好ましく、少なくとも膵臓において膵β細胞に特異的であることがより好ましく、少なくともヒトに対する非侵襲的なイメージングにおけるシグナル検出において他の器官・組織とシグナルが重ならない程度に特異的であることがさらに好ましい。
 なお、本発明の分子プローブ前駆体は、例えば、Fmoc法等の定法に従ったペプチド合成により製造することができ、そのペプチド合成方法は特に制限されない。
 本発明の分子プローブ前駆体は、上記のとおり、膵島イメージングに用いられるものであって、ヒトの検査・診断の用途の観点から非侵襲性の膵島イメージングに用いられることが好ましく、同様の観点から膵島量を定量するための膵島イメージングに用いられることが好ましい。さらに、本発明の分子プローブ前駆体は、糖尿病の予防、治療又は診断のための膵島イメージングに用いられることが好ましい。これらの膵島イメージングは、例えば、PET又はSPECTにより行われてもよい。
 [保護基]
 本発明の分子プローブ前駆体における保護基は、本発明の分子プローブの特定のアミノ基、すなわち、本発明の分子プローブ前駆体においてC末端側に位置するリジン側鎖のアミノ基を標識化する間に、その他のアミノ基を保護するものであって、そのような機能を果たせる公知の保護基を使用できる。前記保護基としては、特に制限されず、例えば、9-フルオレニルメチルオキシカルボニル基(Fmoc)、tert-ブトキシカルボニル基(Boc)、ベンジルオキシカルボニル基(Cbz)、2,2,2-トリクロロエトキシカルボニル基(Troc)、アリルオキシカルボニル基(Alloc)、アミノ基、3から20個の炭素のアルキル基、9-フルオレンアセチル基、1-フルオレンカルボン酸基、9-フルオレンカルボン酸基、9-フルオレノン-1-カルボン酸基、ベンジルオキシカルボニル基、キサンチル基(Xan)、トリチル基(Trt)、4-メチルトリチル基(Mtt)、4-メトキシトリチル基(Mmt)、4-メトキシ2,3,6-トリメチル-ベンゼンスルホニル基(Mtr)、メシチレン-2-スルホニル基(Mts)、4,4-ジメトキシベンゾヒドリル基(Mbh)、トシル基(Tos)、2,2,5,7,8-ペンタメチルクロマン-6-スルホニル基(Pmc)、4-メチルベンジル基(MeBzl)、4-メトキシベンジル基(MeOBzl)、ベンジルオキシ基(BzlO)、ベンジル基(Bzl)、ベンゾイル基(Bz)、3-ニトロ-2-ピリジンスルフェニル基(Npys)、1-(4,4-ジメチル-2,6-ジアキソシクロヘキシリデン)エチル基(Dde)、2,6-ジクロロベンジル基(2,6-DiCl-Bzl)、2-クロロベンジルオキシカルボニル基(2-Cl-Z)、2-ブロモベンジルオキシカルボニル基(2-Br-Z)、ベンジルオキシメチル基(Bom)、シクロヘキシルオキシ基(cHxO)、t-ブトキシメチル基(Bum)、t-ブトキシ基(tBuO)、t-ブチル基(tBu)、アセチル基(Ac)及びトリフルオロアセチル基(TFA)などが挙げられ、取扱いの点から、Fmoc及びBocが好ましい。これらの保護基の脱保護の方法は、それぞれ公知であって、当業者であれば適宜脱保護できる。
 [修飾基]
 本発明の分子プローブ前駆体におけるN末端のα-アミノ基は、N末端のα-アミノ基の正電荷を打ち消して、本発明の分子プローブ前駆体を標識化及び脱保護して得られる分子プローブの腎臓への集積を抑制する点から、電荷を有さない修飾基で修飾されていてもよい。電荷を有さない修飾基としては、例えば、上記保護基として記載したものが使用できる。電荷を有さないその他の修飾基としては、例えば、o-ブロモベンジルオキシカルボニル基、t-ブチルジメチルシリル基、2-クロロベンジル(Cl-z)基、シクロヘキシル基、シクロペンチル基、イソプロピル基、ピバリル基、テトラヒドロピラン-2-イル基、トリメチルシリル基等が使用できる。中でも、修飾基としては、アセチル基、ベンジル基、ベンジルオキシメチル基、o-ブロモベンジルオキシカルボニル基、t-ブチル基、t-ブチルジメチルシリル基、2-クロロベンジル基、2,6-ジクロロベンジル基、シクロヘキシル基、シクロペンチル基、イソプロピル基、ピバリル基、テトラヒドロピラン-2-イル基、トシル基、トリメチルシリル基及びトリチル基が好ましい。また、N末端のα-アミノ基を修飾し、その正電荷を打ち消す観点からは、リジンの側鎖のアミノ基に使用した保護基と異なる保護基が好ましく、より好ましくはアセチル基である。
 [標識化合物]
 本発明の分子プローブ前駆体は、C末端のリジンの側鎖のアミノ基を放射性核種を有する芳香環を含む標識化合物により標識化するための分子プローブ前駆体であることが好ましく、上記式(1)~(4)のポリペプチドからなる本発明の分子プローブ前駆体においてC末端側に位置するリジン側鎖のアミノ基を該標識化合物により標識化するための分子プローブ前駆体であることが好ましい。
 放射性核種としては、例えば、11C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、82Rb、99mTc、111In、123I、124I、125I、131Iが挙げられる。PETを行う観点からは、放射性核種は、11C、13N、15O、18F、62Cu、64Cu、68Ga、75Br、76Br、82Rb、124Iなどのポジトロン放出核種が好ましい。SPECTを行う観点からは、放射性核種は、67Ga、99mTc、77Br、111In、123I、125Iなどのγ線放出核種が好ましい。これらの中でも、18F、75Br、76Br、77Br、123I、124Iなどの放射性ハロゲン核種がより好ましく、特に好ましくは18F、123I、124Iである。
 本明細書において「放射性核種を有する芳香環を含む化合物」とは、放射性核種と、芳香族炭化水素基又は芳香族複素環基とを有する化合物のことをいい、好ましくは下記式(I)で表される基を有する化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記式(I)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示す。芳香族炭化水素基としては、炭素数6~18の芳香族炭化水素基が好ましく、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,4-キシリル基、p-クメニル基、メシチル基、1-ナフチル基、2-ナフチル基、1-アンスリル基、2-アンスリル基、9-アンスリル基、1-フェナンスリル基、9-フェナンスリル基、1-アセナフチル基、2-アズレニル基、1-ピレニル基、2-トリフェニレニル基、o-ビフェニリル基、m-ビフェニリル基、p-ビフェニリル基、ターフェニル基等が挙げられる。芳香族複素環基としては、窒素原子、酸素原子又は硫黄原子を1又は2個有し、かつ、5~10員の複素環基が好ましく、例えば、トリアゾリル基、3-オキサジアゾリル基、2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、1-ピローリル基、2-ピローリル基、3-ピローリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピラジル基、2-オキサゾリル基、3-イソオキサゾリル基、2-チアゾリル基、3-イソチアゾリル基、2-イミダゾリル基、3-ピラゾリル基、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、2-キノキサリニル基、2-ベンゾフリル基、2-ベンゾチエニル基、N-インドリル基、N-カルバゾリル基等が挙げられる。これらの中でも、Aは、フェニル基、トリアゾリル基、ピリジル基が好ましい。
 上記式(I)において、R1は、11C、13N、15O、64Cu、67Ga、68Ga、99mTc、又は放射性ハロゲンを含む置換基を示し、例えば、放射性ハロゲン原子、放射性ハロゲン化C1-C3アルキル基、放射性ハロゲン化C1-C3アルコキシ基等が挙げられる。放射性ハロゲンとしては、18F、75Br、76Br、77Br、123I、124I、125I、131I等が挙げられる。本明細書において「C1-C3アルキル基」とは、1~3個の炭素原子を有するアルキル基のことをいい、メチル基、エチル基、プロピル基等が挙げられる。本明細書において「放射性ハロゲン化C1-C3アルキル基」とは、1~3個の炭素原子を有し、かつ、水素原子が放射性ハロゲンによって置換されたアルキル基のことをいう。本明細書において「C1-C3アルコキシ基」とは、1~3個の炭素原子を有するアルコキシ基のことをいい、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。本明細書において「放射性ハロゲン化C1-C3アルコキシ基」とは、1~3個の炭素原子を有し、かつ、水素原子が放射性ハロゲンによって置換されたアルコキシ基のことをいう。R1は、定量性の観点からは、オルト位、メタ位、パラ位のいずれかの置換基であることが好ましく、より好ましくはメタ位又はパラ位のいずれかの置換基である。
 上記式(I)において、R2は、水素原子、又は、R1とは異なる1又は複数の置換基を示す。R2は、水素原子であっても、置換基であってもよいが、水素原子であること、つまり、上記式(I)においてAはR1以外の置換基で置換されていないことが好ましい。R2が複数の置換基である場合、それらは、同一であっても良いし、異なっていてもよい。置換基としては、水酸基、電子求引性基、電子供与性基、C1-C6アルキル基、C2-C6アルケニル基、C2-C6アルキニル基等が挙げられる。電子求引性基としては、シアノ基、ニトロ基、ハロゲン原子、カルボニル基、スルホニル基、アセチル基、フェニル基等が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。本明細書において「C1-C6アルキル基」とは、1~6個の炭素原子を有するアルキル基のことをいい、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ヘキシル基が挙げられる。本明細書において「C2-C6アルケニル基」とは、2~6個の炭素原子を有するアルケニル基のことをいい、例えば、ビニル基、1-プロペニル基、2-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基が挙げられる。本明細書において「C2-C6アルキニル基」とは、2~6個の炭素原子を有するアルキニル基のことをいい、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基が挙げられる。これらの中でも、置換基としては、水酸基及び電子求引性基が好ましい。
 放射性核種を有する芳香環を含む標識化合物としては、例えば、[18F]fluorobenzoyl基([18F]FB)、[123I]iodobenzoyl基([123I]IB)、[124I]iodobenzoyl基([124I]IB)、[125I]iodobenzoyl基([125I]IB)、[131I]iodobenzoyl基([131I]IB)、[123I]iodo p-hydroxyphenylpropionyl基、[124I]iodo p-hydroxyphenylpropionyl基、[125I]iodo p-hydroxyphenylpropionyl基又は[131I]iodo p-hydroxyphenylpropionyl基を有する化合物が好ましく、より好ましくは[18F]N-succinimidyl 4-fluorobenzoate([18F]SFB)、[123I]N-succinimidyl 3-iodobenzoate([123I]SIB)、[124I]N-succinimidyl 3-iodobenzoate([124I]SIB)、[123I]iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide ester、[124I]iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide esterである。
 本発明の分子プローブ前駆体は、64Cu、67Ga、68Ga、99mTc、111In等の金属放射性同位元素(金属核種)で標識化する観点からは、標識化されるC末端のリジンの側鎖のアミノ基に、例えば、上記金属放射性同位元素(金属核種)と結合可能なキレート部位や、ペプチドとの結合を担うリンカー部が結合していてもよい。キレート化合物としては、例えば、ジエチレントリアミン五酢酸(DTPA)、6-ヒドラジノピリジン-3-カルボン酸(HYNIC)、テトラアザシクロドデカン四酢酸(DOTA)、dithisosemicarbazone(DTS)、diaminedithiol(DADT)、mercaptoacetylglycylglycylglycine(MAG3)、monoamidemonoaminedithiol(MAMA)、diamidedithiol(DADS)、propylene diamine dioxime(PnAO)等が挙げられる。
 本発明の分子プローブ前駆体は、標識化及び脱保護して得られる分子プローブと膵島との親和性、好ましくは該分子プローブと膵β細胞との親和性、より好ましくは分子プローブと膵島のGLP-1受容体との親和性の点からは、ジエチレントリアミン五酢酸(DTPA)がC末端側に位置するリジン側鎖のアミノ基に結合していないことが好ましく、より好ましくは金属放射性同位元素(金属核種)と結合可能なキレート部位が結合していないことである。上記キレート部位を形成しうるその他のキレート化合物としては、例えば、6-ヒドラジノピリジン-3-カルボン酸(HYNIC)、テトラアザシクロドデカン四酢酸(DOTA)、dithisosemicarbazone(DTS)、diaminedithiol(DADT)、mercaptoacetylglycylglycylglycine(MAG3)、monoamidemonoaminedithiol(MAMA)、diamidedithiol(DADS)、propylene diamine dioxime(PnAO)等が挙げられる。
 [本発明の分子プローブの調製方法]
 本発明の分子プローブは、本発明の分子プローブ前駆体を、イメージング方法に応じた標識化を行い、その後、保護基の脱保護をすることで調製することができる。標識化に用いられる放射性核種としては、例えば、11C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、99mTc、123I、124I、125I、131I等が挙げられる。標識化の手順としては、例えば、PETを行う場合には11C、15O、18F、124Iなどのポジトロン放出核種を、SPECTを行う場合には99mTc、123I、125Iなどのγ線放出核種を、公知の方法により標識化することが挙げられる。18Fの場合は、例えば、[18F]SFB([18F]N-succinimidyl 4-fluorobenzoate)などを用いる方法により標識化することができる。123I及び124Iの場合は、例えば、[123/124I]SIB([123/124I]N-succinimidyl 3-iodobenzoate)及び[123/124I]iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide esterなどを用いる方法により標識化することができる。125I及び131Iの場合は、例えば、[125/131I]SIB([125/131I]N-succinimidyl 3-iodobenzoate)及び[125/131I]iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide esterなどを用いる方法により標識化することができる。また、金属核種を用いて標識化する場合は、例えば、上記キレート化合物を用いて標識化することが挙げられる。これらの方法で上記式(1)~(4)のポリペプチドを標識すると、上記式(1)のポリペプチドの第32番目のリジンの側鎖のアミノ基、上記式(2)のポリペプチドの第31番目のリジンの側鎖のアミノ基、上記式(3)のポリペプチドの第30番目のリジンの側鎖のアミノ基及び上記式(4)のポリペプチドの第29番目のリジンの側鎖のアミノ基が標識される。但し、本発明における標識化の方法はこれらの方法に限定されない。標識後の脱保護は、保護基の種類に応じた公知の方法で行うことができる。したがって、本発明は、その他の態様として、本発明の分子プローブの製造方法であって、本発明の分子プローブ前駆体を標識化及び脱保護することを含む製造方法に関する。
 本発明の分子プローブの製造方法は、C末端のリジンの側鎖のアミノ基を、放射性核種を有する芳香環を含む標識化合物により標識化することを含むことが好ましい。前記芳香環を含む標識化合物は、上記式(I)で表される基を含むことが好ましい。
 本発明の分子プローブの製造方法において、放射性核種を有する芳香環を含む標識化合物は、上記式(I)で表される基が、エステル結合を介してスクシンイミドと結合したスクシンイミジルエステル化合物であることが好ましく、より好ましくは下記式(II)で表されるスクシンイミジルエステル化合物である。
Figure JPOXMLDOC01-appb-C000008
 上記式(II)において、A、R1及びR2は上記式(I)と同様である。上記式(II)においてR3は、結合手、C1-C6アルキレン基又はC1-C6オキシアルキレン基であることが好ましい。本明細書において「C1-C6アルキレン基」とは、1~6個の炭素原子を有するアルキレン基のことをいい、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチル基、ヘキシル基等の直鎖状または分岐状のアルキレン基が挙げられる。本明細書において「C1-C6オキシアルキレン基」とは、1~6個の炭素原子を有するオキシアルキレン基のことをいい、例えば、オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチル基等が挙げられる。R3としては、分子プローブと膵島との親和性、好ましくは分子プローブと膵β細胞との親和性、より好ましくは分子プローブと膵島のGLP-1受容体との親和性の点から、結合手、メチレン基、エチレン基が好ましく、より好ましくは結合手である。
 また、放射性核種を有する芳香環を含む標識化合物は、[18F]fluorobenzoyl基([18F]FB)、[123I]iodobenzoyl基([123I]IB)、[124I]iodobenzoyl基([124I]IB)、[125I]iodobenzoyl基([125I]IB)、[131I]iodobenzoyl基([131I]IB)、[123I]iodo p-hydroxyphenylpropionyl基、[124I]iodo p-hydroxyphenylpropionyl基、[125I]iodo p-hydroxyphenylpropionyl基又は[131I]iodo p-hydroxyphenylpropionyl基を有する化合物が好ましく、より好ましくは[18F]N-succinimidyl 4-fluorobenzoate、[123I]N-succinimidyl 3-iodobenzoate、[124I]N-succinimidyl 3-iodobenzoate、[123I]iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide ester、[124I]iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide esterである。
 本発明の分子プローブの製造方法において、上記式(I)で表される基を有する標識化合物及び/又は上記放射性核種を有する芳香環を含む標識化合物の合成は、自動合成装置を用いて行ってもよく、また、上記式(I)で表される基を有する標識化合物及び/又は上記放射性核種を有する芳香環を含む標識化合物の合成、及び、該標識化合物を用いた本発明の分子プローブ前駆体の標識化及び脱保護を、1つの自動合成装置によって行ってもよい。
 [本発明の分子プローブ]
 本発明は、さらにその他の態様として、本発明の分子プローブの製造方法により得られうる膵島イメージング用分子プローブに関する。本発明のイメージング用分子プローブによれば、膵島の三次元イメージング、好ましくは非侵襲的な膵島の三次元イメージングを行うことができる。本発明の分子プローブは、例えば、62Cu、64Cu、67Ga、68Ga、82Rb、99mTc等の金属核種や、11C、13N、15O、18F、75Br、76Br、77Br、123I、124I、125I、131I等の核種が結合していてもよく、好ましくは11C、13N、15O、18F、75Br、76Br、77Br、123I、124I等の放射性核種が結合していることであり、より好ましくは18F、123I、124I等の放射性核種が結合していることである。
 本発明の分子プローブは、腎臓への集積を抑制する点から、N末端のα-アミノ基が電荷を有さない修飾基によって修飾されていてもよい、電荷を有さない修飾基としては、上記のものが挙げられ、N末端のα-アミノ基を修飾し、その正電荷を打ち消す観点からは、アセチル基が好ましい。
 本発明の分子プローブは、分子プローブと膵島との親和性、好ましくは分子プローブと膵β細胞との親和性、より好ましくは分子プローブと膵島のGLP-1受容体との親和性の点から、DTPAが、C末端側に位置するリジン側鎖のアミノ基、すなわち、上記式(1)のポリペプチドの第32番目のリジンの側鎖のアミノ基、上記式(2)のポリペプチドの第31番目のリジンの側鎖のアミノ基、上記式(3)のポリペプチドの第30番目のリジンの側鎖のアミノ基又は上記式(4)のポリペプチドの第29番目のリジンの側鎖のアミノ基に結合していないことが好ましく、より好ましくは金属放射性同位元素(金属核種)と結合可能なキレート部位が上記リジンの側鎖のアミノ基に結合していないことである。
 本発明は、さらにその他の態様として、膵島イメージング用分子プローブであって、下記式(5)~(8)のいずれかで表されるポリペプチド、下記式(5)~(8)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって膵島に結合可能なポリペプチド、又は、下記式(5)~(8)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって膵島に結合可能なポリペプチドを含む膵島イメージング用分子プローブに関し、好ましくは下記式(5)~(8)のいずれかで表されるポリペプチド、下記式(5)~(8)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって膵島に結合可能なポリペプチド、又は、下記式(5)~(8)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって膵島に結合可能なポリペプチドからなる膵島イメージング用分子プローブに関する。
 Z-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (5)  (配列番号5)
  Z-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (6)  (配列番号6)
   Z-SKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (7)  (配列番号7)
    Z-KQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (8)  (配列番号8)
[上記式(5)~(8)において、「X」は側鎖のアミノ基が放射性核種で標識されたリジン残基を示し、前記放射性核種は11C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、99mTc、123I、124I、125I又は131Iであり、「Z-」はN末端のα-アミノ基が非修飾であるか、又は、電荷を有さない修飾基により修飾されていることを示し、「-NH2」はC末端のカルボキシル基がアミド化されていることを示す。]
 放射性核種は、11C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、99mTc、123I、124I、125I又は131Iである。PETを行う観点からは、11C、13N、15O、18F、64Cu、68Ga、75/76Br、82Rb、124Iなどのポジトロンを放出する核種が好ましい。SPECTを行う観点からは、67Ga、99mTc、77Br、123Iなどのγ線などのシングルフォトンを放出する核種が好ましい。
 本発明の分子プローブのN末端のα-アミノ基は、非修飾、すなわち、アミノ基のままであるか、又は、電荷を有さない修飾基により修飾されている。膵島への集積を増加させ、かつ、膵島の周囲臓器への集積を抑制する点からは、N末端のα-アミノ基が非修飾、すなわち、アミノ基であることが好ましく、腎臓への集積を抑制する点からは、電荷を有さない修飾基で修飾されていることが好ましい。電荷を有さない修飾基は上記のとおりである。
 本発明の分子プローブは、膵島イメージングに用いるポリペプチドであって、上記式(5)~(8)のいずれかで表されるポリペプチドを含む。上記式(5)~(8)のポリペプチドのアミノ酸配列は、それぞれ、配列表の配列番号5~8に記載のアミノ酸配列である。また、上記式(5)(配列表の配列番号5)における第1番目から第31番目のアミノ酸配列は、N末端のα-アミノ基が修飾基と結合している場合を除けば、エキセンジン(9-39)のアミノ酸配列と一致する。
 本発明の分子プローブにおいて、前記放射性核種で標識されたリジンの側鎖のアミノ基が、下記式(III)で表される芳香環を含む基と結合していることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 上記式(III)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示し、芳香族炭化水素基及び芳香族複素環基としては上記のとおりである。R5は、水素原子又はR4とは異なる1又は複数の置換基を示し、R2と同様のものが挙げられる。
 上記式(III)において、R4は、11C、13N、15O、18F、75Br、76Br、77Br、123I、124I、125I又は131Iを含む置換基を示す。R4としては、11C原子、13N原子、15O原子、18F原子、75Br原子、76Br原子、77Br原子、123I原子、124I原子、125I原子、131I原子、[18F]フッ素で置換されたC1-C3アルキル基、[18F]フッ素で置換されたC1-C3アルコキシ基、[123I]ヨウ素で置換されたC1-C3アルキル基、[124I]ヨウ素で置換されたC1-C3アルキル基、[125I]ヨウ素で置換されたC1-C3アルキル基、[131I]ヨウ素で置換されたC1-C3アルキル基、[123I]ヨウ素で置換されたC1-C3アルコキシ基、[124I]ヨウ素で置換されたC1-C3アルコキシ基、[125I]ヨウ素で置換されたC1-C3アルコキシ基、[131I]ヨウ素で置換されたC1-C3アルコキシ基等が挙げられる。C1-C3アルキル基としては、メチル基、エチル基、プロピル基等が挙げられる。C1-C3アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。R4は、定量性の観点からは、オルト位、メタ位、パラ位のいずれかの置換基であることが好ましく、より好ましくはメタ位又はパラ位のいずれかの置換基である。
 上記式(III)において、R3は、上記式(II)と同様に、結合手、C1-C6アルキレン基及びC1-C6オキシアルキレン基のいずれかであることが好ましく、膵島、好ましくは膵β細胞、より好ましくは膵島のGLP-1受容体との親和性の点から、結合手、メチレン基、エチレン基がより好ましく、さらに好ましくは結合手である。
 下記式(III)で表される芳香環を含む基は、膵島、好ましくは膵β細胞、より好ましくは膵島のGLP-1受容体との親和性の点から、炭素数が7以上20以下であることが好ましく、より好ましくは7以上13以下、さらに好ましくは7以上9以下である。
 本発明の分子プローブにおいて、放射性核種で標識されたリジンの側鎖のアミノ基に結合する放射性核種を有する基は、炭素数が13以下であることが好ましく、より好ましくは10以下であり、さらに好ましくは9以下である。また、その下限は、例えば、1以上であり、7以上が好ましい。したがって、放射性核種で標識されたリジンの側鎖のアミノ基に結合する放射性核種を有する基は、炭素数が1以上13以下であることが好ましく、より好ましくは7以上10以下であり、さらに好ましくは7以上9以下である。
 [イメージング方法]
 本発明は、さらにその他の態様として、本発明の分子プローブ前駆体を標識化し、その後、保護基を脱保護することを含む膵島のイメージング方法に関する。本発明のイメージング方法は、本発明の分子プローブを用いて膵島をイメージングすることを含んでもよい。本発明のイメージング方法は、検査・診断の用途の観点から、膵β細胞のイメージング方法であることが好ましい。前駆体の標識化及び脱保護については上記のとおりであって、膵島イメージングについても上記のとおりである。また、本発明のイメージング方法は、さらに、前記分子プローブを用いた膵島イメージングの結果から膵島の状態を判定することを含んでもよい。分子プローブを用いた膵島イメージングの結果から膵島の状態を判定することは、例えば、膵島イメージングの画像を解析することにより膵島の有無を判断すること、膵島量の増減を判断すること等を含む。
 本発明は、さらにその他の態様として、予め被検体に投与された本発明のイメージング用分子プローブのシグナル及び又は予め膵島に結合させた本発明のイメージング用分子プローブのシグナルを検出することを含む、膵島のイメージング方法に関する。本発明のイメージング方法において、イメージングするために十分な量の本発明の分子プローブを投与された被検体から本発明の分子プローブのシグナルを検出することが好ましく、イメージングするために十分な量が予め膵島に結合させた本発明の分子プローブのシグナルを検出することがより好ましい。
 本発明の分子プローブのシグナルの検出は、例えば、PETを用いた測定及び/又はSPECTを用いた測定等により行うことができる。本発明のイメージング方法において、検出されたシグナルを再構成処理して画像データに変換し表示する工程を含んでいてもよい。PETを用いた測定及びSPECTを用いた測定には、例えば、イメージの撮影、膵島量の測定等を含む。
 SPECTを用いた測定は、例えば、本発明の分子プローブを投与された被検体(以下、「対象」ともいう)から放出されるγ線をガンマカメラにより測定することを含む。ガンマカメラによる測定は、例えば、本発明の分子プローブの標識に使用した上記放射性核種から放出される放射線(γ線)を一定時間単位で測定することを含み、好ましくは放射線が放出される方向及び放射線数量を一定時間単位で測定することを含む。本発明のイメージング方法は、さらに、放射線の測定により得られた測定された本発明の分子プローブの分布を断面画像として表すこと、及び、得られた断面画像を再構成することを含んでいてもよい。対象としては、ヒト及び又はヒト以外の哺乳類が挙げられる。
 PETを用いた測定は、例えば、本発明の分子プローブを投与された被検体から、ポジトロンと電子との結合により生成する1対の消滅放射線をPET用検出器で同時計数することを含み、さらに、計測した結果に基づきポジトロンを放出する放射性核種の位置の三次元分布を描写することを含んでいてもよい。
 本発明のイメージング方法において、SPECTの測定又はPETの測定とあわせて、X線CTやMRIの測定を行ってもよい。これにより、例えば、SPECTにより得られた画像又はPETにより得られた画像(機能画像)と、CTにより得られた画像又はMRIにより得られた画像(形態画像)とを融合させた融合画像を得ることができる。
 本発明のイメージング方法は、本発明の分子プローブを対象に投与すること、及び、分子プローブの投与から一定時間経過後、PET又はSPECT等の手段による測定を行うことを含むことができ、画像化のために所望のコントラストを得るために十分な量の本発明の分子プローブを投与することを含んでいてもよい。また、本発明のイメージング方法は、上述のように、本発明のプローブを被検体に投与し、一定時間経過後に行うことができるから、本発明のイメージング方法は、本発明の分子プローブを対象に投与することを含んでいなくてもよい。PET等による測定には、例えば、イメージの撮影、膵島量の測定等を含む。投与対象としては、ヒト及び又はヒト以外の哺乳類が挙げられる。対象への投与は、局所的であってもよく、全身的であってもよい。投与経路は、対象の状態等に応じて適宜決定できるが、例えば、静脈、動脈、皮内、腹腔内への注射又は輸液等が挙げられる。本発明の分子プローブは、担体とともに投与することが好ましい。担体としては、例えば、水性溶媒及び非水性溶媒が使用できる。水性溶媒としては、例えば、リン酸カリウム緩衝液、生理食塩水、リンゲル液、蒸留水等が挙げられる。非水性溶媒としては、例えば、ポリエチレングリコール、植物性油脂、エタノール、グリセリン、ジメチルスルホキサイド、プロピレングリコール等が挙げられる。膵島のイメージング又は膵島量の測定のための本発明の分子プローブの用量は、例えば、1μg以下とすることができる。投与から測定までの時間は、例えば、分子プローブの膵島への結合時間、分子プローブの種類及び分子プローブの分解時間等に応じて適宜決定できる。
 [膵島量の測定方法]
 本発明は、さらにその他の態様として、膵島量の測定方法であって、本発明の分子プローブ前駆体を標識化及び脱保護して本発明の分子プローブを調製すること、及び、分子プローブを用いた膵島イメージングの結果から膵島量を算出することを含む膵島量の測定方法に関する。本発明の膵島量の測定方法は、調製した本発明の分子プローブを用いて膵島イメージングを行うことを含んでもよい。標識化及び脱保護については上記のとおりであって、膵島イメージングについても上記のとおりである。分子プローブを用いた膵島イメージングの結果からの膵島量の算出は、例えば、膵島イメージングの画像を解析すること等により行うことができる。また、イメージングの結果からイメージングの対象物の定量を行うことは、当業者であれば、例えば、検量線や適当なプログラムを用いて容易に行うことができる。本発明の膵島量の測定方法は、検査・診断の用途の観点から、膵β細胞量の測定方法であることが好ましい。
 本発明は、さらにその他の態様として、膵島量の測定方法であって、予め被検体に投与された本発明のイメージング用分子プローブのシグナル及び又は予め膵島に結合させた本発明のイメージング用分子プローブのシグナルを検出すること、及び、検出したイメージング用分子プローブのシグナルから膵島量を算出することを含む膵島量の測定方法に関する。
 本発明の膵島量の測定方法は、さらに、算出した膵島量を提示することを含んでいてもよい。算出した膵島量を提示することは、例えば、算出した膵島量を保存又は外部に出力することを含む。外部に出力することは、例えば、モニタに表示すること、及び、印字すること等を含む。
 [糖尿病の予防、治療、診断方法]
 本発明は、さらにその他の態様として、糖尿病の予防又は治療又は診断方法に関する。本発明の糖尿病の予防又は治療又は診断方法は、具体的には、本発明のイメージング用分子プローブ前駆体を標識化及び脱保護して膵島イメージング用分子プローブを調製すること、前記膵島イメージング用分子プローブを用いて膵島のイメージングを行うこと、及び、得られた膵島の画像及び又は膵島量に基づき膵島の状態を判定して糖尿病の診断することを含み、前記診断に基づき糖尿病の予防又は治療することを含みうる。上述したとおり、糖尿病の発症過程では、膵島量(とりわけ、膵β細胞量)が耐糖能異常に先行して減少するが、機能異常が検出・自覚される段階に至ってからでは、糖尿病はすでに治療が難しい段階となっている。しかし、本発明の分子プローブ前駆体及び又は本発明の分子プローブを用いたイメージング方法及び又は膵島量の測定方法によれば、膵島量及び又は膵β細胞量の減少を早期に発見することができ、ひいては、新たな糖尿病の予防・治療・診断法が構築できる。糖尿病の予防・治療・診断の対象としては、ヒト及び又はヒト以外の哺乳類が挙げられる。例えば、本発明の糖尿病の予防方法は、定期的に膵島量の測定を行い、膵島量の減少傾向の有無をチェックすることが含むことができる。また、本発明の糖尿病の治療方法は、対象に対して行われる投薬や食事療法を含む治療効果を膵島量の変化に着目して評価することを含むことができる。そして、本発明の糖尿病の診断方法は、膵島のイメージング又は膵島量の測定を行い、基準となる大きさ又は量との比較、あるいは、糖尿病の進行度を判断することを含むことができる。
 本発明は、好ましいその他の態様として、糖尿病の超早期診断方法に関する。本発明の糖尿病の超早期診断方法は、例えば、人間ドック、健康診断において本発明の方法により膵島のイメージング及び又は膵島量の測定を行うこと、及び、得られた膵島の画像及び又は膵島量に基づき膵島の状態を判定することを含むことができる。また、本発明の糖尿病の治療方法は、本発明の方法により膵島のイメージング及び又は膵島量の測定を行うこと、及び、得られた膵島の画像及び又は膵島量に基づき膵島の機能回復を評価することを含むことができる。
 [本発明のキット]
 本発明は、さらにその他の態様として、膵島イメージング用分子プローブの調製のためのキットであって、本発明の分子プローブ前駆体を含むキットに関する。本発明のキットの実施形態としては、本発明の分子プローブを調製するためのキット、本発明のイメージング方法を行うためのキット、本発明の膵島量の測定方法を行うためのキット、本発明の糖尿病の予防又は治療又は診断のキットなどが挙げられる。本発明のキットは、これらの各実施形態において、それぞれの形態に応じた取扱い説明書を含むことが好ましい。
 本発明のキットは、例えば、前記膵島イメージング用分子プローブ前駆体の標識化に使用する化合物であって、ハロゲン又は放射性ハロゲンを有する芳香環を含む化合物を含んでいてもよい。前記芳香環を含む化合物は、下記式(IV)で表される基を有する化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 上記式(IV)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示し、芳香族炭化水素基及び芳香族複素環基としては上記のとおりである。R7は、水素原子又はR6とは異なる1又は複数の置換基を示し、R2と同様のものが挙げられる。R6は、ハロゲン又は放射性ハロゲンを含む置換基を示す。ハロゲンを含む置換基としては、F原子、Br原子、I原子、フッ素で置換されたC1-C3アルキル基、フッ素で置換されたC1-C3アルコキシ基、ヨウ素で置換されたC1-C3アルキル基、ヨウ素で置換されたC1-C3アルコキシ基等が挙げられる。放射性ハロゲンを含む置換基としては、R1と同様のものが挙げられる。R6は、定量性の観点からは、オルト位、メタ位、パラ位のいずれかの置換基であることが好ましく、より好ましくはメタ位又はパラ位のいずれかの置換基である。
 放射性核種を有する芳香環を含む標識化合物は、上記式(IV)で表される基が、エステル結合を介してスクシンイミドと結合したスクシンイミジルエステル化合物であることが好ましく、より好ましくは下記式(V)で表されるスクシンイミジルエステル化合物である。
Figure JPOXMLDOC01-appb-C000011
 上記式(V)において、A、R6及びR7は上記式(IV)と同様である。上記式(V)において、R3は、上記式(II)及び(III)と同様に、結合手、C1-C6アルキレン基及びC1-C6オキシアルキレン基のいずれかであることが好ましく、膵島、好ましくは膵β細胞、より好ましくは膵島のGLP-1受容体との親和性の点から、結合手、メチレン基、エチレン基がより好ましく、さらに好ましくは結合手である。
 また、放射性核種を有する芳香環を含む標識化合物は、例えば、[18F]fluorobenzoyl基、[123I]iodobenzoyl基、[124I]iodobenzoyl基、[125I]iodobenzoyl基、[131I]iodobenzoyl基、[123I]iodo p-hydroxyphenylpropionyl基、[124I]iodo p-hydroxyphenylpropionyl基、[125I]iodo p-hydroxyphenylpropionyl基、[131I]iodo p-hydroxyphenylpropionyl基を有する化合物が好ましく、より好ましくは[18F]N-succinimidyl 4-fluorobenzoate、[123I]N-succinimidyl 3-iodobenzoate、[124I]N-succinimidyl 3-iodobenzoate、[123I]iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide ester、[124I]iodo p-hydroxyphenylpropionic acid N-hydroxysuccinimide esterである。本発明のキットは、例えば、上記標識化合物及び/又は標識化合物を作成するための化合物を用いた本発明の分子プローブ前駆体の標識化方法が記載された取扱い説明書を含んでいてもよい。
 本発明のイメージング用分子プローブ前駆体を含むキットは、さらに、上記標識化合物の出発原料を含むことが好ましい。[18F]N-succinimidyl 4-fluorobenzoateの出発原料としては、例えば、ethyl 4-(trimethylammonium triflate) benzoate、ethyl 4-(tosyloxy)benzoate、ethyl 4-(methylsulfonyloxy)benzoate等が挙げられる。[123/124/125/131I]N-succinimidyl 3-iodobenzoateの出発原料としては、例えば、2,5-dioxopyrrolidin-1-yl 3-(tributylstannyl)benzoate等が挙げられる。
 本発明は、さらにその他の態様として、本発明の分子プローブを含むキットに関する。本形態のキットの実施形態としては、本発明のイメージング方法を行うためのキット、本発明の膵島量の測定方法を行うためのキット、本発明の糖尿病の予防又は治療又は診断のキットなどが挙げられる。これらの各実施形態において、それぞれの形態に応じた取扱い説明書を含むことが好ましい。
 本発明のキットにおいて、本発明のイメージング用分子プローブは、注射液の形態で含むことが好ましい。したがって、本発明のキットは、本発明のイメージング用分子プローブを含有する注射液を含むことが好ましい。注射液は、有効成分とする本発明のイメージング用分子プローブを含み、さらに、例えば、担体等の医薬品添加物を含んでいてもよい。本明細書において医薬品添加物は、日本薬局方、アメリカ薬局方、ヨーロッパ薬局方等で医薬品添加物として許認可を受けている化合物のことをいう。担体としては、例えば、水性溶媒及び非水性溶媒が挙げられる。水性溶媒としては、例えば、リン酸カリウム緩衝液、生理食塩水、リンゲル液、蒸留水等が挙げられる。非水性溶媒としては、例えば、ポリエチレングリコール、植物性油脂、エタノール、グリセリン、ジメチルスルホキサイド、プロピレングリコール等が挙げられる。また、本発明のキットは、本発明のイメージング用分子プローブを入れるための容器をさらに含んでいてもよく、本発明のイメージング用分子プローブ及び本発明のイメージング用分子プローブを含有する注射液が容器に充填されていてもよい。容器としては、例えば、シリンジやバイアル瓶等が挙げられる。
 本発明のキットは、例えば、バッファー、浸透圧調整剤等の分子プローブを調製するための成分や、注射器等の分子プローブの投与に使用する器具等をさらに含むことができる。
 本発明の分子プローブ前駆体を含むキットは、さらに、例えば、標識化合物の自動合成装置、及び、該標識化合物の自動合成装置を用いた上記式(I)で表される基を有する標識化合物及び/又は上記放射性核種を有する芳香環を含む標識化合物の合成方法が記載された取扱い説明書を含んでいてもよい。該自動合成装置は、標識化合物の合成に加えて、例えば、合成した標識化合物を用いた膵島イメージング用分子プローブ前駆体の標識化及び脱保護が可能な自動合成装置であってもよい。該キットは、さらに、標識化合物の合成に使用する放射性核種を含む試薬を含んでいてもよい。放射性核種を含む試薬としては、例えば、11C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、99mTc、111In、123I、124I、125I又は131Iといった放射性同位元素を含む試薬が挙げられる。
 本発明は、さらにその他の態様として、本発明の分子プローブ前駆体を合成するための自動ペプチド合成装置、及び、上記式(I)で表される基を有する標識化合物及び/又は上記式(I)で表される基を有する標識化合物の自動合成装置を含むキットに関する。該自動合成装置は、標識化合物の合成に加えて、例えば、合成した標識化合物を用いた分子プローブ前駆体の標識化及び脱保護が可能な自動合成装置であってもよい。該キットは、本発明の分子プローブ前駆体の合成方法が記載された取扱い説明書を含んでいてもよい。該取扱い説明書には、さらに、例えば、上記式(I)で表される基を有する標識化合物の合成方法、それを用いた標識化方法、及び、脱保護方法等が記載されていてもよい。該キットは、さらに、標識化合物の合成に使用する放射性核種を含む試薬を含んでいてもよい。
 本発明は、さらにその他の態様として、本発明の分子プローブ前駆体の合成、上記標識化合物の合成、上記標識化合物を用いた膵島イメージング用分子プローブ前駆体の標識化及び脱保護を行う自動合成装置、及び、該自動合成装置を用いた本発明のイメージング用分子プローブの製造方法が記載された取扱い説明書を含むキットに関する。取扱い説明書には、例えば、分子プローブ前駆体の合成方法、上記標識化合物の合成方法、上記標識化合物を用いた分子プローブ前駆体の標識化及び脱保護方法等が記載されていることが好ましい。該キットは、さらに、標識化合物の合成に使用する放射性核種を含む試薬を含んでいてもよい。
 [本発明のイメージング用試薬]
 本発明は、さらにその他の態様として、本発明の分子プローブを含むイメージング用試薬に関する。本発明のイメージング用試薬は、有効成分として本発明の分子プローブを含み、さらに、例えば、担体等の医薬品添加物を含んでいてもよい。担体は、上記のとおりである。
 以下に、実施例及び参考例を用いて本発明をさらに説明する。但し、本発明は以下の実施例に限定して解釈されない。
 なお、本明細書の記載において、以下の略語を使用する。
OBu:ブチルエステル基
Boc:ブトキシカルボニル基
Trt:トリチル基
Pdf:2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル基
Mmt:4-メトキシトリチル基
Fmoc:9-フルオレニルメチルオキシカルボニル基
 (実施例1)
 配列番号1のN末端のα-アミノ基並びに第4番目及び第19番目のリジン残基に保護基が結合し、かつ、C末端のカルボキシル基がアミド化されている上記式(1)の本発明の分子プローブ前駆体を用いてマウスの体内分布の測定を行った。まず、以下のようにして本発明の分子プローブを調製した。
 [分子プローブ前駆体の調製]
 ポリペプチドの合成は、Applied Biosystems社製ペプチド自動合成機(433A型)を用いて、添付のソフトに従って行った。側鎖に官能基のあるアミノ酸はそれぞれAsp(OBu)、Ser(OBu)、Lys(Boc)、Gln(Trt)、Glu(OBu)、Arg(Pbf)、Asn(Trt)、Trp(Boc)を用いた。4番目及び19番目のリジンとしてはLys(Mmt)を使用した。Rink Amide MBHA(0.125mmol、0.34mmol/g)を出発樹脂とし、配列に従って逐次アミノ酸を延長し、下記式(17)の配列を有するポリペプチドを得た。なお、下記式(17)において、Lys(Mmt)以外は側鎖の保護基の表記を省略した。
Fmoc-DLSK(Mmt)QMEEEAVRLFIEWLK(Mmt)NGGPSSGAPPPSK-保護ペプチド樹脂  (17)  (配列番号17)
1.5%TFA-5%TIS-93.55%CH2Cl2を用いた定法処理により、上記式(17)のポリペプチドから、まず、4番目及び19番目のリジン残基の側鎖の保護基(Mmt基)を除去し、遊離した4番目及び19番目のリジン残基の側鎖のアミノ基をFmoc化した。ついで、4番目及び19番目のリジン残基のFmoc基以外の全保護基の除去と樹脂からのペプチドの切り出しとを、92.5%TFA-2.5%TIS-2.5%H2O-2.5%エタンジチオールを用いた定法処理によって行った。反応終了後、ろ別により担体樹脂を取り除き、乾燥エーテルを加えて粗生成物を沈殿させ、ろ別した。得られた粗生成物は、島津製作所のLC8A分取装置(ODS カラム3cmx25cm)を用い、0.1%TFAを含むCH3CN-H2Oのリニアーグラジエントの系で精製し、フラクションコレクターを用いて目的の画分を集めた後、下記式(18)の分子プローブ前駆体を凍結乾燥白色粉末として得た。
Fmoc-DLSK(Fmoc)QMEEEAVRLFIEWLK(Fmoc)NGGPSSGAPPPSK-NH2  (18)  (配列番号18)
 [分子プローブの調製]
 得られた上記式(18)の分子プローブ前駆体(640μg)をBorate Buffer(pH7.8)に溶解させ、それに[18F]SFBを加え反応溶液をpH8.5~9.0に調整し標識化を行った。その後、DMF、Piperidineを加えることで脱保護反応を行い、目的物(配列番号5の第32番目のリジン残基が標識化された分子プローブ)を得た。すなわち、得られた分子プローブは、配列番号5のアミノ酸配列において第32番目のリジンの側鎖のアミノ基に[18F]FB(フルオロベンゾイル基)が結合し、かつ、C末端のカルボキシル基がアミド化され、かつ、N末端のα-アミノ基が非修飾(アミノ基)である下記式(19)の分子プローブ(配列番号19)である。
Figure JPOXMLDOC01-appb-C000012
 [体内分布]
 調製した上記式(19)の分子プローブ(5.6μCi)を無麻酔下の6週齢ddYマウス(雄性、体重30g)に静脈注射(尾静脈)により投与した。投与5分後、15分後、30分後、60分後、120分後に各臓器を摘出した(n=5)。各臓器の重量と放射能とを測定し、単位重量あたりの放射能から集積量(%dose/g)を算出した。その結果の一例を下記表1、図1A及びBに示す。図1Aは、各臓器への分子プローブの集積の経時変化を示すグラフであり、図1Bは図1Aを拡大したグラフである。
Figure JPOXMLDOC01-appb-T000013
 図1A及びBに示すとおり、本実施例1で調製した分子プローブ(上記式(19)で表される分子プローブ)の膵臓への集積は、投与後5分で9.3%dose/g、投与後15分で6.9%dose/g、投与後30分で9.7%dose/gであった。また、本実施例1で調製した分子プローブは、何れの時間帯においても、膵臓の隣接臓器である胃、腸、肝臓及び脾臓よりも膵臓に多く集積した。特に、投与後5~60分の間における胃及び腸の集積量は2%dose/g前後と低く、投与後5~30分の間における、胃及び腸への集積量に対する膵臓への集積量は約4倍又はそれ以上であった。また、投与後15分以降は肝臓への集積量を4%dose/g以下に抑えることができ、投与後30分以降は肝臓への集積量に対する膵臓への集積量は2.5倍以上であった。つまり、本実施例1で調製した分子プローブは、特異的に膵臓に集積したといえる。また、骨への放射能集積が低く、生体内で脱フッ素代謝を受けていないことが示唆された。これにより、本実施例1の分子プローブ(上記式(19)で表される分子プローブ)は、膵β細胞のイメージングに適していると考えられる。
 (参考例1)
 参考例1として、配列番号20のN末端のα-アミノ基と第19番目のリジン残基に保護基(Fmoc)が結合し、C末端のカルボキシル基がアミド化されている下記式(20)の分子プローブ前駆体から分子プローブを調製し、その分子プローブを用いてマウスの体内分布の測定を行った。つまり、配列番号20のアミノ酸配列において第4番目のリジンの側鎖のアミノ基に[18F]FB(フルオロベンゾイル基)が結合し、かつ、C末端のカルボキシル基がアミド化された下記式(21)で表される分子プローブ(配列番号21)を用いてマウスの体内分布の測定を行った。分子プローブ前駆体及び分子プローブの調製並びに体内分布の測定は、実施例1と同様に行った。その結果の一例を下記表2、図2A及びBに示す。
Fmoc-DLSKQMEEEAVRLFIEWLK(Fmoc)NGGPSSGAPPPS-NH2  (20)  (配列番号20)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-T000015
 (参考例2)
 参考例2として、配列番号22のN末端と第4番目のリジン残基に保護基(Fmoc)が結合し、C末端のカルボキシル基がアミド化されている下記式(22)の分子プローブ前駆体から分子プローブを調製し、その分子プローブを用いてマウスの体内分布の測定を行った。つまり、配列番号22のアミノ酸配列において第19番目のリジンの側鎖のアミノ基に[18F]FB(フルオロベンゾイル基)が結合し、かつ、C末端のカルボキシル基がアミド化された下記式(23)で表される分子プローブ(配列番号23)を用いてマウスの体内分布の測定を行った。分子プローブ前駆体及び分子プローブの調製並びに体内分布の測定は、実施例1と同様に行った。その結果の一例を下記表3、図3A及びBに示す。
Fmoc-DLSK(Fmoc)QMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2  (22)  (配列番号22)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-T000017
 図1A及びB、図2A及びB並びに図3A及びBに示すとおり、本実施例1で調製した分子プローブ(上記式(19)で表される分子プローブ)は、上記式(20)の分子プローブ前駆体を用いて調製した参考例1の分子プローブ及び上記式(22)の分子プローブ前駆体を用いて調製した参考例2の分子プローブと比べて膵臓への集積量が多く、また、膵臓の隣接臓器である胃及び腸への集積量が少なかった。また、本実施例1で調製した分子プローブは、上記参考例1の分子プローブ及び上記参考例2の分子プローブと比べて肝臓及び腎臓への集積が低く、本実施例1で調製した分子プローブの腎臓への集積量は上記参考例1及び2の分子プローブの腎臓への集積量の半分以下であった。このことからも、本実施例1で調製した分子プローブは、特異的に膵臓に集積したといえる。
 実施例1の分子プローブ、参考例1の分子プローブ及び参考例2の分子プローブの体内分布実験により得られた集積量に基づき、各プローブについての膵臓/肝臓比(膵臓の集積量/肝臓の集積量)を下記表4に、膵臓/腎臓比(膵臓の集積量/腎臓の集積量)を下記表5に示す。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 上記表4及び5に示すように、実施例1の分子プローブは、参考例1の分子プローブ及び参考例2の分子プローブと比較して膵臓/肝臓比及び膵臓/腎臓比が高かった。このように膵臓の周辺臓器に対する膵臓への集積量の比率が高く、また、膵臓の周辺臓器の集積が少ない本実施例1の分子プローブによれば、イメージングした際に、明瞭な膵臓の画像が得られることが示唆された。
 上記参考例1の分子プローブをマウスに投与することにより、マウスの膵島の三次元イメージング画像が得られている。また、上記参考例2の分子プローブをマウスに投与することにより、マウスの膵島の非侵襲的な三次元イメージング画像が得られている。上記のとおり、C末端のリジンの側鎖を標識した本実施例1で調製した分子プローブは、上記式(20)の分子プローブ前駆体を用いて調製した参考例1の分子プローブ及び上記式(22)の分子プローブ前駆体を用いて調製した参考例2の分子プローブと比べて膵臓への集積量が多く、また、膵臓の隣接臓器である胃及び腸への集積量が少ないことから、本実施例1で調製した分子プローブにより、非侵襲的な膵島の三次元イメージングが可能なことが示唆された。
 これらの結果より、本発明の分子プローブ前駆体であれば、ヒトにおいて非侵襲的膵臓の三次元イメージング、とりわけ非侵襲的膵β細胞の三次元イメージングが可能なことが示唆された。
 [blocking実験]
 実施例1で調製した分子プローブ(上記式(19)の分子プローブ)を用い、blocking実験を行った。マウスは、6週齢ddYマウス(雄性、体重約30g)を使用した。
 まず、無麻酔下のマウスに、標識化していないExendin(9-39)(コールドプローブ)を静脈注射により前投与した(0.5mg/mLを0.1mL)。前投与から30分後に、調製した上記式(19)の分子プローブ(5μCi)を静脈注射により投与した。分子プローブの投与から30分後に各臓器を摘出した(n=5)。各臓器の重量と放射能とを測定し、単位重量あたりの放射能から集積量(%dose/g)を算出した。その結果の一例を図4に示す。
 コントロールとして、コールドプローブを前投与することなく、調製した上記式(19)の分子プローブ(5μCi)を無麻酔下のマウスに静脈注射により投与した。投与から30分後に各臓器を摘出した(n=5)。各臓器の重量と放射能とを測定し、単位重量あたりの放射能から集積量(%dose/g)を算出した。その結果の一例を前投与した結果とあわせて図4に示す。
 図4は、前投与ありの集積量(%dose/g)及びコントロール(前投与なし)の集積量(%dose/g)を示すグラフである。図4に示すように、コールドプローブを前投与して受容体(GLP-1受容体)への結合を阻害することにより、上記式(19)の分子プローブの膵臓への取り込みが約75%阻害されたことが観察された。
 [2次元イメージング解析]
 ICRマウスの遺伝的バックグラウンドを有し、かつ、MIP(mouse insulin I gene promoter)の制御下でGFP(green fluorescent protein)を発現するトランスジェニックマウス(以下、「MIP-GFPマウス」という)を使用し、2次元イメージング解析を行った。分子プローブは、実施例1で調製した上記式(19)の分子プローブを用いた。
 調製した上記式(19)の分子プローブを無麻酔のMIP-GFPマウス(雄性、体重20g)に静脈注射により投与し(約171μCiを200μL)、投与30分後に膵臓を摘出した(n=2)。摘出した膵臓から切片を切り出し、切片をスライドガラス上に置き、その上にカバーガラスを載せた。切片の蛍光及び放射能(オートラジオグラフィー)は、画像解析装置(商品名:Typhoon 9410、GEヘルスケア社製)を用いて測定した(露光時間:15時間)。その結果の一例を図5に示す。
 図5は、上記式(19)の分子プローブ投与後30分のMIP-GFPマウスの膵臓切片のイメージ解析の結果の一例を示し、(a)が蛍光シグナル、(b)が放射性シグナルを示す画像である。図5(a)及び(b)に示すように、MIP-GFPマウスの膵臓切片において画像解析装置によって蛍光GFPシグナル、及び、放射性シグナルがそれぞれ検出された。また、図5(a)及び(b)に示すように、標識化された上記式(19)の分子プローブから検出された放射性シグナルの局在性は、GFPシグナルと一致していた。このことから、上記式(19)の分子プローブが、膵β細胞に特異的に集積することが確認できた。
 [三次元イメージング]
 調製した上記式(19)の分子プローブ(89μCi)を麻酔した6週齢ddYマウス(雄性、体重30g)に静脈注射により投与し、下記のPET装置及び条件で三次元イメージングを行った。
撮像装置:eXplore Vista(商品名、GE社製)
撮像方法:Static Scan
リコンストラクション:2DOSEM(Dynamic OS-EM)
 その結果の一例を図6に示す。画像は分子プローブ投与30分後のものである(積算時間:20分)。図6Aは、三次元イメージングの冠状断像(coronal view)であり、図6Bは、三次元イメージングの横断像(transverse view)である。図6A及びBにおける白丸が膵臓の位置を示す。なお、図6A及びBのコントラストは同一である。
 図6に示すとおり、上記式(19)の分子プローブを用いることによって、非侵襲的に膵臓の位置を明確に判別することができた。つまり、本発明の分子プローブによって非侵襲的な膵島の三次元イメージングが可能であることが確認できた。
 (実施例2)
 配列番号1の第4番目及び第19番目のリジン残基に保護基が結合し、C末端のカルボキシル基がアミド化されている上記式(1)の本発明の分子プローブ前駆体において、N末端のα-アミノ基がアセチル化されている下記式(24)の本発明の分子プローブ前駆体(配列番号24)を用いてマウスの体内分布の測定を行った。まず、以下のようにして本発明の分子プローブを調製した。なお、リジン残基の保護基は、Fmocを使用した。
Ac-DLSK(Fmoc)QMEEEAVRLFIEWLK(Fmoc)NGGPSSGAPPPSK-NH2  (24)  (配列番号24)
 [分子プローブの調製]
 N末端のα-アミノ基の保護基(Fmoc)を脱保護し、アセチル化した以外は、実施例1と同様にして上記式(24)の分子プローブ前駆体を調製した。得られた上記式(24)の分子プローブ前駆体(540μg)をBorate Buffer(pH7.8)に溶解させ、それに[18F]SFBを加え反応溶液をpH8.5~9.0に調整し標識化を行った。その後、DMF、Piperidineを加えることで脱保護反応を行い、目的物(配列番号5の第32番目のリジン残基が標識化された分子プローブ)を得た。すなわち、得られた分子プローブは、配列番号5のアミノ酸配列において第32番目のリジンの側鎖のアミノ基に[18F]FB(フルオロベンゾイル基)が結合し、かつ、N末端のα-アミノ基がアセチル化され、かつ、C末端のカルボキシル基がアミド化された下記式(25)の分子プローブ(配列番号25)である。なお、下記式(25)において「Ac」は、N末端のα-アミノ基がアセチル化されたことを示す。
Figure JPOXMLDOC01-appb-C000020
 [体内分布]
 調製した上記式(25)の分子プローブ(7μCi)を無麻酔下の6週齢ddYマウス(雄性、体重30g)に静脈注射(尾静脈)により投与した。投与5分後、15分後、30分後、60分後、120分後に各臓器を摘出した(n=5)。各臓器の重量と放射能とを測定し、単位重量あたりの放射能から集積量(%dose/g)を算出した。その結果の一例を下記表6、図7A及びBに示す。図7Aは、各臓器への分子プローブの集積の経時変化を示すグラフであり、図7Bは図7Aを拡大したグラフである。
Figure JPOXMLDOC01-appb-T000021
 図7A及びBに示すとおり、本実施例2で調製した上記式(25)の分子プローブの膵臓への集積は、投与後5分で7.0%dose/g、投与後15分で6.5%dose/g、投与後30分で7.3%dose/gであった。また、本実施例2で調製した上記式(25)の分子プローブは、何れの時間帯においても、膵臓の隣接臓器である胃や腸よりも膵臓に多く集積した。特に、胃の集積量は何れの時間帯においても2%dose/g前後と低く、腸の集積量は何れの時間帯においても1.7%dose/g前後と低く、胃及び腸への集積量に対する膵臓への集積量は3倍以上であった。また、投与後15分からは肝臓への集積量を4%dose/g以下に抑えることができ、投与後30分からは肝臓への集積量に対する膵臓への集積量は2倍以上であった。つまり、本実施例2で調製した上記式(25)の分子プローブは、特異的に膵臓に集積したといえる。また、骨への放射能集積が低く、生体内で脱フッ素代謝を受けていないことが示唆された。これにより、上記式(25)の分子プローブは、膵β細胞のイメージングに適していると考えられる。
 また、図1A及びB並びに図7A及びBに示すとおり、N末端のα-アミノ基をアセチル化した本実施例2の分子プローブ(上記式(25)の分子プローブ)は、N末端のα-アミノ基がアセチル化されていない実施例1の分子プローブ(上記式(19)の分子プローブ)と比較して、腎臓への集積が抑制された。
 実施例2の分子プローブの体内分布実験により得られた集積量に基づき、膵臓/肝臓比(膵臓の集積量/肝臓の集積量)を上記表4に、膵臓/腎臓比(膵臓の集積量/腎臓の集積量)を上記表5に示す。上記表4及び5に示すように、実施例2の分子プローブは、参考例1の分子プローブ及び参考例2の分子プローブと比較して膵臓/肝臓比及び膵臓/腎臓比が高かった。このように膵臓の周辺臓器に対する膵臓への集積量の比率が高く、また、膵臓の周辺臓器の集積が少ない本実施例2の分子プローブによれば、イメージングした際に、明瞭な膵臓の画像が得られることが示唆された。
 図2A及びB、図3A及びB並びに図7A及びBに示すとおり、本実施例2で調製した上記式(25)の分子プローブは、上記参考例1の分子プローブ及び上記参考例2の分子プローブと比べて膵臓への集積量が多く、膵臓の隣接臓器である胃及び腸への集積量が少なかった。また、本実施例2で調製した上記式(25)の分子プローブは、上記参考例1及び2の分子プローブと比べて腎臓への集積が低く、本実施例2で調製した分子プローブの腎臓への集積量は上記参考例1の分子プローブ(上記式(21)の分子プローブ)及び上記参考例2の分子プローブ(上記式(23)の分子プローブ)の腎臓への集積量の半分以下であった。このことからも、つまり、本実施例2で調製した上記式(25)の分子プローブは、特異的に膵臓に集積したといえる。このため、本実施例2で調製した上記式(25)の分子プローブにより、非侵襲的な膵島の三次元イメージングが可能なことが示唆された。
 これらの結果より、本発明の分子プローブ前駆体であれば、ヒトにおいて非侵襲的膵臓の三次元イメージング、とりわけ非侵襲的膵β細胞の三次元イメージングが可能なことが示唆された。
 (実施例3)
 [Binding Assay]
 実施例1で調製した上記式(18)の分子プローブ前駆体を、[18F]SFBに替えて[127I]N-succinimidyl 3-iodobenzoate([127I]SIB)を使用した以外は実施例1と同様にして標識化及び脱保護を行い、下記式(26)の分子プローブ(配列番号26)を得た。
Figure JPOXMLDOC01-appb-C000022
 マウスから単離した膵島を50mlチューブに回収し、遠心(2000rpm、2分)した後、冷PBS20mLで1回洗浄した。トリプシン-EDTA(トリプシン-EDTA(0.05%/0.53mM)3mLに、PBSを含む0.53mM EDTA(pH7.4(NaOH))12mLを加えたもの)を15mL加え、37℃で振とうしながら1分間インキュベートした後、直ちに氷上に置いた。ついで、スポイト付10mLピペットで泡立てることなく勢いよく20回ピペッティングした後、冷PBSを最終量が30mLになるように加えた。遠心(3000rpm、2分)した後、冷PBS 30mLで2回洗浄した。上清を除去して膵島細胞サンプルを得た。得られた膵島細胞サンプルは-80℃で保存した。
 100μL/チューブとなるように膵島細胞サンプルをBuffer(20mM HEPES(pH7.4)、1mM MgCl2、1mg/ml bacitracin、1mg/ml BSA)で懸濁した。ついでBuffer 880μL、上記式(26)の分子プローブを含む溶液(分子プローブの終濃度:0、1×10-6~1×10-12M)10μL、[125I]Bolton-Hunter標識Exendin(9-39)を含む溶液([125I]Bolton-Hunter標識Exendin(9-39)(製品コード:NEX335、1.85MBq/mL=50μCi/mL,22.73pmol/mL=76.57ng/mL、Perkin Elmer社製)10μLにBuffer90μLを添加したもの)10μLを添加し、室温で60分インキュベーションした。なお、[125I]標識Exendin(9-39)の終濃度は0.05μCi/チューブとした。ついで予め湿らせたガラス繊維フィルタ(Whatman GF/C filter)をセットした吸引装置を用い、吸引によりB/F分離した後、フィルタを氷冷のPBS5mlで3回洗浄した。フィルタをチューブに入れ、γカウンターにより放射能の測定を行った。その結果を図8に示す。
 図8は、SigmaPlot11(商品名)で解析した結果の一例を示すグラフである。図8に示すように、上記式(26)の分子プローブは、GLP-1Rと[125I]標識Exendin(9-39)との結合を濃度依存的に阻害した。上記式(26)の分子プローブのIC50は3.52×10-9Mであり、上記式(26)の分子プローブは膵島のGLP-1受容体に対して高い親和性を示した。また、上記式(26)の分子プローブのIC50は、Exendin(9-39)(IC50:1.4×10-9M)に近い値であることから、上記式(26)の分子プローブは膵島のGLP-1受容体に対してGLP-1受容体拮抗薬であるExendin(9-39)と同程度の親和性を有しているといえる。
 つぎに、配列番号5のアミノ酸配列において、第32番目のリジン残基の側鎖のアミノ基が3-[125I]iodobenzoyl基で標識され(以下、「[125I]IB標識」ともいう)、C末端のカルボキシル基がアミド化され、N末端のα-アミノ基がアセチル化されていない下記式(27)の分子プローブ(配列番号27)を用いてマウスの体内分布の測定及び二次元イメージング解析を行った。下記式(27)の分子プローブは、[18F]SFBに替えて[125I]N-succinimidyl 3-iodobenzoate(SIB)を使用した以外は、実施例1と同様の方法で調製した。
Figure JPOXMLDOC01-appb-C000023
 [体内分布]
 調製した上記式(27)の分子プローブ(1μCi)を無麻酔下の6週齢ddYマウス(雄性、体重約30g)に静脈注射(尾静脈)により投与した。投与5分後、15分後、30分後、60分後、120分後に各臓器を摘出した(n=5)。各臓器の重量と放射能とを測定し、単位重量あたりの放射能から集積量(%dose/g)を算出した。その結果の一例を下記表7、図9A及びBに示す。図9Aは、各臓器への分子プローブの集積の経時変化を示すグラフであり、図9Bは図9Aを拡大したグラフである。
Figure JPOXMLDOC01-appb-T000024
 図9A及びBに示すとおり、本実施例3で調製した上記式(27)の分子プローブの膵臓への集積は、投与後5分で7.7%dose/g、投与後15分で12.3%dose/g、投与後30分で8.7%dose/g、投与後60分で10.9%dose/gであった。また、上記式(27)の分子プローブは、何れの時間帯においても、膵臓の隣接臓器である胃や腸よりも膵臓に多く集積した。特に、投与後5~30分の間における胃及び腸の集積量は4%dose/g以下と低く、この時間帯における、胃及び腸への集積量に対する膵臓への集積量は3倍以上であった。また、投与後30分以降における上記式(27)の分子プローブの肝臓への集積量は5%dose/g以下であった。以上のことから、上記式(27)の分子プローブは、特異的に膵臓に集積したといえる。また、首への集積に大きな変化が見られないことから、生体内で上記式(27)の分子プローブが脱ヨウ素代謝を受けていないことが示唆された。これにより、上記式(27)の分子プローブは、膵β細胞のイメージング、とりわけ、膵β細胞の非侵襲的イメージングに適していると考えられる。
 [2次元イメージング解析]
 上記式(27)の分子プローブ(5μCi)を無麻酔のMIP-GFPマウス(雄性、体重20g)に静脈注射により投与し、投与30分後に膵臓を摘出した(n=2)。摘出した膵臓から切片を切り出し、切片をスライドガラス上に置き、その上にカバーガラスを載せた。切片の蛍光及び放射能(オートラジオグラフィー)は、画像解析装置(商品名:Typhoon 9410、GEヘルスケア社製)を用いて測定した(露光時間:18時間)。その結果の一例を図10に示す。
 コントロールとして、標識基が結合していない市販のexendin(9-39)(コールドプローブ)を無麻酔のMIP-GFPマウス(雄性、体重20g)に静脈注射により前投与した(50μg/100μL)。前投与から30分後に上記式(27)の分子プローブ(5μCi)を静脈注射により投与し、上記式(27)の分子プローブの投与から30分後に膵臓を摘出した(n=2)。摘出した膵臓から切片を切り出し、得られた切片について、上記と同様にして蛍光及び放射能の測定を行った。その結果の一例を、上記前投与なしの結果とあわせて図10に示す。
 図10は、上記式(27)の分子プローブを投与したMIP-GFPマウスの膵臓切片のイメージ解析の結果の一例であって、上記式(27)の分子プローブ投与後30分の切片についての蛍光シグナル(a)及び放射性シグナル(b)を示す画像を示す。
 図10(a)及び(b)に示すように、MIP-GFPマウスの膵臓切片において画像解析装置によって蛍光GFPシグナル、及び放射性シグナルがそれぞれ検出された。また、上記式(27)の分子プローブから検出された放射性シグナルの局在性は、GFPシグナルと一致していた。このことから、上記式(27)の分子プローブが、膵β細胞に特異的に集積することが確認できた。
 図10(b)に示すように、コールドプローブを前投与したコントロールの切片からは放射性シグナルはほとんど検出されなかった。このことから、コールドプローブを前投与してGLP-1受容体への結合を阻害することにより、上記式(27)の分子プローブの取り込みが阻害されたことが観察できた。このことから、上記式(27)の分子プローブが、膵β細胞のGLP-1受容体に結合していることが確認できた。
 ここで、125I、123I及び131Iはいずれもγ線放出核種である。さらに、125I及び123Iは核スピン数も同一である。これらのことから、上記式(27)の分子プローブの標識化に使用する放射性ヨウ素原子(125I)を、123I又は131Iとした場合であっても、上記式(27)の分子プローブとほぼ同様の挙動を示すことが推測される。また、124Iとした場合であっても、上記式(27)の分子プローブとほぼ同様の挙動を示すと推測される。したがって、上記式(27)の分子プローブの125Iを、123I、124I又は131Iとした分子プローブを使用することにより、例えば、SPECTやPET等での膵β細胞の非侵襲の三次元イメージング、好ましくは膵β細胞の定量が可能なことが示唆された。
 (実施例4)
 配列番号5のアミノ酸配列において、第32番目のリジン残基の側鎖のアミノ基が3-[123I]iodobenzoyl基で標識され(以下、「[123I]IB標識」ともいう)、C末端のカルボキシル基がアミド化され、N末端のα-アミノ基がアセチル化されていない下記式(28)の分子プローブ(配列番号28)を調製した。下記式(28)の分子プローブは、[125I]SIBに替えて[123I]SIBを使用した以外は、実施例3と同様の方法で調製した。
Figure JPOXMLDOC01-appb-C000025
 [三次元イメージング]
 上記式(28)の分子プローブを用いてマウスのSPECT撮像を行った。上記式(28)の分子プローブ(243μCi/120μL)を麻酔した6週齢ddYマウス(雄性、体重約30g)に静脈注射により投与し、SPECT撮像を行った。SPECT撮像は、ガンマカメラ(製品名:SPECT2000H-40、日立メディコ製)を用いて下記の撮像条件で、分子プローブ投与後30分から32分間行った。得られた画像を、下記の再構成条件で再構成処理を行った。
撮像条件
コリメータ   :LEPH pinholeコリメータ
検出器の収集角度:11.25°/60秒で360°
収集時間    :60秒×32フレーム、32分間
再構成条件
前処理フィルタ:Butterworthフィルタ(order:10、cutoff周波数:0.13)
 その結果の一例を図11に示す。画像は分子プローブ投与30分後のものである(積算時間:32分)。図11Aは横断像(transverse view)であり、図11Bは冠状断像(coronal view)であり、図11Cは矢状断像(sagittal view)である。図11B及びCにおける白丸が膵臓の位置を示す。なお、図11AからCのコントラストは同一である。
 図11AからCに示すとおり、上記式(28)の分子プローブを用いることによって、マウスにおいて非侵襲的に膵臓の位置を確認することができた。つまり、本発明の分子プローブによって非侵襲的な膵島の三次元イメージングが可能であることが確認できた。
 このように、ヒトよりも膵臓のサイズが小さく、かつ、臓器が密集しているマウスにおいて非侵襲的に膵臓の位置を確認できたことから、マウスよりも膵臓のサイズが大きく、かつ、臓器が密集していないヒトであれば、例えば、膵島の位置、膵臓のサイズをより明確に判別でき、さらには、膵臓におけるプローブの発現量を測定できることが示唆された。したがって、本発明のイメージング用分子プローブであれば、ヒトにおいて非侵襲的膵臓の三次元イメージング、とりわけ非侵襲的膵β細胞の三次元イメージングが可能なことが示唆された。
 以上説明したとおり、本発明は、例えば、医療分野、分子イメージングの分野、糖尿病に関する分野などで有用である。
配列番号1~4:本発明の分子プローブ前駆体のアミノ酸配列
配列番号5~8:本発明の分子プローブのアミノ酸配列
配列番号17:実施例1の分子プローブ前駆体の製造に用いるポリペプチドのアミノ酸配列
配列番号18:実施例1の分子プローブ前駆体のアミノ酸配列
配列番号19:実施例1の分子プローブのアミノ酸配列
配列番号20:参考例1の分子プローブ前駆体のアミノ酸配列
配列番号21:参考例1の分子プローブのアミノ酸配列
配列番号22:参考例2の分子プローブ前駆体のアミノ酸配列
配列番号23:参考例2の分子プローブのアミノ酸配列
配列番号24:実施例2の分子プローブ前駆体のアミノ酸配列
配列番号25:実施例2の分子プローブのアミノ酸配列
配列番号26:Binding Assayに使用した分子プローブのアミノ酸配列
配列番号27:実施例3の分子プローブのアミノ酸配列
配列番号28:実施例4の分子プローブのアミノ酸配列

Claims (19)

  1.  膵島のイメージングに用いられる分子プローブの前駆体であって、
     下記式(1)~(4)のいずれかで表されるポリペプチド、
     下記式(1)~(4)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって、標識化及び脱保護後に膵島に結合可能なポリペプチド、又は、
     下記式(1)~(4)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、標識化及び脱保護後に膵島に結合可能なポリペプチドを含み、
     前記分子プローブは、膵島のイメージングに用いられる分子プローブである、膵島イメージング用分子プローブ前駆体。
     *-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (1) (配列番号1)
      *-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (2) (配列番号2)
       *-SKQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (3) (配列番号3)
        *-KQMEEEAVRLFIEWLKNGGPSSGAPPPSK-NH2  (4) (配列番号4)
    [上記式(1)~(4)において、「*-」は、N末端のα-アミノ基が、保護基により保護されているか、又は、電荷を有さない修飾基により修飾されていることを示し、「K*」は、リジン(lysine)の側鎖のアミノ基が保護基により保護されていることを示し、「-NH2」は、C末端のカルボキシル基がアミド化されていることを示す。]
  2.  C末端のリジンの側鎖のアミノ基を、放射性核種を有する芳香環を含む標識化合物により標識化するための、請求項1記載の膵島イメージング用分子プローブ前駆体。
  3.  前記電荷を有さない修飾基が、アセチル基、ベンジル基、ベンジルオキシメチル基、o-ブロモベンジルオキシカルボニル基、t-ブチル基、t-ブチルジメチルシリル基、2-クロロベンジル基、2,6-ジクロロベンジル基、シクロヘキシル基、シクロペンチル基、イソプロピル基、ピバリル基、テトラヒドロピラン-2-イル基、トシル基、トリメチルシリル基及びトリチル基からなる群から選択される、請求項1又は2に記載の膵島イメージング用分子プローブ前駆体。
  4.  膵島イメージング用分子プローブの製造方法であって、請求項1から3のいずれかに記載の膵島イメージング用分子プローブ前駆体を標識化及び脱保護することを含む、膵島イメージング用分子プローブの製造方法。
  5.  前記膵島イメージング用分子プローブ前駆体の標識化が、C末端のリジンの側鎖のアミノ基を放射性核種を有する芳香環を含む標識化合物により標識化することを含む、請求項4記載の膵島イメージング用分子プローブの製造方法。
  6.  前記芳香環を含む標識化合物が、下記式(I)で表される基を含む、請求項5記載の膵島イメージング用分子プローブの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [前記式(I)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示し、R1は、11C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、99mTc、111In、123I、124I、125I又は131Iを含む置換基を示し、R2は、水素原子、又は、R1とは異なる1又は複数の置換基を示す。]
  7.  膵島イメージング用分子プローブであって、請求項4から6のいずれかに記載の製造方法により得られうる、膵島イメージング用分子プローブ。
  8.  膵島イメージング用分子プローブであって、
     下記式(5)~(8)のいずれかで表されるポリペプチド、
     下記式(5)~(8)のポリペプチドから1~数個のアミノ酸が欠失、付加又は置換したポリペプチドであって、膵島に結合可能なポリペプチド、又は、
     下記式(5)~(8)のポリペプチドのアミノ酸配列と80%以上の相同性を有するポリペプチドであって、膵島に結合可能なポリペプチドを含む、膵島イメージング用分子プローブ。
     Z-DLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (5)  (配列番号5)
      Z-LSKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (6)  (配列番号6)
       Z-SKQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (7)  (配列番号7)
        Z-KQMEEEAVRLFIEWLKNGGPSSGAPPPSX-NH2  (8)  (配列番号8)
    [上記式(5)~(8)において、「X」は、側鎖のアミノ基が放射性核種で標識されたリジン残基を示し、前記放射性核種は、11C、13N、15O、18F、64Cu、67Ga、68Ga、75Br、76Br、77Br、99mTc、123I、124I、125I又は131Iであり、「Z-」は、N末端のα-アミノ基が、非修飾であるか、又は、電荷を有さない修飾基により修飾されていることを示し、「-NH2」は、C末端のカルボキシル基がアミド化されていることを示す。]
  9.  前記放射性核種で標識されたリジンの側鎖のアミノ基が、下記式(III)で表される芳香環を含む基と結合している、請求項8記載の膵島イメージング用分子プローブ。
    Figure JPOXMLDOC01-appb-C000002
    [前記式(III)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示し、R4は、11C、13N、15O、18F、75Br、76Br、77Br、123I、124I、125I又は131Iを含む置換基を示し、R5は、水素原子、又は、R4とは異なる1又は複数の置換基を示し、R3は、結合手、C1-C6アルキレン基及びC1-C6オキシアルキレン基のいずれかを示す。]
  10.  膵島イメージング用分子プローブを調製するためのキットであって、請求項1から3のいずれかに記載の膵島イメージング用分子プローブ前駆体を含む、キット。
  11.  さらに、前記膵島イメージング用分子プローブ前駆体の標識化に使用する化合物であって、ハロゲン又は放射性ハロゲンを有する芳香環を含む化合物を含む、請求項10記載のキット。
  12.  前記芳香環を含む化合物が、下記式(IV)で表される基を有する化合物である、請求項11記載のキット。
    Figure JPOXMLDOC01-appb-C000003
    [前記式(IV)において、Aは、芳香族炭化水素基及び芳香族複素環基のいずれかを示し、R6は、ハロゲン又は放射性ハロゲンを含む置換基を示し、R7は、水素原子、又は、R6とは異なる1又は複数の置換基を示す。]
  13.  膵島のイメージングを行うためのキットであって、請求項7から9のいずれかに記載の膵島イメージング用分子プローブを含む、キット。
  14.  請求項1から3のいずれかに記載の膵島イメージング用分子プローブ前駆体を標識化及び脱保護することを含む、膵島のイメージング方法。
  15.  請求項7から9のいずれかに記載の膵島イメージング用分子プローブを投与された被検体から前記膵島イメージング用分子プローブのシグナルを検出することを含む、膵島のイメージング方法。
  16.  さらに、前記分子プローブを用いた膵島イメージングの結果から膵島の状態を判定することを含む、請求項14又は15に記載の膵島のイメージング方法。
  17.  請求項1から3のいずれかに記載の膵島イメージング用分子プローブ前駆体を標識化及び脱保護して膵島イメージング用分子プローブを調製すること、及び、
     前記分子プローブを用いた膵島イメージングの結果から膵島量を算出することを含む、膵島量の測定方法。
  18.  請求項7から9のいずれかに記載の膵島イメージング用分子プローブを投与された被検体から前記膵島イメージング用分子プローブのシグナルを検出すること、及び、
     検出した膵島イメージング用分子プローブのシグナルから膵島量を算出することを含む、膵島量の測定方法。
  19.  さらに、算出した膵島量を提示することを含む、請求項17又は18に記載の膵島量の測定方法。
PCT/JP2010/063489 2009-08-10 2010-08-09 膵島イメージング用分子プローブ及びその前駆体、並びに、それらの使用 WO2011019020A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117013264A KR101321461B1 (ko) 2009-08-10 2010-08-09 췌도 이미징용 분자 프로브 및 그 전구체, 및 그들의 사용
EP10808203.3A EP2418216B1 (en) 2009-08-10 2010-08-09 Molecular probe for imaging of pancreatic islet and precursor thereof, and use of the molecular probe or the precursor
CN201080004504.0A CN102282164B (zh) 2009-08-10 2010-08-09 胰岛成像用分子探针及其前体,以及它们的使用

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US23261909P 2009-08-10 2009-08-10
JP2009-185470 2009-08-10
US61/232619 2009-08-10
JP2009185470 2009-08-10
JP2009272445 2009-11-30
JP2009-272445 2009-11-30
JP2010-068257 2010-03-24
JP2010068257 2010-03-24
US28274110P 2010-03-25 2010-03-25
US61/282741 2010-03-25

Publications (1)

Publication Number Publication Date
WO2011019020A1 true WO2011019020A1 (ja) 2011-02-17

Family

ID=43534980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063489 WO2011019020A1 (ja) 2009-08-10 2010-08-09 膵島イメージング用分子プローブ及びその前駆体、並びに、それらの使用

Country Status (6)

Country Link
US (2) US20110033381A1 (ja)
EP (1) EP2418216B1 (ja)
JP (1) JP5685401B2 (ja)
KR (1) KR101321461B1 (ja)
CN (1) CN102282164B (ja)
WO (1) WO2011019020A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111912A1 (en) 2012-01-24 2013-08-01 Takasago International Corporation Microcapsules

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040460A1 (ja) * 2009-09-30 2011-04-07 国立大学法人京都大学 膵島イメージング用分子プローブ及びその使用
WO2011071083A1 (ja) 2009-12-10 2011-06-16 国立大学法人京都大学 膵島イメージング用分子プローブ及びその使用
KR101511660B1 (ko) * 2010-10-08 2015-04-13 고쿠리츠 다이가쿠 호진 교토 다이가쿠 펩티드 유도체 및 그 사용
US9278146B2 (en) 2010-10-08 2016-03-08 Kyoto University Peptide derivative and use of the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2359031T3 (es) * 1996-08-08 2011-05-17 Amylin Pharmaceuticals, Inc. Composición farmacéutica que comprende un péptido de exendina-4.
US7399489B2 (en) * 1999-01-14 2008-07-15 Amylin Pharmaceuticals, Inc. Exendin analog formulations
US6514500B1 (en) * 1999-10-15 2003-02-04 Conjuchem, Inc. Long lasting synthetic glucagon like peptide {GLP-!}
DE102004043153B4 (de) * 2004-09-03 2013-11-21 Philipps-Universität Marburg Erfindung betreffend GLP-1 und Exendin
WO2011027584A1 (ja) * 2009-09-04 2011-03-10 国立大学法人京都大学 膵島イメージング用分子プローブ及びその使用
WO2011040460A1 (ja) * 2009-09-30 2011-04-07 国立大学法人京都大学 膵島イメージング用分子プローブ及びその使用
WO2011071083A1 (ja) * 2009-12-10 2011-06-16 国立大学法人京都大学 膵島イメージング用分子プローブ及びその使用
US9278146B2 (en) * 2010-10-08 2016-03-08 Kyoto University Peptide derivative and use of the same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BEHE, M. ET AL.: "Are radiolabeled GLP-1 receptor antagonists useful for scintigraphy?", J. NUCL. MED. MEETING ABSTRACTS, vol. 50, no. SUP.2, May 2009 (2009-05-01), pages 327, XP002683016 *
GOKE, R. ET AL.: "Exendin-4 Is a High Potency Agonist and Truncated Exendin-(9-39)-amide an Antagonist at the Glucagon-like Peptide 1-(7- 36)-amide Receptor of Insulin-secreting beta- Cells.", J. BIOL. CHEM., vol. 268, no. 26, 1993, pages 19650 - 19655, XP002966930 *
GREEN, B. D. ET AL.: "Chronic treatment with exendin(9-39)amide indicates a minor role for endogenous glucagon-like peptide-1 in metabolic abnormalities of obesity-related diabetes in ob/ob mice.", J. ENDOCRINOL., vol. 185, 2005, pages 307 - 317, XP055037142, DOI: doi:10.1677/joe.1.05876 *
H. KIMURA ET AL.: "Development of in vivo imaging agents targeting glucagons-like peptide-1 receptor (GLP-1R) in pancreatic islets", SNMANNUAL MEETING, 2009
KIMURA, H. ET AL.: "Development of in vivo imaging agents targeting glucagon-like peptide- 1 receptor (GLP-1R) in pancreatic islets.", J. NUCL. MED. MEETING ABSTRACTS, vol. 50, no. SUP.2, May 2009 (2009-05-01), pages 326 *
M. BECHE ET AL.: "Are radiolabeled GLP-1 receptor antagonists useful for scintigraphy?", SNM ANNUAL MEETING, 2009
SCHIRRA, J. ET AL.: "Exendin(9-39)amide Is an Antagonist of Glucagon-like Peptide-1(7-36) amide in Humans.", J. CLIN. INVEST., vol. 101, no. 7, 1998, pages 1421 - 1430, XP002306100, DOI: doi:10.1172/JCI1349 *
See also references of EP2418216A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111912A1 (en) 2012-01-24 2013-08-01 Takasago International Corporation Microcapsules

Also Published As

Publication number Publication date
KR20110094051A (ko) 2011-08-19
CN102282164B (zh) 2015-09-16
KR101321461B1 (ko) 2013-10-29
US20110033381A1 (en) 2011-02-10
JP2011219452A (ja) 2011-11-04
EP2418216A4 (en) 2012-10-24
JP5685401B2 (ja) 2015-03-18
EP2418216A1 (en) 2012-02-15
EP2418216B1 (en) 2015-10-28
US20150231284A1 (en) 2015-08-20
CN102282164A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5700835B2 (ja) 膵島イメージング用分子プローブ及びその使用
JP5669725B2 (ja) 膵島イメージング用分子プローブ及びその使用
US20150231284A1 (en) Molecular probe for imaging of pancreatic islet and the precursor, and use of the same
JP5608867B2 (ja) 膵島イメージング用分子プローブ及びその使用
JP5669765B2 (ja) ペプチド誘導体及びその使用
WO2012108476A1 (ja) 放射性標識されたポリペプチドの製造方法
US9278146B2 (en) Peptide derivative and use of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004504.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117013264

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4645/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010808203

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP