WO2011016442A1 - Inorganic microparticle dispersion paste - Google Patents

Inorganic microparticle dispersion paste Download PDF

Info

Publication number
WO2011016442A1
WO2011016442A1 PCT/JP2010/063075 JP2010063075W WO2011016442A1 WO 2011016442 A1 WO2011016442 A1 WO 2011016442A1 JP 2010063075 W JP2010063075 W JP 2010063075W WO 2011016442 A1 WO2011016442 A1 WO 2011016442A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic fine
fine particle
dispersed paste
meth
fine particles
Prior art date
Application number
PCT/JP2010/063075
Other languages
French (fr)
Japanese (ja)
Inventor
山内健司
宮崎寛子
麻生隆浩
杉田大平
高橋英之
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201080034292.0A priority Critical patent/CN102471541B/en
Publication of WO2011016442A1 publication Critical patent/WO2011016442A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F120/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/26Cellulose ethers
    • C08L1/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate

Definitions

  • the present invention relates to an inorganic fine particle dispersed paste capable of forming a sintered layer excellent in surface smoothness.
  • an inorganic fine particle dispersed paste in which inorganic fine particles such as conductive powder and ceramic powder are dispersed in a binder resin has been used to obtain sintered bodies having various shapes.
  • phosphor pastes in which phosphors are dispersed as inorganic fine particles in a binder resin and glass pastes in which low-melting-point glass is dispersed are used in plasma display panels and the like, and demand is increasing in recent years.
  • a ceramic paste in which barium titanate or alumina as inorganic fine particles is dispersed in a binder resin is formed into a green sheet and used for a multilayer electronic component such as a multilayer ceramic capacitor.
  • the back electrode of the solar cell panel is usually formed by applying a paste in which aluminum powder is dispersed by screen printing or the like, drying, and firing.
  • the dielectric layer of a plasma display panel can be obtained by printing a glass paste on a glass substrate, drying the solvent in a blowing oven circulated through the furnace, and then degreasing and firing in a high-temperature oven. It is formed.
  • a glass paste for forming a dielectric layer for example, Patent Document 1 discloses a composition for a dielectric layer of a plasma display panel, a glass frit containing at least a glass component, a dispersant, and a pyrolysis binder. And a solvent, and the dispersant is a polycarboxylic acid polymer compound, and the dielectric layer composition is applied onto a support and then dried. The resulting green sheet is disclosed.
  • Patent Document 1 describes that the dispersion state of the glass frit is effectively improved in the dielectric layer composition described in the same document. Such improvement of the dispersibility of the inorganic fine particles is important in order to form a uniform sintered layer and not cause variations in the characteristics of the sintered layer. However, since the sintered layer is formed only after the printing, drying, degreasing, and firing steps of the inorganic fine particle dispersed paste, simply improving the uniformity in the paste state, that is, the dispersibility of the inorganic fine particles, is the final. It is difficult to ensure sufficient uniformity of the sintered layer formed on the substrate.
  • An object of this invention is to provide the inorganic fine particle dispersion
  • the present invention is an inorganic fine particle dispersed paste containing at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin and polyvinyl acetal resin, an organic compound, inorganic fine particles, and an organic solvent,
  • the organic compound is an inorganic fine particle-dispersed paste having one or more hydroxyl groups and having a normal temperature solid and a boiling point of less than 300 ° C.
  • a high boiling point solvent is used in the inorganic fine particle dispersed paste for forming a sintered layer in order to ensure printability. Furthermore, in order to dry a high boiling point solvent efficiently and to improve productivity, the ventilation oven is used in the drying process after printing.
  • the inventors of the present invention caused surface roughness in the coating layer of the inorganic fine particle dispersed paste due to air blowing in the oven, resulting in reduced surface smoothness of the sintered layer and deteriorated performance of the sintered layer. I found out.
  • the present inventors have at least one hydroxyl group in addition to at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin and polyvinyl acetal resin, inorganic fine particles and organic solvent, and
  • the inorganic fine particle dispersion paste containing an organic compound having a boiling point of less than 300 ° C. is well-dried in the drying process after printing, and the surface is roughened by receiving air in the oven when drying in the oven. It was found that the film can be uniformly dried without causing a skinning phenomenon caused by the entanglement of the resin. Furthermore, the present inventors have found that a sintered layer formed using the inorganic fine particle dispersed paste is excellent in surface smoothness, and have completed the present invention.
  • the inorganic fine particle-dispersed paste of the present invention contains at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin, and polyvinyl acetal resin.
  • the ethyl cellulose is not particularly limited, and a grade may be appropriately selected according to the printing method of the obtained inorganic fine particle dispersed paste, the desired thickness of the sintered layer, and the like. In particular, when screen printing is performed, ethyl cellulose having thixotropy is generally preferable, and grades of ethyl cellulose such as STD45 and STD100 are preferable.
  • the (meth) acrylic resin is not particularly limited as long as it decomposes at a low temperature of about 350 to 400 ° C., but methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) ) Acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, n-stearyl (meth) acrylate, benzyl (meth) acrylate And a polymer comprising at least one selected from the group consisting of (meth) acrylic monomers having a polyoxyalkylene structure is preferred.
  • (meth) acrylate means acrylate or methacrylate.
  • polymethyl methacrylate polymer of methacrylate, Tg 105 ° C.
  • Tg glass transition temperature
  • Polymethacrylate is also excellent in low temperature degreasing properties.
  • the inorganic fine particle-dispersed paste of the present invention contains an organic compound described later, a polymer having a component derived from butyl methacrylate or isobutyl methacrylate is preferable.
  • the said (meth) acrylic resin may have the segment which consists of a monomer which has a polar group.
  • the monomer having a polar group include 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, methacrylic acid, glycidyl methacrylate, glycerol monomethacrylate, and the like.
  • content of the segment derived from the monomer which has the said polar group is 20 weight% or less. If the content of the segment derived from the monomer having the polar group exceeds 20% by weight, thermal decomposition at low temperature is impaired, or soot is attached to the inorganic fine particles, resulting in a large amount of residual carbon in the sintered body. Sometimes it becomes. More preferably, it is 10 parts by weight or less.
  • the (meth) acrylic resin preferably has a hydrophilic functional group at the molecular end.
  • the hydrophilic functional group is not particularly limited, but is preferably a carbonyl group, an amino group, or an amide group.
  • a (meth) acrylic resin in which a highly interactive functional group such as a carbonyl group, amino group, or amide group is introduced into the ester substituent of a (meth) acrylic monomer.
  • the depolymerization of the (meth) acrylic resin is inhibited, the thermal decomposition end temperature is increased, and the thermal decomposability is extremely deteriorated.
  • one molecular end of the (meth) acrylic resin is adsorbed on the surface of the inorganic fine particles, and the other is extended to the organic solvent side, preventing re-aggregation of the inorganic fine particles and improving dispersion stability. it can.
  • the weight average molecular weight by polystyrene conversion of the said (meth) acrylic resin is not specifically limited, A preferable minimum is 5000 and a preferable upper limit is 500,000.
  • a preferable minimum is 5000 and a preferable upper limit is 500,000.
  • the weight average molecular weight is less than 5,000, the resulting inorganic fine particle dispersed paste may not have sufficient viscosity and screen printing properties may be deteriorated.
  • air is blown in an oven in a drying process after printing.
  • the surface roughness due to receiving increases the surface smoothness of the sintered layer may decrease.
  • the weight average molecular weight is more than 500,000, the adhesive strength of the obtained inorganic fine particle dispersed paste becomes too high, so that the yarn may be generated and the screen printability may be deteriorated.
  • the upper limit with the said preferable weight average molecular weight is 100,000, and a more preferable upper limit is 50000.
  • the polystyrene equivalent weight average molecular weight of the (meth) acrylic resin is preferably 10,000 to 50,000 because a clear image can be obtained during screen printing.
  • the weight average molecular weight in terms of polystyrene can be obtained by GPC measurement using, for example, a column LF-804 (manufactured by Showa Denko KK) as a column.
  • the method for producing the (meth) acrylic resin is not particularly limited.
  • the above-mentioned (meth) acrylic monomer is subjected to a free radical polymerization method under a polymerization initiator having a carbonyl group, an amino group, an amide group, or the like.
  • Copolymerization by a conventionally known method such as a living radical polymerization method, an iniferter polymerization method, an anionic polymerization method, a living anion polymerization method, or a chain transfer agent having a carbonyl group, an amino group, an amide group, etc.
  • Examples thereof include a method of copolymerizing the above-described (meth) acrylic monomer by a conventionally known method such as a free radical polymerization method, a living radical polymerization method, an iniferter polymerization method, an anion polymerization method, or a living anion polymerization method. These methods may be used independently and may use 2 or more types together.
  • a polymerization initiator having a carbonyl group, an amino group, an amide group or the like as a radical polymerization initiator, a carbonyl group, an amino group, an amide at more molecular ends. Groups and the like can be introduced. The introduction of a carbonyl group, amino group, amide group or the like only at the molecular end of the (meth) acrylic resin can be confirmed by, for example, 13 C-NMR.
  • the polyvinyl acetal resin is not particularly limited as long as it has excellent compatibility with the organic solvent described later, but is obtained by acetalizing a polyvinyl alcohol resin having a saponification degree of 80 mol% or more, It is preferable that the degree of polymerization is 1000 to 4000 and the degree of acetalization is 60 to 80 mol%.
  • the saponification degree of the polyvinyl alcohol is preferably 80 mol% or more. If the degree of saponification is less than 80 mol%, the acetalization reaction becomes difficult due to poor solubility of polyvinyl alcohol in water, and if the amount of hydroxyl groups is small, the acetalization reaction itself may be difficult. is there.
  • the degree of polymerization of the polyvinyl alcohol is preferably 1000 to 4000.
  • the polymerization degree is less than 1000, for example, when used as a material for a ceramic green sheet, the strength may be insufficient. If the degree of polymerization exceeds 4000, the solubility in water may decrease, or the viscosity of the aqueous solution may become too high, making acetalization difficult. In addition, the solution viscosity becomes too high and the coatability is lowered.
  • the polymerization degree of the said polyvinyl acetal uses the polymerization degree of polyvinyl alcohol which is a raw material at the time of synthesize
  • the polyvinyl alcohol can be obtained by saponifying a vinyl ester polymer.
  • the vinyl ester include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate and the like, and vinyl acetate is preferable from the economical viewpoint.
  • the polyvinyl alcohol preferably contains an ⁇ -olefin in the main chain. Since the hydrogen bond strength of the polyvinyl acetal resin is weakened by the ⁇ -olefin, the viscosity stability over time can be improved, and the screen printability can be improved.
  • Examples of the ⁇ -olefin include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, hexylene, cyclohexylene, cyclohexylethylene, cyclohexylpropylene, and the like, and ethylene is particularly preferable.
  • the content of the ⁇ -olefin is preferably 1 to 20 mol%.
  • the properties of the obtained polyvinyl acetal resin are no different from those of an unmodified polyvinyl acetal resin, and when it exceeds 20 mol%, the solubility of polyvinyl alcohol in water As a result, the acetalization reaction may become difficult, and the resulting polyvinyl acetal resin may become too hydrophobic to reduce its solubility in organic solvents.
  • the polyvinyl alcohol may be copolymerized with other ethylenically unsaturated monomers as long as the effects of the present invention are not impaired.
  • ethylenically unsaturated monomers include acrylic acid, methacrylic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, acrylonitrile methacrylonitrile, acrylamide, methacrylamide, and trimethyl.
  • terminal-modified polyvinyl alcohol obtained by copolymerizing vinyl ester monomer such as vinyl acetate with ethylene in the presence of thiol compounds such as thiol acetic acid and mercaptopropionic acid, and saponifying it. Can do.
  • the aldehyde used in the above reaction is not particularly limited.
  • formaldehyde including paraformaldehyde
  • acetaldehyde including paraacetaldehyde
  • propionaldehyde butyraldehyde
  • amylaldehyde hexylaldehyde
  • heptylaldehyde 2-ethylhexylaldehyde
  • Examples include cyclohexyl aldehyde, furfural, glyoxal, glutaraldehyde, benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxyaldehyde, m-hydroxyaldehyde, phenylacetaldehyde, phenylpropionaldehyde and the like.
  • These aldehydes may be used alone or in combination of two or more, and acetaldehyde and
  • the polyvinyl acetal resin is prepared by dissolving a polyvinyl alcohol resin in warm water, adding an aldehyde so as to have a predetermined degree of acetalization in the presence of an acid catalyst, reacting, and then washing, neutralizing, and drying.
  • the acid catalyst is not particularly limited, and any organic acid or inorganic acid can be used. Examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, and hydrochloric acid.
  • an alkali used for neutralization sodium hydroxide, potassium hydroxide, ammonia, sodium acetate, sodium carbonate, sodium hydrogencarbonate, potassium carbonate etc. are mentioned, for example.
  • the degree of acetalization of the polyvinyl acetal resin used in the present invention is preferably 60 to 80 mol%.
  • the degree of acetalization is less than 60 mol%, the hydrogen bondability of the polyvinyl acetal resin becomes too strong, and sufficient screen printability may not be obtained.
  • the polyvinyl acetal resin having a degree of acetalization exceeding 80 mol% is generally difficult to produce industrially.
  • the maximum acetalization degree is preferably 81.6 mol% according to the theoretical calculation by PJ Flory. J. Am. Chem. Soc., 61, 1518 (1939)).
  • the content of at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin and polyvinyl acetal resin in the inorganic fine particle-dispersed paste of the present invention is not particularly limited, but the preferred lower limit is 5% by weight and the preferred upper limit is 25. % By weight.
  • the resulting inorganic fine particle dispersed paste cannot obtain a sufficient viscosity, The screen printability may be deteriorated, and the surface smoothness of the sintered layer may be reduced due to increase in surface roughness due to receiving air blow in the oven in the drying step after printing.
  • the resulting inorganic fine particle-dispersed paste may have excessively high viscosity and adhesive strength, resulting in poor screen printability.
  • the inorganic fine particle-dispersed paste of the present invention contains an organic compound having one or more hydroxyl groups and having a normal temperature solid and a boiling point of less than 300 ° C.
  • the organic compound is solid at room temperature.
  • the resulting inorganic fine particle-dispersed paste is suppressed in surface roughness due to being blown in an oven in the drying step after printing, and the sintered layer is excellent in surface smoothness.
  • distribution paste can be obtained by melt
  • the organic compound is different from the organic solvent described later.
  • the mechanism of improving the drying property by adding an organic compound having at least one hydroxyl group and having a normal temperature solid and a boiling point of less than 300 ° C. is considered as follows.
  • the surface of the inorganic fine particles added to the inorganic fine particle-dispersed paste is in a very high polarity state, and has a function of sucking high polar functional groups.
  • an organic material having a highly polar functional group is not added to the inorganic fine particle-dispersed paste, the fine particles are aggregated in a solvent to cause precipitation.
  • an organic compound having one or more hydroxyl groups and having a normal temperature solid and a boiling point of less than 300 ° C. in the inorganic fine particle dispersed paste, it becomes liquid by mixing with an organic solvent.
  • a layer capable of adsorbing preferentially on the surface of the inorganic fine particles and evaporating around the inorganic fine particles under dry conditions can be formed.
  • the organic solvent is removed from the surface of the inorganic fine particle dispersed paste under dry conditions.
  • the surface is skinned and a thin resin layer is formed.
  • the surface resin layer formed with such drying is very non-uniform, depends on the drying conditions, and forms a more non-uniform layer under strong drying conditions under blowing conditions. For this reason, the organic solvent present under the skinned resin layer is difficult to evaporate, and unevenness is likely to occur on the surface of the coating film.
  • the organic compound having a layer formed on the surface of the inorganic fine particles evaporates under dry conditions, thereby forming a window for evaporating the internal organic solvent. Therefore, it is possible to reduce the drying unevenness of the organic solvent due to resin skinning, and even when drying is inadequate, it is a solid at room temperature, so it hardly acts as a plasticizer and maintains smoothness. It becomes easy.
  • the organic compound has a boiling point of less than 300 ° C.
  • the boiling point of the organic compound is 300 ° C. or higher, the resulting inorganic fine particle-dispersed paste has reduced drying properties in the drying step after printing, and the surface smoothness of the sintered layer is reduced.
  • the organic compound preferably has a boiling point of less than 280 ° C, more preferably less than 260 ° C.
  • the lower limit of the boiling point of the organic compound is not particularly limited, but the boiling point is preferably 160 ° C. or higher.
  • the said boiling point means the boiling point in a normal pressure.
  • the organic compound has one or more hydroxyl groups.
  • the storage stability of the resulting inorganic fine particle dispersed paste can be increased, and the viscosity of the inorganic fine particle dispersed paste can be increased by the interaction between the hydroxyl group, the resin and the organic solvent.
  • the viscosity can be made suitable for screen printing or the like.
  • the organic compound is not particularly limited as long as it has one or more hydroxyl groups and is a solid at normal temperature and has a boiling point of less than 300 ° C., but an alcohol-based organic compound composed of an aliphatic chain having 5 to 20 carbon atoms is preferable.
  • the alcohol organic compound is not particularly limited.
  • 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propane which have a high ratio of hydroxyl group to carbon number
  • the diol has a boiling point of about 200 ° C. and a softening point of 120 ° C. or more, it can be suitably used as an inorganic fine particle dispersed paste used for screen printing.
  • the content of the organic compound in the inorganic fine particle-dispersed paste of the present invention is not particularly limited, but the preferred lower limit is 1% by weight and the preferred upper limit is 30% by weight.
  • the content of the organic compound is less than 1% by weight, the resulting inorganic fine particle-dispersed paste has reduced drying properties in the drying step after printing, or increased surface roughness due to receiving air blowing in the oven, The surface smoothness of the sintered layer may be reduced by causing a skinning phenomenon caused by the entanglement of the resin.
  • the content of the organic compound exceeds 30% by weight, the obtained inorganic fine particle-dispersed paste may have poor storage stability.
  • the inorganic fine particle dispersed paste of the present invention contains an organic solvent.
  • the organic solvent is not particularly limited, for example, ethylene glycol ethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisobutyl ether, trimethylpentanediol monoisobutyrate, Butyl carbitol, butyl carbitol acetate, texanol, isophorone, butyl lactate, dioctyl phthalate, dioctyl adipate, benzyl alcohol, phenylpropylene glycol, cresol, terpineol, terpine acetate, dihydroterpineol, dihydroterpineol acetate, acetone, methyl ethyl ketone, methanol, Ethan
  • the content of the organic solvent in the inorganic fine particle-dispersed paste of the present invention is not particularly limited, but a preferred lower limit is 10% by weight and a preferred upper limit is 60% by weight.
  • a preferred lower limit is 10% by weight
  • a preferred upper limit is 60% by weight.
  • the content of the organic solvent is less than 10% by weight, the viscosity and adhesive strength of the resulting inorganic fine particle-dispersed paste may become too high, resulting in poor screen printability.
  • the content of the organic solvent exceeds 60% by weight, the resulting inorganic fine particle-dispersed paste may not have a sufficient viscosity and may have poor screen printability.
  • the surface smoothness of the sintered layer may decrease due to a decrease in surface roughness or an increase in surface roughness due to receiving air blow in the oven.
  • the inorganic fine particle dispersion paste of this invention it is preferable to bake in the state which dried the said organic solvent and organic compound. If the organic solvent or organic compound is insufficiently dried, and baking is performed in a state where the organic solvent or organic compound remains in the interior, soot generated by thermal decomposition of the binder resin is likely to be adsorbed on the surface of the fine particles. Compared with the case of complete drying, the carbon residue may be increased.
  • the inorganic fine particle dispersed paste of the present invention contains inorganic fine particles.
  • the inorganic fine particles are not particularly limited, and examples thereof include glass powder, ceramic powder, phosphor fine particles, silicon oxide, metal fine particles, metal oxide fine particles, and the like.
  • the glass powder is not particularly limited, and examples thereof include glass powders such as bismuth oxide glass, silicate glass, lead glass, zinc glass, and boron glass, CaO—Al 2 O 3 —SiO 2 series, MgO—Al 2 O, and the like. 3 -SiO 2 based glass powder or the like of the LiO 2 -Al 2 O 3 -SiO 2 system such as various silicon oxide and the like.
  • R is an element selected from the group consisting of Zn, Ba, Ca, Mg, Sr, Sn, Ni, Fe, and Mn.
  • the ceramic powder is not particularly limited, and examples thereof include alumina, zirconia, titanium oxide, barium titanate, alumina nitride, silicon nitride, and boron nitride.
  • nano-ITO used for a transparent electrode material, nano-titanium oxide used for a dye-sensitized solar cell, etc. can be used suitably.
  • the phosphor fine particles are not particularly limited, and examples thereof include BaMgAl 10 O 17 : Eu, Zn 2 SiO 4 : Mn, (Y, Gd) BO 3 : Eu, and the like.
  • the metal fine particles are not particularly limited, and examples thereof include powders made of nickel, palladium, platinum, gold, silver, aluminum, tungsten, alloys thereof, and the like. Further, metals such as copper and iron, which have good adsorption characteristics with a carboxyl group, amino group, amide group and the like and are easily oxidized, can be suitably used. These metal powders may be used alone or in combination of two or more.
  • content of the said inorganic fine particle in the inorganic fine particle dispersion paste of this invention is not specifically limited, A preferable minimum is 20 weight% and a preferable upper limit is 90 weight%.
  • a preferable minimum is 20 weight% and a preferable upper limit is 90 weight%.
  • the content of the inorganic fine particles is less than 20% by weight, the obtained inorganic fine particle-dispersed paste cannot obtain a sufficient viscosity and screen printing properties may be deteriorated.
  • the surface smoothness of the sintered layer may be reduced by increasing the surface roughness due to receiving air in the interior. If the content of the inorganic fine particles exceeds 90% by weight, the resulting inorganic fine particle-dispersed paste may have too high a viscosity and screen printing properties may deteriorate.
  • the inorganic fine particle-dispersed paste of the present invention preferably contains a surfactant in order to stabilize the compatibility between the organic compound and other materials.
  • the surfactant is not particularly limited, but a nonionic surfactant is preferable.
  • content of the said nonionic surfactant in the inorganic fine particle dispersion paste of this invention is not specifically limited, A preferable upper limit is 5 weight%.
  • the nonionic surfactant has good thermal decomposability, if the content exceeds 5% by weight, the thermal decomposability of the inorganic fine particle dispersed paste may be lowered.
  • the method for producing the inorganic fine particle-dispersed paste of the present invention is not particularly limited, and examples thereof include conventionally known stirring methods. Specifically, for example, selected from the group consisting of ethyl cellulose, (meth) acrylic resin, and polyvinyl acetal resin. And a method in which at least one of the above-mentioned organic compound, the above-mentioned organic solvent, the above-mentioned inorganic fine particles, and other components added as necessary are stirred with a three-roll or the like.
  • the inorganic fine particle-dispersed paste of the present invention is well dried in the drying step after printing, the surface roughness due to receiving air blow in the oven is suppressed, and the adverse effect of the skinning phenomenon during drying can be prevented.
  • a sintered layer having excellent surface smoothness can be formed. Therefore, for example, suitable as glass paste when glass powder is used as inorganic fine particles, ceramic paste when ceramic powder is used as inorganic fine particles, and conductive paste when metal such as aluminum or conductive powder is used as inorganic fine particles Used for.
  • glass paste when glass powder is used as the inorganic fine particles is preferably used for forming a dielectric layer of a plasma display panel.
  • a glass dielectric produced using such a glass paste is also one aspect of the present invention.
  • the inorganic fine particle-dispersed paste of the present invention is characterized in that it can be dried quickly while preventing the skinning phenomenon during drying. Therefore, when a conventional resin paste is used, it can be suitably used for a member that is difficult to maintain its shape by flowing during drying. The state where the shape cannot be maintained is also referred to as “sag”. For example, when a conventional resin paste is used for the phosphor in the cell on the back plate of the plasma display, the surface electrode of the solar battery cell, etc., it drew during drying and the height could not be maintained after printing.
  • a flat panel display produced using the inorganic fine particle dispersed paste of the present invention is also one aspect of the present invention.
  • distribution paste which can form the sintered layer excellent in surface smoothness can be provided.
  • Polymerization example 1 100 parts by weight of isobutyl methacrylate (IBMA) and 100 parts by weight of texanol as an organic solvent were mixed in a 2 L separatory flask equipped with a stirrer, a cooler, a thermometer, an oil bath, and a nitrogen gas inlet to obtain a monomer mixture. .
  • IBMA isobutyl methacrylate
  • texanol as an organic solvent
  • the obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated up until the oil bath reached 130 ° C. while stirring. .
  • a polymerization initiator a solution in which 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] was dispersed with texanol was added. Further, a texanol solution containing a polymerization initiator was added several times during the polymerization, and 1.5 parts by weight of the polymerization initiator was added to 100 parts by weight of the monomer in total.
  • Polymerization example 2 In a 2 L separate flask equipped with a stirrer, cooler, thermometer, oil bath, and nitrogen gas inlet, 100 parts by weight of a 1: 1 mixture of butyl methacrylate and methyl methacrylate (BMA / MMA), texanol as an organic solvent 100 parts by weight were mixed to obtain a monomer mixture.
  • BMA / MMA butyl methacrylate and methyl methacrylate
  • the obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated up until the oil bath reached 130 ° C. while stirring. .
  • a polymerization initiator a solution in which 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] was dispersed with texanol was added. Further, a texanol solution containing a polymerization initiator was added several times during the polymerization, and 1.5 parts by weight of the polymerization initiator was added to 100 parts by weight of the monomer in total.
  • the obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated up until the oil bath reached 130 ° C. while stirring. .
  • a solution in which azobisisobutyronitrile was dispersed with terpineol as a polymerization initiator was added. Further, a terpineol solution containing a polymerization initiator was added several times during the polymerization, and 0.8 parts by weight of the polymerization initiator was added to 100 parts by weight of the monomer in total.
  • the obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated up until the oil bath reached 130 ° C. while stirring. .
  • a solution in which azobisisobutyronitrile was dispersed with terpineol as a polymerization initiator was added. Further, a terpineol solution containing a polymerization initiator was added several times during the polymerization, and 1.5 parts by weight of the polymerization initiator was added to 100 parts by weight of the monomer in total.
  • the obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature in the separable flask system was replaced with nitrogen gas and heated until the water bath boiled while stirring.
  • a polymerization initiator 0.1 part by weight of an organic oxide polymerization catalyst (Perloyl 355, manufactured by NOF Corporation) was added, a polymerization initiator was added several times during the polymerization, and the total was 100 parts by weight of the monomer. 1.5 parts by weight of a polymerization initiator was added.
  • Example 1 Ethylcellulose STD4 was dissolved in terpineol. To this terpineol solution, 1,6-hexanediol was added as an organic compound so that the composition ratio shown in Table 1 was obtained, and a vehicle composition was obtained.
  • BL-4.2 manufactured by Nikko Chemical Co., Ltd.
  • glass fine particles having an average particle size of 2.0 ⁇ m as inorganic fine particles SiO 2 32.5%, B 2 O 3 and 20.5% ZnO and 18% Al 2 O 3 10%, 3.5% and BaO, 9% of Li 2 O, 6% of Na 2 O, the SnO 2 0.5% Content
  • SiO 2 32.5%, B 2 O 3 and 20.5% ZnO and 18% Al 2 O 3 10%, 3.5% and BaO, 9% of Li 2 O, 6% of Na 2 O, the SnO 2 0.5% Content was added so as to have the composition ratio shown in Table 1, and then sufficiently kneaded using a high-speed stirrer and processed until it became smooth with a three-roll mill to prepare an inorganic fine particle-dispersed paste.
  • Example 2 Dispersion of inorganic fine particles in the same manner as in Example 1, except that ethylcellulose STD45 was used instead of ethylcellulose STD4, myristyl alcohol was used instead of 1,6-hexanediol as the organic compound, and the composition ratio was changed to the composition shown in Table 1. A paste was prepared.
  • Example 3 Except that the texanol solution of (meth) acrylic resin (Poly (IBMA)) obtained in Polymerization Example 1 was used instead of the terpineol solution of ethyl cellulose STD4, the composition ratio was changed to the composition ratio shown in Table 1, and the same as in Example 1 Thus, an inorganic fine particle-dispersed paste was prepared.
  • Example 4 Example 1 except that the texanol solution of (meth) acrylic resin (Poly (BMA / MMA)) obtained in Polymerization Example 2 was used instead of the terpineol solution of ethyl cellulose STD4 and the composition ratio was changed to that shown in Table 1. In the same manner, an inorganic fine particle dispersed paste was prepared.
  • Example 5 (Synthesis of polyvinyl acetal resin) 193 g of polyvinyl alcohol having a polymerization degree of 1700 and a saponification degree of 98 mol% was added to 2900 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution. This solution is cooled to 40 ° C., 20 g of hydrochloric acid having a concentration of 35% by weight and 145 g of n-butyraldehyde are added thereto, the temperature of the solution is lowered to 15 ° C., and this temperature is maintained to conduct an acetalization reaction. The product was precipitated. Thereafter, the liquid temperature was kept at 40 ° C.
  • polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide), and the degree of acetalization was measured using 13 C-NMR (nuclear magnetic resonance spectrum). The degree of acetalization was 78 mol%. there were.
  • Example 6 To the terpineol solution of the (meth) acrylic resin (Poly (BMA / HEMA)) obtained in Polymerization Example 3, terpineol was added and dissolved so as to have the composition ratio described in Table 1. To this, 2,2-dimethyl-1,3-propanediol as an organic compound was further added so as to have the composition ratio shown in Table 1, and dispersed with a high-speed disperser. Further, aluminum fine particles (average particle size of 5 ⁇ m) as conductive fine particles and low melting point glass fine particles (average particle size of 1 ⁇ m) enabling fire-through are added so as to have the composition ratio shown in Table 1, and a high-speed stirring device is added. After using and kneading sufficiently, treatment was performed with a three roll mill while paying attention not to flatten the aluminum fine particles, and a conductive fine particle dispersed paste was prepared.
  • Table 6 To the terpineol solution of the (meth) acrylic resin (Poly (BMA / H
  • Example 7 Using a solution obtained by dissolving ethyl cellulose STD4 in terpineol and a terpineol solution of (meth) acrylic resin (Poly (BMA / MMA / HEMA)) obtained in Polymerization Example 4 so as to have the composition ratio described in Table 1. An inorganic fine particle-dispersed paste was produced in the same manner as in Example 1 except that the change was made.
  • Example 8 A terpineol solution of (meth) acrylic resin (Poly (CHMA / MMA / HEMA)) obtained in Polymerization Example 5, a rosin compound (KR85, manufactured by Arakawa Chemical Co., Ltd.), and green phosphor for PDP (Zn 2 SiO) as inorganic fine particles 4 ; Mn, manufactured by Nichia Corporation), an inorganic fine particle-dispersed paste was prepared in the same manner as in Example 1 except that the composition ratio was changed to the composition ratio shown in Table 1.
  • Example 9 Table using a texanol solution of (meth) acrylic resin (Poly (CHMA / MMA / HEMA)) obtained in Polymerization Example 6, ethyl cellulose (STD7), and silver powder (particle size 2 ⁇ m, manufactured by Shoei Chemical Co., Ltd.) as inorganic fine particles.
  • An inorganic fine particle-dispersed paste was prepared in the same manner as in Example 1 except that the composition ratio was changed to the composition ratio described in 1.
  • Example 1 An inorganic fine particle-dispersed paste was prepared in the same manner as in Example 1 except that 1,6-hexanediol as an organic compound was not used and the composition ratio was changed to those shown in Table 1.
  • Example 2 An inorganic fine particle-dispersed paste was prepared in the same manner as in Example 3 except that 1,6-hexanediol as the organic compound was not used and the composition ratio was changed as shown in Table 1.
  • Example 3 An inorganic fine particle-dispersed paste was prepared in the same manner as in Example 6 except that 2,2-dimethyl-1,3-propanediol as an organic compound was not used and the composition ratio was changed as shown in Table 1.
  • Example 6 (Comparative Example 6) Instead of the organic compound 2,2-dimethyl-1,3-propanediol, the same procedure as in Example 8 was used, except that 2-methyl-1,3-propanediol having a hydroxyl group and a liquid at room temperature was used. Thus, an inorganic fine particle dispersed paste was prepared.
  • Example 7 (Comparative Example 7) Instead of the organic compound 2,2-dimethyl-1,3-propanediol, the same procedure as in Example 9 was used, except that 2-methyl-1,3-propanediol having a hydroxyl group and a liquid at room temperature was used. Thus, an inorganic fine particle dispersed paste was prepared.
  • the inorganic fine particle dispersed paste was coated on a glass substrate, dried in a blow oven at 150 ° C. for 30 minutes, and then in an electric furnace at 500 ° C. for 30 minutes. Baked. About the obtained sintered layer, residual carbon (ppm) was measured with a carbon sulfur analyzer (manufactured by Horiba Ltd.), and the baked color was visually confirmed. The case where the residual carbon was 150 ppm or less was evaluated as “ ⁇ ”, and the case where the residual carbon exceeded 150 ppm was evaluated as “X”.
  • the obtained inorganic fine particle-dispersed paste was printed on a glass substrate and dried in a blown oven set at 120 ° C. for 20 minutes. Then, the height of the printed shape was evaluated using a laser microscope. The case where the height of the printed shape after drying was 10 ⁇ m or more was designated as “ ⁇ ”, and the case where the height of the printed shape was less than 10 ⁇ m due to sagging during drying was designated as “X”.
  • distribution paste which can form the sintered layer excellent in surface smoothness can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Provided is an inorganic microparticle dispersion paste that can form a sintered layer having excellent surface smoothness. Said inorganic microparticle dispersion paste contains: at least one species chosen from a group comprising ethyl cellulose, (meth)acryl resins, and polyvinyl acetal resins; an organic compound; inorganic microparticles; and an organic solvent. The organic compound has one or more hydroxyl groups, is solid at room temperature, and has a boiling point of less than 300°C.

Description

無機微粒子分散ペーストInorganic fine particle dispersion paste
本発明は、表面平滑性に優れた焼結層を形成することのできる無機微粒子分散ペーストに関する。 The present invention relates to an inorganic fine particle dispersed paste capable of forming a sintered layer excellent in surface smoothness.
近年、導電性粉末、セラミック粉末等の無機微粒子をバインダー樹脂に分散させた無機微粒子分散ペーストが、様々な形状の焼結体を得るために用いられている。特に、無機微粒子として蛍光体をバインダー樹脂に分散させた蛍光体ペーストや、低融点ガラスを分散させたガラスペーストは、プラズマディスプレイパネル等に用いられ、近年需要が高まりつつある。
また、無機微粒子としてチタン酸バリウムやアルミナをバインダー樹脂に分散させたセラミックペーストは、グリーンシートに成形され、積層型の電子部品、例えば、積層セラミックコンデンサに用いられている。
更に、太陽電池パネルの裏面電極は、通常、アルミニウム粉を分散させたペーストをスクリーン印刷等によって塗布し、乾燥した後、焼成することにより形成されている。
In recent years, an inorganic fine particle dispersed paste in which inorganic fine particles such as conductive powder and ceramic powder are dispersed in a binder resin has been used to obtain sintered bodies having various shapes. In particular, phosphor pastes in which phosphors are dispersed as inorganic fine particles in a binder resin and glass pastes in which low-melting-point glass is dispersed are used in plasma display panels and the like, and demand is increasing in recent years.
A ceramic paste in which barium titanate or alumina as inorganic fine particles is dispersed in a binder resin is formed into a green sheet and used for a multilayer electronic component such as a multilayer ceramic capacitor.
Furthermore, the back electrode of the solar cell panel is usually formed by applying a paste in which aluminum powder is dispersed by screen printing or the like, drying, and firing.
例えば、プラズマディスプレイパネルの誘電体層は、ガラス基板上にガラスペーストを印刷した後、炉内を循環排気した送風オーブンにて溶剤を乾燥し、次いで高温のオーブンにて脱脂、焼成を行うことにより形成される。誘電体層を形成するためのガラスペーストとして、例えば、特許文献1には、プラズマディスプレイパネルの誘電体層用組成物であって、少なくともガラス成分を含むガラスフリットと、分散剤と、熱分解バインダーと、溶剤とを含有し、前記分散剤がポリカルボン酸系高分子化合物である誘電体層用組成物、及び、該誘電体層用組成物を支持体上に塗布し、次いで乾燥することにより得られるグリーンシートが開示されている。 For example, the dielectric layer of a plasma display panel can be obtained by printing a glass paste on a glass substrate, drying the solvent in a blowing oven circulated through the furnace, and then degreasing and firing in a high-temperature oven. It is formed. As a glass paste for forming a dielectric layer, for example, Patent Document 1 discloses a composition for a dielectric layer of a plasma display panel, a glass frit containing at least a glass component, a dispersant, and a pyrolysis binder. And a solvent, and the dispersant is a polycarboxylic acid polymer compound, and the dielectric layer composition is applied onto a support and then dried. The resulting green sheet is disclosed.
特許文献1には、同文献に記載された誘電体層用組成物においては、ガラスフリットの分散状態が効果的に向上することが記載されている。
このような無機微粒子の分散性の改善は、均一な焼結層を形成し、焼結層の特性にばらつきを生じさせないために重要である。しかしながら、焼結層は、無機微粒子分散ペーストの印刷、乾燥、脱脂、焼成工程を経てはじめて形成されることから、単にペースト状態における均一性、即ち無機微粒子の分散性を改善しただけでは、最終的に形成される焼結層の均一性を充分に確保することは困難である。
Patent Document 1 describes that the dispersion state of the glass frit is effectively improved in the dielectric layer composition described in the same document.
Such improvement of the dispersibility of the inorganic fine particles is important in order to form a uniform sintered layer and not cause variations in the characteristics of the sintered layer. However, since the sintered layer is formed only after the printing, drying, degreasing, and firing steps of the inorganic fine particle dispersed paste, simply improving the uniformity in the paste state, that is, the dispersibility of the inorganic fine particles, is the final. It is difficult to ensure sufficient uniformity of the sintered layer formed on the substrate.
また、特許文献1に記載されたグリーンシートのように、無機微粒子分散ペーストを予めシート状に加工し、得られるグリーンシートを用いることで均一な焼結層を形成することも検討されているが、グリーンシートを用いる場合には基板に対するグリーンシートの密着性が不充分であることが問題である。 In addition, like the green sheet described in Patent Document 1, it has been studied to form a uniform sintered layer by processing the inorganic fine particle dispersed paste in advance into a sheet shape and using the obtained green sheet. When using a green sheet, the problem is that the adhesion of the green sheet to the substrate is insufficient.
特開2004-002164号公報JP 2004-002164 A
本発明は、表面平滑性に優れた焼結層を形成することのできる無機微粒子分散ペーストを提供することを目的とする。 An object of this invention is to provide the inorganic fine particle dispersion | distribution paste which can form the sintered layer excellent in surface smoothness.
本発明は、エチルセルロース、(メタ)アクリル樹脂及びポリビニルアセタール樹脂からなる群より選択される少なくとも1種と、有機化合物と、無機微粒子と、有機溶剤とを含有する無機微粒子分散ペーストであって、前記有機化合物は、水酸基を1つ以上有し、かつ、常温固体で沸点が300℃未満である無機微粒子分散ペーストである。
以下に本発明を詳述する。
The present invention is an inorganic fine particle dispersed paste containing at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin and polyvinyl acetal resin, an organic compound, inorganic fine particles, and an organic solvent, The organic compound is an inorganic fine particle-dispersed paste having one or more hydroxyl groups and having a normal temperature solid and a boiling point of less than 300 ° C.
The present invention is described in detail below.
通常、焼結層を形成するための無機微粒子分散ペーストには、印刷性を確保するために高沸点溶剤が用いられている。更に、高沸点溶剤を効率的に乾燥し、生産性を向上させるために、印刷後の乾燥工程においては送風オーブンが用いられている。本発明者らは、オーブン内での送風が原因となって無機微粒子分散ペーストの塗布層に表面荒れが生じ、その結果、焼結層の表面平滑性が低下し、焼結層の性能が悪化していることを見出した。 Usually, a high boiling point solvent is used in the inorganic fine particle dispersed paste for forming a sintered layer in order to ensure printability. Furthermore, in order to dry a high boiling point solvent efficiently and to improve productivity, the ventilation oven is used in the drying process after printing. The inventors of the present invention caused surface roughness in the coating layer of the inorganic fine particle dispersed paste due to air blowing in the oven, resulting in reduced surface smoothness of the sintered layer and deteriorated performance of the sintered layer. I found out.
本発明者らは、エチルセルロース、(メタ)アクリル樹脂及びポリビニルアセタール樹脂からなる群より選択される少なくとも1種と、無機微粒子と、有機溶剤とに加え、更に、水酸基を1つ以上有し、かつ、常温固体で沸点が300℃未満である有機化合物を含有する無機微粒子分散ペーストは、印刷後の乾燥工程において良好に乾燥するとともに、オーブンでの乾燥時には、オーブン内で送風を受けることによる表面荒れが抑制され、また、樹脂の絡み合いに起因する皮張り現象をも起こすことなく均一に乾燥できることを見出した。更に、本発明者らは、該無機微粒子分散ペーストを用いて形成された焼結層は表面平滑性に優れることを見出し、本発明を完成させるに至った。 The present inventors have at least one hydroxyl group in addition to at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin and polyvinyl acetal resin, inorganic fine particles and organic solvent, and The inorganic fine particle dispersion paste containing an organic compound having a boiling point of less than 300 ° C. is well-dried in the drying process after printing, and the surface is roughened by receiving air in the oven when drying in the oven. It was found that the film can be uniformly dried without causing a skinning phenomenon caused by the entanglement of the resin. Furthermore, the present inventors have found that a sintered layer formed using the inorganic fine particle dispersed paste is excellent in surface smoothness, and have completed the present invention.
本発明の無機微粒子分散ペーストは、エチルセルロース、(メタ)アクリル樹脂及びポリビニルアセタール樹脂からなる群より選択される少なくとも1種を含有する。
上記エチルセルロースは特に限定されず、得られる無機微粒子分散ペーストの印刷方法、目的とする焼結層の厚み等に応じて適宜グレードを選択すればよい。なかでも、スクリーン印刷を行う場合には、一般にチキソ性を有するエチルセルロースが好ましいことから、STD45、STD100等のグレードのエチルセルロースが好ましい。また、厚い焼結層を得る場合には、無機微粒子分散ペースト中の無機微粒子の組成比を高める必要があり、無機微粒子分散ペーストの粘度が高くなりやすいことから、STD4、STD10等の低粘度仕様のグレードのエチルセルロースが好ましい。
The inorganic fine particle-dispersed paste of the present invention contains at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin, and polyvinyl acetal resin.
The ethyl cellulose is not particularly limited, and a grade may be appropriately selected according to the printing method of the obtained inorganic fine particle dispersed paste, the desired thickness of the sintered layer, and the like. In particular, when screen printing is performed, ethyl cellulose having thixotropy is generally preferable, and grades of ethyl cellulose such as STD45 and STD100 are preferable. In addition, when obtaining a thick sintered layer, it is necessary to increase the composition ratio of the inorganic fine particles in the inorganic fine particle dispersed paste, and the viscosity of the inorganic fine particle dispersed paste tends to increase. Therefore, low viscosity specifications such as STD4, STD10, etc. Grade of ethylcellulose is preferred.
上記(メタ)アクリル樹脂は、350~400℃程度の低温で分解するものであれば特に限定されないが、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート及びポリオキシアルキレン構造を有する(メタ)アクリルモノマーからなる群より選択される少なくとも1種からなる重合体が好ましい。ここで、例えば(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。
なかでも、少ない樹脂の量で高い粘度が得られることから、ガラス転移温度(Tg)の高いポリメチルメタクリレート(メタクリレートの重合体、Tg105℃)が好ましい。ポリメタクリレートはまた、低温脱脂性にも優れる。更に、本発明の無機微粒子分散ペーストは後述する有機化合物を含有することから、ブチルメタクリレート又はイソブチルメタクリレートに由来する成分を有する重合体が好ましい。
The (meth) acrylic resin is not particularly limited as long as it decomposes at a low temperature of about 350 to 400 ° C., but methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) ) Acrylate, tert-butyl (meth) acrylate, isobutyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isobornyl (meth) acrylate, n-stearyl (meth) acrylate, benzyl (meth) acrylate And a polymer comprising at least one selected from the group consisting of (meth) acrylic monomers having a polyoxyalkylene structure is preferred. Here, for example, (meth) acrylate means acrylate or methacrylate.
Among them, polymethyl methacrylate (polymer of methacrylate, Tg 105 ° C.) having a high glass transition temperature (Tg) is preferable because a high viscosity can be obtained with a small amount of resin. Polymethacrylate is also excellent in low temperature degreasing properties. Furthermore, since the inorganic fine particle-dispersed paste of the present invention contains an organic compound described later, a polymer having a component derived from butyl methacrylate or isobutyl methacrylate is preferable.
また、上記(メタ)アクリル樹脂は、極性基を有するモノマーからなるセグメントを有してもよい。
上記極性基を有するモノマーとしては、例えば、2-ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、メタクリル酸、グリシジルメタクリレート、グリセロールモノメタクリレート等が挙げられる。
Moreover, the said (meth) acrylic resin may have the segment which consists of a monomer which has a polar group.
Examples of the monomer having a polar group include 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, methacrylic acid, glycidyl methacrylate, glycerol monomethacrylate, and the like.
上記極性基を有するモノマーに由来するセグメントを有する場合、上記極性基を有するモノマーに由来するセグメントの含有量は20重量%以下であることが好ましい。
上記極性基を有するモノマーに由来するセグメントの含有量が20重量%を超えると、低温での熱分解性が損なわれたり、無機微粒子に付着する煤が多くなり、焼結体の残留炭素が多くなったりすることがある。より好ましくは10重量部以下である。
When it has the segment derived from the monomer which has the said polar group, it is preferable that content of the segment derived from the monomer which has the said polar group is 20 weight% or less.
If the content of the segment derived from the monomer having the polar group exceeds 20% by weight, thermal decomposition at low temperature is impaired, or soot is attached to the inorganic fine particles, resulting in a large amount of residual carbon in the sintered body. Sometimes it becomes. More preferably, it is 10 parts by weight or less.
上記(メタ)アクリル樹脂は、分子末端に親水性官能基を有することが好ましい。上記親水性官能基は特に限定されないが、カルボニル基、アミノ基、アミド基類であることが好ましい。
一般に、(メタ)アクリル系モノマーのエステル置換基にカルボニル基、アミノ基、アミド基等の相互作用性の高い官能基を導入した(メタ)アクリル樹脂を用いた場合には、無機微粒子分散ペーストの焼成工程において、該(メタ)アクリル樹脂の解重合が阻害されて熱分解終了温度が高くなり、熱分解性が極めて悪化する。
これに対し、分子末端にカルボニル基、アミノ基、アミド基等を有する(メタ)アクリル樹脂を用いた場合には、該(メタ)アクリル樹脂の解重合が阻害されず、熱分解終了温度にはほとんど影響しない。また、ガラス粉末等の無機微粒子はカルボニル基、アミノ基、アミド基等との相互作用性が高いことから、分子末端にカルボニル基、アミノ基、アミド基等を有する(メタ)アクリル樹脂を用いた場合には、該(メタ)アクリル樹脂の一方の分子末端が無機微粒子表面に吸着し、他方は有機溶剤側へ伸びた形態となり、無機微粒子の再凝集を防ぎ、分散安定性を向上させることができる。
The (meth) acrylic resin preferably has a hydrophilic functional group at the molecular end. The hydrophilic functional group is not particularly limited, but is preferably a carbonyl group, an amino group, or an amide group.
In general, when a (meth) acrylic resin in which a highly interactive functional group such as a carbonyl group, amino group, or amide group is introduced into the ester substituent of a (meth) acrylic monomer, In the firing step, the depolymerization of the (meth) acrylic resin is inhibited, the thermal decomposition end temperature is increased, and the thermal decomposability is extremely deteriorated.
On the other hand, when a (meth) acrylic resin having a carbonyl group, an amino group, an amide group or the like at the molecular end is used, the depolymerization of the (meth) acrylic resin is not inhibited, and the thermal decomposition end temperature is Almost no effect. In addition, since inorganic fine particles such as glass powder have high interaction properties with carbonyl groups, amino groups, amide groups, etc., (meth) acrylic resins having carbonyl groups, amino groups, amide groups, etc. at the molecular ends were used. In this case, one molecular end of the (meth) acrylic resin is adsorbed on the surface of the inorganic fine particles, and the other is extended to the organic solvent side, preventing re-aggregation of the inorganic fine particles and improving dispersion stability. it can.
上記(メタ)アクリル樹脂のポリスチレン換算による重量平均分子量は特に限定されないが、好ましい下限は5000、好ましい上限は500000である。上記重量平均分子量が5000未満であると、得られる無機微粒子分散ペーストは、充分な粘度が得られず、スクリーン印刷性が悪くなることがあり、また、印刷後の乾燥工程においてオーブン内で送風を受けることによる表面荒れが増すことにより、焼結層の表面平滑性が低下することがある。上記重量平均分子量が500000を超えると、得られる無機微粒子分散ペーストの粘着力が高くなりすぎ、延糸が発生することがあり、スクリーン印刷性が悪くなることがある。上記重量平均分子量の好ましい上限は100000であり、より好ましい上限は50000である。特に、上記(メタ)アクリル樹脂のポリスチレン換算による重量平均分子量が10000~50000であると、スクリーン印刷時に鮮明な像が得られるため好ましい。
なお、ポリスチレン換算による重量平均分子量は、カラムとして例えばカラムLF-804(昭和電工社製)を用いてGPC測定を行うことで得ることができる。
Although the weight average molecular weight by polystyrene conversion of the said (meth) acrylic resin is not specifically limited, A preferable minimum is 5000 and a preferable upper limit is 500,000. When the weight average molecular weight is less than 5,000, the resulting inorganic fine particle dispersed paste may not have sufficient viscosity and screen printing properties may be deteriorated. In addition, air is blown in an oven in a drying process after printing. When the surface roughness due to receiving increases, the surface smoothness of the sintered layer may decrease. When the weight average molecular weight is more than 500,000, the adhesive strength of the obtained inorganic fine particle dispersed paste becomes too high, so that the yarn may be generated and the screen printability may be deteriorated. The upper limit with the said preferable weight average molecular weight is 100,000, and a more preferable upper limit is 50000. In particular, the polystyrene equivalent weight average molecular weight of the (meth) acrylic resin is preferably 10,000 to 50,000 because a clear image can be obtained during screen printing.
The weight average molecular weight in terms of polystyrene can be obtained by GPC measurement using, for example, a column LF-804 (manufactured by Showa Denko KK) as a column.
上記(メタ)アクリル樹脂を作製する方法は特に限定されず、例えば、カルボニル基、アミノ基、アミド基等を有する重合開始剤のもとで、上述した(メタ)アクリル系モノマーをフリーラジカル重合法、リビングラジカル重合法、イニファーター重合法、アニオン重合法、リビングアニオン重合法等の従来公知の方法で共重合する方法や、カルボニル基、アミノ基、アミド基等を有する連鎖移動剤のもとで、上述した(メタ)アクリル系モノマーをフリーラジカル重合法、リビングラジカル重合法、イニファーター重合法、アニオン重合法、リビングアニオン重合法等の従来公知の方法で共重合する方法等が挙げられる。これらの方法は単独で用いてもよく、2種以上を併用してもよい。
上記(メタ)アクリル樹脂を作製する方法においては、ラジカル重合開始剤としてカルボニル基、アミノ基、アミド基等を有する重合開始剤を用いることにより、より多くの分子末端にカルボニル基、アミノ基、アミド基等を導入することができる。なお、上記(メタ)アクリル樹脂の分子末端のみにカルボニル基、アミノ基、アミド基等が導入されたことは、例えば、13C-NMRにより確認することができる。
The method for producing the (meth) acrylic resin is not particularly limited. For example, the above-mentioned (meth) acrylic monomer is subjected to a free radical polymerization method under a polymerization initiator having a carbonyl group, an amino group, an amide group, or the like. , Copolymerization by a conventionally known method such as a living radical polymerization method, an iniferter polymerization method, an anionic polymerization method, a living anion polymerization method, or a chain transfer agent having a carbonyl group, an amino group, an amide group, etc. Examples thereof include a method of copolymerizing the above-described (meth) acrylic monomer by a conventionally known method such as a free radical polymerization method, a living radical polymerization method, an iniferter polymerization method, an anion polymerization method, or a living anion polymerization method. These methods may be used independently and may use 2 or more types together.
In the method for producing the (meth) acrylic resin, by using a polymerization initiator having a carbonyl group, an amino group, an amide group or the like as a radical polymerization initiator, a carbonyl group, an amino group, an amide at more molecular ends. Groups and the like can be introduced. The introduction of a carbonyl group, amino group, amide group or the like only at the molecular end of the (meth) acrylic resin can be confirmed by, for example, 13 C-NMR.
上記ポリビニルアセタール樹脂は、後述する有機溶剤との相溶性に優れるものであれば特に限定されないが、ケン化度が80モル%以上のポリビニルアルコール樹脂をアセタール化することで得られるものであって、重合度が1000~4000、アセタール化度が60~80モル%であることが好ましい。 The polyvinyl acetal resin is not particularly limited as long as it has excellent compatibility with the organic solvent described later, but is obtained by acetalizing a polyvinyl alcohol resin having a saponification degree of 80 mol% or more, It is preferable that the degree of polymerization is 1000 to 4000 and the degree of acetalization is 60 to 80 mol%.
上記ポリビニルアルコールのケン化度は、80モル%以上であることが好ましい。上記ケン化度が80モル%未満であると、ポリビニルアルコールの水への溶解性が悪くなるためアセタール化反応が困難になり、また、水酸基量が少ないとアセタール化反応自体が困難になることがある。 The saponification degree of the polyvinyl alcohol is preferably 80 mol% or more. If the degree of saponification is less than 80 mol%, the acetalization reaction becomes difficult due to poor solubility of polyvinyl alcohol in water, and if the amount of hydroxyl groups is small, the acetalization reaction itself may be difficult. is there.
上記ポリビニルアルコールの重合度は、1000~4000であることが好ましい。
上記重合度が1000未満であると、例えば、セラミックグリーンシートの材料として使用した場合に、強度が不充分となることがある。上記重合度が4000を超えると、水への溶解性が低下したり、水溶液の粘度が高くなりすぎたりしてアセタール化が困難となることがある。また、溶液粘度が高くなりすぎて塗工性が低下する。
なお、上記ポリビニルアセタールの重合度は、合成する際の原料であるポリビニルアルコールの重合度を用いる。また、2種以上のポリビニルアルコールを混合する場合には、これらの重合度の平均を用いる。
The degree of polymerization of the polyvinyl alcohol is preferably 1000 to 4000.
When the polymerization degree is less than 1000, for example, when used as a material for a ceramic green sheet, the strength may be insufficient. If the degree of polymerization exceeds 4000, the solubility in water may decrease, or the viscosity of the aqueous solution may become too high, making acetalization difficult. In addition, the solution viscosity becomes too high and the coatability is lowered.
In addition, the polymerization degree of the said polyvinyl acetal uses the polymerization degree of polyvinyl alcohol which is a raw material at the time of synthesize | combining. Moreover, when mixing 2 or more types of polyvinyl alcohol, the average of these polymerization degrees is used.
上記ポリビニルアルコールは、ビニルエステルの重合体をケン化することにより得られる。
上記ビニルエステルとしては、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどが挙げられるが、酢酸ビニルが経済的にみて好ましい。
また、上記ポリビニルアルコールは、主鎖にα―オレフィンを含有していることが好ましい。
上記α-オレフィンによってポリビニルアセタール樹脂の水素結合力が弱められるため、粘度の経時安定性を向上させることができたり、スクリーン印刷性を向上させたりすることができる。
The polyvinyl alcohol can be obtained by saponifying a vinyl ester polymer.
Examples of the vinyl ester include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate and the like, and vinyl acetate is preferable from the economical viewpoint.
The polyvinyl alcohol preferably contains an α-olefin in the main chain.
Since the hydrogen bond strength of the polyvinyl acetal resin is weakened by the α-olefin, the viscosity stability over time can be improved, and the screen printability can be improved.
上記α-オレフィンとしては、例えば、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、へキシレン、シクロヘキシレン、シクロヘキシルエチレン、シクロヘキシルプロピレン等が挙げられ、特にエチレンが好ましい。
上記α-オレフィンの含有量としては、1~20モル%であることが望ましい。
上記α-オレフィンの含有量が1モル%未満であると、得られるポリビニルアセタール樹脂の特性が未変性のポリビニルアセタール樹脂と何ら変わりなくなり、20モル%を超えると、ポリビニルアルコールの水への溶解性が低下するため、アセタール化反応が困難になったり、できあがったポリビニルアセタール樹脂の疎水性が強くなりすぎて有機溶剤への溶解性が低下したりすることがある。
Examples of the α-olefin include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, hexylene, cyclohexylene, cyclohexylethylene, cyclohexylpropylene, and the like, and ethylene is particularly preferable.
The content of the α-olefin is preferably 1 to 20 mol%.
When the content of the α-olefin is less than 1 mol%, the properties of the obtained polyvinyl acetal resin are no different from those of an unmodified polyvinyl acetal resin, and when it exceeds 20 mol%, the solubility of polyvinyl alcohol in water As a result, the acetalization reaction may become difficult, and the resulting polyvinyl acetal resin may become too hydrophobic to reduce its solubility in organic solvents.
上記ポリビニルアルコールは本発明の効果を損なわない範囲で、その他のエチレン性不飽和単量体を共重合したものでも良い。
このようなエチレン性不飽和単量体としては、例えば、アクリル酸、メタクリル酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸、アクリロニトリルメタクリロニトリル、アクリルアミド、メタクリルアミド、トリメチル-(3-アクリルアミド-3-ジメチルプロピル)-アンモニウムクロリド、アクリルアミド-2-メチルプロパンスルホン酸、及びそのナトリウム塩、エチルビニルエーテル、ブチルビニルエーテル、N-ビニルピロリドン、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム等が挙げられる。
また、チオール酢酸、メルカプトプロピオン酸等のチオール化合物の存在下で、酢酸ビニル等のビニルエステル系単量体とエチレンを共重合し、それをケン化することによって得られる末端変性ポリビニルアルコールも用いることができる。
The polyvinyl alcohol may be copolymerized with other ethylenically unsaturated monomers as long as the effects of the present invention are not impaired.
Examples of such ethylenically unsaturated monomers include acrylic acid, methacrylic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, acrylonitrile methacrylonitrile, acrylamide, methacrylamide, and trimethyl. -(3-acrylamido-3-dimethylpropyl) -ammonium chloride, acrylamido-2-methylpropanesulfonic acid and its sodium salt, ethyl vinyl ether, butyl vinyl ether, N-vinyl pyrrolidone, vinyl chloride, vinyl bromide, vinyl fluoride , Vinylidene chloride, vinylidene fluoride, tetrafluoroethylene, sodium vinyl sulfonate, sodium allyl sulfonate and the like.
Also use terminal-modified polyvinyl alcohol obtained by copolymerizing vinyl ester monomer such as vinyl acetate with ethylene in the presence of thiol compounds such as thiol acetic acid and mercaptopropionic acid, and saponifying it. Can do.
上記反応に用いられるアルデヒドは特に限定されないが、例えば、ホルムアルデヒド(パラホルムアルデヒドを含む)、アセトアルデヒド(パラアセトアルデヒドを含む)、プロピオンアルデヒド、ブチルアルデヒド、アミルアルデヒド、ヘキシルアルデヒド、ヘプチルアルデヒド、2-エチルヘキシルアルデヒド、シクロヘキシルアルデヒド、フルフラール、グリオキザール、グルタルアルデヒド、ベンズアルデヒド、2-メチルベンズアルデヒド、3-メチルベンズアルデヒド、4-メチルベンズアルデヒド、p-ヒドロキシアルデヒド、m-ヒドロキシアルデヒド、フェニルアセトアルデヒド、フェニルプロピオンアルデヒド等が挙げられる。
これらのアルデヒドは単独で用いても2種以上併用しても良く、アセトアルデヒド及び/又はブチルアルデヒドが好適に用いられる。
The aldehyde used in the above reaction is not particularly limited. For example, formaldehyde (including paraformaldehyde), acetaldehyde (including paraacetaldehyde), propionaldehyde, butyraldehyde, amylaldehyde, hexylaldehyde, heptylaldehyde, 2-ethylhexylaldehyde, Examples include cyclohexyl aldehyde, furfural, glyoxal, glutaraldehyde, benzaldehyde, 2-methylbenzaldehyde, 3-methylbenzaldehyde, 4-methylbenzaldehyde, p-hydroxyaldehyde, m-hydroxyaldehyde, phenylacetaldehyde, phenylpropionaldehyde and the like.
These aldehydes may be used alone or in combination of two or more, and acetaldehyde and / or butyraldehyde is preferably used.
上記ポリビニルアセタール樹脂は、ポリビニルアルコール樹脂を温水で溶解した後、酸触媒の存在下で所定のアセタール化度となるようにアルデヒドを添加し、反応させた後、水洗、中和、乾燥することで得ることができる。
上記酸触媒としては特に規定されず、有機酸、無機酸いずれも用いることができるが、例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。
また、中和に用いられるアルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、酢酸ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等が挙げられる。
The polyvinyl acetal resin is prepared by dissolving a polyvinyl alcohol resin in warm water, adding an aldehyde so as to have a predetermined degree of acetalization in the presence of an acid catalyst, reacting, and then washing, neutralizing, and drying. Obtainable.
The acid catalyst is not particularly limited, and any organic acid or inorganic acid can be used. Examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, and hydrochloric acid.
Moreover, as an alkali used for neutralization, sodium hydroxide, potassium hydroxide, ammonia, sodium acetate, sodium carbonate, sodium hydrogencarbonate, potassium carbonate etc. are mentioned, for example.
本発明に用いられるポリビニルアセタール樹脂のアセタール化度は60~80モル%であることが好ましい。上記アセタール化度が60モル%未満であると、ポリビニルアセタール樹脂の水素結合性が強くなりすぎて充分なスクリーン印刷性が得られないことがある。
一方、上記アセタール化度が80モル%を超えるポリビニルアセタール樹脂は一般に工業的には製造が困難である。(P.J.Floryの理論計算によると、最大のアセタール化度は81.6モル%であることが好ましい。J.Am.Chem.Soc.,61,1518(1939))
The degree of acetalization of the polyvinyl acetal resin used in the present invention is preferably 60 to 80 mol%. When the degree of acetalization is less than 60 mol%, the hydrogen bondability of the polyvinyl acetal resin becomes too strong, and sufficient screen printability may not be obtained.
On the other hand, the polyvinyl acetal resin having a degree of acetalization exceeding 80 mol% is generally difficult to produce industrially. (The maximum acetalization degree is preferably 81.6 mol% according to the theoretical calculation by PJ Flory. J. Am. Chem. Soc., 61, 1518 (1939)).
本発明の無機微粒子分散ペーストにおける上記エチルセルロース、(メタ)アクリル樹脂及びポリビニルアセタール樹脂からなる群より選択される少なくとも1種の含有量は特に限定されないが、好ましい下限は5重量%、好ましい上限は25重量%である。上記エチルセルロース、(メタ)アクリル樹脂及びポリビニルアセタール樹脂からなる群より選択される少なくとも1種の含有量が5重量%未満であると、得られる無機微粒子分散ペーストは、充分な粘度が得られず、スクリーン印刷性が悪くなることがあり、また、印刷後の乾燥工程においてオーブン内で送風を受けることによる表面荒れが増すことにより、焼結層の表面平滑性が低下することがある。上記含有量が25重量%を超えると、得られる無機微粒子分散ペーストは、粘度、粘着力が高くなりすぎてスクリーン印刷性が悪くなることがある。 The content of at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin and polyvinyl acetal resin in the inorganic fine particle-dispersed paste of the present invention is not particularly limited, but the preferred lower limit is 5% by weight and the preferred upper limit is 25. % By weight. When the content of at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin and polyvinyl acetal resin is less than 5% by weight, the resulting inorganic fine particle dispersed paste cannot obtain a sufficient viscosity, The screen printability may be deteriorated, and the surface smoothness of the sintered layer may be reduced due to increase in surface roughness due to receiving air blow in the oven in the drying step after printing. When the content exceeds 25% by weight, the resulting inorganic fine particle-dispersed paste may have excessively high viscosity and adhesive strength, resulting in poor screen printability.
本発明の無機微粒子分散ペーストは、水酸基を1つ以上有し、かつ、常温固体で沸点が300℃未満である有機化合物を含有する。
上記有機化合物は、常温で固体である。上記有機化合物が常温で固体であることにより、得られる無機微粒子分散ペーストは、印刷後の乾燥工程においてオーブン内で送風を受けることによる表面荒れが抑制され、焼結層が表面平滑性に優れる。
なお、上記有機化合物は常温で固体であるが、後述する有機溶剤に溶解することにより、ペースト状の無機微粒子分散ペーストを得ることができる。
なお、上記有機化合物は、後述する有機溶剤とは異なるものである。
The inorganic fine particle-dispersed paste of the present invention contains an organic compound having one or more hydroxyl groups and having a normal temperature solid and a boiling point of less than 300 ° C.
The organic compound is solid at room temperature. When the organic compound is solid at room temperature, the resulting inorganic fine particle-dispersed paste is suppressed in surface roughness due to being blown in an oven in the drying step after printing, and the sintered layer is excellent in surface smoothness.
In addition, although the said organic compound is solid at normal temperature, a paste-form inorganic fine particle dispersion | distribution paste can be obtained by melt | dissolving in the organic solvent mentioned later.
The organic compound is different from the organic solvent described later.
上記水酸基を1つ以上有し、かつ、常温固体で沸点が300℃未満である有機化合物を添加することで、乾燥性が向上するメカニズムは以下のように考えられる。
無機微粒子分散ペーストに添加される無機微粒子の表面は、非常に高極性な状態であり、高極性な官能基を吸い寄せる働きがある。通常、無機微粒子分散ペーストに、高極性の官能基を有する有機材料が添加されない場合、溶剤の中で微粒子同士が凝集し、沈殿を生じる。
そこで、水酸基を1つ以上有し、かつ、常温固体で沸点が300℃未満である有機化合物を添加することで、無機微粒子分散ペースト中では、有機溶剤と混合することで、液状となるため、優先的に無機微粒子の表面に吸着し、乾燥条件下では無機微粒子の周囲に蒸発可能な層を形成させることができる。
The mechanism of improving the drying property by adding an organic compound having at least one hydroxyl group and having a normal temperature solid and a boiling point of less than 300 ° C. is considered as follows.
The surface of the inorganic fine particles added to the inorganic fine particle-dispersed paste is in a very high polarity state, and has a function of sucking high polar functional groups. Usually, when an organic material having a highly polar functional group is not added to the inorganic fine particle-dispersed paste, the fine particles are aggregated in a solvent to cause precipitation.
Therefore, by adding an organic compound having one or more hydroxyl groups and having a normal temperature solid and a boiling point of less than 300 ° C., in the inorganic fine particle dispersed paste, it becomes liquid by mixing with an organic solvent. A layer capable of adsorbing preferentially on the surface of the inorganic fine particles and evaporating around the inorganic fine particles under dry conditions can be formed.
一方、エチルセルロース、(メタ)アクリル樹脂及びポリビニルアセタール樹脂からなる群より選択される少なくとも1種バインダー樹脂は、高分子量の重合体であるため、乾燥条件下では無機微粒子分散ペースト表面から、有機溶剤が乾燥していくことによって、表面が皮張りを起こし、薄い樹脂層が形成される。
このような乾燥に伴い形成される表面樹脂層は非常に不均一で、乾燥条件に依存し、送風条件下の強い乾燥条件下ではより不均一な層を形成する。そのため、皮張りした樹脂層の下に存在する有機溶剤は、蒸発しにくくなり、塗膜表面に凹凸が発生しやすくなる。
これに対して、無機微粒子の表面に層を形成した上記有機化合物は乾燥条件下で蒸発し、内部の有機溶剤を蒸発させる窓を形成する。そのため、樹脂の皮張りに起因する有機溶剤の乾燥ムラを低減することができ、更に、乾燥が不充分である場合でも、常温固体であるため、可塑剤として作用しにくく、平滑性を維持しやすくなる。
On the other hand, since at least one binder resin selected from the group consisting of ethyl cellulose, (meth) acrylic resin and polyvinyl acetal resin is a high molecular weight polymer, the organic solvent is removed from the surface of the inorganic fine particle dispersed paste under dry conditions. By drying, the surface is skinned and a thin resin layer is formed.
The surface resin layer formed with such drying is very non-uniform, depends on the drying conditions, and forms a more non-uniform layer under strong drying conditions under blowing conditions. For this reason, the organic solvent present under the skinned resin layer is difficult to evaporate, and unevenness is likely to occur on the surface of the coating film.
On the other hand, the organic compound having a layer formed on the surface of the inorganic fine particles evaporates under dry conditions, thereby forming a window for evaporating the internal organic solvent. Therefore, it is possible to reduce the drying unevenness of the organic solvent due to resin skinning, and even when drying is inadequate, it is a solid at room temperature, so it hardly acts as a plasticizer and maintains smoothness. It becomes easy.
上記有機化合物は、沸点が300℃未満である。上記有機化合物の沸点が300℃以上であると、得られる無機微粒子分散ペーストは、印刷後の乾燥工程における乾燥性が低下し、焼結層の表面平滑性が低下する。上記有機化合物は、沸点が280℃未満であることが好ましく、260℃未満であることがより好ましい。
また、上記有機化合物の沸点の下限は特に限定されないが、沸点が160℃以上であることが好ましい。上記有機化合物の沸点が160℃未満であると、得られる無機微粒子分散ペーストは、印刷中に乾燥しやすく、長時間の連続印刷に用いる場合には不具合が生じることがある。なお、上記沸点は、常圧における沸点を意味する。
The organic compound has a boiling point of less than 300 ° C. When the boiling point of the organic compound is 300 ° C. or higher, the resulting inorganic fine particle-dispersed paste has reduced drying properties in the drying step after printing, and the surface smoothness of the sintered layer is reduced. The organic compound preferably has a boiling point of less than 280 ° C, more preferably less than 260 ° C.
The lower limit of the boiling point of the organic compound is not particularly limited, but the boiling point is preferably 160 ° C. or higher. When the organic compound has a boiling point of less than 160 ° C., the obtained inorganic fine particle dispersed paste is easily dried during printing, and may cause problems when used for continuous printing for a long time. In addition, the said boiling point means the boiling point in a normal pressure.
上記有機化合物は水酸基を1つ以上有する。上記水酸基を1つ以上有することで、得られる無機微粒子分散ペーストの貯蔵安定性を高めることができ、また、水酸基と、樹脂及び有機溶剤との相互作用により、無機微粒子分散ペーストの粘度を高めることができ、スクリーン印刷等に適した粘度とすることができる。 The organic compound has one or more hydroxyl groups. By having one or more of the above hydroxyl groups, the storage stability of the resulting inorganic fine particle dispersed paste can be increased, and the viscosity of the inorganic fine particle dispersed paste can be increased by the interaction between the hydroxyl group, the resin and the organic solvent. The viscosity can be made suitable for screen printing or the like.
上記有機化合物は、水酸基を1つ以上有し、かつ、常温固体で沸点が300℃未満であれば特に限定されないが、炭素数が5以上20未満の脂肪鎖からなるアルコール系有機化合物が好ましい。
上記アルコール系有機化合物は特に限定されず、例えば、1,6-ヘキサンジオール、1,8-オクタンジオール、1,10-デカンジオール、ミリスチルアルコール、セチルアルコール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
中でも、炭素数に対する水酸基の割合の高い、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオールは、沸点が200℃程度で、軟化点が120℃以上であるため、スクリーン印刷に使用される無機微粒子分散ペーストとして好適に使用することができる。
The organic compound is not particularly limited as long as it has one or more hydroxyl groups and is a solid at normal temperature and has a boiling point of less than 300 ° C., but an alcohol-based organic compound composed of an aliphatic chain having 5 to 20 carbon atoms is preferable.
The alcohol organic compound is not particularly limited. For example, 1,6-hexanediol, 1,8-octanediol, 1,10-decanediol, myristyl alcohol, cetyl alcohol, 2,2-dimethyl-1,3- Examples include propanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, trimethylolpropane, and pentaerythritol.
Among them, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propane, which have a high ratio of hydroxyl group to carbon number Since the diol has a boiling point of about 200 ° C. and a softening point of 120 ° C. or more, it can be suitably used as an inorganic fine particle dispersed paste used for screen printing.
本発明の無機微粒子分散ペーストにおける上記有機化合物の含有量は特に限定されないが、好ましい下限は1重量%、好ましい上限は30重量%である。上記有機化合物の含有量が1重量%未満であると、得られる無機微粒子分散ペーストは、印刷後の乾燥工程において乾燥性が低下したり、オーブン内で送風を受けることによる表面荒れが増したり、樹脂の絡み合いに起因する皮張り現象を起こしたりすることにより、焼結層の表面平滑性が低下することがある。上記有機化合物の含有量が30重量%を超えると、得られる無機微粒子分散ペーストは、貯蔵安定性が悪くなることがある。 The content of the organic compound in the inorganic fine particle-dispersed paste of the present invention is not particularly limited, but the preferred lower limit is 1% by weight and the preferred upper limit is 30% by weight. When the content of the organic compound is less than 1% by weight, the resulting inorganic fine particle-dispersed paste has reduced drying properties in the drying step after printing, or increased surface roughness due to receiving air blowing in the oven, The surface smoothness of the sintered layer may be reduced by causing a skinning phenomenon caused by the entanglement of the resin. When the content of the organic compound exceeds 30% by weight, the obtained inorganic fine particle-dispersed paste may have poor storage stability.
本発明の無機微粒子分散ペーストは、有機溶剤を含有する。
上記有機溶剤は特に限定されず、例えば、エチレングリコールエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノイソブチルエーテル、トリメチルペンタンジオールモノイソブチレート、ブチルカルビトール、ブチルカルビトールアセテート、テキサノール、イソホロン、乳酸ブチル、ジオクチルフタレート、ジオクチルアジペート、ベンジルアルコール、フェニルプロピレングリコール、クレゾール、テルピネオール、ターピネアセテート、ジヒドロターピネオール、ジヒドロターピネオールアセテート、アセトン、メチルエチルケトン、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、トルエン、キシレン等が挙げられる。これらの有機溶剤は単独で用いてもよく、2種以上を併用してもよい。
The inorganic fine particle dispersed paste of the present invention contains an organic solvent.
The organic solvent is not particularly limited, for example, ethylene glycol ethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoisobutyl ether, trimethylpentanediol monoisobutyrate, Butyl carbitol, butyl carbitol acetate, texanol, isophorone, butyl lactate, dioctyl phthalate, dioctyl adipate, benzyl alcohol, phenylpropylene glycol, cresol, terpineol, terpine acetate, dihydroterpineol, dihydroterpineol acetate, acetone, methyl ethyl ketone, methanol, Ethanor , N- propanol, isopropanol, n- butanol, toluene, and xylene. These organic solvents may be used alone or in combination of two or more.
本発明の無機微粒子分散ペーストにおける上記有機溶剤の含有量は特に限定されないが、好ましい下限は10重量%、好ましい上限は60重量%である。上記有機溶剤の含有量が10重量%未満であると、得られる無機微粒子分散ペーストの粘度、粘着力が高くなりすぎてスクリーン印刷性が悪くなることがある。上記有機溶剤の含有量が60重量%を超えると、得られる無機微粒子分散ペーストは、充分な粘度が得られず、スクリーン印刷性が悪くなることがあり、また、印刷後の乾燥工程において乾燥性が低下したり、オーブン内で送風を受けることによる表面荒れが増したりすることにより、焼結層の表面平滑性が低下することがある。
なお、本発明の無機微粒子分散ペーストを焼成する場合は、上記有機溶剤や有機化合物を乾燥した状態で焼成することが好ましい。上記有機溶剤や有機化合物の乾燥が不充分で、有機溶剤や有機化合物が内部に残留した状態で焼成を行うと、バインダー樹脂の熱分解にて生じた煤が微粒子表面へ吸着しやすくなるため、完全に乾燥を行った場合と比較して、炭素残渣が多くなりやすくなることがある。
The content of the organic solvent in the inorganic fine particle-dispersed paste of the present invention is not particularly limited, but a preferred lower limit is 10% by weight and a preferred upper limit is 60% by weight. When the content of the organic solvent is less than 10% by weight, the viscosity and adhesive strength of the resulting inorganic fine particle-dispersed paste may become too high, resulting in poor screen printability. When the content of the organic solvent exceeds 60% by weight, the resulting inorganic fine particle-dispersed paste may not have a sufficient viscosity and may have poor screen printability. The surface smoothness of the sintered layer may decrease due to a decrease in surface roughness or an increase in surface roughness due to receiving air blow in the oven.
In addition, when baking the inorganic fine particle dispersion paste of this invention, it is preferable to bake in the state which dried the said organic solvent and organic compound. If the organic solvent or organic compound is insufficiently dried, and baking is performed in a state where the organic solvent or organic compound remains in the interior, soot generated by thermal decomposition of the binder resin is likely to be adsorbed on the surface of the fine particles. Compared with the case of complete drying, the carbon residue may be increased.
本発明の無機微粒子分散ペーストは、無機微粒子を含有する。
上記無機微粒子は特に限定されず、例えば、ガラス粉末、セラミックス粉末、蛍光体微粒子、珪素酸化物等、金属微粒子、金属酸化物微粒子等が挙げられる。
The inorganic fine particle dispersed paste of the present invention contains inorganic fine particles.
The inorganic fine particles are not particularly limited, and examples thereof include glass powder, ceramic powder, phosphor fine particles, silicon oxide, metal fine particles, metal oxide fine particles, and the like.
上記ガラス粉末は特に限定されず、例えば、酸化ビスマスガラス、ケイ酸塩ガラス、鉛ガラス、亜鉛ガラス、ボロンガラス等のガラス粉末や、CaO-Al-SiO系、MgO-Al-SiO系、LiO-Al-SiO系等の各種ケイ素酸化物のガラス粉末等が挙げられる。
また、上記ガラス粉末として、PbO-B-SiO混合物、BaO-ZnO-B-SiO混合物、ZnO-Bi-B-SiO混合物、Bi-B-BaO-CuO混合物、Bi-ZnO-B-Al-SrO混合物、ZnO-Bi-B混合物、Bi-SiO混合物、P-NaO-CaO-BaO-Al-B混合物、P-SnO混合物、P-SnO-B混合物、P-SnO-SiO混合物、CuO-P-RO混合物、SiO-B-ZnO-NaO-LiO-NaF-V混合物、P-ZnO-SnO-RO-RO混合物、B-SiO-ZnO混合物、B-SiO-Al-ZrO混合物、SiO-B-ZnO-RO-RO混合物、SiO-B-Al-RO-RO混合物、SrO-ZnO-P混合物、SrO-ZnO-P混合物、BaO-ZnO-B-SiO混合物等のガラス粉末も用いることができる。なお、Rは、Zn、Ba、Ca、Mg、Sr、Sn、Ni、Fe及びMnからなる群より選択される元素である。
特に、PbO-B-SiO混合物のガラス粉末や、鉛を含有しないBaO-ZnO-B-SiO混合物又はZnO-Bi-B-SiO混合物等の無鉛ガラス粉末が好ましい。
The glass powder is not particularly limited, and examples thereof include glass powders such as bismuth oxide glass, silicate glass, lead glass, zinc glass, and boron glass, CaO—Al 2 O 3 —SiO 2 series, MgO—Al 2 O, and the like. 3 -SiO 2 based glass powder or the like of the LiO 2 -Al 2 O 3 -SiO 2 system such as various silicon oxide and the like.
Further, as the above glass powder, PbO—B 2 O 3 —SiO 2 mixture, BaO—ZnO—B 2 O 3 —SiO 2 mixture, ZnO—Bi 2 O 3 —B 2 O 3 —SiO 2 mixture, Bi 2 O 3 —B 2 O 3 —BaO—CuO mixture, Bi 2 O 3 —ZnO—B 2 O 3 —Al 2 O 3 —SrO mixture, ZnO—Bi 2 O 3 —B 2 O 3 mixture, Bi 2 O 3 — SiO 2 mixture, P 2 O 5 —Na 2 O—CaO—BaO—Al 2 O 3 —B 2 O 3 mixture, P 2 O 5 —SnO mixture, P 2 O 5 —SnO—B 2 O 3 mixture, P 2 O 5 —SnO—SiO 2 mixture, CuO—P 2 O 5 —RO mixture, SiO 2 —B 2 O 3 —ZnO—Na 2 O—Li 2 O—NaF—V 2 O 5 mixture, P 2 O 5 —ZnO—SnO— 2 O-RO mixture, B 2 O 3 -SiO 2 -ZnO mixture, B 2 O 3 -SiO 2 -Al 2 O 3 -ZrO 2 mixture, SiO 2 -B 2 O 3 -ZnO -R 2 O-RO mixture SiO 2 —B 2 O 3 —Al 2 O 3 —RO—R 2 O mixture, SrO—ZnO—P 2 O 5 mixture, SrO—ZnO—P 2 O 5 mixture, BaO—ZnO—B 2 O 3 — Glass powders such as SiO 2 mixtures can also be used. R is an element selected from the group consisting of Zn, Ba, Ca, Mg, Sr, Sn, Ni, Fe, and Mn.
In particular, glass powder of a PbO—B 2 O 3 —SiO 2 mixture, a BaO—ZnO—B 2 O 3 —SiO 2 mixture or a ZnO—Bi 2 O 3 —B 2 O 3 —SiO 2 mixture containing no lead, etc. Lead-free glass powder is preferred.
上記セラミック粉末は特に限定されず、例えば、アルミナ、ジルコニア、酸化チタン、チタン酸バリウム、窒化アルミナ、窒化ケイ素、窒化ホウ素等が挙げられる。
また、透明電極材料に用いられるナノITOや色素増感太陽電池に用いられるナノ酸化チタン等も好適に用いることができる。
上記蛍光体微粒子は特に限定されず、例えば、BaMgAl1017:Eu、ZnSiO:Mn、(Y、Gd)BO:Eu等が挙げられる。
The ceramic powder is not particularly limited, and examples thereof include alumina, zirconia, titanium oxide, barium titanate, alumina nitride, silicon nitride, and boron nitride.
Moreover, nano-ITO used for a transparent electrode material, nano-titanium oxide used for a dye-sensitized solar cell, etc. can be used suitably.
The phosphor fine particles are not particularly limited, and examples thereof include BaMgAl 10 O 17 : Eu, Zn 2 SiO 4 : Mn, (Y, Gd) BO 3 : Eu, and the like.
上記金属微粒子は特に限定されず、例えば、ニッケル、パラジウム、白金、金、銀、アルミニウム、タングステンやこれらの合金等からなる粉末等が挙げられる。
また、カルボキシル基、アミノ基、アミド基等との吸着特性が良好で酸化されやすい銅や鉄等の金属も好適に用いることができる。これらの金属粉末は、単独で用いてもよく、2種以上を併用してもよい。 
The metal fine particles are not particularly limited, and examples thereof include powders made of nickel, palladium, platinum, gold, silver, aluminum, tungsten, alloys thereof, and the like.
Further, metals such as copper and iron, which have good adsorption characteristics with a carboxyl group, amino group, amide group and the like and are easily oxidized, can be suitably used. These metal powders may be used alone or in combination of two or more.
本発明の無機微粒子分散ペーストにおける上記無機微粒子の含有量は特に限定されないが、好ましい下限は20重量%、好ましい上限は90重量%である。上記無機微粒子の含有量が20重量%未満であると、得られる無機微粒子分散ペーストは、充分な粘度が得られず、スクリーン印刷性が悪くなることがあり、また、印刷後の乾燥工程においてオーブン内で送風を受けることによる表面荒れが増すことにより、焼結層の表面平滑性が低下することがある。上記無機微粒子の含有量が90重量%を超えると、得られる無機微粒子分散ペーストは、粘度が高くなりすぎてスクリーン印刷性が悪くなることがある。 Although content of the said inorganic fine particle in the inorganic fine particle dispersion paste of this invention is not specifically limited, A preferable minimum is 20 weight% and a preferable upper limit is 90 weight%. When the content of the inorganic fine particles is less than 20% by weight, the obtained inorganic fine particle-dispersed paste cannot obtain a sufficient viscosity and screen printing properties may be deteriorated. The surface smoothness of the sintered layer may be reduced by increasing the surface roughness due to receiving air in the interior. If the content of the inorganic fine particles exceeds 90% by weight, the resulting inorganic fine particle-dispersed paste may have too high a viscosity and screen printing properties may deteriorate.
本発明の無機微粒子分散ペーストは、上記有機化合物と他の材料との相溶性を安定化させるために、界面活性剤を含有することが好ましい。上記界面活性剤は特に限定されないが、ノニオン系界面活性剤が好ましい。
本発明の無機微粒子分散ペーストにおける上記ノニオン系界面活性剤の含有量は特に限定されないが、好ましい上限は5重量%である。上記ノニオン系界面活性剤の熱分解性は良好であるものの、含有量が5重量%を超えると、無機微粒子分散ペーストの熱分解性が低下することがある。
The inorganic fine particle-dispersed paste of the present invention preferably contains a surfactant in order to stabilize the compatibility between the organic compound and other materials. The surfactant is not particularly limited, but a nonionic surfactant is preferable.
Although content of the said nonionic surfactant in the inorganic fine particle dispersion paste of this invention is not specifically limited, A preferable upper limit is 5 weight%. Although the nonionic surfactant has good thermal decomposability, if the content exceeds 5% by weight, the thermal decomposability of the inorganic fine particle dispersed paste may be lowered.
本発明の無機微粒子分散ペーストを作製する方法は特に限定されず、従来公知の攪拌方法が挙げられ、具体的には、例えば、上記エチルセルロース、(メタ)アクリル樹脂及びポリビニルアセタール樹脂からなる群より選択される少なくとも1種、上記有機化合物、上記有機溶剤、上記無機微粒子及び必要に応じて添加される他の成分を3本ロール等で攪拌する方法等が挙げられる。 The method for producing the inorganic fine particle-dispersed paste of the present invention is not particularly limited, and examples thereof include conventionally known stirring methods. Specifically, for example, selected from the group consisting of ethyl cellulose, (meth) acrylic resin, and polyvinyl acetal resin. And a method in which at least one of the above-mentioned organic compound, the above-mentioned organic solvent, the above-mentioned inorganic fine particles, and other components added as necessary are stirred with a three-roll or the like.
本発明の無機微粒子分散ペーストは、印刷後の乾燥工程において良好に乾燥するとともに、オーブン内で送風を受けることによる表面荒れが抑制され、また、乾燥時の皮張り現象の悪影響を防止できることから、表面平滑性に優れた焼結層を形成することができる。そのため、例えば、無機微粒子としてガラス粉末を用いたときのガラスペースト、無機微粒子としてセラミック粉末を用いたときのセラミックペースト、無機微粒子としてアルミ等の金属又は導電性粉末を用いたときの導電ペーストとして好適に用いられる。
なかでも、無機微粒子としてガラス粉末を用いたときのガラスペーストは、プラズマディスプレイパネルの誘電体層等を形成するために好適に用いられる。このようなガラスペーストを用いて製造されるガラス誘電体もまた、本発明の1つである。
The inorganic fine particle-dispersed paste of the present invention is well dried in the drying step after printing, the surface roughness due to receiving air blow in the oven is suppressed, and the adverse effect of the skinning phenomenon during drying can be prevented. A sintered layer having excellent surface smoothness can be formed. Therefore, for example, suitable as glass paste when glass powder is used as inorganic fine particles, ceramic paste when ceramic powder is used as inorganic fine particles, and conductive paste when metal such as aluminum or conductive powder is used as inorganic fine particles Used for.
Among these, glass paste when glass powder is used as the inorganic fine particles is preferably used for forming a dielectric layer of a plasma display panel. A glass dielectric produced using such a glass paste is also one aspect of the present invention.
更に、本発明の無機微粒子分散ペーストは、乾燥時の皮張り現象を防ぎつつ、すばやく乾燥できるという特徴を有する。従って、従来の樹脂ペーストを用いた場合、乾燥時に流動して形状を維持しにくかったような部材にも好適に用いることができる。なお、このようように形状を維持できない状態を「ダレ」ともいう。
例えば、プラズマディスプレイの背面板におけるセル内の蛍光体や、太陽電池セルの表面電極等に従来の樹脂ペーストを用いた場合、乾燥時にダレてしまい印刷後に高さを維持することができなかったが、本発明の無機微粒子分散ペーストを用いることで、乾燥中にダレて低く流れてしまう前に有機溶剤を除去することが可能となり、フラットパネルディスプレイの材料としても好適に使用することができる。
本発明の無機微粒子分散ペーストを用いて製造されるフラットパネルディスプレイもまた本発明の1つである。
Furthermore, the inorganic fine particle-dispersed paste of the present invention is characterized in that it can be dried quickly while preventing the skinning phenomenon during drying. Therefore, when a conventional resin paste is used, it can be suitably used for a member that is difficult to maintain its shape by flowing during drying. The state where the shape cannot be maintained is also referred to as “sag”.
For example, when a conventional resin paste is used for the phosphor in the cell on the back plate of the plasma display, the surface electrode of the solar battery cell, etc., it drew during drying and the height could not be maintained after printing. By using the inorganic fine particle-dispersed paste of the present invention, it becomes possible to remove the organic solvent before dripping and flowing low during drying, and it can be suitably used as a material for a flat panel display.
A flat panel display produced using the inorganic fine particle dispersed paste of the present invention is also one aspect of the present invention.
本発明によれば、表面平滑性に優れた焼結層を形成することのできる無機微粒子分散ペーストを提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the inorganic fine particle dispersion | distribution paste which can form the sintered layer excellent in surface smoothness can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(重合例1)
攪拌機、冷却器、温度計、油浴及び窒素ガス導入口を備えた2Lセパラプルフラスコに、イソブチルメタクリレート(IBMA)100重量部、有機溶剤としてテキサノール100重量部を混合し、モノマー混合液を得た。
(Polymerization example 1)
100 parts by weight of isobutyl methacrylate (IBMA) and 100 parts by weight of texanol as an organic solvent were mixed in a 2 L separatory flask equipped with a stirrer, a cooler, a thermometer, an oil bath, and a nitrogen gas inlet to obtain a monomer mixture. .
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら油槽が130℃に達するまで昇温した。重合開始剤として2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]をテキサノールで分散させた溶液を加えた。また、重合中に重合開始剤を含むテキサノール溶液を数回添加し、合計でモノマー100重量部に対して1.5重量部の重合開始剤を添加した。 The obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated up until the oil bath reached 130 ° C. while stirring. . As a polymerization initiator, a solution in which 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] was dispersed with texanol was added. Further, a texanol solution containing a polymerization initiator was added several times during the polymerization, and 1.5 parts by weight of the polymerization initiator was added to 100 parts by weight of the monomer in total.
重合開始から7時間後、反応液を室温まで冷却し重合を終了させた。これにより、分子末端にアミド基を有する(メタ)アクリル樹脂(Poly(IBMA))のテキサノール溶液を得た。
得られた重合体について、カラムとしてカラムLF-804(昭和電工社製)を用い、ゲルパーミエーションクロマトグラフィーによる分析を行ったところ、ポリスチレン換算による重量平均分子量は4万であった。
Seven hours after the start of polymerization, the reaction solution was cooled to room temperature to complete the polymerization. Thereby, a texanol solution of (meth) acrylic resin (Poly (IBMA)) having an amide group at the molecular end was obtained.
The obtained polymer was analyzed by gel permeation chromatography using column LF-804 (manufactured by Showa Denko KK) as the column, and the weight average molecular weight in terms of polystyrene was 40,000.
(重合例2)
攪拌機、冷却器、温度計、油浴及び、窒素ガス導入口を備えた2Lセパラプルフラスコに、ブチルメタクリレートとメチルメタクリレートとの1:1混合液(BMA/MMA)100重量部、有機溶剤としてテキサノール100重量部を混合し、モノマー混合液を得た。
(Polymerization example 2)
In a 2 L separate flask equipped with a stirrer, cooler, thermometer, oil bath, and nitrogen gas inlet, 100 parts by weight of a 1: 1 mixture of butyl methacrylate and methyl methacrylate (BMA / MMA), texanol as an organic solvent 100 parts by weight were mixed to obtain a monomer mixture.
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら油槽が130℃に達するまで昇温した。重合開始剤として2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]をテキサノールで分散させた溶液を加えた。また、重合中に重合開始剤を含むテキサノール溶液を数回添加し、合計でモノマー100重量部に対して1.5重量部の重合開始剤を添加した。 The obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated up until the oil bath reached 130 ° C. while stirring. . As a polymerization initiator, a solution in which 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide] was dispersed with texanol was added. Further, a texanol solution containing a polymerization initiator was added several times during the polymerization, and 1.5 parts by weight of the polymerization initiator was added to 100 parts by weight of the monomer in total.
重合開始から7時間後、反応液を室温まで冷却し重合を終了させた。これにより、分子末端にアミド基を有する(メタ)アクリル樹脂(Poly(BMA/MMA))のテキサノール溶液を得た。
得られた重合体について、カラムとしてカラムLF-804(昭和電工社製)を用い、ゲルパーミエーションクロマトグラフィーによる分析を行ったところ、ポリスチレン換算による重量平均分子量は4万であった。
Seven hours after the start of polymerization, the reaction solution was cooled to room temperature to complete the polymerization. Thereby, a texanol solution of (meth) acrylic resin (Poly (BMA / MMA)) having an amide group at the molecular end was obtained.
The obtained polymer was analyzed by gel permeation chromatography using column LF-804 (manufactured by Showa Denko KK) as the column, and the weight average molecular weight in terms of polystyrene was 40,000.
(重合例3)
攪拌機、冷却器、温度計、油浴及び、窒素ガス導入口を備えた2Lセパラプルフラスコに、ブチルメタクリレートとヒドロキシエチルメタクリレートとの混合液(BMA/HEMA=9/1)100重量部、有機溶剤としてテルピネオール100重量部を混合し、モノマー混合液を得た。
(Polymerization Example 3)
100 parts by weight of a mixed solution of butyl methacrylate and hydroxyethyl methacrylate (BMA / HEMA = 9/1) in an 2 L separatory flask equipped with a stirrer, a cooler, a thermometer, an oil bath, and a nitrogen gas inlet, an organic solvent As a mixture, 100 parts by weight of terpineol was mixed to obtain a monomer mixture.
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら油槽が130℃に達するまで昇温した。重合開始剤としてアゾビスイソブチロニトリルをテルピネオールで分散させた溶液を加えた。また、重合中に重合開始剤を含むテルピネオール溶液を数回添加し、合計でモノマー100重量部に対して0.8重量部の重合開始剤を添加した。 The obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated up until the oil bath reached 130 ° C. while stirring. . A solution in which azobisisobutyronitrile was dispersed with terpineol as a polymerization initiator was added. Further, a terpineol solution containing a polymerization initiator was added several times during the polymerization, and 0.8 parts by weight of the polymerization initiator was added to 100 parts by weight of the monomer in total.
重合開始から7時間後、反応液を室温まで冷却し重合を終了させた。イソブチロニトリル基を有する(メタ)アクリル樹脂(Poly(BMA/HEMA))のテルピネオール溶液を得た。
得られた重合体について、カラムとしてカラムLF-804(昭和電工社製)を用い、ゲルパーミエーションクロマトグラフィーによる分析を行ったところ、ポリスチレン換算による重量平均分子量は14万であった。
Seven hours after the start of polymerization, the reaction solution was cooled to room temperature to complete the polymerization. A terpineol solution of (meth) acrylic resin (Poly (BMA / HEMA)) having an isobutyronitrile group was obtained.
The obtained polymer was analyzed by gel permeation chromatography using column LF-804 (manufactured by Showa Denko KK) as the column, and the weight average molecular weight in terms of polystyrene was 140,000.
(重合例4)
攪拌機、冷却器、温度計、油浴及び、窒素ガス導入口を備えた2Lセパラプルフラスコに、ブチルメタクリレートとメチルメタクリレート、ヒドロキシエチルメタクリレートとの混合液(BMA/MMA/HEMA=4/4/2)100重量部、有機溶剤としてテルピネオール100重量部を混合し、モノマー混合液を得た。
(Polymerization example 4)
In a 2 L separate flask equipped with a stirrer, a cooler, a thermometer, an oil bath, and a nitrogen gas inlet, a mixed solution of butyl methacrylate, methyl methacrylate, and hydroxyethyl methacrylate (BMA / MMA / HEMA = 4/4/2) ) 100 parts by weight and 100 parts by weight of terpineol as an organic solvent were mixed to obtain a monomer mixture.
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら油槽が130℃に達するまで昇温した。重合開始剤としてアゾビスイソブチロニトリルをテルピネオールで分散させた溶液を加えた。また、重合中に重合開始剤を含むテルピネオール溶液を数回添加し、合計でモノマー100重量部に対して1.5重量部の重合開始剤を添加した。 The obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature inside the separable flask system was replaced with nitrogen gas and heated up until the oil bath reached 130 ° C. while stirring. . A solution in which azobisisobutyronitrile was dispersed with terpineol as a polymerization initiator was added. Further, a terpineol solution containing a polymerization initiator was added several times during the polymerization, and 1.5 parts by weight of the polymerization initiator was added to 100 parts by weight of the monomer in total.
重合開始から7時間後、反応液を室温まで冷却し重合を終了させた。これにより、分子末端にアミド基を有する(メタ)アクリル樹脂(Poly(BMA/MMA/HEMA))のテルピネオール溶液を得た。得られた重合体について、カラムとしてカラムLF-804(昭和電工社製)を用い、ゲルパーミエーションクロマトグラフィーによる分析を行ったところ、ポリスチレン換算による重量平均分子量は5万であった。 Seven hours after the start of polymerization, the reaction solution was cooled to room temperature to complete the polymerization. This obtained the terpineol solution of the (meth) acrylic resin (Poly (BMA / MMA / HEMA)) which has an amide group in a molecule terminal. The obtained polymer was analyzed by gel permeation chromatography using column LF-804 (manufactured by Showa Denko KK) as a column, and the weight average molecular weight in terms of polystyrene was 50,000.
(重合例5)
攪拌機、冷却器、温度計、湯浴及び、窒素ガス導入口を備えた2Lセパラプルフラスコに、シクロへキシルメタクリレートとメチルメタクリレート、ヒドロキシエチルメタクリレートとの混合液(CHMA/MMA/HEMA=4/5/1)100重量部、連鎖移動剤としてメルカプトプロパンジオール0.2重量部、有機溶剤としてテルピネオール100重量部を混合し、モノマー混合液を得た。
(Polymerization Example 5)
In a 2 L separate flask equipped with a stirrer, cooler, thermometer, hot water bath and nitrogen gas inlet, a mixture of cyclohexyl methacrylate, methyl methacrylate and hydroxyethyl methacrylate (CHMA / MMA / HEMA = 4/5) / 1) 100 parts by weight, 0.2 parts by weight of mercaptopropanediol as a chain transfer agent, and 100 parts by weight of terpineol as an organic solvent were mixed to obtain a monomer mixture.
得られたモノマー混合液を、窒素ガスを用いて20分間バブリングすることにより溶存酸素を除去した後、セパラブルフラスコ系内を窒素ガスで置換し攪拌しながら湯槽が沸騰するまで昇温した。重合開始剤として有機化酸化物重合触媒(パーロイル355、日油社製)を0.1重量部添加し、重合中に重合開始剤を数回添加し、合計でモノマー100重量部に対して合計1.5重量部の重合開始剤を添加した。 The obtained monomer mixture was bubbled with nitrogen gas for 20 minutes to remove dissolved oxygen, and then the temperature in the separable flask system was replaced with nitrogen gas and heated until the water bath boiled while stirring. As a polymerization initiator, 0.1 part by weight of an organic oxide polymerization catalyst (Perloyl 355, manufactured by NOF Corporation) was added, a polymerization initiator was added several times during the polymerization, and the total was 100 parts by weight of the monomer. 1.5 parts by weight of a polymerization initiator was added.
重合開始から7時間後、反応液を室温まで冷却し重合を終了させた。これにより、分子末端に水酸基を有する(メタ)アクリル樹脂(Poly(CHMA/MMA/HEMA))のテルピネオール溶液を得た。得られた重合体について、カラムとしてカラムLF-804(昭和電工社製)を用い、ゲルパーミエーションクロマトグラフィーによる分析を行ったところ、ポリスチレン換算による重量平均分子量は5万であった。 Seven hours after the start of polymerization, the reaction solution was cooled to room temperature to complete the polymerization. This obtained the terpineol solution of the (meth) acrylic resin (Poly (CHMA / MMA / HEMA)) which has a hydroxyl group in the molecule terminal. The obtained polymer was analyzed by gel permeation chromatography using column LF-804 (manufactured by Showa Denko KK) as a column, and the weight average molecular weight in terms of polystyrene was 50,000.
(重合例6)
重合例5においてテルピネオールに代えて、テキサノールを用い、重合例5と同様にして分子末端に水酸基を有する(メタ)アクリル樹脂(Poly(CHMA/MMA/HEMA))のテキサノール溶液を得た。得られた重合体について、カラムとしてカラムLF-804(昭和電工社製)を用い、ゲルパーミエーションクロマトグラフィーによる分析を行ったところ、ポリスチレン換算による重量平均分子量は8万であった。
(Polymerization Example 6)
Texanol was used instead of terpineol in Polymerization Example 5, and a texanol solution of (meth) acrylic resin (Poly (CHMA / MMA / HEMA)) having a hydroxyl group at the molecular end was obtained in the same manner as in Polymerization Example 5. The obtained polymer was analyzed by gel permeation chromatography using column LF-804 (manufactured by Showa Denko KK) as a column, and the weight average molecular weight in terms of polystyrene was 80,000.
(実施例1)
エチルセルロースSTD4をテルピネオールに溶解させた。このテルピネオール溶液に対し、表1に示した組成比となるように有機化合物として1,6-ヘキサンジオールを添加し、ビヒクル組成物を得た。
Example 1
Ethylcellulose STD4 was dissolved in terpineol. To this terpineol solution, 1,6-hexanediol was added as an organic compound so that the composition ratio shown in Table 1 was obtained, and a vehicle composition was obtained.
得られたビヒクル組成物に対して、ノニオン系界面活性剤としてBL-4.2(日光ケミカル社製)、無機微粒子として平均粒子径2.0μmのガラス微粒子(SiOを32.5%、Bを20.5%、ZnOを18%、Alを10%、BaOを3.5%、LiOを9%、NaOを6%、SnOを0.5%含有)を表1に示した組成比となるように添加した後、高速撹拌装置を用いて充分混練し、3本ロールミルにてなめらかになるまで処理を行い、無機微粒子分散ペーストを作製した。 With respect to the obtained vehicle composition, BL-4.2 (manufactured by Nikko Chemical Co., Ltd.) as a nonionic surfactant, glass fine particles having an average particle size of 2.0 μm as inorganic fine particles (SiO 2 32.5%, B 2 O 3 and 20.5% ZnO and 18% Al 2 O 3 10%, 3.5% and BaO, 9% of Li 2 O, 6% of Na 2 O, the SnO 2 0.5% Content) was added so as to have the composition ratio shown in Table 1, and then sufficiently kneaded using a high-speed stirrer and processed until it became smooth with a three-roll mill to prepare an inorganic fine particle-dispersed paste.
(実施例2)
エチルセルロースSTD4の代わりにエチルセルロースSTD45を用い、有機化合物として1,6-ヘキサンジオールの代わりにミリスチルアルコールを用い、表1に示す組成比に変更したこと以外は、実施例1と同様にして無機微粒子分散ペーストを作製した。
(Example 2)
Dispersion of inorganic fine particles in the same manner as in Example 1, except that ethylcellulose STD45 was used instead of ethylcellulose STD4, myristyl alcohol was used instead of 1,6-hexanediol as the organic compound, and the composition ratio was changed to the composition shown in Table 1. A paste was prepared.
(実施例3)
エチルセルロースSTD4のテルピネオール溶液の代わりに重合例1で得られた(メタ)アクリル樹脂(Poly(IBMA))のテキサノール溶液を用い、表1に示す組成比に変更したこと以外は、実施例1と同様にして無機微粒子分散ペーストを作製した。
(Example 3)
Except that the texanol solution of (meth) acrylic resin (Poly (IBMA)) obtained in Polymerization Example 1 was used instead of the terpineol solution of ethyl cellulose STD4, the composition ratio was changed to the composition ratio shown in Table 1, and the same as in Example 1 Thus, an inorganic fine particle-dispersed paste was prepared.
(実施例4)
エチルセルロースSTD4のテルピネオール溶液の代わりに重合例2で得られた(メタ)アクリル樹脂(Poly(BMA/MMA))のテキサノール溶液を用い、表1に示す組成比に変更したこと以外は、実施例1と同様にして無機微粒子分散ペーストを作製した。
Example 4
Example 1 except that the texanol solution of (meth) acrylic resin (Poly (BMA / MMA)) obtained in Polymerization Example 2 was used instead of the terpineol solution of ethyl cellulose STD4 and the composition ratio was changed to that shown in Table 1. In the same manner, an inorganic fine particle dispersed paste was prepared.
(実施例5)
(ポリビニルアセタール樹脂の合成)
重合度1700、ケン化度98モル%のポリビニルアルコール193gを純水2900gに加え、90℃の温度で約2時間攪拌し溶解させた。
この溶液を40℃に冷却し、これに濃度35重量%の塩酸20gとn-ブチルアルデヒド145gを添加し、液温を15℃に下げてこの温度を保持してアセタール化反応を行い、反応生成物を析出させた。
その後、液温を40℃、3時間保持して反応を完了させ、常法により中和、水洗及び乾燥を経て、ポリビニルアセタール樹脂の白色粉末を得た。
得られたポリビニルアセタール樹脂をDMSO-d(ジメチルスルホキサイド)に溶解し、13C-NMR(核磁気共鳴スペクトル)を用いてアセタール化度を測定したところ、アセタール化度は78モル%であった。
(Example 5)
(Synthesis of polyvinyl acetal resin)
193 g of polyvinyl alcohol having a polymerization degree of 1700 and a saponification degree of 98 mol% was added to 2900 g of pure water and stirred at a temperature of 90 ° C. for about 2 hours for dissolution.
This solution is cooled to 40 ° C., 20 g of hydrochloric acid having a concentration of 35% by weight and 145 g of n-butyraldehyde are added thereto, the temperature of the solution is lowered to 15 ° C., and this temperature is maintained to conduct an acetalization reaction. The product was precipitated.
Thereafter, the liquid temperature was kept at 40 ° C. for 3 hours to complete the reaction, and neutralized, washed with water and dried by a conventional method to obtain a white powder of polyvinyl acetal resin.
The obtained polyvinyl acetal resin was dissolved in DMSO-d 6 (dimethyl sulfoxide), and the degree of acetalization was measured using 13 C-NMR (nuclear magnetic resonance spectrum). The degree of acetalization was 78 mol%. there were.
得られたポリビニルブチラール樹脂5重量部を、トルエン22重量部とエタノール11重量部との混合溶剤に加え、攪拌溶解し、更に、可塑剤としてジブチルフタレート2重量部、有機化合物として2,2-ジメチル-1,3-プロパンジオールを表1に記載した組成比になるように加え、攪拌溶解した。得られた樹脂溶液に、セラミック粉末としてチタン酸バリウム(堺化学工業社製「BT-01(平均粒径0.3μm)」)50重量部を加え、ボールミルで48時間混合して無機微粒子分散ペースト組成物を作製した。 5 parts by weight of the obtained polyvinyl butyral resin is added to a mixed solvent of 22 parts by weight of toluene and 11 parts by weight of ethanol, dissolved by stirring, and further 2 parts by weight of dibutyl phthalate as a plasticizer and 2,2-dimethyl as an organic compound. 1,3-propanediol was added so as to have the composition ratio shown in Table 1, and dissolved by stirring. 50 parts by weight of barium titanate (“BT-01 (average particle size: 0.3 μm)” manufactured by Sakai Chemical Industry Co., Ltd.) as ceramic powder is added to the obtained resin solution, and mixed for 48 hours with a ball mill to prepare an inorganic fine particle dispersed paste. A composition was prepared.
(実施例6)
重合例3で得られた(メタ)アクリル樹脂(Poly(BMA/HEMA))のテルピネオール溶液に対し、表1に記載した組成比になるようにテルピネオールを添加し、溶解させた。ここに、有機化合物として2,2-ジメチル-1,3-プロパンジオールを表1に記載した組成比になるように更に添加し、高速分散機で分散させた。
更に、導電性微粒子としてアルミニウム微粒子(平均粒子径5μm)、ファイヤースルーを可能にする低融点ガラス微粒子(平均粒子径1μm)を表1に記載した組成比になるように添加し、高速撹拌装置を用いて充分混練した後、アルミニウム微粒子が扁平につぶれないように留意しながら3本ロールミルにて処理を行い、導電性微粒子分散ペーストを調製した。
(Example 6)
To the terpineol solution of the (meth) acrylic resin (Poly (BMA / HEMA)) obtained in Polymerization Example 3, terpineol was added and dissolved so as to have the composition ratio described in Table 1. To this, 2,2-dimethyl-1,3-propanediol as an organic compound was further added so as to have the composition ratio shown in Table 1, and dispersed with a high-speed disperser.
Further, aluminum fine particles (average particle size of 5 μm) as conductive fine particles and low melting point glass fine particles (average particle size of 1 μm) enabling fire-through are added so as to have the composition ratio shown in Table 1, and a high-speed stirring device is added. After using and kneading sufficiently, treatment was performed with a three roll mill while paying attention not to flatten the aluminum fine particles, and a conductive fine particle dispersed paste was prepared.
(実施例7)
エチルセルロースSTD4をテルピネオールに溶解させた溶液と、重合例4で得られた(メタ)アクリル樹脂(Poly(BMA/MMA/HEMA))のテルピネオール溶液を用い、表1に記載した組成比になるように変更したこと以外は、実施例1と同様にして無機微粒子分散ペーストを作製した。
(Example 7)
Using a solution obtained by dissolving ethyl cellulose STD4 in terpineol and a terpineol solution of (meth) acrylic resin (Poly (BMA / MMA / HEMA)) obtained in Polymerization Example 4 so as to have the composition ratio described in Table 1. An inorganic fine particle-dispersed paste was produced in the same manner as in Example 1 except that the change was made.
(実施例8)
重合例5で得られた(メタ)アクリル樹脂(Poly(CHMA/MMA/HEMA))のテルピネオール溶液と、ロジン化合物(KR85、荒川化学社製)、無機微粒子としてPDP用緑蛍光体(ZnSiO;Mn、日亜化学社製)を用い、表1に記載した組成比になるように変更したこと以外は、実施例1と同様にして無機微粒子分散ペーストを作製した。
(Example 8)
A terpineol solution of (meth) acrylic resin (Poly (CHMA / MMA / HEMA)) obtained in Polymerization Example 5, a rosin compound (KR85, manufactured by Arakawa Chemical Co., Ltd.), and green phosphor for PDP (Zn 2 SiO) as inorganic fine particles 4 ; Mn, manufactured by Nichia Corporation), an inorganic fine particle-dispersed paste was prepared in the same manner as in Example 1 except that the composition ratio was changed to the composition ratio shown in Table 1.
(実施例9)
重合例6で得られた(メタ)アクリル樹脂(Poly(CHMA/MMA/HEMA))のテキサノール溶液と、エチルセルロース(STD7)、無機微粒子として銀粉(粒子径2μm、昭栄化学社製)を用いて表1に記載した組成比になるように変更したこと以外は、実施例1と同様にして無機微粒子分散ペーストを作製した。
Example 9
Table using a texanol solution of (meth) acrylic resin (Poly (CHMA / MMA / HEMA)) obtained in Polymerization Example 6, ethyl cellulose (STD7), and silver powder (particle size 2 μm, manufactured by Shoei Chemical Co., Ltd.) as inorganic fine particles. An inorganic fine particle-dispersed paste was prepared in the same manner as in Example 1 except that the composition ratio was changed to the composition ratio described in 1.
(比較例1)
有機化合物としての1,6-ヘキサンジオールを用いず、表1に示す組成比に変更したこと以外は、実施例1と同様にして無機微粒子分散ペーストを作製した。
(Comparative Example 1)
An inorganic fine particle-dispersed paste was prepared in the same manner as in Example 1 except that 1,6-hexanediol as an organic compound was not used and the composition ratio was changed to those shown in Table 1.
(比較例2)
有機化合物としての1,6-ヘキサンジオールを用いず、表1に示す組成比に変更したこと以外は、実施例3と同様にして無機微粒子分散ペーストを作製した。
(Comparative Example 2)
An inorganic fine particle-dispersed paste was prepared in the same manner as in Example 3 except that 1,6-hexanediol as the organic compound was not used and the composition ratio was changed as shown in Table 1.
(比較例3)
有機化合物としての2,2-ジメチル-1,3-プロパンジオールを用いず、表1に示す組成比に変更したこと以外は、実施例6と同様にして無機微粒子分散ペーストを作製した。
(Comparative Example 3)
An inorganic fine particle-dispersed paste was prepared in the same manner as in Example 6 except that 2,2-dimethyl-1,3-propanediol as an organic compound was not used and the composition ratio was changed as shown in Table 1.
(比較例4)
有機化合物である2,2-ジメチル-1,3-プロパンジオールに代えて、水酸基を有し、常温固体であるが、沸点が300℃以上であるペンタエリスリトールを用いた以外は実施例5と同様にして無機微粒子分散ペーストを作製した。
(Comparative Example 4)
Instead of 2,2-dimethyl-1,3-propanediol, which is an organic compound, the same as in Example 5 except that pentaerythritol having a hydroxyl group and solid at room temperature but having a boiling point of 300 ° C. or higher was used. Thus, an inorganic fine particle-dispersed paste was prepared.
(比較例5)
有機化合物である2,2-ジメチル-1,3-プロパンジオールに代えて、水酸基を有し、常温液体である2-メチル-1,3-プロパンジオールを用いた以外は実施例6と同様にして無機微粒子分散ペーストを作製した。
(Comparative Example 5)
Instead of the organic compound 2,2-dimethyl-1,3-propanediol, the same procedure as in Example 6 was used, except that 2-methyl-1,3-propanediol having a hydroxyl group and a liquid at room temperature was used. Thus, an inorganic fine particle dispersed paste was prepared.
(比較例6)
有機化合物である2,2-ジメチル-1,3-プロパンジオールに代えて、水酸基を有し、常温液体である2-メチル-1,3-プロパンジオールを用いた以外は実施例8と同様にして無機微粒子分散ペーストを作製した。
(Comparative Example 6)
Instead of the organic compound 2,2-dimethyl-1,3-propanediol, the same procedure as in Example 8 was used, except that 2-methyl-1,3-propanediol having a hydroxyl group and a liquid at room temperature was used. Thus, an inorganic fine particle dispersed paste was prepared.
(比較例7)
有機化合物である2,2-ジメチル-1,3-プロパンジオールに代えて、水酸基を有し、常温液体である2-メチル-1,3-プロパンジオールを用いた以外は実施例9と同様にして無機微粒子分散ペーストを作製した。
(Comparative Example 7)
Instead of the organic compound 2,2-dimethyl-1,3-propanediol, the same procedure as in Example 9 was used, except that 2-methyl-1,3-propanediol having a hydroxyl group and a liquid at room temperature was used. Thus, an inorganic fine particle dispersed paste was prepared.
<評価>
実施例及び比較例で得られた無機微粒子分散ペーストについて以下の評価を行った。結果を表2に示した。
<Evaluation>
The following evaluation was performed about the inorganic fine particle dispersion | distribution paste obtained by the Example and the comparative example. The results are shown in Table 2.
(1)焼結性
5ミルに設定したアプリケーターを用いて、無機微粒子分散ペーストをガラス基板上に塗工し、150℃の送風オーブンで30分間乾燥させた後、500℃の電気炉で30分間焼成した。得られた焼結層について、炭素硫黄分析装置(堀場製作所社製)により残留炭素(ppm)を測定し、また、焼き色を目視により確認した。残留炭素が150ppm以下であった場合を「○」と、残留炭素が150ppmを超えた場合を「×」として焼結性を評価した。
(1) Using an applicator set to sinterability of 5 mils, the inorganic fine particle dispersed paste was coated on a glass substrate, dried in a blow oven at 150 ° C. for 30 minutes, and then in an electric furnace at 500 ° C. for 30 minutes. Baked. About the obtained sintered layer, residual carbon (ppm) was measured with a carbon sulfur analyzer (manufactured by Horiba Ltd.), and the baked color was visually confirmed. The case where the residual carbon was 150 ppm or less was evaluated as “◯”, and the case where the residual carbon exceeded 150 ppm was evaluated as “X”.
(2)表面平滑性
5ミルに設定したアプリケーターを用いて、無機微粒子分散ペーストをガラス基板上に塗工し、150℃の送風オーブンで30分間乾燥させた。得られた無機微粒子分散ペースト塗布層について、JIS B 0601に準拠した方法で表面の中心線平均粗さ(Ra)を測定し、Raが1.0μm以下である場合を「○」、1.0μmを超える場合を「×」として表面平滑性を評価した。測定には、触針式粗さ計(東京精密社製、サーフコム1400D)を用いた。
なお、比較例2で得られた無機微粒子分散ペーストは粘度が高く、該無機微粒子分散ペーストを塗工して得られた塗布層は、膜厚に揺らぎが見られた。
(2) Surface smoothness Using an applicator set to 5 mils, the inorganic fine particle-dispersed paste was coated on a glass substrate and dried in a 150 ° C. blowing oven for 30 minutes. About the obtained inorganic fine particle dispersion paste coating layer, the centerline average roughness (Ra) of the surface was measured by a method based on JIS B 0601, and the case where Ra is 1.0 μm or less is “◯”, 1.0 μm The surface smoothness was evaluated as “x” when exceeding. A stylus roughness meter (manufactured by Tokyo Seimitsu Co., Ltd., Surfcom 1400D) was used for the measurement.
The inorganic fine particle dispersed paste obtained in Comparative Example 2 had a high viscosity, and the coating layer obtained by applying the inorganic fine particle dispersed paste showed fluctuations in the film thickness.
(3)非ダレ乾燥性
乳剤厚みが20μm、ステンレスメッシュ♯300、乳剤の開口部の線幅100μm、スペース300μmのスリット状スクリーン印刷版を用いて、実施例8、9及び比較例6、7で得られた無機微粒子分散ペーストをガラス基板上に印刷し、120℃に設定した送風式オーブンで20分間乾燥させた。
そして、レーザー顕微鏡を用いて、印刷形状の高さを評価した。
乾燥後の印刷形状の高さが10μm以上である場合を「○」、乾燥中にダレて印刷形状の高さが10μm未満の高さとなった場合を「×」とした。
(3) In Examples 8 and 9 and Comparative Examples 6 and 7, using a slit-shaped screen printing plate having a non-sag drying emulsion thickness of 20 μm, stainless mesh # 300, emulsion opening line width of 100 μm, and space of 300 μm. The obtained inorganic fine particle-dispersed paste was printed on a glass substrate and dried in a blown oven set at 120 ° C. for 20 minutes.
Then, the height of the printed shape was evaluated using a laser microscope.
The case where the height of the printed shape after drying was 10 μm or more was designated as “◯”, and the case where the height of the printed shape was less than 10 μm due to sagging during drying was designated as “X”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明によれば、表面平滑性に優れた焼結層を形成することのできる無機微粒子分散ペーストを提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the inorganic fine particle dispersion | distribution paste which can form the sintered layer excellent in surface smoothness can be provided.

Claims (6)

  1. エチルセルロース、(メタ)アクリル樹脂及びポリビニルアセタール樹脂からなる群より選択される少なくとも1種と、有機化合物と、無機微粒子と、有機溶剤とを含有する無機微粒子分散ペーストであって、
    前記有機化合物は、水酸基を1つ以上有し、かつ、常温固体で沸点が300℃未満である
    ことを特徴とする無機微粒子分散ペースト。
    An inorganic fine particle-dispersed paste containing at least one selected from the group consisting of ethyl cellulose, (meth) acrylic resin and polyvinyl acetal resin, an organic compound, inorganic fine particles, and an organic solvent,
    The organic compound has one or more hydroxyl groups, is solid at room temperature, and has a boiling point of less than 300 ° C.
  2. 無機微粒子は、無鉛ガラス微粒子、セラミック微粒子及びアルミ微粒子からなる群より選択される少なく1種であることを特徴とする請求項1記載の無機微粒子分散ペースト。 The inorganic fine particle-dispersed paste according to claim 1, wherein the inorganic fine particles are at least one selected from the group consisting of lead-free glass fine particles, ceramic fine particles, and aluminum fine particles.
  3. 請求項1又は2記載の無機微粒子分散ペーストを用いて製造されることを特徴とするガラス誘電体。 A glass dielectric produced by using the inorganic fine particle dispersed paste according to claim 1.
  4. 請求項1又は2記載の無機微粒子分散ペーストを用いて製造されることを特徴とするセラミックグリーンシート。 A ceramic green sheet produced using the inorganic fine particle dispersed paste according to claim 1.
  5. 請求項1又は2記載の無機微粒子分散ペーストを用いて製造されることを特徴とする太陽電池セル。 A solar battery cell produced using the inorganic fine particle dispersed paste according to claim 1.
  6. 請求項1又は2記載の無機微粒子分散ペーストを用いて製造されることを特徴とするフラットパネルディスプレイ。
     
     
     
    A flat panel display manufactured using the inorganic fine particle-dispersed paste according to claim 1.


PCT/JP2010/063075 2009-08-04 2010-08-03 Inorganic microparticle dispersion paste WO2011016442A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080034292.0A CN102471541B (en) 2009-08-04 2010-08-03 Inorganic microparticle dispersion paste

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-181546 2009-08-04
JP2009181546 2009-08-04
JP2010-061464 2010-03-17
JP2010061464 2010-03-17
JP2010-145037 2010-06-25
JP2010145037A JP5600488B2 (en) 2009-08-04 2010-06-25 Inorganic fine particle dispersion paste

Publications (1)

Publication Number Publication Date
WO2011016442A1 true WO2011016442A1 (en) 2011-02-10

Family

ID=43544337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063075 WO2011016442A1 (en) 2009-08-04 2010-08-03 Inorganic microparticle dispersion paste

Country Status (5)

Country Link
JP (1) JP5600488B2 (en)
KR (1) KR101632096B1 (en)
CN (1) CN102471541B (en)
TW (1) TWI483977B (en)
WO (1) WO2011016442A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157339A1 (en) * 2012-04-19 2013-10-24 セントラル硝子株式会社 Glass paste
JP2014224221A (en) * 2013-04-15 2014-12-04 積水化学工業株式会社 Resin composition
EP3018170A1 (en) * 2014-11-07 2016-05-11 Kusumoto Chemicals, Ltd. Readily thermally degradable organic resin binder
JP2017048061A (en) * 2015-08-31 2017-03-09 日本電気硝子株式会社 Glass paste composition and method for producing film formation glass member

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548722B (en) * 2011-12-01 2016-09-11 蕭一修 Photo-luminance coating, glass and applications thereof
CN104312212A (en) * 2014-09-28 2015-01-28 安徽盛佳彩印包装有限公司 Corrosion-resistant modified calcium carbonate with good comprehensive properties and preparation method of modified calcium carbonate
CN104327550A (en) * 2014-09-28 2015-02-04 安徽盛佳彩印包装有限公司 Electrical-conductive modified calcium carbonate and preparation method thereof
CN104356690A (en) * 2014-09-28 2015-02-18 安徽省温禾木业有限公司 Modified calcium carbonate with flame-retardant effect and preparation method thereof
CN104387800A (en) * 2014-09-28 2015-03-04 安徽省温禾木业有限公司 Environmental-friendly modified calcium carbonate with delicate fragrance and preparation method thereof
TWI609059B (en) * 2015-07-22 2017-12-21 昭榮化學工業股份有限公司 Inorganic particle dispersion paste, adhesive resin and inorganic particle dispersion paste
KR102172643B1 (en) * 2017-07-25 2020-11-02 한국세라믹기술원 Paste composition for forming cooktop deco layer and manufacturing method of cooktop deco layer using the composition
CN114605764B (en) * 2018-08-30 2024-01-19 积水化学工业株式会社 Carrier composition for inorganic microparticle dispersion, slurry composition for inorganic microparticle dispersion, and method for producing inorganic microparticle-dispersed sheet
CN114049986B (en) * 2021-12-28 2022-04-19 西安宏星电子浆料科技股份有限公司 Lead-free and bismuth-free dielectric slurry

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203863A (en) * 1997-01-20 1998-08-04 Sumitomo Kinzoku Electro Device:Kk Ceramic material baked at low temperature, green sheet and insulation paste
JP2000276946A (en) * 1999-03-25 2000-10-06 Denso Corp Dielectric paste and multilayer substrate
JP2004186339A (en) * 2002-12-02 2004-07-02 Shoei Chem Ind Co Conductive paste for internal electrode of multilayer electronic component and multilayer electronic component using the same
JP2005159256A (en) * 2003-10-30 2005-06-16 Kyocera Corp Ceramic paste and method of manufacturing ceramic multilayer wiring board using the same
JP2005353514A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Manufacturing method for plasma display panel
JP2007036004A (en) * 2005-07-28 2007-02-08 Kyocera Corp Electronic component manufacturing method
JP2008010527A (en) * 2006-06-28 2008-01-17 Sharp Corp Conductive paste for solar cell electrode
JP2008084922A (en) * 2006-09-26 2008-04-10 Kyocera Corp Method of manufacturing ceramic substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042622A1 (en) * 1999-01-14 2000-07-20 Soken Chemical & Engineering Co., Ltd. Resin composition for dielectric layer formation and film for dielectric layer formation
JP3928558B2 (en) * 2002-01-30 2007-06-13 株式会社村田製作所 Conductive paste
JP2004002164A (en) 2002-04-08 2004-01-08 Lintec Corp Composition for dielectric layer of plasma display panel, green sheet, and plasma display member
JP2004123775A (en) * 2002-09-30 2004-04-22 Taiyo Ink Mfg Ltd Photosensitive thermosetting paste composition
JP5385530B2 (en) * 2005-03-31 2014-01-08 積水化学工業株式会社 Inorganic fine particle dispersed paste composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10203863A (en) * 1997-01-20 1998-08-04 Sumitomo Kinzoku Electro Device:Kk Ceramic material baked at low temperature, green sheet and insulation paste
JP2000276946A (en) * 1999-03-25 2000-10-06 Denso Corp Dielectric paste and multilayer substrate
JP2004186339A (en) * 2002-12-02 2004-07-02 Shoei Chem Ind Co Conductive paste for internal electrode of multilayer electronic component and multilayer electronic component using the same
JP2005159256A (en) * 2003-10-30 2005-06-16 Kyocera Corp Ceramic paste and method of manufacturing ceramic multilayer wiring board using the same
JP2005353514A (en) * 2004-06-14 2005-12-22 Matsushita Electric Ind Co Ltd Manufacturing method for plasma display panel
JP2007036004A (en) * 2005-07-28 2007-02-08 Kyocera Corp Electronic component manufacturing method
JP2008010527A (en) * 2006-06-28 2008-01-17 Sharp Corp Conductive paste for solar cell electrode
JP2008084922A (en) * 2006-09-26 2008-04-10 Kyocera Corp Method of manufacturing ceramic substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157339A1 (en) * 2012-04-19 2013-10-24 セントラル硝子株式会社 Glass paste
JP2014224221A (en) * 2013-04-15 2014-12-04 積水化学工業株式会社 Resin composition
EP3018170A1 (en) * 2014-11-07 2016-05-11 Kusumoto Chemicals, Ltd. Readily thermally degradable organic resin binder
JP2016089074A (en) * 2014-11-07 2016-05-23 楠本化成株式会社 Easily pyrolytic organic resin binder
JP2017048061A (en) * 2015-08-31 2017-03-09 日本電気硝子株式会社 Glass paste composition and method for producing film formation glass member

Also Published As

Publication number Publication date
KR101632096B1 (en) 2016-06-20
JP2011213980A (en) 2011-10-27
TW201107389A (en) 2011-03-01
TWI483977B (en) 2015-05-11
CN102471541B (en) 2015-06-17
KR20120052374A (en) 2012-05-23
CN102471541A (en) 2012-05-23
JP5600488B2 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5600488B2 (en) Inorganic fine particle dispersion paste
TWI518123B (en) Metal oxide microparticle dispersible paste
JP4269000B2 (en) Binder resin, vehicle composition and inorganic fine particle dispersed paste composition
JP6220619B2 (en) Methacrylic copolymer for binder, inorganic fine particle dispersed paste composition, and inorganic fine particle dispersed sheet
JP5224722B2 (en) Resin composition, conductive paste and ceramic paste
JP5139775B2 (en) Inorganic powder dispersion paste
JP2009173811A (en) Glass paste for dielectric layer
JP5824388B2 (en) Conductive paste
JP2009108203A (en) Glass paste composition and production method of plasma display panel
JP5095377B2 (en) Binder resin for inorganic fine particle dispersed paste composition, inorganic fine particle dispersed paste composition, inorganic fine particle dispersed paste composition for forming green sheet, and green sheet
JP2012092002A (en) Method for manufacturing slurry composition
JP2012072057A (en) Method for producing slurry composition
JP2013058403A (en) Conductive paste and conductive particle dispersion paste for solar battery
JP2010118470A (en) Conductive paste for laminated ceramic capacitor
JP5703078B2 (en) Method for producing slurry composition
JP2006131445A (en) Coating paste
JP5108437B2 (en) Non-lead glass fine particle dispersion paste composition
JP4669685B2 (en) Screen printing paste
JP2012038625A (en) Conductive fine particle-dispersed paste
JP2012107176A (en) Inorganic fine particle dispersion paste
JP5756708B2 (en) Method for producing slurry composition
JP5567842B2 (en) Multilayer ceramic electronic component paste
JP5308775B2 (en) Conductive paste
JP2006117843A (en) Paste for use in coating
JP2009138106A (en) Glass paste composition and method for manufacturing plasma display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034292.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806441

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127005455

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10806441

Country of ref document: EP

Kind code of ref document: A1