WO2011013858A1 - 方向性電磁鋼板 - Google Patents

方向性電磁鋼板 Download PDF

Info

Publication number
WO2011013858A1
WO2011013858A1 PCT/JP2010/063343 JP2010063343W WO2011013858A1 WO 2011013858 A1 WO2011013858 A1 WO 2011013858A1 JP 2010063343 W JP2010063343 W JP 2010063343W WO 2011013858 A1 WO2011013858 A1 WO 2011013858A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
annealing
precipitate
grain
iron loss
Prior art date
Application number
PCT/JP2010/063343
Other languages
English (en)
French (fr)
Inventor
今村猛
新垣之啓
村木峰男
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020137028959A priority Critical patent/KR101614593B1/ko
Priority to CN201080034100.6A priority patent/CN102471850B/zh
Priority to RU2012107393/02A priority patent/RU2496905C1/ru
Priority to US13/388,082 priority patent/US20120131982A1/en
Priority to EP10804595.6A priority patent/EP2460902B1/en
Publication of WO2011013858A1 publication Critical patent/WO2011013858A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation

Definitions

  • the present invention relates to a grain oriented electrical steel sheet that is suitable for use as a core material of a transformer, and the like, and is intended to alleviate deterioration of magnetic properties particularly when shearing is performed.
  • Electromagnetic steel sheet is a material widely used as iron cores for various transformers and motors.
  • a grain-oriented electrical steel sheet has its crystal grains oriented in a ⁇ 110 ⁇ ⁇ 001> orientation called a Goss orientation.
  • Patent Document 1 discloses a method of containing a specified amount of Al and S as an inhibitor-forming element, that is, a method of using AlN and MnS as inhibitors.
  • Patent Document 2 discloses a method of containing a specified amount of at least one of S and Se, that is, a method of using MnS or MnSe as an inhibitor. Each of these methods is used industrially. More recently, as proposed in Patent Document 3, there is a technique for developing Goss oriented grains by the action of secondary recrystallization even for a steel sheet that does not contain an inhibitor component. is there.
  • Patent Document 3 eliminates impurities such as an inhibitor component as much as possible, thereby causing a grain boundary orientation difference angle of grain boundary energy possessed by a grain boundary when primary recrystallization occurs. It is a technique for recrystallizing grains having Goss orientation without eliciting the dependence on misorientation and using no inhibitor.
  • the inhibitor component since the inhibitor component is unnecessary, a step of purifying the inhibitor component is unnecessary.
  • the method has great advantages both in terms of process and cost, and in maintenance of facilities.
  • the iron loss characteristic is a characteristic that directly leads to energy loss of the product and is regarded as the most important.
  • a value represented by W 17/50 energy loss at an excitation magnetic flux density of 1.7 T and an excitation frequency of 50 Hz
  • this iron loss characteristic is regarded as important, and even after the transformer is manufactured, its measurement is performed periodically in order to manage the iron loss characteristics in the actual machine. Need to be implemented.
  • products of electromagnetic steel sheets are in sheet form, and are cut into a predetermined size when producing a transformer.
  • a shearing method also referred to as slit processing
  • two blades are pressed from above and below like scissors (finally the blades pass each other)
  • the processed surface of the steel plate thus sheared is torn off by the shearing force, and a large amount of strain is introduced into the steel plate.
  • the sheared electrical steel sheet has been a problem in that it tends to cause deterioration of magnetic properties due to the introduced strain.
  • strain relief annealing is limited to small transformers having a size (length) of 500 mm or less, and cannot be applied to iron cores for large transformers having a size of several meters. Therefore, there is a demand for a technique that can reduce the deterioration of magnetic properties when shearing is performed even in a magnetic steel sheet for large transformers having a size of several meters.
  • the highest achieved steel sheet temperature is set to 1200 ° C., so that the precipitate-forming element (Nb) is once dissolved, and thereafter the cooling rate from 900 ° C. to 500 ° C. is averaged.
  • the temperature was lowered to room temperature at 20 ° C./hr.
  • the grain-oriented electrical steel sheet thus obtained was cut into a 30 mm ⁇ 280 mm size called an Epstein specimen.
  • an Epstein specimen a 30 mm ⁇ 280 mm size
  • a shearing machine using an upper blade and a lower blade, which is a general method of cutting a directional electromagnetic steel sheet
  • Two kinds of test pieces were prepared for the case of cutting.
  • the iron loss of the obtained sample was measured according to the method described in JIS C 2550.
  • the value obtained by subtracting the iron loss value of the sample cut with the wire cutter from the iron loss value of the sample cut with the shearing machine is set as ⁇ W (hereinafter the same for the present invention), and this ⁇ W (vertical axis: W / kg). ) And the Nb content (horizontal axis: mass ppm) in the steel.
  • ⁇ W vertical axis: W / kg.
  • Nb horizontal axis: mass ppm
  • the iron loss is deteriorated by shearing because strain accumulates at the sheared portion.
  • the accumulation of strain means that the iron atoms are regularly arranged in the iron crystal grains, the stress from the outside acts on the iron atoms and the iron atoms are distorted or irregularly arranged. It is a phenomenon. However, if a precipitate such as the one described above exists in the regularly arranged iron atoms, when a stress such as shearing is applied to it and the material is cut, a stress is applied around the precipitate. It is possible that concentration occurs and cracks occur before the iron atom arrangement is distorted. If this mechanism is considered to reduce the accumulation of strain, the above phenomenon can be explained.
  • Nb precipitation ratio the ratio of the content of Nb contained in the precipitate to the total Nb content
  • the total Nb content can be determined from an inductively coupled plasma emission spectroscopy method (ICP emission spectroscopy analysis method) described in JIS G 1237. Inductive-coupled plasma optical emission spectroscopy. In addition, content is calculated
  • the content of Nb contained in the precipitate (content in the steel plate: mass%) is obtained by dissolving the steel plate by electrolysis and capturing (filtering) only the precipitate, and measuring the Nb weight in the precipitate, It can be calculated from the weight of the steel plate reduced by electrolysis and the Nb weight in the precipitate.
  • the quantitative value of the content of Nb contained in such a precipitate is specifically determined by the following method. First, the product plate is cut into a size of 50 mm ⁇ 20 mm and immersed in a 10% HCl aqueous solution heated to 85 ° C. for 2 minutes to remove the product coating or film.
  • the weight is measured, and electrolysis is performed using a commercially available electrolytic solution (10% AA solution: 10% acetylacetone-1% tetramethylammonium chloride-methanol) until about 1 g is electrolyzed.
  • electrolysis is performed using a commercially available electrolytic solution (10% AA solution: 10% acetylacetone-1% tetramethylammonium chloride-methanol) until about 1 g is electrolyzed.
  • the product plate is immersed in an ethanol solution and ultrasonic waves are applied.
  • the ethanol solution and the electrolyte used in the above electrolysis contain precipitates, which are precipitated by filtration using 0.1 ⁇ m mesh filter paper (capable of capturing precipitates in the order of nm). Catch things. After filtration, the precipitate collected by filtration is placed in a platinum crucible together with the filter paper and heated at 700 ° C.
  • the Nb weight in the precipitate is obtained. And this Nb weight is remove
  • the Nb precipitation ratio in the sample was 65%. Accordingly, further investigations have revealed that at least 10% of the total Nb content is deposited in order to exhibit the effects of the present invention.
  • the amount of precipitates is as small as possible in a range where iron loss deterioration due to shearing is small.
  • the iron loss of the material itself was deteriorated when the Nb content was 65 ppm or more, it is considered that the content needs to be suppressed to 50 ppm or less.
  • MgO is mainly used.
  • an annealing treatment was performed in a temperature range of 1050 to 1230 ° C. for 10 hours.
  • the reason for changing the recrystallization annealing temperature and the purification annealing temperature is to change the crystal grain size of the secondary recrystallization that occurs in the purification annealing.
  • FIG. 2 shows the relationship between ⁇ W (vertical axis: W / kg) and crystal grain size (horizontal axis: mm) obtained by the above-described method.
  • the inventors have included 10 to 50 ppm of an element such as Nb in the final product plate of a grain-oriented electrical steel sheet having a large secondary recrystallized grain size, and at least 10% of the precipitate is a precipitate. It was found that the iron loss deterioration during the shearing process can be suppressed by making it exist in the form of.
  • the present invention is based on the above findings.
  • the gist configuration of the present invention is as follows. 1. In mass%, C: 0.005% or less, Si: 1.0 to 8.0% and Mn: 0.005 to 1.0%, and selected from Nb, Ta, V and Zr 1 type or 2 types or more are contained in a total of 10 to 50 ppm, the balance consists of Fe and inevitable impurities, and at least 10% of the content of Nb, Ta, V and Zr exists as a precipitate, and the precipitate
  • the grain-oriented electrical steel sheet is characterized in that the average diameter (equivalent circle diameter) is 0.02 to 3 ⁇ m, and the average grain size of secondary recrystallized grains of the steel sheet is 5 mm or more.
  • Ni 0.010 to 1.50%
  • Cr 0.01 to 0.50%
  • Cu 0.01 to 0.50%
  • P 0.005 to 0.50%
  • Sn At least one selected from 0.005 to 0.50%
  • Sb 0.005 to 0.50%
  • Bi 0.005 to 0.50%
  • Mo 0.005 to 0.100% 2.
  • the steel sheet has a straight or broken line groove having a width of 50 to 1000 ⁇ m and a depth of 10 to 50 ⁇ m at an angle of 15 ° or less with respect to the direction perpendicular to the rolling direction of the steel sheet.
  • the grain-oriented electrical steel sheet according to 1 or 2 above. 4).
  • a method for producing an iron core comprising shearing the grain-oriented electrical steel sheet according to any one of the above items 1 to 3 and then laminating without performing strain relief annealing.
  • the present invention it is possible to effectively suppress deterioration of magnetic characteristics due to shearing of grain-oriented electrical steel sheets, and it is possible to produce an iron core for a transformer with little energy loss.
  • FIG. 1 is a graph showing the relationship between the Nb content in steel (horizontal axis: ppm) and the iron loss degradation amount ( ⁇ W) (vertical axis: W / kg) due to shearing.
  • FIG. 2 is a graph showing the relationship between the crystal grain size (horizontal axis: mm) of secondary recrystallized grains and the iron loss deterioration amount ( ⁇ W) (vertical axis: W / kg) due to shearing.
  • the present invention will be specifically described. First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described.
  • the% display and ppm display in a steel plate component shall represent the mass% and the mass ppm, respectively.
  • C 0.005% or less
  • C is an element inevitably mixed in steel, but it is desirable to reduce it as much as possible because magnetic property deterioration occurs due to magnetic aging. However, it is difficult to remove completely, and 0.005% or less is allowed from the viewpoint of manufacturing cost. Preferably it is 0.002% or less. Although there is no reason to specifically limit the lower limit of the C content, industrially, C is contained exceeding zero.
  • Si 1.0-8.0%
  • Si is an element necessary for increasing the specific resistance of steel and improving iron loss in the final product plate, but its effect is poor at less than 1.0%.
  • Si is limited to 1.0 to 8.0%.
  • a preferable lower limit of the Si content is 3.0%.
  • the upper limit with preferable Si content is 3.5%.
  • Mn 0.005 to 1.0%
  • Mn is an element necessary for improving the workability during hot rolling, but if the addition amount is less than 0.005%, the effect of improving the workability is poor. On the other hand, if it exceeds 1.0%, secondary recrystallization becomes unstable and magnetic properties deteriorate. Therefore, Mn is limited to 0.005 to 1.0%.
  • the minimum with preferable Mn content is 0.02%.
  • the upper limit with preferable Mn content is 0.20%.
  • Nb etc. one or more selected from Nb, Ta, V and Zr (hereinafter referred to as “Nb etc.”) are contained in a total range of 10 to 50 ppm. Is essential. This is because when Nb and the like are less than 10 ppm in total, precipitates for improving iron loss, which is the greatest feature of the present invention, are not generated sufficiently. On the other hand, if Nb or the like exceeds 50 ppm in total, the iron loss characteristic of the material itself deteriorates as described above, so 50 ppm is the upper limit. Preferably, it is in the range of 10 to 30 ppm.
  • the presence of precipitates such as Nb described above is 10% or more, and the average diameter (equivalent circle diameter) of the precipitates needs to be in the range of 0.02 to 3 ⁇ m.
  • the average diameter is less than 0.02 ⁇ m, the precipitates are too small and stress concentration hardly occurs.
  • the frequency (number) of precipitates decreases, and the number of places where stress concentration occurs is reduced.
  • a preferable average diameter of the precipitate is 0.05 to 3 ⁇ m.
  • a more preferred lower limit is 0.12 ⁇ m, and a still more preferred lower limit is 0.33 ⁇ m.
  • the more preferable upper limit is 1.2 ⁇ m, and the further preferable increase / decrease is 0.78 ⁇ m.
  • the rate of precipitation of precipitates such as Nb is preferably 20% or more, and more preferably 31% or more. More preferably, it is 48% or more. There is no need to set an upper limit, and there is no problem even if 100% is deposited.
  • the average diameter of precipitates such as Nb is preferably determined by observing the cross section of the obtained sample with a scanning electron microscope, photographing about 10 fields of view at a magnification of about 10000 times, and obtaining the average of equivalent circle diameters by image analysis. . Moreover, it is preferable to measure the ratio of the precipitate (precipitation ratio) according to the method described in Experiment 1.
  • the total content (mass%) of Nb or the like contained in the precipitate is divided by the total content (mass%) of Nb or the like contained in the steel sheet. That's fine.
  • the precipitate forming element one or more selected from Nb, V, and Zr are preferable from the viewpoint that it is difficult to form defects in the steel sheet during hot rolling.
  • Nb is preferable from the viewpoint that defects during hot rolling can be reduced.
  • the essential range of 10 to 50 ppm and the preferred range of 10 to 30 ppm are applied, and the preferred precipitate diameter and precipitation ratio are the same as above.
  • the average secondary grain size of the material needs to be 5 mm or more.
  • This particle size is common in the electrical steel sheet for large transformers having a size of several meters, which is also mentioned in the problem to be solved by the present invention, but is not limited to the size.
  • the average particle size can be controlled to 5 mm or more by controlling the atmosphere.
  • the average particle size of the secondary recrystallized grains is preferably measured by the method described in Experiment 2. Note that the method of reducing ⁇ W by setting the average grain size of secondary recrystallized grains to less than 5 mm is not preferable because the absolute value of iron loss and magnetic flux density deteriorates.
  • Ni 0.010 to 1.50%
  • Ni can be added to improve the magnetic properties. In this case, when the addition amount is less than 0.010%, the improvement width of the magnetic characteristics is small. On the other hand, if it exceeds 1.50%, secondary recrystallization may become unstable and the magnetic properties may deteriorate. Therefore, Ni is preferably in the range of 0.010 to 1.50%.
  • the electrical steel sheet of the present invention further includes Ni: 0.010 to 1.50%, Cr: 0.01 to 0.50%, Cu: 0.01 to 0.50%, P: 0.0.
  • At least one selected from among them can be contained. Further, for any subset of these element groups, at least one selected from the elements (groups) constituting the subset may be selected and contained.
  • at least one set of inhibitor components AlN-forming elements Al and N, MnS-forming elements Mn and S, MnSe-forming elements Mn and Se, TiN-forming elements Ti and N, etc.
  • the balance is Fe and normal inevitable impurities. Inevitable impurities include P, S, O, Al, N, Ti, Ca, B, etc. (Al and the like correspond to impurities when not added as an inhibitor component).
  • a straight or broken line groove having a width of 50 to 1000 ⁇ m and a depth of 10 to 50 ⁇ m is formed on the surface of the steel sheet in a direction intersecting at an angle of 15 ° or less with respect to the direction perpendicular to the rolling. It is preferable to do.
  • the groove interval (pitch) is preferably about 2 to 7 mm.
  • the groove is 0 ° with respect to the direction perpendicular to the rolling, it is not strictly an intersection, but here it is included in the intersection.
  • the grooves are formed at an angle of 15 ° or less with respect to the direction perpendicular to the rolling.
  • the iron loss of the magnetic steel sheet of the present invention is reduced by about 0.17 W / kg. This was effective regardless of the element selection from Nb, Ta, V and Zr.
  • the main process of this manufacturing method can utilize the normal manufacturing process of grain-oriented electrical steel sheets. That is, a slab manufactured using molten steel with a predetermined component adjustment is hot-rolled, and the obtained hot-rolled sheet is subjected to hot-rolled sheet annealing as necessary, and then sandwiched once or intermediately. A series of two or more cold rollings to obtain the final thickness, followed by recrystallization annealing on the steel sheet, followed by purification annealing, flattening annealing as necessary, and then coating. It is a process.
  • Nb, Ta, V and Zr which are the main components of the present invention, are difficult to add and reduce in the process after the molten steel stage, and the necessary amount should be added at the stage of component adjustment in the molten steel described above. Is most desirable.
  • the molten steel having the above-described components may be produced as a slab by a normal ingot-making method or continuous casting method, or a thin cast piece having a thickness of 100 mm or less may be produced by a direct casting method.
  • the slab is heated and hot-rolled by a normal method, but may be hot-rolled immediately without being heated after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the process may proceed as it is.
  • the slab heating temperature before hot rolling a high temperature of about 1400 ° C. is usually employed in a component system including an inhibitor component.
  • a low temperature of 1250 ° C. or lower is usually employed in a component system that does not contain an inhibitor component, which is advantageous in terms of cost.
  • the hot-rolled sheet annealing temperature is preferably 800 ° C. or higher and 1150 ° C. or lower. This is because when the annealing temperature of the hot-rolled sheet is less than 800 ° C., a band structure in the hot rolling remains, and a primary recrystallized structure in which the grain size is uniformed (uniformly-sized grain (s)) is realized. This is because the effect of promoting the development of secondary recrystallization is relatively small even if hot-rolled sheet annealing is performed.
  • At least one cold rolling with intermediate annealing is performed, followed by recrystallization annealing. It is effective for further improving the magnetic properties that the temperature of the cold rolling is in the range of 100 ° C to 300 ° C, and that the aging treatment in the range of 100 to 300 ° C is performed once or multiple times during the cold rolling. It is.
  • recrystallization annealing when decarburization is necessary, the atmosphere is a moist atmosphere, but when decarburization is not necessary, it may be performed in a dry atmosphere.
  • a technique for increasing the amount of Si by a silicon immersion method may be further applied.
  • a secondary recrystallized structure is developed by applying finish annealing (purification annealing) after applying an annealing separator mainly composed of MgO. It is possible to form a forsterite film. If the forsterite film is not actively formed with emphasis on the punching processability, the annealing separator is not applied or even if it is applied, MgO that forms the forsterite film is not used but silica or alumina is used. It is good. When applying these annealing separators, it is effective to perform electrostatic coating that does not bring in moisture. Further, a heat resistant inorganic material sheet (silica, alumina, mica) may be used.
  • the finish annealing is sufficient if it is a temperature at which secondary recrystallization occurs, but it is desirable to perform the annealing at 800 ° C. or higher. Also, annealing conditions for completing secondary recrystallization are desirable, and it is generally desirable to hold at a temperature of 800 ° C. or higher for 20 hours or longer. If the forsterite film is not formed with emphasis on punchability, the secondary recrystallization should be completed, so the holding temperature is preferably about 850-950 ° C, and the finish annealing can be completed by this holding treatment. It is. When forming a forsterite film in order to emphasize iron loss or reduce the noise of the transformer, it is advantageous to raise the temperature to about 1200 ° C.
  • a more preferable lower limit of the cooling rate is 7.8 ° C./hr.
  • a more preferable upper limit of the cooling rate is 30 ° C./hr, and further more preferable upper limit of the cooling rate is 14 ° C./hr from the viewpoint of obtaining stable results.
  • a groove is formed in the final product plate, thermal strain or impact strain is introduced linearly by laser or plasma, and the final finished plate thickness is adjusted.
  • attained, is illustrated.
  • a suitable method for producing an iron core using the steel plate of the present invention there is a method of producing an iron core by shearing and laminating the steel plate of the present invention without subjecting it to strain relief annealing.
  • the steel plate of this invention can suppress the deterioration of the iron loss of the steel plate before and behind shearing to 0.1 W / kg or less (preferably 0.041 W / kg or less).
  • This production method is particularly advantageous when a large iron core is produced by shearing into a large-sized sheet (for example, a longest side having a length exceeding 500 mm).
  • the shape, the presence / absence of the groove and its dimensions, and the presence / absence and type of coating may be appropriately selected based on conventional knowledge.
  • Example 1 C: 0.065%, Si: 3.25%, Mn: 0.13%, Al: 240ppm, N: 70ppm, S: 36ppm and Nb: 25ppm (only No. 7 steel Nb: 20ppm),
  • a steel slab composed of the remaining Fe and inevitable impurities was produced by continuous casting, heated at 1400 ° C., and then finished to a thickness of 2.4 mm by hot rolling. Then, after hot-rolled sheet annealing was performed at 1000 ° C. for 40 seconds, the sheet thickness was 1.6 mm by cold rolling, and after intermediate annealing at 900 ° C. was finished to 0.23 mm thickness by cold rolling. .
  • the obtained sample was cut into a size of 30 mm ⁇ 280 mm.
  • the cutting at this time was performed under two conditions: wire cutter cutting and shearing.
  • the magnetic properties of the obtained sample are measured by the method described in JIS C 2550, and the magnetic properties of the sample obtained by cutting with a wire cutter are shown in Table 1.
  • Example 2 A product plate (thickness: 0.23 mm) of grain-oriented electrical steel sheet containing the components shown in Table 2, which was subjected to secondary recrystallization annealing according to a normal production method, and then subjected to purification annealing at 1150 ° C. Then, what obtained the cooling rate from 900 degreeC to 500 degreeC as 25 degreeC / hr was prepared.
  • This grain-oriented electrical steel sheet was cut into a size of 30 mm ⁇ 280 mm. At this time, it carried out on two conditions, the case where it cut
  • the magnetic properties of the obtained sample were measured by the method described in JIS C 2550, and the magnetic properties of the sample obtained by cutting with a wire cutter are shown in Table 2. Further, ⁇ W obtained in the same manner as in Example 1 is also shown in Table 2.
  • the sample after the magnetic measurement was pickled to remove the film, and the crystal grain size of the secondary recrystallized grains was measured.
  • the results are also shown in Table 2 together with the investigation results of the precipitate diameter and the precipitation ratio of Nb and the like.
  • the component in the steel plate of Table 2 is the result of having measured the component with the sample which removed the film after this pickling process. Further, as a result of investigating the precipitates, the average precipitate diameter was 0.05 to 3.34 ⁇ m, and the precipitation ratio was 0 to 79%.
  • the examples of the invention in which the crystal grain size, the precipitate size such as Nb, and the precipitation ratio satisfy the appropriate range of the present invention all have good magnetic properties and have a small ⁇ W and shearing. It can be seen that the iron loss deterioration due to is small.
  • Example 3> C: 0.065%, Si: 3.25%, Mn: 0.13%, Cr: 0.05%, Al: 240ppm, N: 70ppm, S: 36ppm, P: 0.013%, Sn: 0
  • planarization annealing was performed at 850 ° C. for 20 seconds.
  • the obtained sample was cut into a 30 mm ⁇ 280 mm size of an Epstein test piece. At this time, it was performed under two conditions: a case where the wire cutter was cut and a case where the wire cutter was used.
  • the magnetic properties of the obtained sample are measured by the method described in JIS C 2550, and the magnetic properties of the sample obtained by cutting with a wire cutter are shown in Table 3. Further, ⁇ W obtained in the same manner as in Example 1 is also shown in Table 3.
  • the result of the investigation of the components in the steel sheet with the sample from which the film was removed was as follows: C: 0.0016%, Si: 3.24%, Mn: 0.13%, Cr: 0.05 %, P: 0.011%, Sn: 0.074%, Sb: 0.036%, Mo: 0.011%, Nb: 18 ppm, which is a component composition satisfying the requirements of the present invention.
  • the precipitate diameter (average diameter) is 0.12 ⁇ m or more and 1.2 ⁇ m or less (preferably 0.78 ⁇ m or less.
  • the precipitation ratio is 48% or more.
  • ⁇ W is 0.038 W / kg or less, and further excellent characteristics can be obtained.
  • the cooling rate after finish annealing is preferably 7.8 to 30 ° C./hr, more preferably 7.8 to 14 ° C./hr. It can be seen from Examples 1 to 3 above.
  • the present invention it is possible to reduce the deterioration of magnetic characteristics during shearing of grain-oriented electrical steel sheets. As a result, an iron core with less iron loss can be obtained, and thus a large-scale transformer with high energy efficiency can be manufactured.

Abstract

電磁鋼板の成分として、質量%で、C:0.005%以下、Si:1.0~8.0%およびMn:0.005~1.0%を含有し、かつNb、Ta、VおよびZrのうちから選んだ1種または2種以上を合計で10~50ppm含有し、残部Feおよび不可避的不純物からなり、これらNb、Ta、VおよびZrは含有量の少なくとも10%が析出物として存在し、かつ該析出物の直径(円相当径)が平均で0.02~3μmであり、さらに鋼板の二次再結晶粒の平均粒径が5mm以上とすることにより、数mの大きさの大型変圧器用電磁鋼板であっても、剪断加工を行った際の磁気特性劣化を低減できる鋼板を提供する。

Description

方向性電磁鋼板
 本発明は、変圧器の鉄心材料等に用いて好適な方向性電磁鋼板(grain oriented electrical steel sheet)に関し、特に剪断加工を施した場合における磁気特性の劣化を軽減しようとするものである。
 電磁鋼板は、各種変圧器やモータ等の鉄心として広く用いられている材料である。 特に方向性電磁鋼板と呼ばれるものは、その結晶粒(crystal grain)の方位がGoss方位と呼ばれる{110}〈001〉方位に集積(highly oriented)している。
 このような方向性電磁鋼板を製造するに当っては、インヒビター(inhibitor)と呼ばれる析出物(precipitates)を用いて、仕上焼鈍(final annealing)中にGoss方位を有する結晶粒を二次再結晶(secondary recrystallization)させることが一般的な技術として使用されている。
 例えば、特許文献1にはインヒビター成分(inhibitor−forming element)として、AlおよびSを指定量含有させる方法、すなわちAlN、MnSをインヒビターとして使用する方法が開示されている。 また、特許文献2にはSおよびSeの少なくとも一方を指定量含有させる方法、すなわちMnS、MnSeをインヒビターとして使用する方法が開示されている。 これらの方法は、それぞれ工業的に使用されている。 さらに最近では、特許文献3において提案されているように、インヒビター成分を含有しない鋼板であっても、Goss方位結晶粒(Goss oriented grain)を二次再結晶の作用によって発達(develop)させる技術がある。
 特許文献3に記載の技術は、インヒビター成分等の不純物を極力排除することで、一次再結晶を生じる時の、結晶粒界(grain boundary)が持っている粒界エネルギーの粒界方位差角(misorientation)依存性を顕在化させて(elicit)、インヒビターを用いなくても、Goss方位を有する粒を二次再結晶させる技術である。
 この方法では、インヒビター成分が不要なため、インヒビター成分を純化する工程が不必要となる。 また、純化焼鈍(purification annealing)を高温化する必要がなく、インヒビター成分の鋼中微細分散工程が不必要なため、微細分散のために必須であった高温スラブ加熱(slab reheating)も不要となるなど、工程およびコスト面でも、また設備等のメンテナンス面でも大きなメリットを有する方法である。
 方向性電磁鋼板の諸特性のなかでも、鉄損(iron loss)特性は製品のエネルギーロスに直接つながる特性であり、最も重要とされる。 その鉄損特性を改善するためには、W17/50(励磁磁束密度1.7T、励磁周波数50Hzにおけるエネルギー損失)に代表される値を低減することが良いとされる。
 また、方向性電磁鋼板が使用されている変圧器においても、この鉄損特性は重視されており、変圧器を作製した後でも、実機での鉄損特性を管理するために、その測定を定期的に実施する必要がある。
特公昭40−15644号公報 特公昭51−13469号公報 特開2000−129356号公報
 一般に、電磁鋼板の製品はシート状になっており、変圧器を作製する際には、所定の大きさに切断加工する。 切断加工の方法としては、はさみのように2枚の刃を上下から押し付け合う(最終的に刃同士はすれ違う)剪断加工(スリット加工とも呼ばれる)方法が一般的である。
 このように剪断された鋼板は、その加工面が剪断力により引きちぎられ、鋼板内に歪が多量に導入されることになる。 そのため、剪断された電磁鋼板は、導入歪に由来する磁気特性の劣化が生じやすく問題となっていた。
 この剪断加工に起因した磁気特性劣化を低減する方法として、剪断加工後に700~900℃で数時間焼鈍する歪取焼鈍(stress relief annealing)を適用する場合がある。 しかし、歪取焼鈍を行うのは、大きさ(長さ)が500mm以下の小さい変圧器に限られ、数mの大きさの大型変圧器用の鉄心等には適用できなかった。
 それ故、数mの大きさの大型変圧器用電磁鋼板においても、剪断加工を行った際の磁気特性劣化を低減できる技術が望まれていた。
 発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、Nb等の元素を微量含有させることによって、前記したような剪断加工の際の鉄損劣化を大幅に低減できることを見出した。
 以下、本発明を成功に至らしめた実験について説明する。
 <実験1>
 質量%でSi:3.30~3.34%、Mn:0.06~0.07%、Sb:0.025~0.028%およびCr:0.03~0.04%、を含有し、かつNbの添加量を各々4ppm(不可避的不純物レベル)、22ppm、48ppm、65ppm、90ppmおよび210ppmとし、残部Feおよび不可避的不純物からなる方向性電磁鋼板を、再結晶焼鈍(一次再結晶焼鈍)−最終仕上焼鈍(純化焼鈍)からなる通常の製造方法で作製した。 最終仕上焼鈍(純化焼鈍)の際には、最高到達鋼板温度を1200℃とすることで、析出物形成元素(Nb)を一旦固溶させ、その後、900℃から500℃までの冷却速度を平均で20℃/hrとして、常温まで降温した。
 このようにして得られた方向性電磁鋼板を、エプスタイン(Epstein)試験片と呼ばれる30mm×280mmサイズに切断した。 このとき、ワイヤーカッターで、ゆっくりと鋼に歪が入らないように切断した場合と、前述したように、一般的な方向性電磁鋼板の切断方法である、上刃と下刃を用いる剪断機により切断した場合との2通りの試験片を用意した。得られたサンプルの鉄損をJIS C 2550に記載の方法に従って測定した。
 図1に、剪断機で切断したサンプルの鉄損値から、ワイヤーカッターで切断したサンプルの鉄損値を引いた値をΔW(以下本発明について同じ)とし、このΔW(縦軸:W/kg)と、鋼中のNbの含有量(横軸:質量ppm)との関係について調べた結果を示す。
 剪断機で切断した場合は、前述したとおり、鋼板に歪が残存し鉄損が劣化した。 一方、ワイヤーカッターによる切断は、時間はかかったものの、ほとんど歪を鋼板に残存させることなく切断できた。
 従って、同図に示したΔWは、歪残存により劣化した鉄損量を、ほぼ示していると考えられる。 それ故、同図より、Nbを含有させることで剪断により劣化する鉄損量を低減できることが分かる。
 上記したように、Nbを含んだサンプルが剪断による鉄損劣化を低減できた理由は必ずしも明らかでないが、発明者らは下記のように考えている。
 今回の実験で用いたNb含有材の組織調査を行ったところ、Nbは析出物を形成して、鋼中に分散していることが明らかとなった。 その析出物の径は、小さい物で0.02μm程度、大きい物で3μm程度であった。通常の方向性電磁鋼板には、このような鋼中の析出物は、ほとんど存在しないことから、この析出物の存在が剪断による鉄損劣化の低減に寄与したのではないかと推測される。
 一方、剪断により鉄損が劣化するのは、剪断した箇所において歪が蓄積するためである。ここに、歪の蓄積とは、鉄の結晶粒内において、鉄の原子が規則正しく配列されているところに、外部からの応力等が作用して、鉄の原子の配列が、歪むもしくは不規則になる現象である。
 しかし、この規則正しく配列している鉄の原子の中に、上記したような析出物が存在すると、剪断加工のような応力がそこに加わって切断される際には、この析出物の周辺に応力集中が生じ、鉄の原子の配列をゆがめる前に亀裂が生じることが考えられる。 この機構により上記した歪の蓄積が緩和されると考えれば、上記した現象についての説明ができる。
 鋼板中に含有されているNbは、固溶状態と析出物を形成している状態の二種類が考えられるが、上述したとおり、析出物を形成することが重要であると考えられる。 そこで、Nbを22ppm含有する試料について、Nb析出割合(全Nb含有量に対する析出物中に含まれるNbの含有量の割合)を調査した。
 Nb析出物中のNb析出割合を求めるには、まず全Nb含有量(鋼板における含有量:質量%)を求める必要がある。 全Nb含有量は、JIS G 1237記載の誘導結合プラズマ発光分光分析方法(ICP発光分光分析方法:inductively−coupled plasma optical emission spectrometry)から求めることができる。 なお、TaはJIS G 1236、VはJIS G 1221、ZrはJIS G 1232に記載の各方法で含有量が求められる。
 一方、析出物中に含まれるNbの含有量(鋼板における含有量:質量%)は、鋼板を電解で溶かして析出物だけ捕捉(ろ過)し、その析出物の中のNb重量を測定し、電解されて減少した鋼板の重量と、その析出物の中のNb重量とから計算することができる。
 このような析出物中に含まれるNbの含有量の定量値は、具体的に、以下の方法で求める。
 まず、製品板を50mm×20mmの大きさに切断し、85℃に暖めた10%HCl水溶液に2分間浸漬することで、製品のコーティングや被膜を除去する。 その後、重量測定を行い、市販の電解液(10%AA液:10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール)を用いて約1g程度電解されるまで電解を行う。 さらに、電解に供した製品板表面に付着している析出物を剥離させるために、製品板をエタノール溶液に浸漬させて、超音波を付与する。
 このエタノール溶液と前記の電解で使用した電解液の中には析出物が含まれており、これらを0.1μmメッシュのろ紙(nmオーダーの析出物まで捕捉可能)を用いてろ過することで析出物を捕捉する。 ろ過後、ろ取された析出物をろ紙ごと白金るつぼに入れて700℃で1時間加熱し、さらにNaとNaCOを加え900℃で15分間加熱する。 これを一旦冷却した後、さらに1000℃で15分間加熱する。
 るつぼの中は飴状に固まっているので、るつぼごと25%HCl水溶液に加え、そのまま約90℃で30分間加熱し、飴状の物質をすべて溶解する。 この溶液をJIS G1237記載のICP発光分光分析方法で分析することにより、析出物の中のNb重量が求められる。
 そして、このNb重量を、電解により減少した製品板(鋼板)の重量で除することにより、析出物中に含まれるNbの含有量(質量%)を求める。
 このようにして求めた析出物中に含まれるNbの含有量(質量%)を、前記した全Nb含有量(質量%)で除することにより、Nb析出割合を求めることができる。
 前記試料におけるNb析出割合は65%であった。 そこで、さらに調査を進めたところ、少なくとも全Nb含有量のうち、その10%が析出していることが、本発明の効果を発現するために必要であることが明らかとなった。
 前述したメカニズムからは、Nbのような析出物形成元素が鋼中に残存する量が多いほど、ΔW特性が良好であるように思えるが、析出物は加工前の素材自体の鉄損特性を劣化させる作用もある。 従って、剪断加工による鉄損劣化が小さい範囲で、析出物量は少ないほうが好ましい。 本実験では、Nb含有量が65ppm以上の素材では素材自体の鉄損が劣化していたことから、含有量は50ppm以下に抑える必要があると考えられる。
 続いて、ΔWに及ぼす二次再結晶粒の結晶粒径の影響について調査した。 これは、結晶粒界が多数存在することによっても、上記したような剪断による歪蓄積が緩和されると予想され、したがって結晶粒径が小さく粒界が多い場合は、そもそも剪断加工による鉄損劣化が小さく、上述の析出物による歪蓄積緩和メカニズムが効果を発現しない可能性があると考えられるからである。
 <実験2>
 質量%でC:0.035%、Si:3.31%、Mn:0.13%、Sb:0.039%、Cr:0.05%、P:0.012%、N:42ppmおよびS:31ppmを含有し、残部Feおよび不可避的不純物からなる鋼スラブを連続鋳造にて製造し、1250℃でスラブ加熱した後、熱間圧延により2.7mmの厚さに仕上げた。 ついで、1000℃、15秒間の熱延板焼鈍を施した後、冷間圧延により0.30mmの板厚に仕上げた。
 さらに、50%N−50%H湿潤雰囲気中(脱炭雰囲気中)にて、800~880℃の温度範囲で60秒間の均熱条件で、再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤(annealing separator)を塗布してから、1050~1230℃の温度範囲で10時間保定する純化焼鈍を行った。
 再結晶焼鈍と純化焼鈍の温度を変更したのは、純化焼鈍で起こる二次再結晶の結晶粒径を変化させるためである。
 次に、リン酸マグネシウムとほう酸を主体とした張力付与コーティング(tension coating)の形成を兼ねた平坦化焼鈍(flattening annealing)を、900℃、15秒間の条件で行った。 さらに、前記したエプスタイン試験片(30mm×280mm)サイズに切断した。このとき、実験1と同様に、ワイヤーカッター切断と、剪断機による切断とを行った。 得られたサンプルの鉄損を、JIS C 2550に記載の方法に従い測定した。
その後、酸洗により地鉄(steel substrate)を露出させ、二次再結晶粒の結晶粒径を測定した。 結晶粒径は、各条件についてエプスタイン試験片4枚分の粒径を測定し、それを平均した。 さらに地鉄の成分分析を行ったところ、C:0.0018%、Si:3.30%、Mn:0.13%、Sb:0.039%、Cr:0.05%、P:0.011%、その他元素は検出限界以下であった。また、前述した方法で求めたΔW(縦軸:W/kg)と結晶粒径(横軸:mm)の関係を図2に示す。
 この実験では、Nbのような析出物形成元素が残っていないため、実験1で得られた効果が発揮されず、したがって、平均粒径が大きい場合はΔWが大きい結果となり、平均粒径が小さくなるとΔWが小さくなる結果となった。 言い換えると、Nb等の析出物を形成する元素の添加によるΔW低減効果は、二次再結晶粒の平均粒径が5mm以上の場合にその効果を発揮すると言える。
 以上の実験から、発明者らは、二次再結晶粒の粒径が大きい方向性電磁鋼板の最終製品板に、Nbのような元素を10~50ppm含有させ、かつ少なくともその10%を析出物の形で存在させることによって、剪断加工時における鉄損劣化を抑制できることを知見した。
 本発明は上記知見に立脚するものである。
 すなわち、本発明の要旨構成は次のとおりである。
 1. 質量%で、C:0.005%以下、Si:1.0~8.0%およびMn:0.005~1.0%を含有し、かつNb、Ta、VおよびZrのうちから選んだ1種または2種以上を合計で10~50ppm含有し、残部Feおよび不可避的不純物からなり、前記Nb、Ta、VおよびZrは含有量の少なくとも10%が析出物として存在し、かつ該析出物の直径(円相当径)が平均で0.02~3μmであり、さらに鋼板の二次再結晶粒の平均粒径が5mm以上であることを特徴とする方向性電磁鋼板。
 2. 質量%で、さらにNi:0.010~1.50%、Cr:0.01~0.50%、Cu:0.01~0.50%、P:0.005~0.50%、Sn:0.005~0.50%、Sb:0.005~0.50%、Bi:0.005~0.50%およびMo:0.005~0.100%のうちから選んだ少なくとも一種を含有することを特徴とする前記1に記載の方向性電磁鋼板。
 3. 鋼板表面に、該鋼板の圧延直角方向に対して15°以内の角度で、幅:50~1000μm、深さ:10~50μmの直線状または破線状の溝(groove)を有することを特徴とする前記1または2に記載の方向性電磁鋼板。
 4. 前記1~3の何れかに記載の方向性電磁鋼板を剪断し、その後歪取焼鈍することなく積層することを特徴とする、鉄心の製造方法。
 本発明によれば、方向性電磁鋼板の剪断加工に起因した磁気特性劣化を効果的に抑制することができ、エネルギー損失の少ない変圧器用の鉄心を作製することができる。
図1は、鋼中のNb含有量(横軸:ppm)と剪断加工による鉄損劣化量(ΔW)(縦軸:W/kg)との関係を示した図である。 図2は、二次再結晶粒の結晶粒径(横軸:mm)と剪断加工による鉄損劣化量(ΔW)(縦軸:W/kg)との関係を示した図である。
 以下、本発明を具体的に説明する。
 まず、本発明において鋼板の成分組成を前記の範囲に限定した理由について説明する。なお、鋼板成分における%表示およびppm表示は、特に断らない限り、それぞれ質量%、質量ppmを表すものとする。
 C:0.005%以下
 Cは、鋼中に不可避的に混入する元素であるが、磁気時効による磁気特性劣化が発生するため極力低減することが望ましい。 しかし、完全に除去することは困難であり、製造コスト面からも0.005%以下であれば許容される。 好ましくは0.002%以下である。 C含有量の下限をとくに限定すべき理由はないが、工業的にはCは零を超えて含まれる。
 Si:1.0~8.0%
 Siは、最終製品板において、鋼の比抵抗を高め、鉄損を改善させるために必要な元素であるが、1.0%未満ではその効果に乏しい。 一方、8.0%を超えた場合には、鋼板の飽和磁束密度が顕著に低下する。 したがってSiは1.0~8.0%に限定する。 Si含有量の好ましい下限は3.0%である。 またSi含有量の好ましい上限は3.5%である。
 Mn:0.005~1.0%
 Mnは、熱間圧延時の加工性を良くするために必要な元素であるが、添加量が0.005%未満では加工性改善効果に乏しい。 一方、1.0%を超えると二次再結晶が不安定になり磁気特性が劣化する。 したがってMnは0.005~1.0%に限定する。 Mn含有量の好ましい下限は0.02%である。 またMn含有量の好ましい上限は0.20%である。
 本発明では、析出物形成元素として、Nb、Ta、VおよびZrのうちから選んだ1種または2種以上(以下「Nb等」と呼ぶ)を合計で、10~50ppmの範囲で含有させることが不可欠である。 というのは、Nb等が合計で10ppm未満では、本発明の最大の特徴である、鉄損改善のための析出物が充分に生成しない。 一方、Nb等が合計で50ppmを越えると、前述したとおり、素材自体の鉄損特性が劣化してしまうため、50ppmをその上限とする。 好ましくは、10~30ppmの範囲である。
 また、上記したNb等の析出物の存在は10%以上であって、その析出物の平均径(円相当径)は0.02~3μmの範囲とすることが必要である。 平均径が0.02μm未満であると、析出物が小さすぎて応力集中が起こりにくくなる。 一方、3μmを超えると、析出物の存在頻度(個数)が減少して、応力集中が起こる箇所が少なくなる。 好ましい析出物の平均径は0.05~3μmである。 より好ましい下限は0.12μm、さらに好ましい下限は0.33μmである。 また、より好ましい上限は1.2μm、さらに好ましい上減は0.78μmである。
 Nb等の析出物の析出の割合は20%以上であることが好ましく、31%以上であることがさらに好ましい。 さらに好ましくは48%以上である。 上限は定める必要が無く、100%析出していても問題はない。
 Nb等の析出物の平均径は、得られたサンプルの断面を走査型電子顕微鏡で観察し、10000倍程度の倍率で10視野程度撮影し、画像解析により円相当径の平均を求めることが好ましい。 また、析出物の割合(析出割合)は実験1に記載した方法に準じて測定することが好ましい。 Nb等として2種以上の元素を含有する場合は、析出物中に含まれるNb等の全含有量(質量%)を、鋼板中に含まれるNb等の全含有量(質量%)で除すればよい。
析出物形成元素としてはNb、VおよびZrから選んだ1種又は2種以上が熱間圧延時に鋼板の欠陥をつくりにくいという観点から好ましい。 とくにNbは熱間圧延時の欠陥を低減できる点から好ましい。 これらの場合にも、必須範囲10~50ppmおよび好適範囲10~30ppmが適用され、好適な析出物直径および析出の割合も上と同様である。
 ここで、Nb等の析出物の径や析出の割合を調整するためには、純化焼鈍時における最高到達鋼板温度、およびその後の900℃から500℃までの冷却速度を制御することが有効である。 というのは、これら析出物は、純化焼鈍を高温にして、一旦固溶させ、冷却する時に再析出をさせることによって、その径の大きさや析出割合を調整できるからである。
 以上の現象においては、一般の析出現象と同様に、冷却速度が速い場合は、析出物量が少なくなり(一部固溶したまま残る)、かつ析出物の径も小さくなる。 一方、冷却速度が遅い場合は、その逆の状態になる傾向にある。
 さらに、前述したように、析出物形成元素添加によるΔW低減効果の発現のためには、素材の二次再結晶粒の平均粒径は、5mm以上とする必要がある。 なお、この粒径は、本発明の解決課題でも挙げた、数mの大きさの大型変圧器用電磁鋼板で一般的なものであるが、大きさに限らず二次再結晶の昇温速度および雰囲気を制御することで平均粒径5mm以上に制御することができる。 二次再結晶粒の平均粒径は、実験2に記載した方法で測定することが好ましい。
 なお、二次再結晶粒の平均粒径を5mm未満としてΔWを低減する方法は、鉄損や磁束密度の絶対値が劣化するため好ましくない。
 以上、本発明の基本的な成分構成等を説明した。
 本発明では、必要に応じて、以下に述べる元素を適宜含有させることができる。
 Ni:0.010~1.50%
 磁気特性を向上させるために、Niを添加することができる。この場合、添加量が0.010%未満では磁気特性の向上幅が小さい。 一方、1.50%を超えると二次再結晶が不安定になり磁気特性が劣化するおそれがある。 したがってNiは、0.010~1.50%の範囲とすることが好ましい。
 Cr:0.01~0.50%、Cu:0.01~0.50%、P:0.005~0.50%
 鉄損を低減させる目的としては、Cr、CuおよびPのうちの少なくとも一種を添加することができる。
 ただし、それぞれの添加量が上記の下限量より少ない場合には、鉄損の低減効果に乏しい。 一方、上記の上限量を超えた場合には、二次再結晶粒の発達が抑制され、逆に鉄損が増大する。 したがって、それぞれ上記の範囲で含有させることが好ましい。
 Sn:0.005~0.50%、Sb:0.005~0.50%、Bi:0.005~0.50%、Mo:0.005~0.100%
 磁束密度を向上させる目的で、Sn、Sb、BiおよびMoのうち少なくとも一種を添加することができる。
 ただし、それぞれの添加量が上記の下限量より少ない場合には、磁気特性の向上効果に乏しい。 一方、上記の上限量を超えた場合には、二次再結晶粒の発達が抑制され磁気特性が劣化する。 したがって、それぞれ上記の範囲で含有させることが好ましい。
 以上まとめると、本発明の電磁鋼板には、さらにNi:0.010~1.50%、Cr:0.01~0.50%、Cu:0.01~0.50%、P:0.005~0.50%、Sn:0.005~0.50%、Sb:0.005~0.50%、Bi:0.005~0.50%およびMo:0.005~0.100%のうちから選んだ少なくとも一種を含有させることができる。 また、これらの元素群の任意の下位集合について、該下位集合を構成する元素(群)から選んだ少なくとも1種を選んで含有させてもよい。
 上記以外に、必要に応じてインヒビター成分(AlN形成元素Al及びN、MnS形成元素Mn及びS、MnSe形成元素Mn及びSe、TiN形成元素Ti及びN、など)を少なくとも1組、必要量(公知)含有させることができる。
 残部はFeおよび通常の不可避的不純物である。 不可避的不純物としてはP、S、O、Al、N、Ti、Ca、B等が挙げられる(Al等はインヒビター成分として添加しない場合、不純物に該当する)。
 さらに、本発明では、鋼板の表面に、圧延直角方向に対して15°以内の角度で交差する方向に、幅:50~1000μm、深さ:10~50μmの直線状または破線状の溝を形成することが好ましい。 かかる溝の形成により、磁区細分化(magnetic domain refining)効果が発揮されて、鉄損の一層の低減が達成される。 なお、その溝の間隔(ピッチ)は2~7mm程度とするのが好ましい。 なお、溝が圧延直角方向に対して0°の場合は厳密には交差では無いが、ここでは交差に含めるものとする。 すなわち溝が圧延直角方向に対して15°以内の角度で形成されていればばよい。
 上記の溝の形成により、本発明の電磁鋼板の鉄損は概ね0.17W/kg程度低下する。 これはNb、Ta、VおよびZrからの元素の選択に関わらず効果が見られた。
 つぎに、本発明の方向性電磁鋼板の好適な製造方法について述べる。 この製造方法の主要な工程は、通常の方向性電磁鋼板の製造工程を利用することができる。 すなわち、所定の成分調整がなされた溶鋼を用いて製造したスラブを、熱間圧延し、得られた熱延板に必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施して、最終板厚とし、ついで鋼板に再結晶焼鈍を施した後、純化焼鈍を施し、必要に応じて平坦化焼鈍を行ったのち、コーティングを付与する一連の工程である。
 溶鋼での成分調整を行う場合であるが、Cの添加量が0.10%を超えると、以後の工程で磁気時効の起こらない50ppm(0.005%)以下に低減することが困難になるので、溶鋼段階では0.10%以下とすることが望ましい。
 また、Siは、最終的に必要な量である1.0~8.0%を、溶鋼での成分調整の段階で調節しても問題はない。 一方、スラブ製造以後の工程で浸珪処理(siliconization)等によりSi量を増加させる方法を利用する場合には、溶鋼でのSi量を最終的に必要な量よりも抑えて添加することもできる。
 本発明の主要成分であるNb、Ta、VおよびZrについては、溶鋼段階以後の工程中で添加・削減することが困難であり、上記した溶鋼での成分調整の段階で必要量を添加することが、最も望ましい。
 上記した成分を有する溶鋼は、通常の造塊法、連続鋳造法でスラブを製造してもよいし、100mm以下の厚さの薄鋳片を直接鋳造法で製造してもよい。 スラブは通常の方法で加熱して熱間圧延するが、鋳造後加熱せずに直ちに熱延してもよい。 薄鋳片の場合には熱間圧延してもよいし、熱間圧延を省略してそのまま以後の工程に進んでもよい。
 熱間圧延前のスラブ加熱温度としては、インヒビター成分を含む成分系では約1400℃の高温が通常採用される。 一方、インヒビター成分を含まない成分系では1250℃以下の低温が通常採用され、コストの面で有利である。
 次いで、必要に応じて熱延板焼鈍を施す。 良好な磁性を得るためには、熱延板焼鈍温度は800℃以上1150℃以下が好適である。 というのは、熱延板焼鈍温度が800℃未満であると、熱延でのバンド組織(band texture)が残留し、整粒(uniformly−sized grain(s))した一次再結晶組織を実現することが困難となるため、熱延板焼鈍を施しても二次再結晶の発達を促進する効果が相対的に小さいからである。 一方、熱延板焼鈍温度が1150℃を超えると、熱延板焼鈍後の結晶粒が粗大化してしまう。 したがって、この場合にも、整粒した一次再結晶組織を実現することが困難となる。
 熱延板焼鈍後、必要に応じて中間焼鈍を挟む1回以上の冷延を施した後、再結晶焼鈍を行う。 冷間圧延の温度を100℃~300℃の範囲とし、また冷間圧延途中で100~300℃の範囲での時効処理を1回または複数回行うことが、磁気特性をさらに向上させる点で有効である。 再結晶焼鈍を施す場合において、脱炭が必要なときには、その雰囲気を湿潤雰囲気とするが、脱炭を必要としないときには、乾燥雰囲気で行っても良い。 再結晶焼鈍後は、浸珪法によってSi量を増加させる技術をさらに適用してもよい。
 その後、鉄損を重視してフォルステライト被膜を形成させる場合には、MgOを主体とする焼鈍分離剤を適用した後に仕上焼鈍(純化焼鈍)を施すことにより、二次再結晶組織を発達させると共にフォルステライト被膜を形成させることが可能である。
 打ち抜き加工性を重視してフォルステライト被膜を積極的に形成しない場合には、焼鈍分離剤を適用しないか、適用する場合でもフォルステライト被膜を形成するMgOは使用せずにシリカやアルミナ等を用いるのがよい。
 これら焼鈍分離剤を塗布する際は、水分を持ち込まない静電塗布を行うことなどが有効である。また耐熱無機材料シート(シリカ、アルミナ、マイカ)を用いてもよい。
 仕上焼鈍は二次再結晶が発現する温度であれば充分であるが、800℃以上で行うことが望ましい。 また、二次再結晶を完了させる焼鈍条件が望ましく、一般には800℃以上の温度で20時間以上保持することが望ましい。 打ち抜き性を重視してフォルステライト被膜を形成させない場合には、二次再結晶が完了すればよいので保持温度は850~950℃程度が望ましく、この保持処理までで仕上焼鈍を終了することも可能である。 鉄損を重視して、あるいはトランスの騒音を低下させるために、フォルステライト被膜を形成させる場合は、1200℃程度まで昇温させることが有利である。
 なお、かかる高温焼鈍の冷却に際し、少なくとも900℃から500℃の温度域については、5~100℃/hrの速度で冷却することが望ましい。 900℃未満の保持温度から冷却する際はその温度から500℃の温度域について、5~100℃/hrの速度で冷却することが望ましい。というのは、上記の温度域における冷却速度が、100℃/hrを超えると、析出物が細かくなりすぎたり、固溶したまま析出しないおそれがあるからである。 一方、5℃/hrに満たないと、析出物の径が大きくなりすぎたり、またその冷却時間が長大となり生産性を低下させる等のおそれがある。 より好ましい冷却速度の下限は7.8℃/hrである。 より好ましい冷却速度の上限は30℃/hr、安定した結果を得る観点からさらに好ましい冷却速度の上限は14℃/hrである。
 仕上焼鈍後には、付着した焼鈍分離剤を除去するため、水洗やブラッシング、酸洗を行うことが有用である。 その後、平坦化焼鈍を行い形状を矯正することが鉄損低減のために有効である。
 鋼板を積層して使用する場合には、鉄損を改善するために、平坦化焼鈍前もしくは後に、鋼板表面に絶縁コーティングを施すことが有効である。 鉄損低減のためには、鋼板に張力を付与できるコーティングが望ましい。 バインダーを介した張力コーティング塗布方法や物理蒸着法、化学蒸着法等により、無機物を鋼板表層にコーティングする方法を採用すると、コーティング膜の密着性に優れ、かつ著しい鉄損低減効果があるため、特に望ましい。
 鉄損低減のためには、磁区細分化処理を行うことが望ましい。 その処理方法としては、一般的に実施されているように、最終製品板に溝をいれたり、レーザーやプラズマにより線状に熱歪や衝撃歪を導入したりする方法や、最終仕上板厚に達した冷間圧延板などの中間製品にあらかじめ溝を入れたりする方法が例示される。
本発明の鋼板を用いた好適な鉄心の製造方法としては、本発明の鋼板を剪断し、歪取焼鈍することなく積層して鉄心を製造する方法が挙げられる。 この際、本発明の鋼板は、剪断前後の鋼板の鉄損の劣化を0.1W/kg以下(好適には0.041W/kg以下)に抑制することができる。 この製造方法はとくに大形(例えば最長辺の長さが500mm超えの板に剪断して、大型の鉄心を製造する場合、とくに有利である。 鋼板の積層数、前記剪断により得る鋼板の寸法・形状、前記溝の有無やその寸法、さらにはコーティングの有無や種類などは、従来の知識に基づき、適宜選択すればよい。
 <実施例1>
 C:0.065%、Si:3.25%、Mn:0.13%、Al:240ppm、N:70ppm、S:36ppmおよびNb:25ppm(No.7鋼のみNb:20ppm)を含有し、残部Feおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1400℃でスラブ加熱した後、熱間圧延により2.4mmの厚さに仕上げた。 その後1000℃で40秒の熱延板焼鈍を施した後、冷間圧延により1.6mmの板厚とし、さらに900℃の中間焼鈍を施した後、冷間圧延により0.23mm厚に仕上げた。
 その後、60%N−40%H湿潤雰囲気中にて、850℃で90秒間の均熱条件の再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布して1220℃で6時間の純化焼鈍を行った。純化焼鈍では900℃から500℃までの冷却速度を表1に示すように制御して、Nb析出物の径やNbの析出割合を変更した。 その後、850℃で20秒間の平坦化焼鈍を施した。
 得られたサンプルを30mm×280mmサイズに切断した。 このときの切断は、ワイヤーカッター切断と、剪断機による切断と2条件で行った。 得られたサンプルの磁気特性をJIS C 2550に記載の方法で測定し、ワイヤーカッターによる切断で得られたサンプルの磁気特性を表1に記す。
 さらに、2条件の切断方法で各々得られた鉄損について、剪断機で切断したサンプルの鉄損から、ワイヤーカッターによる切断で得られたサンプルの鉄損を引く方法で求めたΔWを、表1に併記する。
 次に、磁気測定後のサンプルを酸洗処理して被膜を除去し、二次再結晶粒の結晶粒径を測定した。 その結果をNbの析出物径および析出割合の調査結果と共に表1に併記する。なお、この酸洗処理後に、被膜を除去したサンプルで鋼板中の成分調査を行った結果は、C:0.0016%、Si:3.24%、Mn:0.13%、Nb:18ppm(No.7鋼のみNb:15ppm)であり、本発明の要件を満足する成分組成であることが確認された。
Figure JPOXMLDOC01-appb-T000001
 同表に示したように、結晶粒径、Nbの析出物径および析出割合が、本発明の適正範囲を満足する発明例は、いずれも磁気特性が良好であり、かつΔWが小さく剪断加工による鉄損劣化が小さいことが分かる。
 <実施例2>
 表2記載の成分を含有する方向性電磁鋼板の製品板(板厚:0.23mm)であって、通常の製造方法に従い二次再結晶焼鈍を施し、ついで、純化焼鈍を1150℃で施した後、900℃から500℃までの冷却速度を25℃/hrとして得たものを用意した。
 この方向性電磁鋼板を、30mm×280mmサイズに切断した。このとき、ワイヤーカッターによる切断した場合と、剪断機による切断の場合との2条件で行った。
 得られたサンプルの磁気特性をJIS C 2550に記載の方法で測定し、ワイヤーカッターによる切断で得られたサンプルの磁気特性を表2に示す。 さらに、実施例1と同様にして求めたΔWを表2に併記する。
 また、磁気測定後のサンプルを酸洗処理して被膜を除去し、二次再結晶粒の結晶粒径を測定した。 その結果をNb等の析出物径および析出割合の調査結果と共に表2に併記する。 なお、表2の鋼板中の成分とは、この酸洗処理後に被膜を除去したサンプルで成分測定を行った結果である。
 また、析出物の調査を行った結果、平均の析出物径は0.05~3.34μmであり、析出割合は、0~79%であった。
Figure JPOXMLDOC01-appb-T000002
 同表に示したように、結晶粒径、Nb等の析出物径および析出割合が、本発明の適正範囲を満足する発明例は、いずれも磁気特性が良好であり、かつΔWが小さく剪断加工による鉄損劣化が小さいことが分かる。
 <実施例3>
 C:0.065%、Si:3.25%、Mn:0.13%、Cr:0.05%、Al:240ppm、N:70ppm、S:36ppm、P:0.013%、Sn:0.075%、Sb:0.036%、Mo:0.011%およびNb:25ppmを含有し、残部Feおよび不可避的不純物からなる鋼スラブを、連続鋳造にて製造し、1400℃でスラブ加熱した後、熱間圧延により2.4mmの厚さに仕上げた。 その後1000℃で40秒の熱延板焼鈍を施した後、冷間圧延により1.6mmの板厚とし、さらに700~1020℃の温度範囲で中間焼鈍を施した後、冷間圧延により0.23mm厚の鋼板に仕上げた。
 つづいて、鋼板表面に局所的電解エッチングで幅:100μm、深さ:25μmの線状溝を圧延直角方向と10°の角度をなすように8mmピッチで形成した。その後、60%N−40%H湿潤雰囲気中にて、800~900℃で90秒の均熱条件の再結晶焼鈍を施した後、MgOを主体とする焼鈍分離剤を塗布し、1220℃で6時間の純化焼鈍を行った。 その後、900℃から500℃までの冷却速度を10℃/hrとして冷却した。
 その後、850℃で20秒間の平坦化焼鈍を施した。 中間焼鈍温度と再結晶焼鈍温度を種々変更したのは、二次再結晶後の粒径の大きさを変更するためである。 得られたサンプルをエプスタイン試験片の30mm×280mmサイズに切断した。 このとき、ワイヤーカッター切断した場合と、剪断機による切断の場合との2条件で行った。
 得られたサンプルの磁気特性をJIS C 2550に記載の方法で測定し、ワイヤーカッターによる切断で得られたサンプルの磁気特性を表3に記す。 さらに、実施例1と同様にして求めたΔWを表3に併記する。
 また、磁気測定後のサンプルを酸洗処理して被膜を除去し、二次再結晶粒の結晶粒径を測定した。 その結果をNbの析出物径および析出割合の調査結果と共に表3に併記する。またこの酸洗処理後に、被膜を除去したサンプルで鋼板中の成分調査を行った結果は、C:0.0016%、Si:3.24%、Mn:0.13%、Cr:0.05%、P:0.011%、Sn:0.074%、Sb:0.036%、Mo:0.011%、Nb:18ppmであり、本発明の要件を満足する成分組成であった。
Figure JPOXMLDOC01-appb-T000003
 同表に示したように、結晶粒径、Nbの析出物径および析出割合が、本発明の適正範囲を満足する発明例は、いずれも磁気特性が良好であり、かつΔWが小さく剪断加工による鉄損劣化が小さいことが分かる。
 また、実施例1~3より分かるように、本発明により、概ねΔWが0.1W/kg以下の、剪断加工時の磁気特性劣化の少ない方向性電磁鋼板を得ることができる。 このことから本発明の鋼板を剪断加工し、歪取り焼鈍を施すことなく積層鉄心を製造することは、鉄心の磁気特性、とくに鉄損の改善に有効であることが分かる。
 さらに実施例1~3のNb析出物を用いた鋼では、析出物径(平均径)が0.12μm以上、1.2μm以下で(好ましくは0.78μm以下。また好ましくは析出割合48%以上。)、ΔWが0.038W/kg以下と、さらに優れた特性を得ることができる。 このような析出物径および量を得るためには、仕上焼鈍後の冷却速度を7.8~30℃/hrとすることが好ましく、7.8~14℃/hrとすることがさらに好適であることが、上記実施例1~3等から分かる。
 本発明によれば、方向性電磁鋼板の剪断加工時の磁気特性劣化を軽減することができる。その結果、鉄損の少ない鉄心を得ることができ、もって、エネルギー効率の高い大型変圧器等の作製が可能となる。

Claims (4)

  1.  質量%で、C:0.005%以下、Si:1.0~8.0%およびMn:0.005~1.0%を含有し、かつNb、Ta、VおよびZrのうちから選んだ1種または2種以上を合計で10~50ppm含有し、残部Feおよび不可避的不純物からなり、前記Nb、Ta、VおよびZrは含有量の少なくとも10%が析出物として存在し、かつ該析出物の直径(円相当径)が平均で0.02~3μmであり、さらに鋼板の二次再結晶粒の平均粒径が5m以上である、方向性電磁鋼板。
  2.  質量%で、さらにNi:0.010~1.50%、Cr:0.01~0.50%、Cu:0.01~0.50%、P:0.005~0.50%、Sn:0.005~0.50%、Sb:0.005~0.50%、Bi:0.005~0.50%およびMo:0.005~0.100%のうちから選んだ少なくとも一種を含有する、請求項1に記載の方向性電磁鋼板。
  3.  鋼板表面に、該鋼板の圧延直角方向に対して15°以内の角度で、幅:50~1000μm、深さ:10~50μmの直線状または破線状の溝を有する、請求項1または2に記載の方向性電磁鋼板。
  4.  請求項1~3の何れかに記載の方向性電磁鋼板を剪断し、その後歪取焼鈍することなく積層する、鉄心の製造方法。
PCT/JP2010/063343 2009-07-31 2010-07-30 方向性電磁鋼板 WO2011013858A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137028959A KR101614593B1 (ko) 2009-07-31 2010-07-30 방향성 전기 강판
CN201080034100.6A CN102471850B (zh) 2009-07-31 2010-07-30 方向性电磁钢板
RU2012107393/02A RU2496905C1 (ru) 2009-07-31 2010-07-30 Лист электротехнической стали с ориентированными зернами
US13/388,082 US20120131982A1 (en) 2009-07-31 2010-07-30 Grain oriented electrical steel sheet
EP10804595.6A EP2460902B1 (en) 2009-07-31 2010-07-30 Grain-oriented magnetic steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-179494 2009-07-31
JP2009179494 2009-07-31

Publications (1)

Publication Number Publication Date
WO2011013858A1 true WO2011013858A1 (ja) 2011-02-03

Family

ID=43529499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063343 WO2011013858A1 (ja) 2009-07-31 2010-07-30 方向性電磁鋼板

Country Status (7)

Country Link
US (1) US20120131982A1 (ja)
EP (1) EP2460902B1 (ja)
JP (1) JP4735766B2 (ja)
KR (2) KR20120035928A (ja)
CN (1) CN102471850B (ja)
RU (1) RU2496905C1 (ja)
WO (1) WO2011013858A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160012948A1 (en) * 2013-02-27 2016-01-14 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet (as amended)
US20160012949A1 (en) * 2013-02-28 2016-01-14 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet (as amended)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871137B2 (ja) * 2012-12-12 2016-03-01 Jfeスチール株式会社 方向性電磁鋼板
JP5668767B2 (ja) * 2013-02-22 2015-02-12 Jfeスチール株式会社 無方向性電磁鋼板製造用の熱延鋼板およびその製造方法
JP6319605B2 (ja) * 2014-10-06 2018-05-09 Jfeスチール株式会社 低鉄損方向性電磁鋼板の製造方法
KR101719231B1 (ko) * 2014-12-24 2017-04-04 주식회사 포스코 방향성 전기강판 및 그 제조방법
KR102062182B1 (ko) 2015-02-13 2020-01-03 제이에프이 스틸 가부시키가이샤 방향성 전자 강판 및 그의 제조 방법
JP6350398B2 (ja) 2015-06-09 2018-07-04 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6424875B2 (ja) * 2015-12-14 2018-11-21 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
WO2019151397A1 (ja) 2018-01-31 2019-08-08 日本製鉄株式会社 方向性電磁鋼板
KR102249920B1 (ko) 2018-09-27 2021-05-07 주식회사 포스코 방향성 전기강판 및 그의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469B2 (ja) 1972-10-13 1976-04-28
JPS5224116A (en) * 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPH0415644B2 (ja) 1987-09-17 1992-03-18 Asahi Glass Co Ltd
JPH08138924A (ja) * 1994-11-11 1996-05-31 Sumitomo Metal Ind Ltd フルプロセス無方向性電磁鋼板の製造方法
JPH10110218A (ja) * 1996-10-04 1998-04-28 Kawasaki Steel Corp 磁気特性に優れる方向性電磁鋼板の製造方法
JP2000129356A (ja) 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2005023393A (ja) * 2003-07-04 2005-01-27 Jfe Steel Kk 方向性電磁鋼板の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE442751B (sv) * 1980-01-04 1986-01-27 Kawasaki Steel Co Sett att framstella en kornorienterad kiselstalplat
US5049204A (en) * 1989-03-30 1991-09-17 Nippon Steel Corporation Process for producing a grain-oriented electrical steel sheet by means of rapid quench-solidification process
IT1284268B1 (it) * 1996-08-30 1998-05-14 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, con elevate caratteristiche magnetiche, a partire da
BR9800978A (pt) * 1997-03-26 2000-05-16 Kawasaki Steel Co Chapas elétricas de aço com grão orientado tendo perda de ferro muito baixa e o processo de produção da mesma
IT1299137B1 (it) * 1998-03-10 2000-02-29 Acciai Speciali Terni Spa Processo per il controllo e la regolazione della ricristallizzazione secondaria nella produzione di lamierini magnetici a grano orientato
KR19990088437A (ko) * 1998-05-21 1999-12-27 에모또 간지 철손이매우낮은고자속밀도방향성전자강판및그제조방법
US6309473B1 (en) * 1998-10-09 2001-10-30 Kawasaki Steel Corporation Method of making grain-oriented magnetic steel sheet having low iron loss
IT1316026B1 (it) * 2000-12-18 2003-03-26 Acciai Speciali Terni Spa Procedimento per la fabbricazione di lamierini a grano orientato.
JP4810777B2 (ja) * 2001-08-06 2011-11-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP4718749B2 (ja) * 2002-08-06 2011-07-06 Jfeスチール株式会社 回転機用高磁束密度無方向性電磁鋼板及び回転機用部材
CN1329548C (zh) * 2004-04-27 2007-08-01 宝山钢铁股份有限公司 低温韧性优良的软磁结构钢板及制造方法
JP5037796B2 (ja) * 2005-04-15 2012-10-03 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN100352963C (zh) * 2005-06-30 2007-12-05 宝山钢铁股份有限公司 耐盐雾腐蚀的软磁结构钢及其制造方法
CN101218362B (zh) * 2005-07-07 2010-05-12 住友金属工业株式会社 无方向性电磁钢板及其制造方法
CN101492791B (zh) * 2008-01-24 2012-05-30 宝山钢铁股份有限公司 可大线能量焊接的电磁钢板及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113469B2 (ja) 1972-10-13 1976-04-28
JPS5224116A (en) * 1975-08-20 1977-02-23 Nippon Steel Corp Material of high magnetic flux density one directionally orientated el ectromagnetic steel and its treating method
JPH0415644B2 (ja) 1987-09-17 1992-03-18 Asahi Glass Co Ltd
JPH08138924A (ja) * 1994-11-11 1996-05-31 Sumitomo Metal Ind Ltd フルプロセス無方向性電磁鋼板の製造方法
JPH10110218A (ja) * 1996-10-04 1998-04-28 Kawasaki Steel Corp 磁気特性に優れる方向性電磁鋼板の製造方法
JP2000129356A (ja) 1998-10-28 2000-05-09 Kawasaki Steel Corp 方向性電磁鋼板の製造方法
JP2005023393A (ja) * 2003-07-04 2005-01-27 Jfe Steel Kk 方向性電磁鋼板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2460902A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160012948A1 (en) * 2013-02-27 2016-01-14 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet (as amended)
US10431359B2 (en) * 2013-02-27 2019-10-01 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet
US20160012949A1 (en) * 2013-02-28 2016-01-14 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet (as amended)
US10134514B2 (en) * 2013-02-28 2018-11-20 Jfe Steel Corporation Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP4735766B2 (ja) 2011-07-27
JP2011047045A (ja) 2011-03-10
EP2460902B1 (en) 2016-05-04
RU2012107393A (ru) 2013-09-10
RU2496905C1 (ru) 2013-10-27
CN102471850A (zh) 2012-05-23
KR20130126751A (ko) 2013-11-20
KR101614593B1 (ko) 2016-04-21
US20120131982A1 (en) 2012-05-31
CN102471850B (zh) 2015-01-07
EP2460902A4 (en) 2013-02-20
EP2460902A1 (en) 2012-06-06
KR20120035928A (ko) 2012-04-16

Similar Documents

Publication Publication Date Title
WO2011013858A1 (ja) 方向性電磁鋼板
JP5754097B2 (ja) 方向性電磁鋼板およびその製造方法
KR101620763B1 (ko) 방향성 전기 강판 및 그 제조 방법
EP2880190B1 (en) Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
CN110651058B (zh) 取向性电磁钢板及其制造方法
JP4258349B2 (ja) 方向性電磁鋼板の製造方法
JP5037796B2 (ja) 方向性電磁鋼板の製造方法
KR102427606B1 (ko) 방향성 전자 강판
JP4331969B2 (ja) 無方向性電磁鋼板の製造方法
JP5810506B2 (ja) 方向性電磁鋼板
KR102504894B1 (ko) 방향성 전기 강판 및 그것을 사용한 철심
JP2009155731A (ja) 高磁場鉄損の優れた高磁束密度一方向性電磁鋼板
JP5130993B2 (ja) 高周波用電磁鋼板
JP7338812B1 (ja) 方向性電磁鋼板の製造方法
JP7414145B2 (ja) 方向性電磁鋼板の製造方法および方向性電磁鋼板用熱延鋼板
WO2022186300A1 (ja) 方向性電磁鋼板の製造方法
CN117460852A (zh) 取向性电磁钢板的制造方法
JP2000345305A (ja) 高磁場鉄損の優れた高磁束密度一方向性電磁鋼板とその製造方法
KR20230159875A (ko) 방향성 전자 강판의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034100.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804595

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 98/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127002405

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13388082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012107393

Country of ref document: RU

Ref document number: 2010804595

Country of ref document: EP