WO2011013598A1 - 光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置 - Google Patents
光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置 Download PDFInfo
- Publication number
- WO2011013598A1 WO2011013598A1 PCT/JP2010/062487 JP2010062487W WO2011013598A1 WO 2011013598 A1 WO2011013598 A1 WO 2011013598A1 JP 2010062487 W JP2010062487 W JP 2010062487W WO 2011013598 A1 WO2011013598 A1 WO 2011013598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- content
- optical
- optical glass
- preform
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
Definitions
- the present invention provides an optical glass having a high refractive index and a high dispersion characteristic and having an excellent precision press moldability, a precision press molding preform and optical element made of the glass, a manufacturing method thereof, and the optical element.
- the present invention relates to a mounted imaging apparatus.
- an aspherical lens made of the above glass is indispensable as a lens for a high-performance digital still camera.
- a precision press molding method also called a mold optics press method
- Phosphate glass is known as a high refractive index and high dispersion optical glass that can be molded by a precision press molding method.
- Phosphate-based optical glass is an excellent glass, but has a problem that the glass surface is easily damaged during precision press molding.
- Patent Documents 1 to 5 Glasses disclosed in Patent Documents 1 to 5 are known as non-phosphate high refractive index and high dispersion optical glass. All of these glasses have a silica-based composition.
- the glass disclosed in Patent Document 1 has a glass transition temperature of 530 ° C. or higher, which is insufficient as a glass transition temperature for suppressing the above reaction.
- the glass stability is low, crystals are precipitated while stirring the glass melt to obtain a homogeneous optical glass, or crystals are precipitated when the molten glass is cast into a mold, etc. This glass is not suitable for mass production.
- the glass disclosed in Patent Document 2 has a problem of low glass stability and easy devitrification.
- Patent Document 3 discloses a high-refractive index high-dispersion glass and a medium-refractive index high-dispersion glass, but the glass transition temperature is not sufficiently lowered for the high-refractive index high-dispersion glass.
- the present invention solves the above problems, and has a high refractive index and high dispersion optical glass excellent in devitrification resistance and precision press moldability, a precision press molding preform and optical element comprising the optical glass, and production thereof. It is an object of the present invention to provide a method and an imaging device including the optical element.
- Means for solving the problems in the present invention are: [1] Oxide glass, expressed in cation%, Si 4+ and B 3+ in total 20 to 40%, Nb 5+ , Ti 4+ , W 6+ and Zr 4+ in total 15-40 %, Zn 2+ , Ba 2+ , Sr 2+ and Ca 2+ in total 0.2 to 20%, Li + , Na + and K + in total 15 to 55%, Including The cation ratio of the content of B 3+ to the total content of B 3+ and Si 4+ is 0.01 to 0.5, The cation ratio of the Zr 4+ content to the total content of Nb 5+ , Ti 4+ , W 6+ and Zr 4+ is 0.05 or less, The molar ratio of the total content of Zn 2+ and Ba 2+ to the total content of Zn 2+ , Ba 2+ , Sr 2+ and Ca 2+ is 0.8 to 1, An optical glass having a refractive index nd of 1.815 or more and an Abbe number ⁇
- the optical glass according to any one of [5] The optical glass according to any one of [1] to [4] above, wherein the content of Si 4+ is 15 to 30%
- [6] The optical glass according to any one of [1] to [5], wherein the content of B 3+ is 15% or less
- [7] The optical glass according to any one of items [1] to [6], wherein the content of Nb 5+ is 10 to 30%
- [8] The optical glass according to any one of [1] to [7], wherein the content of Ti 4+ is 0 to 15%
- [9] The optical glass according to any one of [1] to [8] above, wherein the content of W 6+ is 0 to 4%.
- An optical element comprising the optical glass according to any one of [1] to [19] above, [23] A method for manufacturing an optical element comprising a step of heating the precision press-molding preform according to the above [20], and performing precision press molding using a press mold, [24] The method for producing an optical element according to the above [23], wherein the precision press molding preform and the press mold are heated together to perform precision press molding, [25] The method for manufacturing an optical element according to the above [23], wherein the precision press-molding preform is heated and then introduced into a preheated press mold and precision press-molded. [26] An imaging device comprising the optical element according to [22] above, It is.
- a high-refractive index, high-dispersion optical glass excellent in devitrification resistance and precision press moldability, a precision press-molding preform and optical element made of the optical glass, a production method thereof, and the above An imaging device including an optical element can be provided.
- FIG. 1 is a photograph of the lens obtained in Comparative Example 2.
- optical glass In the optical glass of the present invention, by adopting a silica-based composition, the glass surface is prevented from being scratched during precision press molding and is a problem inherent to precision press molding of high refractive index and high dispersion optical glass.
- the glass transition temperature is further lowered while maintaining a high refractive index.
- a high refractive index, high dispersion optical glass capable of stably producing quality optical elements.
- an optical glass that provides excellent glass stability and is easy to manufacture while being a high refractive index glass is provided.
- the partial dispersion ratios Pg and F are kept small, and the characteristics close to the standard line (normal line) in the partial dispersion ratios Pg and F-Abbe number ⁇ d are given.
- an optical glass material that is very effective for correcting higher-order chromatic aberration is provided.
- the silica-based composition is preferable from the viewpoint of realizing such partial dispersion characteristics.
- the optical glass of the present invention completed based on such a concept is Oxide glass, expressed as cation%, Si 4+ and B 3+ in total 20 to 40%, Nb 5+ , Ti 4+ , W 6+ and Zr 4+ in total 15-40 %, Zn 2+ , Ba 2+ , Sr 2+ and Ca 2+ in total 0.2 to 20%, Li + , Na + and K + in total 15 to 55%, Including The cation ratio of the content of B 3+ to the total content of B 3+ and Si 4+ is 0.01 to 0.5, The cation ratio of the Zr 4+ content to the total content of Nb 5+ , Ti 4+ , W 6+ and Zr 4+ is 0.05 or less, The molar ratio of the total content of Zn 2+ and Ba 2+ to the total content of Zn 2+ , Ba 2+ , Sr 2+ and Ca 2+ is 0.8 to 1, And an optical glass having a refractive index nd of 1.815 or more and an Abbe number
- Si 4+ and B 3+ are glass network-forming oxides, and are necessary components for maintaining glass stability and moldability of molten glass. However, when these components are excessively contained, the refractive index decreases. Therefore , the total content of Si 4+ and B 3+ is set to 20 to 40%.
- a preferable range of the total content of Si 4+ and B 3+ is 25 to 35%, a more preferable range is 25 to 34%, a further preferable range is 29 to 33%, and a further preferable range is 30 to 33%.
- Si 4+ has the effect of suppressing phase separation during precision press molding, improves chemical durability, suppresses viscosity reduction during molten glass molding, and maintains a state suitable for molding.
- excessive introduction increases the glass transition temperature and the liquidus temperature, and decreases the meltability and devitrification resistance. By suppressing the phase separation, it is possible to prevent a decrease in transmittance due to white turbidity of the glass.
- B 3+ has the functions of improving the meltability and lowering the glass transition temperature in addition to the above effects, but the chemical durability is lowered by introducing it excessively.
- improve the meltability a homogeneous glass can be obtained without increasing the glass melting temperature.
- the erosion of the crucible can be suppressed and the coloring of the glass due to the melting of the material such as platinum constituting the crucible can be suppressed.
- the cation ratio of the content of B 3+ to the total content of B 3+ and Si 4+ (B 3+ / (B 3+ + Si 4+ )) is 0.01 to 0.5. To do.
- the glass transition temperature can be further lowered, and the effect of suppressing the interfacial reaction between the glass and the press mold during precision press molding can be enhanced.
- the meltability and devitrification resistance can be improved.
- the preferable range of the cation ratio (B 3+ / (B 3+ + Si 4+ )) is 0.05 to 0.5, more preferably 0.08 to 0.5, and still more preferably 0.1 to 0.5.
- a preferred range is 0.1 to 0.45, and a still more preferred range is 0.1 to 0.4.
- the preferable range of the content of Si 4+ is 15 to 30%, the more preferable range is 19 to 26%, the further preferable range is 19 to 25.5%, and the preferable range of the content of B 3+ is 15% or less.
- a more preferable range is 0.3 to 15%, a further preferable range is 0.5 to 15%, a more preferable range is 1 to 15%, a still more preferable range is 3 to 15%, and an even more preferable range is 6 to 12%. .3%, and an even more preferred range is 7-12%.
- Nb 5+ , Ti 4+ , W 6+ and Zr 4+ are all components that have a great effect on high refractive index and high dispersion. If the total content of these components is less than 15%, it will be difficult to obtain the required refractive index, and if it exceeds 40%, the devitrification resistance will decrease and the liquidus temperature will increase. Therefore, the total content of Nb 5+ , Ti 4+ , W 6+ and Zr 4+ is set to 15 to 40%.
- a preferable range of the total content is 25 to 35%, a more preferable range is 26 to 33%, a further preferable range is 28 to 31%, and a further preferable range is 28 to 30%.
- Nb 5+ has the function of improving devitrification resistance and lowering the liquidus temperature in addition to the above effects. Further, it works to bring the partial dispersion characteristics closer to the normal line, that is, to bring ⁇ Pg, F closer to zero. However, if excessively contained, the devitrification resistance is lowered and the liquidus temperature is raised.
- Ti 4+ functions to improve devitrification resistance and chemical durability in addition to the above effects. However, when it is excessively contained, the phase separation tendency during precision press molding increases.
- W 6+ serves to improve devitrification resistance and suppress increase in liquidus temperature in addition to the above effects.
- devitrification resistance deteriorates and liquidus temperature rises.
- coloring tends to increase.
- Zr 4+ functions to suppress phase separation during precision press molding and to improve chemical durability and devitrification resistance.
- the liquidus temperature rises.
- the excessive introduction of Zr 4+ increases the glass transition temperature and promotes the interfacial reaction between the glass and the press mold during precision press molding, so the total content of Nb 5+ , Ti 4+ , W 6+ and Zr 4+
- the cation ratio of the content of Zr 4+ to Zr 4+ / (Nb 5+ + Ti 4+ + W 6+ + Zr 4+ ) is 0.05 or less.
- the range of the cation ratio (Zr 4+ / (Nb 5+ + Ti 4+ + W 6+ + Zr 4+ )) is preferably 0.005 to 0.05, preferably 0.008 to 0 0.03 is more preferable, and 0.009 to 0.025 is even more preferable.
- Nb 5+ , Ti 4+ , W 6+ , and Zr 4+ are components whose devitrification resistance is unlikely to deteriorate even when introduced in a large amount. Therefore , the total content of Nb 5+ and Ti 4+ It is preferably in the range of 20 to 35%, more preferably in the range of 26 to 29.5%, and further preferably in the range of 26 to 28.5%. Further, Nb 5+ and Ti 4+ are essential components from the viewpoint of further improving the devitrification resistance.
- Nb 5+, of Ti 4+, suppressed towards the Nb 5+ low partial dispersion ratio larger works to bring the partial dispersion property to the normal line, the Nb 5+ content to the total content of Nb 5+ and Ti 4+
- the cation ratio (Nb 5+ / (Nb 5+ + Ti 4+ )) is preferably in the range of 0.65 to 1.
- the cation ratio (Nb 5+ / (Nb 5+ + Ti 4+ )) should be in the range of 0.65 to 0.9. Is more preferable, and a range of 0.7 to 0.8 is more preferable.
- a preferable upper limit of the Nb 5+ content is 30%, a more preferable upper limit is 23%, a still more preferable upper limit is 22%, and a more preferable upper limit is 21%.
- a preferable lower limit of the Nb 5+ content is 10%, and a more preferable lower limit. Is 16%, a more preferred lower limit is 18%, and a more preferred lower limit is 19%.
- the preferable combination of the upper limit and the lower limit is arbitrary. As a specific example, the preferable range of the content of Nb 5+ is 10 to 30%, the more preferable range is 16 to 23%, the still more preferable range is 18 to 22%, and the more preferable range is 19 to 21%.
- the preferable upper limit of the content of Ti 4+ is 15%, the more preferable upper limit is 12%, the further preferable upper limit is 10%, the still more preferable upper limit is 9.5%, the still more preferable upper limit is 9%, and the still more preferable upper limit is 8. 5%, an even more preferable upper limit is 8.0, a preferable lower limit of the content of Ti 4+ is 1%, a more preferable lower limit is 2%, a further preferable lower limit is 3%, a more preferable lower limit is 4%, and even more preferable.
- the lower limit is 5%, and an even more preferable lower limit is 5.5%.
- the preferable combination of the upper limit and the lower limit is arbitrary.
- a preferable range of the content of Ti 4+ is 0 to 15%, a more preferable range is 0 to 12%, a further preferable range is 0 to 10%, a more preferable range is 1 to 10%, and a much more preferable range.
- the preferable upper limit of the content of W 6+ is 4%, the more preferable upper limit is 3%, the further preferable upper limit is 2.5%, the more preferable upper limit is 2.0%, and the still more preferable upper limit is 1.5%.
- a preferable lower limit of the 6+ content is 0.5%.
- the preferable combination of the upper limit and the lower limit is arbitrary. As a specific example, a preferable range of the content of W 6+ is 0 to 3%, a more preferable range is 0 to 2.5%, a further preferable range is 0.5 to 2.0%, and a more preferable range is 0.5. ⁇ 1.5%.
- the preferable upper limit of the content of Zr 4+ is 4%, the more preferable upper limit is 3%, the more preferable upper limit is 2%, the more preferable upper limit is 1.5%, the still more preferable upper limit is 1.2%, and the more preferable upper limit is 1. %, A more preferable upper limit is 0.6%, a preferable lower limit of the content of Zr 4+ is 0.2%, and a more preferable lower limit is 0.5%.
- the preferable combination of the upper limit and the lower limit is arbitrary.
- a preferable range of the content of Zr 4+ is 0 to 4%, a more preferable range is 0 to 3%, a further preferable range is 0 to 2%, a more preferable range is 0 to 1.5%, and even more A preferable range is 0.1 to 1.5%, an even more preferable range is 0.2 to 1.2%, an even more preferable range is 0.2 to 1%, and an even more preferable range is 0.4 to 0. 6%.
- Zn 2+ , Ba 2+ , Sr 2+ , and Ca 2+ are useful for adjusting optical constants, increase devitrification resistance, meltability, and light transmittance, and are added to glass raw materials as carbonates and nitrates to clarify the effect. It is a component which can raise.
- the total content of Zn 2+ , Ba 2+ , Sr 2+ and Ca 2+ is less than 0.5%, it is difficult to obtain the above effect, and when it exceeds 20%, the devitrification resistance is lowered and the liquidus temperature is increased. In addition, chemical durability is reduced. Therefore, the total content of Zn 2+ , Ba 2+ , Sr 2+ and Ca 2+ is set to 0.2 to 20%.
- a preferable upper limit of the total content of Zn 2+ , Ba 2+ , Sr 2+ and Ca 2+ is 15%, a more preferable upper limit is 10%, and a further preferable upper limit is 8.5%.
- Zn 2+ , Ba 2+ , Sr 2+ and Ca The preferred lower limit of the total content of 2+ is 0.3%, the more preferred lower limit is 0.4%, the still more preferred lower limit is 0.5%, the still more preferred lower limit is 1%, the still more preferred lower limit is 3%, and still more preferred.
- the lower limit is 5%, an even more preferable lower limit is 6.5%, and an even more preferable upper limit is 7%.
- the preferable combination of the upper limit and the lower limit is arbitrary.
- a preferable range of the total content of Zn 2+ , Ba 2+ , Sr 2+ and Ca 2+ is 1 to 20%, a more preferable range is 3 to 20%, a further preferable range is 3 to 15%, and a more preferable range. Is 5 to 10%, more preferably 6.5 to 10%, and still more preferably 7 to 8.5%.
- Zn 2+ is excellent in the function of lowering the glass transition temperature and also has the function of maintaining the refractive index in a high state. However, when it contains excessively, devitrification resistance falls, liquid phase temperature rises, or the chemical durability tends to fall.
- Ba 2+ has a function of increasing the refractive index and suppressing phase separation during precision press molding.
- devitrification resistance falls, liquid phase temperature rises, or the chemical durability tends to fall.
- Sr 2+ functions to increase the refractive index although the effect is smaller than that of Ba 2+ . It also has the function of suppressing phase separation during precision press molding. However, when it contains excessively, devitrification resistance falls, liquid phase temperature rises, or the chemical durability tends to fall.
- Ca 2+ functions to suppress phase separation during precision press molding.
- the devitrification resistance decreases, the liquidus temperature increases, the glass transition temperature increases, and the chemical durability tends to decrease.
- Zn 2+ is a component that has a large effect of lowering the glass transition temperature while maintaining a high refractive index
- Ba 2+ is a component that greatly increases the refractive index. Therefore, in order to achieve both high refractive index and low glass transition temperature, the cation ratio of the total content of Zn 2+ and Ba 2+ to the total content of Zn 2+ , Ba 2+ , Sr 2+ and Ca 2+ ((Zn 2+ + Ba 2+ ) / (Zn 2+ + Ba 2+ + Sr 2+ + Ca 2+ )) is set to 0.8 to 1.
- the preferable range of the cation ratio ((Zn 2+ + Ba 2+ ) / (Zn 2+ + Ba 2+ + Sr 2+ + Ca 2+ )) is 0.82 to 1, more preferably 0.85 to 1, and still more preferably 0.9 to 1. It is.
- preferred ranges of the respective component amounts are as follows.
- the preferable range of the Zn 2+ content is 9% or less, the more preferable range is 1 to 9%, the still more preferable range is 3 to 9%, the more preferable range is 3 to 8%, and the still more preferable range is 4.5 to 6 0.5%, an even more preferable range is 5.0 to 6.0%, a preferable range of the Ba 2+ content is 6% or less, a more preferable range is 0.5 to 6%, and a further preferable range is 0.00.
- Li + , Na + and K + are components having an effect of improving the meltability and lowering the glass transition temperature.
- the total content of these components is less than 15%, it becomes difficult to obtain the above effect, and when it exceeds 55%, the glass stability is lowered and the liquidus temperature is increased. Therefore, the total content of Li + , Na + and K + is set to 15 to 55%.
- the preferable range of the total content of Li + , Na + and K + is 20 to 50%, more preferably 25 to 40%, still more preferably 28 to 40%, and still more preferably 30 to 35%.
- Li + is the component that has the greatest effect of lowering the glass transition temperature while maintaining a high refractive index among the alkali metal components. However, when excessively contained, the glass stability is lowered and the liquidus temperature is increased. To do.
- Na + and K + work to further increase the glass stability by the mixed alkali effect by coexisting with Li + .
- the cation ratio of the content of Li + to the total content of Li + , Na + and K + (Li + / (Li + + Na + + K + )) Is preferably 0.1 to 1.
- the more preferable range of the cation ratio (Li + / (Li + + Na + + K + )) is 0.2 to 1, more preferably 0.3 to 0.8, and still more preferably 0.4 to 0. .5.
- a preferable range of the Li + content is 25% or less, a more preferable range is 10 to 20%, a further preferable range is 13 to 17%, a more preferable range is 14 to 16%, and a preferable range of the Na + content is Is preferably 30 to 30%, more preferably 10 to 20%, still more preferably 13 to 17%, and still more preferably 14 to 16%, and K + content is preferably 0 to 25%, more preferably
- the range is 0 to 20%, the more preferred range is 0 to 15%, more preferably 0 to 9%, the still more preferred range is 0 to 5%, and the still more preferred range is 2 to 4%.
- La 3+ , Gd 3+ , Y 3+ and Yb 3+ work to increase the refractive index and improve the chemical durability, but when introduced in excess of 6%, the liquidus temperature rises and the devitrification resistance increases. descend. Therefore, the contents of La 3+ , Gd 3+ , Y 3+ and Yb 3+ are set to 0 to 6%.
- the preferred range of the content of La 3+ , Gd 3+ , Y 3+ , Yb 3+ is 0 to 3%, more preferred range is 0 to 2%, even more preferred range is 0 to 1%, even more preferred. Does not introduce La 3+ , Gd 3+ , Y 3+ , or Yb 3+ .
- Ta 5+ also functions to increase the refractive index and improve the chemical durability, but when introduced in excess of 3%, the liquidus temperature increases and the devitrification resistance decreases. Therefore, the content of Ta 5+ is set to 0 to 3%.
- a preferable range of the content of Ta 5+ is 0 to 2%, and a more preferable range is 0 to 1%.
- Ge 4+ is a network-forming oxide and also functions to increase the refractive index. However, since it is a very expensive component, the content of Ge 4+ is 0 to 2%, preferably 0 to 1%. More preferably, no Ge 4+ is introduced.
- Bi 3+ functions to increase the refractive index and improve the glass stability. However, if it is introduced in excess of 2%, the coloration of the glass increases, so the content of Bi 3+ is 0 to 2%, preferably 0 to 1%, more preferably not contained.
- Al 3+ works to improve glass stability and chemical durability if it is in a small amount, but if it is introduced in excess of 1%, the liquidus temperature rises and devitrification resistance decreases. Therefore, the content of Al 3+ is 0 to 1%, preferably 0 to 0.5%, more preferably 0 to 0.2%, and still more preferably not contained.
- the glass of the present invention does not need to contain components such as Ga 3+ , Lu 3+ and Hf 4+ . Since Ga 3+ , Lu 3+ , and Hf 4+ are also expensive components, the contents of Ga 3+ , Lu 3+ , and Hf 4+ are preferably suppressed to 0 to 1%, respectively, and each is suppressed to 0 to 0.5%. More preferably, it is more preferable to suppress each to 0 to 0.1%, and it is particularly preferable that Ga 3+ is not introduced, Lu 3+ is not introduced, and Hf 4+ is not introduced.
- the content is preferably 95 to 100%, more preferably 98 to 100%, and still more preferably 99 to 100%.
- 0 to 2% by mass of Sb 2 O 3 and 0 to 2% by mass of SnO 2 can be added on an external basis in terms of oxides. These additives function as a fining agent, and Sb 2 O 3 can suppress the coloring of the glass due to the mixing of impurities such as Fe.
- a preferable addition amount of Sb 2 O 3 and SnO 2 is 0 to 1% by mass, more preferably 0 to 0.5% by mass, respectively.
- the optical glass of the present invention is an oxide glass, and among the anion components, 50 anion% or more is O 2 ⁇ .
- a small amount of F ⁇ , Cl ⁇ , I ⁇ and Br ⁇ may be introduced.
- a preferable range of the content of O 2 ⁇ is 50 to 100 anion%, a more preferable range is 80 to 100 anion%, further preferably 85 to 100 anion%, more preferably 90 to 100 anion%, still more preferably 95 to 100%, still more preferably 98 to 100 anion%, still more preferably 99 to 100 anion%, particularly preferably 100 anion%.
- the optical glass of the present invention has a refractive index nd of 1.83 or more and an Abbe number ⁇ d of 29 or less.
- nd refractive index
- ⁇ d Abbe number
- an optical glass suitable for a lens material capable of excellent chromatic aberration correction can be obtained by combining with a lens made of low dispersion glass.
- a preferable range of the refractive index nd is 1.83 to 1.90, a more preferable range is 1.83 to 1.88, a further preferable range is 1.84 to 1.855, and a preferable range of the Abbe number ⁇ d is 23 to 29, more preferably 24 to 25.5, and still more preferably 24.5 to 25.25.
- the glass stability tends to decrease or the glass transition temperature tends to increase.
- the glass transition temperature of the optical glass of the present invention is less than 530 ° C, preferably 520 ° C or less, more preferably 515 ° C or less, and further preferably 510 ° C or less.
- the press molding temperature can be set lower.
- the progress speed of the interface reaction between the glass and the press mold during precision press molding is greatly influenced by the press molding temperature. Therefore, the interface reaction can be significantly suppressed by simply reducing the glass transition temperature by several degrees C. or tens of degrees C.
- the glass transition temperature tends to increase, but according to the present invention, a glass having a low glass transition temperature suitable for precision press molding can be obtained while being a high refractive index glass.
- the liquidus temperature of the optical glass of the present invention is 1080 ° C. or lower, preferably 1060 ° C. or lower, more preferably 1020 ° C. or lower, and further preferably 1015 ° C. or lower.
- the liquidus temperature low, the temperature at which the molten glass is formed can be lowered.
- the molding temperature low, volatilization of easily volatile components such as boric acid and alkali metals from the surface of the molten glass can be suppressed, and variations in optical properties and surface striae can be suppressed.
- the liquidus temperature tends to increase, but according to the present invention, a glass having a low liquidus temperature excellent in mass productivity can be obtained while being a high refractive index glass.
- the present invention provides a glass that is a high refractive index and high dispersion optical glass and that is suitable for high-order chromatic aberration correction with a small partial dispersion ratio.
- the partial dispersion ratios Pg and F are expressed as (ng-nF) / (nF-nc) using the refractive indexes ng, nF, and nc in the g-line, F-line, and c-line.
- the deviation ⁇ Pg, F of the partial dispersion ratios Pg, F is 0.014 or less, preferably 0.013 or less, more preferably 0.012 or less, and good high-order chromatic aberration correction. It is a suitable glass.
- the partial dispersion ratio Pg, F of the optical glass of the present invention is 0.610 to 0.620, preferably 0.611 to 0.618.
- the optical glass of the present invention weighs and prepares oxides, carbonates, sulfates, nitrates, hydroxides and the like as raw materials so that the desired glass composition is obtained, and mixes well to form a mixed batch. It can be obtained by heating and melting in a melting container, defoaming and stirring to make a molten glass that is homogeneous and does not contain bubbles, and is molded. Specifically, it can be made using a known melting method.
- the precision press-molding preform of the present invention comprises the above-described optical glass of the present invention.
- preform for precision press molding
- preform means a glass lump used for precision press molding, and is a glass molded body corresponding to the mass of a precision press molded product.
- Preform means a glass preform that is heated and used for precision press molding.
- precision press molding is also known as mold optics molding, and presses the optical functional surface of an optical element.
- the molding surface of the molding die is transferred.
- the optical function surface means a surface that refracts, reflects, diffracts, or enters and exits the light to be controlled in the optical element, and the lens surface of the lens corresponds to the optical function surface.
- the mold surface is coated with a release film so that the glass extends along the molding surface. It is preferable.
- a type of release film Precious metals (platinum, platinum alloys) Oxides (Si, Al, Zr, La, Y oxides, etc.) Nitride (B, Si, Al nitride, etc.) Examples include carbon-containing films.
- the carbon-containing film is preferably a film containing carbon as a main component (when the element content in the film is expressed in atomic%, the carbon content is higher than the content of other elements). Specifically, a carbon film, a hydrocarbon film, etc. can be illustrated.
- a method for forming a carbon-containing film As a method for forming a carbon-containing film, a known method such as a vacuum deposition method using a carbon raw material, a sputtering method, an ion plating method, or a thermal decomposition using a material gas such as a hydrocarbon is used. Use it. Other films can be formed using a vapor deposition method, a sputtering method, an ion plating method, a sol-gel method, or the like.
- the preform is produced through a process of heating and melting a glass raw material to produce a molten glass, and molding the molten glass.
- a first preparation example of a preform is a method in which a molten glass lump having a predetermined weight is separated from the molten glass and cooled, and a preform having a mass equal to the molten glass lump is formed.
- glass raw material is melted, clarified, and homogenized to prepare a homogeneous molten glass, which is then discharged from a temperature-adjusted platinum or platinum alloy outflow nozzle or outflow pipe.
- molten glass is dropped as a molten glass droplet of a desired mass from an outflow nozzle, and it is received by a preform mold and molded into a preform.
- a preform is formed by dropping a molten glass droplet having a desired mass into liquid nitrogen or the like from an outflow nozzle.
- the molten glass flow is caused to flow down from the outflow pipe, the tip of the molten glass flow is received by the preform mold, and the constricted portion is formed between the nozzle of the molten glass flow and the preform mold.
- the preform mold is rapidly lowered directly, the molten glass flow is separated at the constricted portion by the surface tension of the molten glass, and the molten glass lump of a desired mass is received by the receiving member and molded into the preform.
- the molten glass lump is applied to the molten glass lump on the preform mold while being floated while being floated.
- a method of forming into a preform or a method of forming a preform by putting molten glass droplets in a liquid medium by cooling a gaseous substance at room temperature and normal pressure such as liquid nitrogen is used.
- Examples of the gas used when the floating gas is blown onto the preform include air, N 2 gas, O 2 gas, Ar gas, He gas, and water vapor.
- the wind pressure is not particularly limited as long as the preform can float without coming into contact with a solid such as the mold surface.
- the shape of the preform is preferably a shape having a rotationally symmetric axis.
- a shape having a rotationally symmetric axis As a specific example, one having a sphere or one axis of rotational symmetry can be shown.
- a shape having one rotationally symmetric axis has a smooth outline with no corners or depressions in the cross section including the rotationally symmetric axis, for example, an ellipse whose short axis coincides with the rotationally symmetric axis in the cross section is defined as the outline.
- a shape including a concave surface, a surface including the other intersection point is a convex surface, and a shape including both surfaces including the two intersection points are concave surfaces.
- a homogeneous molten glass is cast into a mold and molded, and then the distortion of the molded body is removed by annealing, cut or cleaved, and divided into predetermined dimensions and shapes.
- a glass piece is prepared, the glass piece is polished to smooth the surface, and a preform made of glass having a predetermined mass is obtained. It is preferable to use the preform thus prepared by coating the surface of the preform with a carbon-containing film.
- the optical element of the present invention is characterized by comprising the above-described optical glass of the present invention.
- lenses such as aspheric lenses, spherical lenses, or plano-concave lenses, plano-convex lenses, biconcave lenses, biconvex lenses, convex meniscus lenses, concave meniscus lenses, micro lenses, lens arrays, lenses with diffraction gratings, prisms, lenses
- An example is a prism with a function.
- an antireflection film, a wavelength selective partial reflection film, or the like may be provided on the surface.
- the optical element of the present invention is made of glass having a high dispersion characteristic and a small partial dispersion ratio, high-order chromatic aberration correction can be performed by combining with an optical element made of other glass. Moreover, since the optical element of the present invention is made of glass having a high refractive index, the optical system can be made compact by using it in an imaging optical system, a projection optical system, and the like.
- the method for producing an optical element of the present invention comprises a step of heating the above-described preform for precision press molding of the present invention and performing precision press molding using a press mold.
- the heating and pressing process of the press mold and the preform is performed in order to prevent oxidation of the molding surface of the press mold or the release film provided on the molding surface, nitrogen gas or a mixed gas of nitrogen gas and hydrogen gas, etc. It is preferable to carry out in a non-oxidizing gas atmosphere.
- the carbon-containing film covering the preform surface is not oxidized, and the film remains on the surface of the precision press-molded product.
- This film should be finally removed, but in order to remove the carbon-containing film relatively easily and completely, the precision press-molded product may be heated in an oxidizing atmosphere, for example, air.
- the oxidation and removal of the carbon-containing film should be performed at a temperature at which the precision press-molded product is not deformed by heating. Specifically, it is preferably performed in a temperature range below the glass transition temperature.
- a press mold in which the molding surface has been processed to a desired shape with high accuracy is used in advance, but a mold release film is formed on the molding surface to prevent glass fusion during pressing. Also good.
- the release film include a carbon-containing film, a nitride film, and a noble metal film.
- the carbon-containing film a hydrogenated carbon film, a carbon film, and the like are preferable.
- the viscosity of the glass reaches a temperature equivalent to 10 5 to 10 9 dPa ⁇ s. Both the mold and the preform are heated to soften the preform, and this is pressure-molded to precisely transfer the molding surface of the mold to glass.
- a preform whose temperature has been raised to a temperature corresponding to 10 4 to 10 8 dPa ⁇ s in advance is supplied between a pair of opposed upper and lower molds whose molding surfaces are precisely shaped. And by pressing this, the shaping
- the pressure and time at the time of pressurization can be appropriately determined in consideration of the viscosity of the glass, etc.
- the press pressure can be about 5 to 15 MPa, and the press time can be 10 to 300 seconds.
- the pressing conditions such as pressing time and pressing pressure may be appropriately set within a known range in accordance with the shape and dimensions of the molded product.
- the mold and the precision press-molded product are cooled, and when the temperature is preferably equal to or lower than the strain point, the mold is released and the precision press-molded product is taken out.
- the annealing conditions of the molded product during cooling for example, the annealing rate may be adjusted as appropriate.
- the above-described optical element manufacturing methods can be roughly divided into the following two methods.
- the first method is a method of manufacturing an optical element in which a preform is introduced into a press mold and the mold and the glass material are heated together. When emphasizing improvement in molding accuracy such as surface accuracy and eccentricity accuracy, This is the recommended method.
- the second method is a method of manufacturing an optical element in which a preform is heated and introduced into a preheated press mold and precision press-molded, and is recommended when emphasizing productivity improvement.
- the optical element of the present invention can be produced without going through a press molding process. For example, casting a homogeneous molten glass into a mold to form a glass block, annealing to remove the distortion, and adjusting the annealing conditions to adjust the optical characteristics so that the refractive index of the glass becomes a desired value Then, the glass block can be cut or cleaved to make a glass piece, which is then ground and polished to finish the optical element.
- Example 1 Using the corresponding oxides, carbonates, sulfates, nitrates, hydroxides, etc. as raw materials for introducing each component so that the glass compositions shown in Table 1 to Table 7 are obtained, the raw materials are weighed and sufficiently To prepare a blended raw material, which was put in a platinum crucible, heated and melted. After melting, the molten glass is poured into a mold, allowed to cool to near the glass transition temperature, immediately placed in an annealing furnace, annealed for about 1 hour in the glass transition temperature range, and then allowed to cool to room temperature in the furnace. , Glass No. 1-No. 47 optical glasses were obtained. In the obtained optical glass, crystals that could be observed with a microscope did not precipitate. Tables 1 to 7 show the characteristics of the optical glass thus obtained.
- Example 1 Comparative Example 1
- the melts of Examples 1 and 2 were devitrified during stirring. About 13 did not vitrify.
- glass was obtained by casting the melt into a mold, but precipitation of crystals was observed inside.
- Example 2 Melting, clarifying and homogenizing the glass raw material prepared so that each optical glass produced in Example 1 is obtained, making a molten glass, dropping a molten glass drop from a platinum nozzle, and receiving with a preform mold, It was formed into a spherical preform made of the above-mentioned various glasses while being floated by applying wind pressure.
- the molten glass is continuously discharged from the platinum pipe, the lower end of the molten glass is received by a preform mold, a constricted portion is formed in the molten glass flow, and then the preform mold is rapidly lowered directly below the molten glass.
- the flow was cut at the constricted portion, the molten glass lump separated on the preform mold was received, and molded into preforms made of the above-mentioned various glasses while being floated by applying wind pressure.
- the resulting preform was optically homogeneous and of high quality.
- Example 3 The molten glass prepared in Example 2 was continuously flowed out, cast into a mold, formed into a glass block, annealed, and cut to obtain a plurality of glass pieces. These glass pieces were ground and polished to prepare preforms made of the various glasses. The resulting preform was optically homogeneous and of high quality.
- Example 4 The preforms produced in Examples 2 and 3 were introduced into a press mold including a SiC upper and lower mold and a body mold, in which the surface of the preform was coated with a carbon-containing film and a carbon-based release film was provided on the molding surface.
- a mold and preform are heated together in an atmosphere to soften the preform, precision press-molded and aspherical convex meniscus lens, aspherical concave meniscus lens, aspherical biconvex lens, aspherical both Various lenses of concave lenses were prepared.
- each condition of precision press molding was adjusted in the above-mentioned range.
- the surface of the lens thus obtained may be coated with an antireflection film.
- the preform coated with the carbon-containing film is heated and softened, separately introduced into a preheated press mold, and precision press-molded to form an aspherical convex meniscus lens, aspherical concave meniscus lens, Various lenses such as an aspherical biconvex lens and an aspherical biconcave lens were produced.
- each condition of precision press molding was adjusted in the above-mentioned range.
- the surface of the lens thus obtained may be coated with an antireflection film.
- Example 5 Using each lens produced in Example 4, various interchangeable lenses for a single-lens reflex camera incorporating each lens were produced.
- Example 4 various optical systems of a compact digital camera were produced using the lenses produced in Example 4 and modularized. Furthermore, an image sensor such as a CCD or CMOS was attached to these optical systems to form a module.
- an image sensor such as a CCD or CMOS was attached to these optical systems to form a module.
- Example 4 By using the various lenses produced in Example 4, a high-function, compact optical system, an interchangeable lens, a lens module, and an imaging device can be obtained.
- a lens manufactured in Example 4 By combining the lens manufactured in Example 4 and a lens made of high refractive index and low dispersion optical glass, various optical systems in which higher-order chromatic aberration correction is performed and an imaging apparatus including the optical system can be obtained.
- the optical glass of the present invention is an optical glass having high refractive index, high dispersion characteristics, excellent devitrification resistance, a low glass transition temperature, and suitable for precision press molding. Further, it is an optical glass suitable for high-order chromatic aberration correction, and is suitably used for producing a precision press molding preform and an optical element.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
Abstract
Description
特許文献2に開示されているガラスも、特許文献1と同様、ガラス安定性が低く、失透しやすいという問題がある。
特許文献3には、高屈折率高分散ガラスと中屈折率高分散ガラスが開示されているが、高屈折率高分散ガラスについては、ガラス転移温度の低下が十分にはなされていない。
[1] 酸化物ガラスであって、カチオン%表示にて、
Si4+、B3+を合計で20~40%、
Nb5+、Ti4+、W6+およびZr4+を合計で15~40%、
Zn2+、Ba2+、Sr2+およびCa2+を合計で0.2~20%、
Li+、Na+およびK+を合計で15~55%、
含み、
B3+およびSi4+の合計含有量に対するB3+の含有量のカチオン比が0.01~0.5、
Nb5+、Ti4+、W6+およびZr4+の合計含有量に対するZr4+の含有量のカチオン比が0.05以下、
Zn2+、Ba2+、Sr2+およびCa2+の合計含有量に対するZn2+およびBa2+の合計含有量のモル比を0.8~1、
であり、屈折率ndが1.815以上、アッベ数νdが29以下である光学ガラス、
[2] ガラス転移温度が530℃未満である上記[1]項に記載の光学ガラス、
[3] 液相温度が1080℃以下である上記[1]項または[2]項に記載の光学ガラス、
[4] Nb5+およびTi4+の合計含有量に対するNb5+の含有量のカチオン比(Nb5+/(Nb5++Ti4+))が0.65~1である上記[1]項~[3]項のいずれかに記載の光学ガラス、
[5] Si4+の含有量が15~30%である上記[1]項~[4]項のいずれかに記載の光学ガラス、
[6] B3+の含有量が15%以下である上記[1]項~[5]項のいずれかに記載の光学ガラス、
[7] Nb5+の含有量が10~30%である上記「1」項~[6]項のいずれかに記載の光学ガラス、
[8] Ti4+の含有量が0~15%である上記[1]項~[7]項のいずれかに記載の光学ガラス、
[9] W6+の含有量が0~4%である上記[1]項~[8]項のいずれかに記載の光学ガラス、
[10] Zr4+の含有量が0~4%である上記[1]項~[9]項のいずれかに記載の光学ガラス、
[11] Zn2+の含有量が9%以下である上記[1]項~[10]項のいずれかに記載の光学ガラス、
[12] Ba2+の含有量が6%以下である上記[1]項~[11]項のいずれかに記載の光学ガラス、
[13] Sr2+の含有量が2%以下である上記[1]項~[12]項のいずれかに記載の光学ガラス、
[14] Ca2+の含有量が3%以下である上記[1]項~[13]項のいずれかに記載の光学ガラス、
[15] Li+の含有量が25%以下である上記[1]項~[14]項のいずれかに記載の光学ガラス、
[16] Na+の含有量が30%以下である上記[1]項~[15]項のいずれかに記載の光学ガラス、
[17] K+の含有量が25%以下である上記[1]項~[16]項のいずれかに記載の光学ガラス、
[18] Li+、Na+およびK+の合計含有量に対するLi+の含有量のカチオン比が0.1~1である上記[1]項~[17]項のいずれかに記載の光学ガラス。
[19] ΔPg,Fが0.0130以下である上記[1]項~[18]項のいずれかに記載の光学ガラス、
[20] 上記[1]項~[19]項のいずれかに記載の光学ガラスからなる精密プレス成形用プリフォーム、
[21] ガラス原料を加熱、熔融して熔融ガラスを作製し、前記熔融ガラスを成形する工程を経て、上記[21]項に記載のプリフォームを作製する精密プレス成形用プリフォームの製造方法、
[22] 上記[1]項~[19]項のいずれかに記載の光学ガラスからなる光学素子、
[23] 上記[20]項に記載の精密プレス成形用プリフォームを加熱し、プレス成形型を用いて精密プレス成形する工程を備える光学素子の製造方法、
[24] 精密プレス成形用プリフォームとプレス成形型を一緒に加熱して精密プレス成形する上記[23]項に記載の光学素子の製造方法、
[25] 精密プレス成形用プリフォームを加熱した後、予熱したプレス成形型に導入して精密プレス成形する上記[23]項に記載の光学素子の製造方法、
[26] 上記[22]項に記載の光学素子を備える撮像装置、
である。
本発明の光学ガラスでは、シリカ系の組成を採用することにより、精密プレス成形時のガラス表面への加傷を防止するとともに、高屈折率高分散光学ガラスの精密プレス成形に固有の問題である高屈折率高分散付与成分とプレス成形型成形面との界面反応による光学素子表面の品質低下を防止するため、高屈折率を維持しつつ、ガラス転移温度を一層低下させ、精密プレス成形によって高品質の光学素子を安定して生産することができる高屈折率高分散光学ガラスを提供する。また、高屈折率ガラスでありながら、優れたガラス安定性を供え、製造が容易な光学ガラスを提供する。
酸化物ガラスであって、カチオン%表示にて、
Si4+、B3+を合計で20~40%、
Nb5+、Ti4+、W6+およびZr4+を合計で15~40%、
Zn2+、Ba2+、Sr2+およびCa2+を合計で0.2~20%、
Li+、Na+およびK+を合計で15~55%、
含み、
B3+およびSi4+の合計含有量に対するB3+の含有量のカチオン比が0.01~0.5、
Nb5+、Ti4+、W6+およびZr4+の合計含有量に対するZr4+の含有量のカチオン比が0.05以下、
Zn2+、Ba2+、Sr2+およびCa2+の合計含有量に対するZn2+およびBa2+の合計含有量のモル比を0.8~1、
であり、屈折率ndが1.815以上、アッベ数νdが29以下である光学ガラスである。
Zn2+の含有量の好ましい範囲は9%以下、より好ましい範囲は1~9%、さらに好ましい範囲は3~9%、一層好ましい範囲は3~8%、より一層好ましい範囲は4.5~6.5%、さらに一層好ましい範囲は5.0~6.0%であり、Ba2+の含有量の好ましい範囲は6%以下、より好ましい範囲は0.5~6%、さらに好ましい範囲は0.5~4%、一層好ましい範囲は0.8~3%、より一層好ましい範囲は1.0~2.0%であり、Sr2+の含有量の好ましい範囲は0~2%、より好ましい範囲は0~1.5%、さらに好ましい範囲は0~1%であり、Ca2+の含有量の好ましい範囲は0~3%、より好ましい範囲は0~2%、さらに好ましい範囲は0~1.5%、一層好ましい範囲は0.1~0.9%、より一層好ましい範囲は0.32~0.45%である。
Li+の含有量の好ましい範囲は25%以下、より好ましい範囲は10~20%、さらに好ましい範囲は13~17%、一層好ましい範囲は14~16%であり、Na+の含有量の好ましい範囲は30%以下、より好ましい範囲は10~20%、さらに好ましい範囲は13~17%、一層好ましい範囲は14~16%であり、K+の含有量の好ましい範囲は0~25%、より好ましい範囲は0~20%、さらに好ましい範囲は0~15%、一層好ましくは0~9%、より一層好ましい範囲は0~5%、さらに一層好ましい範囲は2~4%である。
本発明の光学ガラスの屈折率ndは1.83以上、アッベ数νdは29以下である。屈折率ndを上記範囲にすることにより、高機能、コンパクトな光学系を構成する光学素子の材料に好適な光学ガラスを得ることができる。なお、高屈折率ガラスを用いることにより、同じ集光パワーを有するレンズを作る際にレンズ面の曲率を緩くすることができる。その結果、レンズを精密プレス成形する際の成形性を改善することもできる。
本発明の光学ガラスのガラス転移温度は530℃未満、好ましくは520℃以下、より好ましくは515℃以下、さらに好ましくは510℃以下である。ガラス転移温度の低下に伴い、プレス成形温度をより低く設定することができる。精密プレス成形時のガラスとプレス成形型の界面反応の進行速度は、プレス成形温度の高低によって大きな影響を受ける。したがって、ガラス転移温度を数℃、あるいは数十℃低下させるだけでも、界面反応を大幅に抑制することができる。
本発明の光学ガラスの液相温度は1080℃以下、好ましくは1060℃以下、より好ましくは1020℃以下、さらに好ましくは1015℃以下である。
撮像光学系、投射光学系などで、高次の色消しを行うには、低分散ガラス製レンズと高分散ガラス製レンズを組み合わせて使用するのが効果的である。しかし、低分散側のガラスは部分分散比が大きいものが多いため、より高次の色収差を補正する場合、高分散特性に加えて、部分分散比が小さいガラスを使用したレンズと組み合わせることがより有効である。
Pg,F(0)=0.6483−(0.0018×νd)
ΔPg,F=Pg,F−Pg,F(0)
=Pg,F+(0.0018×νd)−0.6483
本発明の光学ガラスは、目的のガラス組成が得られるように、原料である酸化物、炭酸塩、硫酸塩、硝酸塩、水酸化物などを秤量、調合し、十分に混合して混合バッチとし、熔融容器内で加熱、熔融し、脱泡、攪拌を行い均質かつ泡を含まない熔融ガラスを作り、これを成形することによって得ることができる。具体的には公知の熔融法を用いて作ることができる。
次に本発明の精密プレス成形用プリフォームについて説明する。
本発明の精密プレス成形用プリフォームは、上記した本発明の光学ガラスからなることを特徴とするものである。
プリフォームは、加熱して精密プレス成形に供されるガラス予備成形体を意味するが、ここで精密プレス成形とは、周知のようにモールドオプティクス成形とも呼ばれ、光学素子の光学機能面をプレス成形型の成形面を転写することにより形成する方法である。なお、光学機能面とは光学素子において、制御対象の光を屈折したり、反射したり、回折したり、入出射させる面を意味し、レンズにおけるレンズ面などがこの光学機能面に相当する。
貴金属(白金、白金合金)
酸化物(Si、Al、Zr、La、Yの酸化物など)
窒化物(B、Si、Alの窒化物など)
炭素含有膜
があげられる。炭素含有膜としては、炭素を主成分とするもの(膜中の元素含有量を原子%で表したとき、炭素の含有量が他の元素の含有量よりも多いもの)が望ましい。具体的には、炭素膜や炭化水素膜などを例示することができる。炭素含有膜の成膜法としては、炭素原料を使用した真空蒸着法、スパッタリング法、イオンプレーティング法等の公知の方法や、炭化水素などの材料ガスを使用した熱分解などの公知の方法を用いればよい。その他の膜については、蒸着法、スパッタリング法、イオンプレーティング法、ゾルゲル法等を用いて成膜することが可能である。
次に本発明の光学素子について説明する。本発明の光学素子は、上記した本発明の光学ガラスからなることを特徴とする。具体的には、非球面レンズ、球面レンズ、あるいは平凹レンズ、平凸レンズ、両凹レンズ、両凸レンズ、凸メニスカスレンズ、凹メニスカスレンズなどのレンズ、マイクロレンズ、レンズアレイ、回折格子付きレンズ、プリズム、レンズ機能付きプリズムなどを例示することができる。表面には必要に応じて反射防止膜や波長選択性のある部分反射膜などを設けてもよい。
次に本発明の光学素子の製造方法について説明する。
本発明の光学素子の製造方法は、上記した本発明の精密プレス成形用プリフォームを加熱し、プレス成形型を用いて精密プレス成形する工程を備えることを特徴とする。
表1~表7に示すガラス組成になるように、各成分を導入するための原料としてそれぞれ相当する酸化物、炭酸塩、硫酸塩、硝酸塩、水酸化物などを用い、原料を秤量し、十分に混合して調合原料とし、これを白金坩堝に入れ、加熱、熔融した。熔融後、熔融ガラスを鋳型に流し込み、ガラス転移温度付近まで放冷してから直ちにアニール炉に入れ、ガラスの転移温度範囲で約1時間アニール処理した後、炉内で室温まで放冷することにより、ガラスNo.1~No.47の光学ガラスを得た。
得られた光学ガラス中には、顕微鏡で観察できる結晶は析出しなかった。
このようにして得られた光学ガラスの請特性を表1~表7に示す。
(1)屈折率nd、ng、nF、ncおよびアッベ数νd
降温速度−30℃/時間で降温して得られたガラスについて、日本光学硝子工業会規格の屈折率測定法により、屈折率nd、ng、nF、nc、アッベ数νdを測定した。
(2)液相温度LT
ガラスを所定温度に加熱された炉内に入れて2時間保持し、冷却後、ガラス内部を100倍の光学顕微鏡で観察し、結晶の有無から液相温度を決定した。
(3)ガラス転移温度Tg
示差走査熱量計(DSC)により、昇温速度10℃/分として測定した。
(4)部分分散比Pg,F
屈折率ng、nF、ncから算出した。
(5)部分分散比のノーマルラインからの偏差ΔPg,F
部分分散比Pg,Fおよびアッベ数νdから算出されるノーマルライン上の部分分散比Pg,F(0)から算出した。
特許文献2の実施例1~13の組成になるように同文献に記載されている方法でガラスを熔解したところ、実施例1、2については熔融物を撹拌中に失透し、実施例4~13についてはガラス化しなかった。実施例3は熔融物を鋳型にキャストしてガラスが得られたものの、内部に結晶の析出が認められた。
実施例1で作製した各光学ガラスが得られるように調合したガラス原料を熔融、清澄、均質化して熔融ガラスを作り、白金製のノズルから熔融ガラス滴を滴下してプリフォーム成形型で受け、風圧を加えて浮上させながら上記各種ガラスからなる球状のプリフォームに成形した。
得られたプリフォームは光学的に均質な高品質のものであった。
実施例2で用意した熔融ガラスを連続的に流出して鋳型に鋳込み、ガラスブロックに成形した後、アニールし、切断して複数個のガラス片を得た。これらガラス片を研削、研磨して上記各種ガラスからなるプリフォームを作製した。
得られたプリフォームは光学的に均質な高品質のものであった。
実施例2、3で作製したプリフォームの表面に炭素含有膜をコートし、成形面に炭素系離型膜を設けたSiC製の上下型および胴型を含むプレス成形型内に導入し、窒素雰囲気中で成形型とプリフォームを一緒に加熱してプリフォームを軟化し、精密プレス成形して上記各種ガラスからなる非球面凸メニスカスレンズ、非球面凹メニスカスレンズ、非球面両凸レンズ、非球面両凹レンズの各種レンズを作製した。なお、精密プレス成形の各条件は前述の範囲で調整した。
次に表8に示す光学ガラスを作製し、このガラスを用いて精密プレス成形用プリフォームを作製した。そして、このプリフォームを実施例4と同様、精密プレス成形してレンズを作製したところ、レンズ表面に多数の発泡が認められた。レンズ表面を拡大撮影した写真を図1の(a)および(b)に示す。
実施例4で作製した各レンズを用いて、各レンズを内蔵する一眼レフカメラ用の交換レンズ各種を作製した。
Claims (26)
- 酸化物ガラスであって、カチオン%表示にて、
Si4+、B3+を合計で20~40%、
Nb5+、Ti4+、W6+およびZr4+を合計で15~40%、
Zn2+、Ba2+、Sr2+およびCa2+を合計で0.2~20%、
Li+、Na+およびK+を合計で15~55%、
含み、
B3+およびSi4+の合計含有量に対するB3+の含有量のカチオン比が0.01~0.5、
Nb5+、Ti4+、W6+およびZr4+の合計含有量に対するZr4+の含有量のカチオン比が0.05以下、
Zn2+、Ba2+、Sr2+およびCa2+の合計含有量に対するZn2+およびBa2+の合計含有量のモル比が0.8~1、
であり、屈折率ndが1.815以上、アッベ数νdが29以下である光学ガラス。 - ガラス転移温度が530℃未満である請求項1に記載の光学ガラス。
- 液相温度が1080℃以下である請求項1または2に記載の光学ガラス。
- Nb5+およびTi4+の合計含有量に対するNb5+の含有量のカチオン比(Nb5+/(Nb5++Ti4+))が0.65~1である請求項1~3のいずれかに記載の光学ガラス。
- Si4+の含有量が15~30%である請求項1~4のいずれかに記載の光学ガラス。
- B3+の含有量が15%以下である請求項1~5のいずれかに記載の光学ガラス。
- Nb5+の含有量が10~30%である請求項1~6のいずれかに記載の光学ガラス。
- Ti4+の含有量が0~15%である請求項1~7のいずれかに記載の光学ガラス。
- W6+の含有量が0~4%である請求項1~8のいずれかに記載の光学ガラス。
- Zr4+の含有量が0~4%である請求項1~9のいずれかに記載の光学ガラス。
- Zn2+の含有量が9%以下である請求項1~10のいずれかに記載の光学ガラス。
- Ba2+の含有量が6%以下である請求項1~11のいずれかに記載の光学ガラス。
- Sr2+の含有量が2%以下である請求項1~12のいずれかに記載の光学ガラス。
- Ca2+の含有量が3%以下である請求項1~13のいずれかに記載の光学ガラス。
- Li+の含有量が25%以下である請求項1~14のいずれかに記載の光学ガラス。
- Na+の含有量30%以下である請求項1~15のいずれかに記載の光学ガラス。
- K+の含有量が25%以下である請求項1~16のいずれかに記載の光学ガラス。
- Li+、Na+およびK+の合計含有量に対するLi+の含有量のカチオン比が0.1~1である請求項1~17のいずれかに記載の光学ガラス。
- ΔPg,Fが0.0130以下である請求項1~18のいずれかに記載の光学ガラス。
- 請求項1~19のいずれかに記載の光学ガラスからなる精密プレス成形用プリフォーム。
- ガラス原料を加熱、熔融して熔融ガラスを作製し、前記熔融ガラスを成形する工程を経て、請求項20に記載のプリフォームを作製する精密プレス成形用プリフォームの製造方法。
- 請求項1~19のいずれかに記載の光学ガラスからなる光学素子。
- 請求項20に記載の精密プレス成形用プリフォームを加熱し、プレス成形型を用いて精密プレス成形する工程を備える光学素子の製造方法。
- 精密プレス成形用プリフォームとプレス成形型を一緒に加熱して精密プレス成形する請求項23に記載の光学素子の製造方法。
- 精密プレス成形用プリフォームを加熱した後、予熱したプレス成形型に導入して精密プレス成形する請求項23に記載の光学素子の製造方法。
- 請求項22に記載の光学素子を備える撮像装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10804344.9A EP2463252A4 (en) | 2009-07-29 | 2010-07-20 | OPTICAL GLASS, PRECISION FORMING PRESENTATION, OPTICAL ELEMENT, METHOD OF MANUFACTURING ITEM AND ILLUSTRATING DEVICE |
CN201080033281.0A CN102471131B (zh) | 2009-07-29 | 2010-07-20 | 光学玻璃、精密模压成形用预成形件、光学元件及其制造方法和摄像装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009176545 | 2009-07-29 | ||
JP2009-176545 | 2009-07-29 | ||
JP2010-159420 | 2010-07-14 | ||
JP2010159420A JP5734587B2 (ja) | 2009-07-29 | 2010-07-14 | 光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011013598A1 true WO2011013598A1 (ja) | 2011-02-03 |
Family
ID=43529253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062487 WO2011013598A1 (ja) | 2009-07-29 | 2010-07-20 | 光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8431504B2 (ja) |
EP (1) | EP2463252A4 (ja) |
JP (1) | JP5734587B2 (ja) |
KR (1) | KR20120048580A (ja) |
CN (1) | CN102471131B (ja) |
TW (1) | TWI543951B (ja) |
WO (1) | WO2011013598A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5813926B2 (ja) * | 2010-03-31 | 2015-11-17 | Hoya株式会社 | 光学ガラス、精密プレス成形用プリフォーム、光学素子、それらの製造方法、及び撮像装置 |
JP6088938B2 (ja) * | 2013-08-23 | 2017-03-01 | Hoya株式会社 | 光学ガラスおよびその利用 |
JP6727692B2 (ja) * | 2014-10-29 | 2020-07-22 | 株式会社オハラ | 光学ガラス、プリフォーム及び光学素子 |
CN108751696B (zh) * | 2015-04-10 | 2021-09-07 | 成都光明光电股份有限公司 | 光学玻璃 |
JP6495139B2 (ja) * | 2015-08-11 | 2019-04-03 | 光ガラス株式会社 | 光学ガラス、光学素子、および光学装置 |
CN111484248B (zh) * | 2019-01-25 | 2022-03-11 | 成都光明光电股份有限公司 | 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 |
CN111960664B (zh) * | 2020-08-31 | 2023-01-17 | 湖北新华光信息材料有限公司 | 一种低软化点重火石光学玻璃和光学元件 |
CN114455831A (zh) * | 2022-01-24 | 2022-05-10 | 成都光明光电股份有限公司 | 光学玻璃 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08175841A (ja) * | 1994-12-26 | 1996-07-09 | Ohara Inc | 光学ガラス |
JP2002087841A (ja) | 2000-07-14 | 2002-03-27 | Hoya Corp | 光学ガラス、精密プレス成形用素材および光学部品 |
JP2004110942A (ja) | 2002-09-19 | 2004-04-08 | Hitachi Ltd | 磁気ディスク装置 |
JP2004161598A (ja) | 2002-04-02 | 2004-06-10 | Ohara Inc | 光学ガラス |
JP2005272194A (ja) * | 2004-03-24 | 2005-10-06 | Hoya Corp | プレス成形用プリフォームの製造方法、製造装置および光学素子の製造方法 |
JP2008266028A (ja) * | 2007-04-16 | 2008-11-06 | Ohara Inc | 光学ガラス |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3504625C1 (de) * | 1985-02-11 | 1986-07-03 | Schott Glaswerke, 6500 Mainz | Hochbrechendes optisches Glas im System SiO2-TiO2-Nb2O5-BaO-Alkalioxid mit Brechwerten ? 1,83 und Abbezahlen ? 25,und mit sehr guter chemischer Bestaendigkeit |
EP1350770A1 (en) * | 2002-04-02 | 2003-10-08 | Kabushiki Kaisha Ohara | Optical glass |
US7528083B2 (en) * | 2003-06-10 | 2009-05-05 | Kabushiki Kaish Ohara | Optical glass |
JP4218804B2 (ja) * | 2004-03-19 | 2009-02-04 | Hoya株式会社 | 光学ガラス、精密プレス成形用プリフォームとその製造方法および光学素子とその製造方法 |
JP4948569B2 (ja) * | 2008-06-27 | 2012-06-06 | Hoya株式会社 | 光学ガラス |
-
2010
- 2010-07-14 JP JP2010159420A patent/JP5734587B2/ja active Active
- 2010-07-20 WO PCT/JP2010/062487 patent/WO2011013598A1/ja active Application Filing
- 2010-07-20 CN CN201080033281.0A patent/CN102471131B/zh active Active
- 2010-07-20 KR KR1020127002292A patent/KR20120048580A/ko not_active Application Discontinuation
- 2010-07-20 EP EP10804344.9A patent/EP2463252A4/en not_active Withdrawn
- 2010-07-23 US US12/842,184 patent/US8431504B2/en active Active
- 2010-07-26 TW TW099124547A patent/TWI543951B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08175841A (ja) * | 1994-12-26 | 1996-07-09 | Ohara Inc | 光学ガラス |
JP2002087841A (ja) | 2000-07-14 | 2002-03-27 | Hoya Corp | 光学ガラス、精密プレス成形用素材および光学部品 |
JP2004161598A (ja) | 2002-04-02 | 2004-06-10 | Ohara Inc | 光学ガラス |
JP2004110942A (ja) | 2002-09-19 | 2004-04-08 | Hitachi Ltd | 磁気ディスク装置 |
JP2005272194A (ja) * | 2004-03-24 | 2005-10-06 | Hoya Corp | プレス成形用プリフォームの製造方法、製造装置および光学素子の製造方法 |
JP2008266028A (ja) * | 2007-04-16 | 2008-11-06 | Ohara Inc | 光学ガラス |
Also Published As
Publication number | Publication date |
---|---|
KR20120048580A (ko) | 2012-05-15 |
TWI543951B (zh) | 2016-08-01 |
TW201118051A (en) | 2011-06-01 |
EP2463252A1 (en) | 2012-06-13 |
US8431504B2 (en) | 2013-04-30 |
JP2011046591A (ja) | 2011-03-10 |
US20110034315A1 (en) | 2011-02-10 |
CN102471131A (zh) | 2012-05-23 |
CN102471131B (zh) | 2014-08-06 |
EP2463252A4 (en) | 2015-05-06 |
JP5734587B2 (ja) | 2015-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5695336B2 (ja) | 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法 | |
JP6382256B2 (ja) | 光学ガラスおよびその利用 | |
JP5357429B2 (ja) | 光学ガラス、プレス成形用ガラス素材および光学素子とその製造方法ならびに光学素子ブランクの製造方法 | |
JP5723542B2 (ja) | 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法 | |
JP6088938B2 (ja) | 光学ガラスおよびその利用 | |
JP5813926B2 (ja) | 光学ガラス、精密プレス成形用プリフォーム、光学素子、それらの製造方法、及び撮像装置 | |
JP5669256B2 (ja) | 光学ガラス、精密プレス成形用プリフォーム、光学素子とその製造方法 | |
JP5931173B2 (ja) | 光学ガラスおよびその利用 | |
JP5734587B2 (ja) | 光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置 | |
WO2009144947A1 (ja) | 光学ガラス、精密プレス成形用プリフォーム、光学素子とそれら製造方法、ならびに撮像装置 | |
JP5922228B2 (ja) | 光学ガラス、精密プレス成形用プリフォーム、および光学素子とその製造方法 | |
JP5916934B1 (ja) | 光学ガラス、精密プレス成形用プリフォーム、及び光学素子 | |
WO2011024270A1 (ja) | フツリン酸ガラス、プレス成形用ガラス素材、光学素子ブランク、光学素子およびそれらの製造方法ならびにガラス成形体の製造方法 | |
JP6362717B2 (ja) | 光学ガラスおよびその利用 | |
JP6067482B2 (ja) | 光学ガラス、プレス成形用ガラス素材および光学素子とその製造方法ならびに光学素子ブランクの製造方法 | |
JP2018043918A (ja) | 光学ガラス、精密プレス成形用プリフォーム、及び光学素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080033281.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10804344 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2010804344 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010804344 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127002292 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |