WO2011011911A1 - 信号传输处理方法、装置以及分布式基站 - Google Patents

信号传输处理方法、装置以及分布式基站 Download PDF

Info

Publication number
WO2011011911A1
WO2011011911A1 PCT/CN2009/072937 CN2009072937W WO2011011911A1 WO 2011011911 A1 WO2011011911 A1 WO 2011011911A1 CN 2009072937 W CN2009072937 W CN 2009072937W WO 2011011911 A1 WO2011011911 A1 WO 2011011911A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
distributed base
optical
station interface
Prior art date
Application number
PCT/CN2009/072937
Other languages
English (en)
French (fr)
Inventor
谭晶鑫
肖新
黄志勇
李朝阳
张秉华
杜伟
李汉国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43528684&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011011911(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP17191847.7A priority Critical patent/EP3327957B1/en
Priority to EP15179452.6A priority patent/EP2978149B1/en
Priority to RU2011146156/07A priority patent/RU2494545C2/ru
Priority to BRPI0924930A priority patent/BRPI0924930B8/pt
Priority to PCT/CN2009/072937 priority patent/WO2011011911A1/zh
Priority to AU2009350650A priority patent/AU2009350650B9/en
Priority to ES09847697.1T priority patent/ES2558482T3/es
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES15179452.6T priority patent/ES2646130T3/es
Priority to CN200980115738.XA priority patent/CN102577187B/zh
Priority to EP09847697.1A priority patent/EP2416506B1/en
Priority to CA2761388A priority patent/CA2761388C/en
Priority to ES17191847T priority patent/ES2843024T3/es
Publication of WO2011011911A1 publication Critical patent/WO2011011911A1/zh
Priority to US13/287,830 priority patent/US8406178B2/en
Priority to US13/747,127 priority patent/US9300403B2/en
Priority to US15/059,040 priority patent/US9564973B2/en
Priority to US15/387,231 priority patent/US10305595B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • H04B10/25759Details of the reception of RF signal or the optical conversion before the optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/028WDM bus architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0286WDM hierarchical architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1664Optical Transport Network [OTN] carrying hybrid payloads, e.g. different types of packets or carrying frames and packets in the paylaod

Definitions

  • the embodiments of the present invention relate to the field of communication technologies, and in particular, to a signal transmission processing method, device, and distributed base station. Background technique
  • the 2G/3G radio network access system is composed of three parts: core network (CN), radio access network (such as universal terrestrial radio access network UTRAN) and user equipment UE.
  • the radio access network includes radio network controller RNC and base station. (Node B), where the distributed base station is an important form of the current wireless base station.
  • the distributed base station includes a baseband processing unit (Ba se Band Un it, and hereinafter referred to as BBU) and a remote radio unit ( Remote Radio Unit, hereinafter referred to as RRU), is the bus interface between the baseband processing part and the remote radio part in the wireless distributed base station interface station system, usually an optical interface, or an electrical interface.
  • BBU baseband processing unit
  • RRU Remote Radio Unit
  • the BBU is a miniaturized box-type device
  • the RRU is an outdoor radio frequency remote device that can be directly installed on a metal mast or wall near the antenna.
  • the interface between the baseband processing part and the remote radio part is connected by one or several specific signal links.
  • the interface includes three types of CPR I, IR, or OBSI.
  • the mainstream rates are all above 1228. 8M, and the TD-SCDMA standard
  • the name of the distributed base station interface is IR interface, and each link is a high-speed serial digital transmission rate.
  • the current commercial mainstream rate is 2457. 6Mb/s, which may include 3.0720Gb/s or higher in the future.
  • the distributed base station interface signal link between the BBU and RRU needs to consume optical fiber resources for transmission.
  • TOM technology is used for signal transmission between BBU and RRU, as shown in Figure 2, that is, each distributed base station interface signal in the radio frequency baseband pool of the baseband processing unit is adopted
  • the four signals in Figure 2 use ⁇ ⁇ 2 , ⁇ 3 and ⁇ 4 respectively , and are processed by the optical splitting and multiplexing module for transmission.
  • the radio frequency remote unit first processes the received optical signal by the optical demultiplexer module, separates the optical signal and transmits it to the corresponding radio frequency remote module, because the optical signal is attenuated in the optical fiber transmission Therefore, for optical signals with a long transmission distance, an optical amplifier can be added to the optical path to amplify the optical signal during transmission to achieve a longer transmission distance.
  • a system monitoring module can be set in the system for system monitoring.
  • each distributed base station interface signal transmitted between the baseband processing unit and the remote radio unit needs to occupy one
  • the light wavelength makes signal transmission efficiency low.
  • the purpose of the embodiments of the present invention is to provide a signal transmission processing method, device, and distributed base station to improve signal transmission efficiency.
  • the present invention provides a signal transmission processing method, including: acquiring at least one distributed base station interface signal;
  • Electro-optical conversion is performed on the signal after the electrical layer multiplexing process of the optical transport network to generate an optical signal and send it.
  • An embodiment of the present invention also provides a distributed base station interface signal transmission processing device, including: an acquisition module, configured to acquire at least one distributed base station interface signal;
  • a multiplexing processing module configured to perform optical transport network electrical layer multiplexing processing on the acquired at least one channel of distributed base station interface signals
  • the first sending module is configured to perform electro-optical conversion on the signal after the electrical layer multiplexing process of the optical transport network to generate and send an optical signal.
  • the embodiment of the present invention also provides a distributed base station, including a baseband processing unit, a remote radio frequency Unit and an optical transport network processing module used to realize the communication connection between the baseband processing unit and the remote radio frequency unit, and the optical transport network processing module is used to communicate between the baseband processing unit and the remote radio frequency unit.
  • the transmitted distributed base station interface signals are multiplexed and transmitted at the electrical layer of the optical transmission network.
  • the signal transmission processing method, device, and distributed base station provided by the embodiments of the present invention directly perform optical transmission network electrical layer multiplexing processing on at least one of the distributed base station interface signals, and multiplex the optical transmission network electrical layer.
  • the signal is electro-optically converted to generate an optical signal for transmission, which can multiplex multiple distributed base station interface signals into one optical signal for transmission between the baseband processing unit of the distributed base station and the remote radio frequency unit, which can improve signal transmission efficiency.
  • Figure 1 is a schematic diagram of the structure of a distributed base station in the prior art
  • Fig. 2 is a schematic diagram of interface signal transmission of a distributed base station in the prior art
  • FIG. 3 is a schematic flowchart of an embodiment of a signal transmission processing method according to the present invention.
  • FIG. 4 is a schematic structural diagram of an embodiment of a signal transmission processing device of the present invention.
  • FIG. 5A is a first structural diagram of a distributed base station in a specific embodiment of the present invention.
  • FIG. 5B is a second structural diagram of a distributed base station in a specific embodiment of the present invention.
  • Fig. 6 is a networking structure when different OTUx signal frames are adopted in an embodiment of the present invention
  • Fig. 7 is a schematic diagram of mapping interface signals to ODUk in an embodiment of the present invention
  • Fig. 8A is a schematic diagram of a signal sending process in an embodiment of the present invention.
  • FIG. 8B is a schematic diagram of a signal receiving process in an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the frame structure of OTUx in an embodiment of the present invention. Detailed ways
  • FIG. 3 is a schematic flowchart of an embodiment of the signal transmission processing method of the present invention. As shown in FIG. 3, the method includes the following steps: Step 101: Obtain at least one distributed base station interface signal;
  • Step 102 Perform optical transport network electrical layer multiplexing processing on the acquired at least one channel of distributed base station interface signals;
  • Step 103 Perform electrical-optical conversion on the signal after the electrical layer multiplexing process of the optical transport network to generate an optical signal and send it.
  • the optical transmission network electrical layer multiplexing process is performed on at least one channel of the distributed base station interface signal, and the optical transmission network electrical layer multiplexed signal is subjected to electrical-optical conversion to generate one optical channel.
  • Signal transmission can realize multiplexing of multiple distributed base station interface signals into one optical signal for transmission between the baseband processing unit of the distributed base station and the remote radio frequency unit, which can improve signal transmission efficiency.
  • the signal transmission processing method provided by the foregoing embodiment of the present invention can be applied to downlink data transmission, that is, the process of signal transmission from the baseband processing unit to the remote radio frequency unit, or can be applied to the uplink data transmission process, that is, the signal is transmitted from the remote radio frequency.
  • the transmission process of the unit to the baseband processing unit can be applied to downlink data transmission, that is, the process of signal transmission from the baseband processing unit to the remote radio frequency unit.
  • the above-mentioned distributed base station interface signal can be the Open Base Station Architecture Alliance interface signal 0BSAI, the common public radio interface signal CPRI or the IR interface signal, where the IR interface is a TD-SCDMA distributed base station interface, and the above interface signal is directly used as An entire package is encapsulated in the optical transport network signal frame without the need to decapsulate the interface signal.
  • This is a transparent transmission method, which can reduce the complexity of signal processing and reduce the cost.
  • an optical transmission network with a relatively large transmission bandwidth is used for data transmission, which can adapt to a relatively large data transmission rate.
  • the foregoing acquiring at least one distributed base station interface signal may specifically be: acquiring at least one distributed base station interface signal sent by at least one baseband processing unit.
  • the above-mentioned acquiring at least one distributed base station interface signal may specifically be: acquiring at least one distributed base station interface signal sent by at least one remote radio unit.
  • the electrical layer multiplexing processing of the optical transport network on the acquired at least one channel of the distributed base station interface signal may be: encapsulating the distributed base station interface signal to each optical transmission network according to the rate of the received at least one channel of the distributed base station interface signal.
  • Performing electro-optical conversion on the signal multiplexed at the electrical layer of the optical transport network to generate and send an optical signal may be: performing electro-optical conversion on the optical transport network signal frame to generate an optical signal, and sending the optical signal to the opposite end, Specifically, it can be transmitted through the optical transmission network or direct-connected optical fiber.
  • the direct-connected optical fiber it means that only the optical transmission network equipment is used for signal processing to generate the optical transmission network signal frame in the signal transmission processing method.
  • the transmission of frames uses direct-connect optical fibers.
  • the signal transmission processing method may further include the following steps: photoelectric conversion is performed on the received optical signal, and framing processing is performed to obtain each optical transmission network signal The distributed base station interface signal in the frame; the distributed base station interface signal is sent to the corresponding remote radio unit through the optical port or the electrical port.
  • the above-mentioned opposite end is the baseband processing unit side, and the signal transmission processing method may further include the following steps: photoelectric conversion is performed on the received optical signal, and framing processing is performed to obtain each optical transport network signal The distributed base station interface signal in the frame; the distributed base station interface signal is sent to the corresponding baseband processing unit through the optical port or the electrical port.
  • FIG. 4 is a schematic structural diagram of an embodiment of the signal transmission processing device of the present invention.
  • the device includes an acquisition module 11 and a multiplexing processing module. 12 and sending module 13, wherein the acquisition module 11 is used to acquire at least one channel of distributed base station interface signals.
  • the acquisition module in this embodiment may be equivalent to a distributed base station interface signal interface module;
  • the multiplexing processing module 12 is used to The acquired at least one distributed base station interface signal is subjected to optical transmission network electrical layer multiplexing processing;
  • the sending module 13 is configured to perform electrical-optical conversion on the signal after the optical transmission network electrical layer multiplexing processing to generate and transmit one optical signal.
  • the distributed base station interface signal processing device provided by the embodiment of the present invention performs optical transmission network electrical layer multiplexing processing on at least one of the distributed base station interface signals, and performs electrical to optical conversion of the signals after the optical transmission network electrical layer multiplexing processing Generate one optical signal for transmission, which can realize multi-channel distributed
  • the base station interface signal is multiplexed into an optical signal for transmission between the baseband processing unit and the remote radio unit of the distributed base station, which can improve signal transmission efficiency.
  • the signal processing device in the foregoing embodiment of the present invention may be arranged on the side of the baseband processing unit, or on the side of the remote radio frequency unit.
  • the above-mentioned acquisition module includes a first acquisition unit or a second acquisition unit, and the first acquisition unit is used to acquire at least one distributed base station interface signal sent by at least one baseband processing unit.
  • the aforementioned acquisition module may include a second acquisition unit configured to acquire at least one distributed base station interface signal sent by at least one remote radio unit.
  • the multiplexing processing module may include a first processing unit for receiving at least one distributed base station interface signal according to the rate The distributed base station interface signal is encapsulated into each optical transport network signal frame.
  • the optical signal sent by the signal transmission processing device at the opposite end can be received. Therefore, a first signal processing module and a second sending module can be further provided, where the first signal processing module and the second sending module can be further provided.
  • a signal processing module is used to perform photoelectric conversion on the received optical signal, and perform framing processing to obtain the distributed base station interface signal in each optical transmission network signal frame; the second sending module is used to connect the distributed base station interface The signal is sent to the corresponding remote radio frequency unit or baseband processing unit through the optical port or the electrical port.
  • the embodiment of the present invention also provides a distributed base station.
  • the distributed base station includes a baseband processing unit, a remote radio frequency unit, and an optical transport network processing module for realizing a communication connection between the baseband processing unit and the remote radio frequency unit.
  • the optical transport network processing module is configured to perform optical transport network electrical layer multiplexing processing and transmission on the distributed base station interface signals transmitted between the baseband processing unit and the remote radio frequency unit.
  • the embodiment of the present invention provides a distributed base station, by including the above-mentioned distributed base station interface signal transmission processing device in a baseband processing unit, or a remote radio unit, or both of the above, and the device is connected to at least one distributed base station interface
  • the signal is multiplexed at the electrical layer of the optical transport network, and
  • the electrical layer multiplexed signal of the optical transmission network is electro-optically converted to generate an optical signal for transmission, which can multiplex multiple distributed base station interface signals into an optical signal in the baseband processing unit and remote radio frequency unit of the distributed base station Between transmission, can improve the signal transmission efficiency.
  • the optical transport network processing module may further include a first optical transport network processing unit, a second optical transport network processing unit, and an optical transport network, where the first optical transport network processing unit is configured to receive at least one baseband processing unit For the sent distributed base station interface signal, the distributed base station interface signal is encapsulated into an optical transport network signal frame and sent according to the rate of the distributed base station interface signal; the second optical transport network processing unit is configured to receive the first optical The transmission network processing unit performs photoelectric conversion on the signal sent by the optical transmission network, performs framing processing to obtain the distributed base station interface signal in each optical transmission network signal frame, and transmits the distributed base station interface signal through the optical port or the electrical port. Sent to the corresponding remote radio frequency unit; the optical transport network is used to send the optical transport network signal frame generated by the encapsulation of the first optical transport network processing unit to the second optical transport network processing unit.
  • the above-mentioned second optical transport network processing unit is further configured to receive distributed base station interface signals sent by at least one remote radio frequency unit, and convert the distributed base station interface signals according to the rate of the distributed base station interface signals
  • the interface signal is encapsulated into the optical transport network signal frame and sent;
  • the first optical transport network processing unit is also used to receive the signal sent by the second optical transport network processing unit through the optical transport network to perform photoelectric conversion, and perform framing processing to obtain each light
  • the distributed base station interface signal in the transmission network signal frame, and the distributed base station interface signal is sent to the corresponding baseband processing unit through the optical port or the electrical port;
  • the optical transmission network is also used to encapsulate the second optical transmission network processing unit
  • the generated optical transport network signal frame is sent to the first optical transport network processing unit.
  • FIGS 5A and 5B are respectively a schematic structural diagram 1 and a schematic structural diagram 2 of a distributed base station in a specific embodiment of the present invention.
  • This embodiment provides a distributed base station integrating OTN technology, as shown in Figure 5, including baseband processing Unit BBU, remote radio unit RRU, and OTN processing module.
  • the OTN processing module includes a signal transmission processing device for distributed base station interface signals on the BBU side, a signal transmission processing device for distributed base station interface signals on the RRU side, and a transmission link , Where the transmission link is an OTN network or directly connected optical fiber.
  • a BBU is connected to a signal transmission processing device, BBU
  • the sent multi-channel distributed base station interface signal is first processed by the above-mentioned signal processing device, and the signal is transmitted through the optical fiber or OTN network.
  • the distributed base station interface signal transmission processing device on the RRU side performs corresponding processing on the received signal and distributes it.
  • the interface signal of the base station is restored and sent to the RRU.
  • two or more BBUs correspond to a distributed base station interface signal transmission processing device.
  • the OTN technology in this embodiment is a large-capacity transmission network technology, which is suitable for use in the bearer transmission of distributed base station interface signals.
  • the large-capacity transmission characteristics of 0TN are very suitable for different signal frames for different transmission capacities. For example, use 0TU1, 0TU2, 0TU3 or 0TU4, where the transmission capacity (bandwidth size) of 0TU1 is 2.488G, and the transmission capacity of 0TU2 is 0TU1. 4 times, which is 9.95G, the transmission capacity of 0TU3 is 4 times that of 0TU2, and the transmission capacity of 0TU4 is larger.
  • Distributed base station interface signals can be encapsulated and mapped to 0TU1, 0TU2, 0TU3 signal frames, or even 0TU4 signal frames in 0TN.
  • the current commercial bandwidth range of distributed base station interface signals is: between 600M-3. 1G.
  • Typical commercial rates include: 0BSAI's 768Mbps, 1536 Mbps and 3072 Mbps, CPRI/IR's 614.4 Mbps, 1228.8 Mbps and 2457.6Mbps, and higher rates such as 6G-10G that may appear in the future, and the above transmission rates can be used by the OTN system Signal frames such as 0TU2, 0TU3, and 0TU4 are encapsulated and transmitted.
  • the mainstream rate of distributed base station interface signals has exceeded 1228.8M, which is suitable for the use of large-capacity 0TN transmission pipelines.
  • FIG. 6 shows the networking structure when different OTUx signal frames are used in the embodiment of the present invention.
  • the station baseband processing unit includes multiple distributed base station interfaces, and the electrical or optical signals of one or multiple distributed base station interfaces are sent to the signal transmission processing device, that is, the OTN processing unit.
  • the above-mentioned OTN processing unit is used to perform optical transmission network electrical layer multiplexing processing on the acquired distributed base station interface signals, which can be specifically as the following embodiments. If it is an optical interface, the OTN processing unit first performs photoelectric conversion, and then the signal is packaged in In a suitable OTN signal frame, different containers are selected according to different distributed base station interface signal rates. Taking IR 2.4576G as an example, one IR 2.4576G can be encapsulated into one OTU1.
  • a feature of electrical layer multiplexing For example, in the case of one IR interface signal, four IR 2. 4576G are encapsulated into one 0TU2, and 16 IR 2. 4576G are encapsulated into one 0TU 3 to realize the multiplexing processing of distributed interface signals.
  • the 0TN signal frame is sent to the photoelectric module to complete the electro-optical conversion, it is transmitted downstream through the 0TN network or the optical fiber network.
  • the 0TN processing unit receives the signal transmitted from the upstream, performs photoelectric conversion, performs fixed framing processing of the 0TN signal, and recovers various distributed base station interface signals from 0TU 1, 0TU2, 0TU 3, etc.
  • every The clock of the distributed base station interface signal is also independently recovered and processed at the same time. That is, after each distributed base station interface signal is transmitted through the OTN or directly connected to the optical fiber, the distributed base station interface signal is recovered by synchronous demultiplexing or asynchronous demultiplexing. The restored distributed base station interface signal can pass through the electro-optical The conversion is sent to the remote radio frequency unit through an optical port or an electrical port.
  • the multiplexing and demultiplexing processing in the embodiment of the present invention may adopt the GMP mapping method. As shown in Figure 7, this method directly multiplexes the distributed base station interface signal to the ODUk payload area, and the distributed base station bit stream is directly mapped to the D byte area; compared to the previous GFP-T encapsulation through 8B/ 10B, 64/65B codes are multiplexed into STMx, which reduces the intermediate coding and decoding, GFP frame processing process, and has a higher degree of transparency.
  • the distributed base station interface signal in this embodiment is multiplexed into OTUx by the multiplexing module, and finally the OTUx signal is sent by the OTUx sending module.
  • the OTUx receiving module receives the above OTUx signal, and the demultiplexing module demultiplexes the above OTUx signal, and then restores the distributed base station signal according to the state of the first-in first-out queue. Clock, and recover the distributed base station interface signal.
  • the signal processing process is basically the same as that of the downlink signal transmission.
  • OTUx signal frame may include system 0TN forward error correction code FEC, FEC techniques to take advantage of the error correction process line error, the bit error rate is 10-5, the through-FEC The error rate can be reduced to 10-15 , and the error rate after the above error correction can meet the error rate requirements of the distributed base station interface.
  • FEC forward error correction code
  • the frame structure of OTUx includes overhead. Area, Pay load area and FEC area.
  • different distributed base station interface signals can be placed in different positions in the Payload area.
  • FEC can perform verification and recovery based on the previous transmission error code including the payload area, thereby improving the robustness of the network.
  • the Overhead area in the OTUx frame structure can provide rich overhead management.
  • BIP8 error statistics can be performed, and alarms such as L0F and OOF can be monitored and reported; in the signal sending direction, it can be based on the received failure Signals are transmitted downstream through the overhead for fault feedback, fault location and indication are very clear, which can effectively improve the efficiency of transmission network operation and maintenance.
  • the signal transmission processing method, device, and distributed base station provided by the embodiments of the present invention perform electrical layer multiplexing processing on at least one of the distributed base station interface signals, and perform electrical-to-optical conversion on the electrical layer multiplexed signal of the optical transmission network
  • Generating one optical signal for transmission can realize multiplexing of multiple distributed base station interface signals into one optical signal for transmission between the baseband processing unit of the distributed base station and the remote radio frequency unit, which can improve signal transmission efficiency.

Description

信号传输处理方法、 装置以及分布式基站 技术领域 本发明实施例涉及通信技术领域, 特别涉及一种信号传输处理方法、 装 置以及分布式基站。 背景技术
2G/ 3G无线网接入系统由核心网 (CN ) 、 无线接入网 (例如通用陆地无 线接入网络 UTRAN )和用户装置 UE三部分组成, 其中无线接入网包括无线网 络控制器 RNC和基站(Node B ) , 其中分布式基站是目前无线基站的一个重 要形态, 如图 1所示, 分布式基站包括基带处理单元(Ba se Band Un i t,以及 下简称: BBU )和远端射频单元( Remote Radio Uni t , 以下简称: RRU ) , 无 线分布式基站接口 站系统中基带处理部分和射频拉远部分之间的总线接 口, 通常是光接口, 也可能是电接口。 其中 BBU是小型化的盒式设备, RRU 是室外型射频拉远设备, 以直接安装于靠近天线位置的金属桅杆或墙面 上。 基带处理部分和射频拉远部分之间接口通过一条或若干条特定信号链 路来连接, 该接口包括 CPR I、 I R或 0BSAI 三种, 主流速率都在 1228. 8M 以上, 其中 TD-SCDMA制式的分布式基站接口名称为 I R接口, 每条链路都 是高速的串行数字传输速率, 目前商用的主流速率是 2457. 6Mb/ s , 将来可 能包括 3. 0720Gb/ s或者更高。 BBU与 RRU之间分布式基站接口信号链路需 耗用光纤资源进行传送, 一根光纤能够承载多少路分布式基站接口信号, 影响分布式基站组网时对现网光纤资源的要求, 也影响分布式基站接口信 号传送的成本, 利用什么样的技术进行传送, 将会同时影响网络的运维效 率。
现有技术中在 BBU与 RRU之间有采用 TOM技术进行信号传输,如图 2 所示, 即对基带处理单元的射频基带池中的每路分布式基站接口信号采用 一个 TOM波长, 图 2 中四路信号分别采用 λ λ2、 λ3和 λ4 , 通过光分合波 模块处理后进行传送。 在接收端射频拉远单元先由光分合波模块对接收到 的光信号进行处理, 分离出光信号并将其传送给相应的射频拉远模块, 由 于光信号在光纤中传输是有衰耗的, 因此对于传送距离较长的光信号可以 在光路中新增光放大器, 在传输过程中将光信号放大, 实现更远的传输距 离, 同时可以在系统中设置系统监控模块进行系统监控。
发明人在实现本发明的过程中发现, 现有技术至少存在如下的技术问 题: 现有技术中对于在基带处理单元和射频拉远单元之间传输的每一路分 布式基站接口信号都需要占用一个光波长, 使得信号传输效率低。 发明内容
本发明实施例的目的是提供一种信号传输处理方法、 装置以及分布式基 站, 以提高信号传输效率。
为实现上述目的, 本发明提供了一种信号传输处理方法, 包括: 获取至少一路的分布式基站接口信号;
对所述获取的至少一路的分布式基站接口信号进行光传送网电层复用处 理;
对所述光传送网电层复用处理后的信号进行电光转换生成一路光信号并 发送。
本发明实施例还提供了一种分布式基站接口信号传输处理装置, 包括: 获取模块, 用于获取至少一路的分布式基站接口信号;
复用处理模块, 用于对所述获取的至少一路的分布式基站接口信号进行 光传送网电层复用处理;
第一发送模块, 用于对所述光传送网电层复用处理后的信号进行电光转 换生成一路光信号并发送。
本发明实施例还提供了一种分布式基站, 包括基带处理单元、 远端射频 单元以及用于实现所述基带处理单元和所述远端射频单元通信连接的光传送 网处理模块, 所述光传送网处理模块用于对所述基带处理单元和所述远端射 频单元之间传输的分布式基站接口信号进行光传送网电层复用处理并传送。
本发明实施例提供的信号传输处理方法、 装置以及分布式基站, 通过对 至少一路的分布式基站接口信号直接进行光传送网电层复用处理, 并将光传 送网电层复用处理后的信号进行电光转换生成一路光信号进行传输, 能够实 现将多路分布式基站接口信号复用为一路光信号在分布式基站的基带处理单 元和远端射频单元之间传输, 能够提高信号传输效率。 附图说明
图 1为现有技术中分布式基站的结构示意图;
图 2为现有技术中分布式基站接口信号传输示意图;
图 3为本发明信号传输处理方法实施例的流程示意图;
图 4为本发明信号传输处理装置实施例的结构示意图;
图 5A为本发明具体实施例中分布式基站的结构示意图一;
图 5B为本发明具体实施例中分布式基站的结构示意图二;
图 6为本发明实施例中采用不同的 OTUx信号帧时的组网结构; 图 7为本发明实施例中接口信号映射到 ODUk的示意图;
图 8A为本发明实施例中信号发送流程的示意图;
图 8B为本发明实施例中信号接收流程的示意图;
图 9为本发明实施例中 OTUx的帧结构示意图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 本发明实施例提供了一种信号传输处理方法, 图 3为本发明信号传输处 理方法实施例的流程示意图, 如图 3所示, 包括如下步骤: 步骤 101、 获取至少一路的分布式基站接口信号;
步骤 102、 对所述获取的至少一路的分布式基站接口信号进行光传送网 电层复用处理;
步骤 103、 对所述光传送网电层复用处理后的信号进行电光转换生成一 路光信号并发送。
本发明实施例提供的信号传输处理方法, 通过对至少一路的分布式基站 接口信号进行光传送网电层复用处理, 并将光传送网电层复用处理后的信号 进行电光转换生成一路光信号进行传输, 能够实现将多路分布式基站接口信 号复用为一路光信号在分布式基站的基带处理单元和远端射频单元之间传 输, 能够提高信号传输效率。
本发明上述实施例提供的信号传输处理方法既可以应用在下行数据传输 中, 即信号由基带处理单元向远端射频单元传输的过程; 也可以应用在上行 数据传输过程, 即信号由远端射频单元向基带处理单元传输的过程。
上述的分布式基站接口信号可以为开放式基站架构联盟接口信号 0BSAI、 通用公共无线接口信号 CPRI或 IR接口信号,其中 I R接口为 TD-SCDMA制式 的分布式基站接口, 将上述的接口信号直接作为一个整体封装到光传送网信 号帧中, 而不需要对接口信号进行解封装的处理, 是一种透明的传输方式, 能够降低信号处理复杂度, 降低成本。 本发明实施例中通过采用具有较大 的传送带宽的光传送网进行数据传输, 能够适应较大的数据传送速率。
在下行信号传输过程中, 上述的获取至少一路的分布式基站接口信号可 以具体为: 获取至少一个基带处理单元发送的至少一路的分布式基站接口信 号。
在上行信号传输过程中, 上述的获取至少一路的分布式基站接口信号可 以具体为: 获取至少一个远端射频单元发送的至少一路的分布式基站接口信 号。
针对上行信号传输以及下行信号传输的过程, 其过程可以相同, 具体的, 其中对获取的至少一路的分布式基站接口信号进行光传送网电层复用处理可 以为: 根据接收到的至少一路的分布式基站接口信号的速率将所述分布式基 站接口信号封装到各个光传送网信号帧中。 对光传送网电层复用处理后的信 号进行电光转换生成一路光信号并发送可以为: 对所述光传送网信号帧进行 电光转换生成一路光信号, 并向对端发送所述光信号, 具体可以通过光传送 网传输或者直连光纤传送, 在使用直连光纤时, 即为在信号传输处理方法中 仅使用光传送网设备进行信号处理生成光传送网信号帧, 而对于光传送网信 号帧的传输使用直连光纤。
在进行下行信号传输时, 上述的对端为远端射频单元侧, 信号传输处理 方法还可以包括如下步骤: 对接收到的光信号进行光电转换, 并进行定帧处 理以获取各个光传送网信号帧中的分布式基站接口信号; 将所述分布式基站 接口信号通过光口或者电口发送给对应的远端射频单元。
在进行上行业务数据传输时, 上述的对端为基带处理单元侧, 信号传输 处理方法还可以包括如下步骤: 对接收到的光信号进行光电转换, 并进行定 帧处理以获取各个光传送网信号帧中的分布式基站接口信号; 将所述分布式 基站接口信号通过光口或者电口发送给对应的基带处理单元。
本发明实施例还提供了一种分布式基站接口信号传输处理装置, 图 4为 本发明信号传输处理装置实施例的结构示意图, 如图 4所示, 该装置包括获 取模块 11、 复用处理模块 12和发送模块 1 3 , 其中获取模块 11用于获取至少 一路的分布式基站接口信号, 本实施中的获取模块可相当于分布式基站接口 信号接口模块;复用处理模块 12用于对所述获取的至少一路的分布式基站接 口信号进行光传送网电层复用处理;发送模块 1 3用于对所述光传送网电层复 用处理后的信号进行电光转换生成一路光信号并发送。
本发明实施例提供的分布式基站接口信号处理装置, 通过对至少一路的 分布式基站接口信号进行光传送网电层复用处理, 并将光传送网电层复用处 理后的信号进行电光转换生成一路光信号进行传输, 能够实现将多路分布式 基站接口信号复用为一路光信号在分布式基站的基带处理单元和远端射频单 元之间传输, 能够提高信号传输效率。
本发明上述实施例中的信号处理装置可以设置在基带处理单元侧, 或者 设置在远端射频单元侧。 当设置在基带处理单元侧时, 上述的获取模块包括 第一获取单元或第二获取单元, 该第一获取单元用于获取至少一个基带处理 单元发送的至少一路的分布式基站接口信号。 当设置在远端射频单元时, 上 述的获取模块可以包括第二获取单元, 该第二获取单元用于获取至少一个远 端射频单元发送的至少一路的分布式基站接口信号。
另外对于设置在远端射频单元侧和基带处理单元侧的接口信号处理装 置, 其中的复用处理模块都可以包括第一处理单元, 用于根据接收到的至少 一路的分布式基站接口信号的速率将所述分布式基站接口信号封装到各个光 传送网信号帧中。
对于设置在远端射频单元侧和基带处理单元侧的信号传输处理装置, 会 接收到对端的信号传输处理装置发送的光信号, 因此可以进一步设置第一信 号处理模块和第二发送模块, 其中第一信号处理模块用于对接收到的光信号 进行光电转换, 并进行定帧处理以获取各个光传送网信号帧中的分布式基站 接口信号; 第二发送模块用于将所述分布式基站接口信号通过光口或者电口 发送给对应的远端射频单元或基带处理单元。
本发明实施例还提供了一种分布式基站, 该分布式基站包括基带处理单 元、 远端射频单元以及用于实现所述基带处理单元和所述远端射频单元通信 连接的光传送网处理模块, 所述光传送网处理模块用于对所述基带处理单元 和所述远端射频单元之间传输的分布式基站接口信号进行光传送网电层复用 处理并传送。
本发明实施例提供分布式基站, 通过在基带处理单元, 或者远端射频单 元, 或者上述两者中都包括上述的分布式基站接口信号传输处理装置, 该装 置通过对至少一路的分布式基站接口信号进行光传送网电层复用处理, 并将 光传送网电层复用处理后的信号进行电光转换生成一路光信号进行传输, 能 够实现将多路分布式基站接口信号复用为一路光信号在分布式基站的基带处 理单元和远端射频单元之间传输, 能够提高信号传输效率。
在下行业务数据传输时, 光传送网处理模块可以进一步包括第一光传送 网处理单元、 第二光传送网处理单元和光传送网络, 其中第一光传送网处理 单元用于接收至少一路基带处理单元发送的分布式基站接口信号, 根据所述 分布式基站接口信号的速率将所述分布式基站接口信号封装到光传送网信号 帧中并发送; 第二光传送网处理单元用于接收第一光传送网处理单元通过光 传送网络发送的信号进行光电转换, 进行定帧处理以获取各个光传送网信号 帧中的分布式基站接口信号, 并通过光口或者电口将所述分布式基站接口信 号发送给对应的远端射频单元; 光传送网络用于将第一光传送网处理单元封 装生成的光传送网信号帧发送到第二光传送网处理单元。
在上行业务数据传输时, 上述的第二光传送网处理单元还用于接收至少 一路远端射频单元发送的分布式基站接口信号, 根据所述分布式基站接口信 号的速率将所述分布式基站接口信号封装到光传送网信号帧中并发送; 第一 光传送网处理单元还用于接收第二光传送网处理单元通过光传送网发送的信 号进行光电转换, 进行定帧处理以获取各个光传送网信号帧中的分布式基站 接口信号, 并通过光口或者电口将所述分布式基站接口信号发送给对应的基 带处理单元; 光传送网络还用于将第二光传送网处理单元封装生成的光传送 网信号帧发送到第一光传送网处理单元。
图 5A、 图 5B分别为本发明具体实施例中分布式基站的结构示意图一和 结构示意图二, 本实施例提供的是一种集成 0TN技术的分布式基站, 如图 5 所示, 包括基带处理单元 BBU、 远端射频单元 RRU以及 0TN处理模块, 0TN处 理模块包括位于 BBU侧的分布式基站接口信号的信号传输处理装置、位于 RRU 侧的分布式基站接口信号的信号传输处理装置和传输链路, 其中传输链路为 0TN网络或者直连光纤。图 5A中一台 BBU与一个信号传输处理装置连接, BBU 发送的多路分布式基站接口信号首先经过上述的信号处理装置进行处理, 信 号经过光纤或者 0TN 网络进行传送, RRU侧的分布式基站接口信号传输处理 装置对接收到的信号进行相应处理, 将分布式基站接口信号还原并发送给 RRU。 图 5B中是两台或者多台 BBU对应一个分布式基站接口信号传输处理装 置的情形。
本实施例中的 0TN技术是一种大容量传输的网络技术, 适合在分布式 基站接口信号的承载传送中使用。 0TN的大容量传输特性非常适合对不同 的传输容量可采用不同的信号帧, 例如使用 0TU1、 0TU2、 0TU3或 0TU4, 其中 0TU1的传输容量 (带宽大小) 为 2.488G, 0TU2的传输容量是 0TU1 的 4倍, 为 9.95G, 0TU3的传输容量是 0TU2的 4倍, 0TU4的传输容量更 大。 分布式基站接口信号可被封装映射到 0TN中的 0TU1、 0TU2、 0TU3信 号帧, 甚至 0TU4信号帧。 分布式基站接口信号目前商用的带宽范围是: 600M-3. 1G之间。典型商用速率包括: 0BSAI的 768Mbps, 1536 Mbps和 3072 Mbps, CPRI/IR的 614.4 Mbps、 1228.8 Mbps和 2457.6Mbps , 以后可能出 现的 6G-10G等更高速率,而上述的传输速率都能被 0TN体系中 0TU2、0TU3、 0TU4等信号帧进行封装传送, 目前分布式基站接口信号的主流速率已超过 1228.8M, 适合采用大容量的 0TN传送管道。
图 6为本发明实施例中采用不同的 OTUx信号帧时的组网结构,如图 6 所示,在下行信号传输时,即信号由基带处理单元向远端射频单元发送时, 一台或者多台基带处理单元包含多路分布式基站接口, 1路或者多路的分 布式基站接口的电信号或者光信号被发送到信号传输处理装置, 即 0TN处 理单元。上述的 0TN处理单元用于对获取的分布式基站接口信号进行光传送 网电层复用处理, 具体可如以下实施例, 如果是光接口, 0TN处理单元先进 行光电转换, 随后信号被封装到合适的 0TN信号帧中, 根据不同的分布式 基站接口信号速率选择不同的容器, 以 IR 2.4576G为例, 可选择 1路 IR 2.4576G封装到一路 0TU1 中, 这是本实施例中光传送网电层复用的一个特 例, 即针对一路 I R接口信号的情况, 将 4路 I R 2. 4576G封装到一路 0TU2 中, 1 6路 I R 2. 4576G封装到一路 0TU 3中, 以实现分布式接口信号的复用 处理。 0TN信号帧被送往光电模块完成电光转换后, 经过 0TN网络或者光 纤网络往下游传输。 0TN处理单元收到上游传输过来的信号, 进行光电转 换, 进行 0TN信号的定帧处理, 从 0TU 1、 0TU2、 0TU 3等中恢复出各路分 布式基站接口信号, 在信号恢复过程中, 每路分布式基站接口信号的时钟 也被同时独立恢复处理。 即每路分布式基站接口信号经过 0TN传输或者直 连光纤后, 通过进行同步解复用或者异步解复用处理的方式恢复出分布式 基站接口信号, 被恢复的分布式基站接口信号可通过电光转换, 以光口或 者电口送给远端射频单元。
本发明实施例中复用和解复用处理可采用 GMP映射的方法。 如图 7所 示, 该方法将分布式基站接口信号直接复用到 ODUk 净荷区域, 分布式基 站比特流直接映射到了其中的 D字节区域; 相比于之前的 GFP-T封装经过 8B/ 1 0B , 64 / 65B编码再复用到 STMx , 减少了中间编码解码、 GFP帧处理过 程, 其透明程度更高。
如图 8A所示, 本实施例中的分布式基站接口信号由复用模块将信号 复用到 OTUx , 最后由 OTUx发送模块将 OTUx信号发送。 如图 8B所示, 在 接收端,由 OTUx接收模块接收上述的 OTUx信号,由解复用模块将上述 OTUx 信号进行解复用处理, 然后根据先入先出队列的状态, 恢复出分布式基站 信号时钟, 并将分布式基站接口信号恢复出来。
在上行信号传输时,即数据由远端射频单元 RRU发送到基带处理单元 BBU 时, 其信号的处理过程与下行信号传输时基本相同。
本发明实施例中, 0TN体系中的 OTUx信号帧可以包括前向纠错码 FEC , 以利用 FEC技术对线路误码进行纠错处理, 在误码率为 1 0—5时, 经过 FEC 处理后可将误码率降低为 1 0—15 , 上述的纠错后的误码率可以满足分布式基 站接口的误码率要求, 如图 9所示, OTUx的帧结构中包括开销(overhead) 区域、 净荷(Pay load)区域和 FEC 区域。 在具体实施过程中可以将不同的 分布式基站接口信号放在 Payl oad区域中不同的位置。 FEC作为校验的冗 余码, 可基于前面包括净荷区的传输误码进行校验和恢复, 提高网络的健 壮性。
另外 OTUx的帧结构中的 Overhead区域可提供丰富的开销管理, 在信 号的接收方向, 可进行 BIP8误码统计, 并监测上报 L0F、 OOF等告警; 在 信号的发送方向, 可基于接收到的故障信号通过开销往下游进行故障回 传, 故障定位和指示非常清晰, 可有效提高传输网络运维效率。
本发明实施例提供的信号传输处理方法、 装置以及分布式基站, 通过对 至少一路的分布式基站接口信号进行电层复用处理, 并将光传送网电层复用 处理后的信号进行电光转换生成一路光信号进行传输, 能够实现将多路分布 式基站接口信号复用为一路光信号在分布式基站的基带处理单元和远端射频 单元之间传输, 能够提高信号传输效率。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非对其进 行限制, 尽管参照较佳实施例对本发明进行了详细的说明, 本领域的普通技 术人员应当理解: 其依然可以对本发明的技术方案进行修改或者等同替换, 而这些修改或者等同替换亦不能使修改后的技术方案脱离本发明技术方案的 4青神和范围。

Claims

权 利 要 求 书
1、 一种信号传输处理方法, 其特征在于, 包括:
获取至少一路的分布式基站接口信号;
对所述获取的至少一路的分布式基站接口信号进行光传送网电层复用处 理;
对所述光传送网电层复用处理后的信号进行电光转换生成一路光信号并 发送。
2、 根据权利要求 1所述的信号传输处理方法, 其特征在于, 所述分布式 基站接口信号为开放式基站架构联盟接口信号 0BSAI、 通用公共无线接口信 号 CPRI或 IR接口信号。
3、 根据权利要求 1所述的信号传输处理方法, 其特征在于, 所述获取至 少一路的分布式基站接口信号包括:
获取至少一个基带处理单元发送的至少一路的分布式基站接口信号; 或 获取至少一个远端射频单元发送的至少一路的分布式基站接口信号。
4、 根据权利要求 1所述的信号传输处理方法, 其特征在于, 所述对获取 的至少一路的分布式基站接口信号进行光传送网电层复用处理包括:
根据接收到的至少一路的分布式基站接口信号的速率将所述分布式基站 接口信号封装到光传送网信号帧中。
5、 根据权利要求 4所述的信号传输处理方法, 其特征在于, 还包括: 对接收到的光信号进行光电转换, 并进行定帧处理以获取光传送网信号 帧中的分布式基站接口信号;
将所述分布式基站接口信号通过光口或者电口发送给对应的远端射频单 元或基带处理单元。
6、 一种信号传输处理装置, 其特征在于, 包括:
获取模块, 用于获取至少一路的分布式基站接口信号;
复用处理模块, 用于对所述获取的至少一路的分布式基站接口信号进行 光传送网电层复用处理;
第一发送模块, 用于对所述光传送网电层复用处理后的信号进行电光转 换生成一路光信号并发送。
7、 根据权利要求 6所述的信号传输处理装置, 其特征在于, 所述获取模 块包括:
第一获取单元, 用于获取至少一个基带处理单元发送的至少一路的分布 式基站接口信号; 或
第二获取单元, 用于获取至少一个远端射频单元发送的至少一路的分布 式基站接口信号。
8、 根据权利要求 6所述的信号传输处理装置, 其特征在于, 所述复用处 理模块包括:
第一处理单元, 用于根据接收到的至少一路的分布式基站接口信号的速 率将所述分布式基站接口信号封装到各个光传送网信号帧中。
9、 根据权利要求 8所述的信号传输处理装置, 其特征在于, 还包括: 第一信号处理模块, 用于对接收到的光信号进行光电转换, 并进行定帧 处理以获取各个光传送网信号帧中的分布式基站接口信号;
第二发送模块, 用于将所述分布式基站接口信号通过光口或者电口发送 给对应的远端射频单元或基带处理单元。
10、 一种分布式基站, 其特征在于, 包括基带处理单元、 远端射频单元 以及用于实现所述基带处理单元和所述远端射频单元通信连接的光传送网处 理模块, 所述光传送网处理模块用于对所述基带处理单元和所述远端射频单 元之间传输的分布式基站接口信号进行光传送网电层复用处理并传送。
11、 根据权利要求 10所述的分布式基站, 其特征在于, 所述光传送网处 理模块包括:
第一光传送网处理单元, 用于接收至少一路基带处理单元发送的分布式 基站接口信号, 根据所述分布式基站接口信号的速率将所述分布式基站接口 信号封装到光传送网信号帧中并发送;
第二光传送网处理单元, 用于接收第一光传送网处理单元通过光传送网 络发送的信号进行光电转换, 进行定帧处理以获取各个光传送网信号帧中的 分布式基站接口信号, 并通过光口或者电口将所述分布式基站接口信号发送 给对应的远端射频单元;
光传送网络, 用于将第一光传送网处理单元封装生成的光传送网信号帧 发送到第二光传送网处理单元。
12、 根据权利要求 11所述的分布式基站, 其特征在于, 所述第二光传送 网处理单元还用于接收至少一路远端射频单元发送的分布式基站接口信号, 根据所述分布式基站接口信号的速率将所述分布式基站接口信号封装到光传 送网信号帧中并发送;
所述第一光传送网处理单元还用于接收第二光传送网处理单元通过光传 送网发送的信号并进行光电转换, 进行定帧处理以获取各个光传送网信号帧 中的分布式基站接口信号, 并通过光口或者电口将所述分布式基站接口信号 发送给对应的基带处理单元;
所述光传送网络还用于将第二光传送网处理单元封装生成的光传送网信 号帧发送到第一光传送网处理单元。
PCT/CN2009/072937 2009-07-27 2009-07-27 信号传输处理方法、装置以及分布式基站 WO2011011911A1 (zh)

Priority Applications (16)

Application Number Priority Date Filing Date Title
ES15179452.6T ES2646130T3 (es) 2009-07-27 2009-07-27 Método y aparato de tratamiento de transmisión de señal y estación de base distribuida
CN200980115738.XA CN102577187B (zh) 2009-07-27 2009-07-27 信号传输处理方法、装置以及分布式基站
EP15179452.6A EP2978149B1 (en) 2009-07-27 2009-07-27 Signal transmission processing method and apparatus and distributed base station
EP09847697.1A EP2416506B1 (en) 2009-07-27 2009-07-27 Signal transmission processing method and device, and distributed base station
PCT/CN2009/072937 WO2011011911A1 (zh) 2009-07-27 2009-07-27 信号传输处理方法、装置以及分布式基站
AU2009350650A AU2009350650B9 (en) 2009-07-27 2009-07-27 Signal transmission processing method and apparatus and distributed base station
ES09847697.1T ES2558482T3 (es) 2009-07-27 2009-07-27 Método y dispositivo de tratamiento de transmisión de señal y estación base distribuida
EP17191847.7A EP3327957B1 (en) 2009-07-27 2009-07-27 Signal transmission processing method and apparatus and distributed base station
ES17191847T ES2843024T3 (es) 2009-07-27 2009-07-27 Método y aparato de tratamiento de transmisión de señal y estación de base distribuida
RU2011146156/07A RU2494545C2 (ru) 2009-07-27 2009-07-27 Способ и устройство обработки передачи сигнала и распределенная базовая станция
BRPI0924930A BRPI0924930B8 (pt) 2009-07-27 2009-07-27 Método e aparelho de processamento de transmissão de sinal e estação base distribuida
CA2761388A CA2761388C (en) 2009-07-27 2009-07-27 Signal transmission processing method and apparatus and distributed base station
US13/287,830 US8406178B2 (en) 2009-07-27 2011-11-02 Signal transmission processing method and apparatus and distributed base station
US13/747,127 US9300403B2 (en) 2009-07-27 2013-01-22 Signal transmission processing method and apparatus and distributed base station
US15/059,040 US9564973B2 (en) 2009-07-27 2016-03-02 Method and apparatus for transmitting and receiving interface signals of distributed base station
US15/387,231 US10305595B2 (en) 2009-07-27 2016-12-21 Method and apparatus for transmitting and receiving interface signals of distributed base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/072937 WO2011011911A1 (zh) 2009-07-27 2009-07-27 信号传输处理方法、装置以及分布式基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/287,830 Continuation US8406178B2 (en) 2009-07-27 2011-11-02 Signal transmission processing method and apparatus and distributed base station

Publications (1)

Publication Number Publication Date
WO2011011911A1 true WO2011011911A1 (zh) 2011-02-03

Family

ID=43528684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072937 WO2011011911A1 (zh) 2009-07-27 2009-07-27 信号传输处理方法、装置以及分布式基站

Country Status (9)

Country Link
US (4) US8406178B2 (zh)
EP (3) EP2978149B1 (zh)
CN (1) CN102577187B (zh)
AU (1) AU2009350650B9 (zh)
BR (1) BRPI0924930B8 (zh)
CA (1) CA2761388C (zh)
ES (3) ES2646130T3 (zh)
RU (1) RU2494545C2 (zh)
WO (1) WO2011011911A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769494A (zh) * 2012-07-02 2012-11-07 华为技术有限公司 一种数据发送、接收方法及发送、接收装置
WO2012092903A3 (zh) * 2012-02-14 2013-01-10 华为技术有限公司 延迟的测量方法及光传送网络设备
US9300403B2 (en) 2009-07-27 2016-03-29 Huawei Technologies Co., Ltd. Signal transmission processing method and apparatus and distributed base station

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2626691A1 (en) 2004-10-18 2006-04-27 Louisiana Tech University Foundation Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto
US9252874B2 (en) 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
US20120269509A1 (en) * 2011-04-21 2012-10-25 Antonius Petrus Hultermans Remote Electronic Component, Such As Remote Radio Head, For A Wireless Communication System, Remote Electronic Component Array And External Distributor Unit
US9715001B2 (en) * 2011-06-13 2017-07-25 Commscope Technologies Llc Mobile location in a remote radio head environment
EP2730043B1 (en) * 2011-07-08 2018-08-15 ZTE Corporation Method and system for optical transmission between a plurality of rru and a bbu
US20140219651A1 (en) * 2011-07-11 2014-08-07 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and Method for a Passive Optical Network
US9184842B2 (en) * 2011-10-06 2015-11-10 Telefonaktiebolaget L M Ericsson (Publ) Apparatus for communicating a plurality of antenna signals at different optical wavelengths
US9392617B2 (en) * 2011-11-10 2016-07-12 Electronics And Telecommunications Research Institute Wireless base station and method of processing data thereof
EP2602948A1 (en) 2011-12-05 2013-06-12 Alcatel Lucent A method of processing a digital signal for transmission, a method of processing an optical data unit upon reception, and a network element for a telecommunications network
CN102547778B (zh) * 2012-01-06 2014-12-10 京信通信系统(中国)有限公司 一种扁平化网络架构的无线通信系统、方法及扩展装置
CN102710361B (zh) * 2012-06-01 2015-09-30 华为技术有限公司 一种分布式基站信号传输系统及通信系统
CN104782064A (zh) * 2012-09-06 2015-07-15 瑞典爱立信有限公司 通过非对称网络的公用公共无线电接口的使用
CN103051383A (zh) * 2012-11-30 2013-04-17 华为技术有限公司 处理信息的方法和设备
US9559806B2 (en) * 2012-12-04 2017-01-31 Dali Systems Co. Ltd. Power amplifier protection using a cyclic redundancy check on the digital transport of data
CN103222299B (zh) 2012-12-06 2016-09-28 华为技术有限公司 下行方向射频拉远单元选择判决方法和装置
US9258629B2 (en) * 2012-12-11 2016-02-09 Huawei Technologies Co., Ltd. System and method for an agile cloud radio access network
CN103905122A (zh) * 2012-12-28 2014-07-02 中国移动通信集团江苏有限公司 一种双模基站Ir接口间数据传输的方法及系统
EP2770655A1 (en) * 2013-02-22 2014-08-27 Alcatel Lucent Method to transmit a signal in a mobile network
US9596140B2 (en) 2013-03-07 2017-03-14 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for providing radio access at local site
KR101488776B1 (ko) * 2013-05-14 2015-02-04 주식회사 에치에프알 클라우드 이동무선 액세스 네트워크에서의 무선신호 감시 방법 및 장치
US9246617B2 (en) 2013-09-09 2016-01-26 Applied Micro Circuits Corporation Reformating a plurality of signals to generate a combined signal comprising a higher data rate than a data rate associated with the plurality of signals
US9590756B2 (en) 2013-09-16 2017-03-07 Applied Micro Circuits Corporation Mapping a plurality of signals to generate a combined signal comprising a higher data rate than a data rate associated with the plurality of signals
JP6315938B2 (ja) * 2013-10-15 2018-04-25 三菱電機株式会社 光伝送装置
US9353335B2 (en) 2013-11-11 2016-05-31 Ecolab Usa Inc. High alkaline warewash detergent with enhanced scale control and soil dispersion
EP3255841B1 (en) 2015-05-25 2019-09-11 Huawei Technologies Co., Ltd. Packet processing method and apparatus
EP3340734B1 (en) * 2015-09-18 2021-11-10 Huawei Technologies Co., Ltd. Data transmission method and apparatus
WO2018036620A1 (en) * 2016-08-23 2018-03-01 Telefonaktiebolaget Lm Ericsson (Publ) Transport network, node and method
CN109699022A (zh) * 2017-10-20 2019-04-30 普天信息技术有限公司 一种cbtc数据传输方法
CN110798333B (zh) * 2018-08-03 2022-04-01 中兴通讯股份有限公司 一种业务信息配置方法、装置、系统及存储介质
US11894948B2 (en) * 2020-04-02 2024-02-06 PrimeWan Limited Method of forming a virtual network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232652A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 一种基于数字中频传输的基站拉远系统
CN101350662A (zh) * 2008-09-01 2009-01-21 成都优博创技术有限公司 基于xWDM波分复用射频拉远单元的级联组网方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665497B1 (en) * 2001-07-05 2003-12-16 Cisco Technology, Inc. Modular transceiver and accessory system for use in an optical network
US20030161634A1 (en) * 2001-12-17 2003-08-28 Costabile James J. Efficient and scalable data transport system for DWDM cable TV networks
US20040057543A1 (en) * 2002-09-24 2004-03-25 Arie Huijgen Synchronizing radio units in a main-remote radio base station and in a hybrid radio base station
US7466720B2 (en) * 2002-10-18 2008-12-16 Ole Bentz Flexible architecture for SONET and OTN frame processing
US7047028B2 (en) * 2002-11-15 2006-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Optical fiber coupling configurations for a main-remote radio base station and a hybrid radio base station
CN100499436C (zh) * 2003-08-14 2009-06-10 华为技术有限公司 一种实现多端口任意速率汇聚的传送方法
US7460513B2 (en) * 2003-11-17 2008-12-02 Telefonaktiebolaget Lm Ericsson (Publ) Encapsulation of diverse protocols over internal interface of distributed radio base station
US7529215B2 (en) * 2003-11-17 2009-05-05 Telefonaktiebolaget Lm Ericsson (Publ) Encapsulation of independent transmissions over internal interface of distributed radio base station
KR100537904B1 (ko) * 2003-11-27 2005-12-20 한국전자통신연구원 종속망에 따라 재구성이 가능한 광트랜스폰더
EP1580929A1 (en) * 2004-03-26 2005-09-28 Alcatel Performance monitoring of transparent LAN services
US7817603B2 (en) * 2004-04-23 2010-10-19 Utstarcom Telecom Co., Ltd. Method and apparatus for multi-antenna signal transmission in RF long-distance wireless BS
JP4484929B2 (ja) * 2004-07-13 2010-06-16 ユーティースターコム・テレコム・カンパニー・リミテッド リモート無線ユニットと集中型無線基地局との間のインターフェイス方法
CN1734990B (zh) * 2004-08-10 2010-09-08 华为技术有限公司 信号传送方法及装置
CN100349390C (zh) * 2004-08-11 2007-11-14 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
US7548695B2 (en) * 2004-10-19 2009-06-16 Nextg Networks, Inc. Wireless signal distribution system and method
CN1791057B (zh) * 2004-12-15 2011-06-15 华为技术有限公司 在光传送网中传输数据业务的方法及其装置
CN100426897C (zh) * 2005-01-12 2008-10-15 华为技术有限公司 分体式基站系统及其组网方法和基带单元
RU2289207C1 (ru) * 2005-05-13 2006-12-10 Закрытое акционерное общество ЦНИТИ "Техномаш-ВОС" (ЗАО ЦНИТИ "Техномаш-ВОС") Интерфейс для передачи дискретной информации по оптическому каналу
US7474719B2 (en) * 2005-06-06 2009-01-06 Andrew Llc Channel-dependent de-sensing of received signals
GB0513583D0 (en) * 2005-07-01 2005-08-10 Nokia Corp A mobile communications network with multiple radio units
CN1960231A (zh) * 2005-10-31 2007-05-09 Ut斯达康通讯有限公司 Cpri链路多路复用传输方法及系统
WO2007072921A1 (ja) * 2005-12-22 2007-06-28 Nippon Telegraph And Telephone Corporation 光伝送システムおよび方法
CN100401715C (zh) * 2005-12-31 2008-07-09 华为技术有限公司 局域网信号在光传送网中传输的实现方法和装置
CN1859396A (zh) * 2006-02-06 2006-11-08 华为技术有限公司 通用无线接口传输多体制无线业务数据的方法
CN101039245A (zh) * 2006-03-13 2007-09-19 华为技术有限公司 高速以太网到光传输网的数据传输方法及相关接口和设备
US7630296B2 (en) * 2006-04-14 2009-12-08 Adc Telecommunications, Inc. System and method for remotely restoring inoperative data communications
US7794058B2 (en) * 2006-05-29 2010-09-14 Canon Kabushiki Kaisha Liquid discharge head and method for manufacturing the same
US20080045254A1 (en) * 2006-08-15 2008-02-21 Motorola, Inc. Method and Apparatus for Maximizing Resource Utilization of Base Stations in a Communication Network
US7940667B1 (en) * 2006-09-13 2011-05-10 Pmc-Sierra Us, Inc. Delay measurements and calibration methods and apparatus for distributed wireless systems
JP4984797B2 (ja) * 2006-09-29 2012-07-25 富士通株式会社 光ネットワークシステム
US20080171569A1 (en) * 2007-01-17 2008-07-17 Pralle Chad A Redundant wireless base stations
US8583100B2 (en) * 2007-01-25 2013-11-12 Adc Telecommunications, Inc. Distributed remote base station system
US8054853B2 (en) * 2007-01-29 2011-11-08 Ciena Corporation Systems and methods for combining time division multiplexed and packet connection in a meshed switching architecture
US7633933B2 (en) * 2007-01-29 2009-12-15 Ciena Corporation Systems and methods for a hierarchical layer one and layer two cross-connect in a transport and aggregation platform
CN101242232B (zh) * 2007-02-09 2013-04-17 华为技术有限公司 实现以太网信号在光传送网中传输的方法、装置及系统
EP2139243B1 (en) * 2007-03-16 2014-07-30 Fujitsu Limited Base station, wireless control device, and wireless device
US7602814B2 (en) * 2007-04-30 2009-10-13 Ciena Corporation Systems and methods for mapping and multiplexing wider clock tolerance signals in optical transport network transponders and multiplexers
US8666242B2 (en) * 2007-06-05 2014-03-04 Cisco Technology, Inc. Response to OTUk-BDI for OTN interfaces to restore bidirectional communications
KR100948831B1 (ko) * 2007-10-19 2010-03-22 한국전자통신연구원 시분할 다중 및 파장 분할 다중 접속 수동형 광 네트워크장치
CN101453267B (zh) * 2007-12-05 2013-06-26 华为技术有限公司 一种光接入网数据传输方法、系统及设备
US7873073B2 (en) * 2008-02-26 2011-01-18 Ciena Corporation Method and system for synchronous high speed Ethernet GFP mapping over an optical transport network
US7948975B2 (en) * 2008-03-03 2011-05-24 IPLight Ltd. Transparent switching fabric for multi-gigabit transport
JP5131026B2 (ja) * 2008-05-20 2013-01-30 富士通株式会社 無線基地局システム並びに制御装置及び無線装置
US8005152B2 (en) * 2008-05-21 2011-08-23 Samplify Systems, Inc. Compression of baseband signals in base transceiver systems
US7860002B2 (en) * 2008-07-15 2010-12-28 Motorola, Inc. Priority-based admission control in a network with variable channel data rates
US20100087227A1 (en) * 2008-10-02 2010-04-08 Alvarion Ltd. Wireless base station design
US8867999B2 (en) * 2009-01-26 2014-10-21 Qualcomm Incorporated Downlink interference cancellation methods
US8588614B2 (en) * 2009-05-22 2013-11-19 Extenet Systems, Inc. Flexible distributed antenna system
EP2978149B1 (en) * 2009-07-27 2017-09-20 Huawei Technologies Co., Ltd. Signal transmission processing method and apparatus and distributed base station
US8743915B2 (en) * 2010-05-18 2014-06-03 Electronics And Telecommunications Research Institute Method and apparatus for transmitting packet in optical transport network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232652A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 一种基于数字中频传输的基站拉远系统
CN101350662A (zh) * 2008-09-01 2009-01-21 成都优博创技术有限公司 基于xWDM波分复用射频拉远单元的级联组网方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2416506A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300403B2 (en) 2009-07-27 2016-03-29 Huawei Technologies Co., Ltd. Signal transmission processing method and apparatus and distributed base station
WO2012092903A3 (zh) * 2012-02-14 2013-01-10 华为技术有限公司 延迟的测量方法及光传送网络设备
CN102769494A (zh) * 2012-07-02 2012-11-07 华为技术有限公司 一种数据发送、接收方法及发送、接收装置

Also Published As

Publication number Publication date
US20130129353A1 (en) 2013-05-23
BRPI0924930B8 (pt) 2022-09-06
US8406178B2 (en) 2013-03-26
CA2761388A1 (en) 2011-02-03
BRPI0924930B1 (pt) 2020-10-20
RU2494545C2 (ru) 2013-09-27
US20120045211A1 (en) 2012-02-23
BRPI0924930A2 (pt) 2015-07-07
EP2416506B1 (en) 2015-10-28
EP3327957A1 (en) 2018-05-30
US10305595B2 (en) 2019-05-28
EP2978149A1 (en) 2016-01-27
RU2011146156A (ru) 2013-10-20
EP3327957B1 (en) 2020-10-21
ES2558482T3 (es) 2016-02-04
EP2416506A4 (en) 2012-06-20
CN102577187B (zh) 2014-12-24
CA2761388C (en) 2016-12-13
US9564973B2 (en) 2017-02-07
EP2978149B1 (en) 2017-09-20
CN102577187A (zh) 2012-07-11
AU2009350650A1 (en) 2011-12-01
EP2416506A1 (en) 2012-02-08
ES2843024T3 (es) 2021-07-15
US20160197677A1 (en) 2016-07-07
ES2646130T3 (es) 2017-12-12
AU2009350650B9 (en) 2014-02-06
AU2009350650B2 (en) 2014-01-09
US9300403B2 (en) 2016-03-29
US20170104539A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2011011911A1 (zh) 信号传输处理方法、装置以及分布式基站
CA2550618C (en) Method, apparatus and system for optical communications
CN101313498A (zh) 无源光纤网络信号传送系统、设备及方法
WO2005104580A1 (fr) Procede et appareil de transmission de signal multi-antenne dans une bs rf sans fil longue distance
WO2010000200A1 (zh) 节点、数据处理系统和数据处理方法
WO2004054290A1 (en) System and method for distributing wireless communication signals over metropolitan telecommunication networks
EP2863557B1 (en) Data transmitting method, device, and system
JP2007533179A (ja) 無線周波数伸張基地局に基づく信号伝送方法およびシステム
US20110170861A1 (en) Method and device for adjusting transmission of transport network data
WO2010020175A1 (zh) 信号汇聚、解汇聚的装置、方法及系统
EP2760173B1 (en) Data transmission method, device and system
WO2008113266A1 (fr) Équipement de planification et procédé de planification dans un réseau de communication optique
WO2011095139A1 (zh) 数据传输方法、装置及系统
CN101729935A (zh) 业务数据传输方法和装置
WO2014000439A1 (zh) 基带射频接口承载传输的方法、装置和系统
AU2014201723B2 (en) Signal transmission processing method and apparatus and distributed base station

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980115738.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009847697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4566/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2761388

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009350650

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2009350650

Country of ref document: AU

Date of ref document: 20090727

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011146156

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924930

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924930

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111110