WO2011010400A1 - Molten metal-resistant member and process for producing molten metal-resistant member - Google Patents

Molten metal-resistant member and process for producing molten metal-resistant member Download PDF

Info

Publication number
WO2011010400A1
WO2011010400A1 PCT/JP2009/063974 JP2009063974W WO2011010400A1 WO 2011010400 A1 WO2011010400 A1 WO 2011010400A1 JP 2009063974 W JP2009063974 W JP 2009063974W WO 2011010400 A1 WO2011010400 A1 WO 2011010400A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
gas
sprayed
thermal spray
particles
Prior art date
Application number
PCT/JP2009/063974
Other languages
French (fr)
Japanese (ja)
Inventor
米倉伸雄
Original Assignee
日鉄ハード株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ハード株式会社 filed Critical 日鉄ハード株式会社
Priority to JP2011523534A priority Critical patent/JP5647608B2/en
Priority to BRPI0924287A priority patent/BRPI0924287A2/en
Publication of WO2011010400A1 publication Critical patent/WO2011010400A1/en
Priority to IN1566DEN2012 priority patent/IN2012DN01566A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Definitions

  • the present invention relates to a molten metal member on which spray particles are sprayed and a method for producing the molten metal member.
  • a method for forming a film on the surface of a steel plate As a method for forming a film on the surface of a steel plate, a method in which the steel plate is immersed in a pool containing molten metal such as zinc, aluminum, zinc-aluminum alloy, or the like is known.
  • the pool is provided with a transport roll for transporting the steel plate, and the transport roll may be eroded and corroded by the molten metal. Therefore, a method of covering the surface of the transport roll with a protective film is known as a countermeasure against penetration corrosion.
  • Patent Documents 1 and 2 disclose a method of spraying a WC-Co-based or WC-WB-Co-based cermet material by a high-speed gas spraying method.
  • Patent Document 3 discloses a method of subjecting a sprayed layer formed by plasma spraying ceramics such as alumina to a sealing treatment.
  • an object of the present invention is to extend the life of a sprayed coating that is sprayed onto a molten metal member.
  • FIG. 1 is a cross-sectional view schematically showing a cross section of a conventional thermal spray coating.
  • Thermal spray particles 1 ejected from a thermal spray gun move in the atmosphere in a semi-molten state and are molten metal members (here, a transport roll for transporting a steel plate in molten zinc is a molten metal member) Collide with. Since the thermal spray particles 1 reach an ultra high speed (about 600 m / s) and a high temperature (about 1750 ° C.) at the time of collision, they are crushed and deformed into a flat shape by colliding with the transport roll.
  • the thermal spray coating is formed by sequentially laminating the spray particles 1 deformed in a flat shape.
  • a number of pores 3 and through-holes 4 are formed in a conventional thermal spray coating.
  • the transport roll is immersed in the molten zinc, the molten zinc passes through the pores 3 and through-holes 4 and penetrates into the sprayed coating, causing corrosion.
  • the diameter of the sprayed particles greatly affects the formation of the pores 3 and the through-holes 4. That is, when the sprayed particles 1 collide with the solidified sprayed particles 2 that are sprayed and solidified by the transport roll, the temperature of the sprayed particles 1 is low and does not collapse sufficiently, so that the surfaces of the solidified sprayed particles 2 and the sprayed particles 1 face each other. Are not in contact with each other, voids are formed, and pores 3 are formed.
  • the deformation speed at the time of the collision of the sprayed particles 1 is very fast, there is no escape space for the surrounding air during the deformation of the sprayed particles 1, and after the deformation, the air is released to the outside through the gaps of the sprayed particles 1. The For this reason, a through passage connecting the pores 3 to the outside of the sprayed layer is formed, and the through pores 4 are formed. According to the analysis by the inventors, pores having an area ratio of about 1 to 3% were present in the sprayed coating. Further, the oxide 5 of the molten particles 1 is generated around the solidified sprayed particles 2 to weaken the bonding force between the molten particles 1 and to easily generate the through-holes 4.
  • FIG. 2 is an optical micrograph of zinc infiltrated into a conventional thermal spray coating. As shown in the figure, when zinc enters the thermal spray coating, corrosion progresses and the thermal spray coating peels off and wears out.
  • FIG. 3A is a cross-sectional view illustrating a state in which conventional spray particles are stacked
  • FIG. 3B is a cross-sectional view illustrating a state in which fine powder spray particles having a particle diameter smaller than that of conventional spray particles are stacked.
  • the spray particles are perfect spheres
  • the size of the gap formed between adjacent spray particles is proportional to the cube of the particle diameter. Therefore, by reducing the diameter of the thermal spray particles, the filling rate of the fine powder particles can be improved, and a dense thermal spray coating in which molten zinc is difficult to enter can be generated.
  • the present invention provides (1) a fusion-resistant metal member in which a contact portion that contacts a molten metal containing Zn and / or Al is covered with a thermal spray coating, and the thermal spray coating has a particle diameter of 15 ⁇ m or less. It was formed by spraying.
  • the spray particles may contain Ni and / or Co.
  • the gas dome is preferably formed of a non-oxidizing gas.
  • the EDS mapping image of the sprayed coating of a comparative example is shown.
  • the reflected-electron image of the thermal spray coating of Example 1 is shown.
  • the EDS mapping image of the sprayed coating of Example 1 is shown.
  • the reflected-electron image of the thermal spray coating of Example 2 is shown.
  • the EDS mapping image of the sprayed coating of Example 2 is shown. It is the figure which showed the blast abrasion test method of Example 3.
  • the molten metal member of the present invention includes various members that contact the molten metal.
  • a transport roll that transports steel sheets in a storage container in which molten metal for steel plate plating is stored a transport roll that transports steel sheets with molten metal attached outside the storage container, a mold into which molten metal is poured, and a mold Handles to be handled, pumps for transporting molten metal, and the like are included. (Embodiment 1)
  • FIG. 4 is a cross-sectional view of a high-speed gas spraying apparatus for effectively carrying out the method for producing a fusion-resistant metal member of the present invention.
  • the X axis, the Y axis, and the Z axis indicate three different axes that are orthogonal to each other, and the X axis direction is the spraying direction of the spray particles.
  • a description will be given by taking as an example a transport roll (molten metal member) that transports a steel plate in a storage container in which molten metal for steel plate plating is stored.
  • the high-speed gas spraying apparatus 300 includes a combustion chamber 101 and a spray nozzle 103 disposed in front of the injection direction.
  • the combustion chamber 101 is formed in a cylindrical shape and extends in the injection direction.
  • the rear end of the combustion chamber 101 is closed by a combustion chamber tail plug 105.
  • Combustion chamber tail plug 105 includes a fuel supply unit 106 and an oxygen gas supply unit 107.
  • the fuel supply unit 106 communicates with the combustion chamber 101, and the fuel charged into the fuel supply unit 106 moves at high speed toward the combustion chamber 101.
  • the oxygen gas supply unit 107 communicates with the combustion chamber 101, and oxygen in the oxygen gas supply unit 107 moves at high speed toward the combustion chamber 101.
  • Kerosene can be used as the fuel supplied to the fuel supply unit 106.
  • the flow rate of kerosene is preferably 15.5 liter / h to 26.5 liter / h.
  • the flow rate of oxygen is preferably 40m 3 / h ⁇ 53m 3 /
  • a laval type nozzle 102 is formed at a portion where the combustion chamber 101 is connected to the thermal spray nozzle 103.
  • the fluid velocity can be increased to supersonic speed.
  • the thermal spray nozzle 103 is formed in a cylindrical shape having a constant inner diameter and extends in the thermal spray direction.
  • the length of the thermal spray nozzle 103 is preferably 10 to 20 cm.
  • This thermal spray nozzle 103 rectifies the high-speed combustion gas supplied from the combustion chamber 101 and improves the convergence. Therefore, when the length of the thermal spray nozzle 103 is shorter than the above range, the rectifying effect and the focusing effect are reduced, and when it is longer than the above range, the speed of the combustion gas is reduced.
  • An injection port 103 a is formed at the tip of the thermal spray nozzle 103. A thermal spray material is injected with combustion gas from this injection port 103a.
  • a spray material supply nozzle 104 is formed in the vicinity of the spray port 103 a of the spray nozzle 103.
  • a spray particle supply port 104 a of the spray material supply nozzle 104 is formed on the inner peripheral surface of the spray nozzle 103.
  • a thermal spray material supply device (not shown) conveys the thermal spray material toward the thermal spray material supply nozzle 104.
  • a carrier gas such as nitrogen gas can be used for the conveying means. Therefore, the thermal spray material flows into the combustion gas inside the thermal spray nozzle 103 together with the carrier gas.
  • FIG. 5 is a diagram showing the porosity when sprayed by changing the particle size of the WC12Co sprayed particles.
  • Conventional thermal spraying has been performed by spraying a spray material having a particle size of about 40 ⁇ m to a spray thickness of about 150 ⁇ m, but pores of about 3% cannot be avoided.
  • a test piece sprayed with a particle size of 40 ⁇ m and a spray thickness of 150 ⁇ m was immersed in 10% diluted sulfuric acid at 40 ° C.
  • the diluted sulfuric acid penetrated into the sprayed coating, and the sprayed coating peeled off from the substrate in 5 days.
  • the thermal spraying apparatus shown in FIG. It was found that dilute sulfuric acid did not penetrate into the sprayed coating even after being immersed for a day, and if the particle size of the sprayed material was made 15 ⁇ m or less, through pores could be prevented.
  • the particle diameter of the thermal spray material is an average particle diameter of the thermal spray material, and is a median diameter calculated by a laser diffraction scattering measurement method.
  • spray particles having a particle size of 1 ⁇ m or more thereby, it can prevent that a thermal spray particle adheres to the vicinity of the thermal spray particle supply port 104a of the thermal spray material supply nozzle 104.
  • FIG. That is, when the particle size of the sprayed particles is reduced, the kinetic energy at the time of injection from the sprayed particle supply port 104a is decreased, and the sprayed particles may be deposited in the vicinity of the sprayed particle supply port 104a. Therefore, deposition of spray particles can be effectively suppressed by setting the particle size of the spray particles to 1 ⁇ m or more.
  • thermal spray material as a binder for bonding the thermal spray particles.
  • the thermal spray material can be used as a binder for bonding the thermal spray particles.
  • Ni and Co alone but also alloys such as Ni base, Ni-Cr base, Co base (for example, stellite alloy composed mainly of Co, about 30 mass% Cr, 4-15 mass% W, etc. ) Can be used.
  • a method of sealing pores of a thermal spray coating with a sealing agent has been performed in order to prevent penetration corrosion due to molten metal containing Zn and / or Al and an acidic solution due to through-holes.
  • Contact causes wear and internal stress on the surface.
  • the sealing agent is cracked, the effect of the sealing treatment is reduced, and the life of the transport roll is shortened.
  • the transport roll of this embodiment has almost no through-holes and pores, and therefore does not require sealing treatment, and can have a longer life than a conventional transport roll subjected to sealing treatment.
  • a sealing process can also be given to the conveyance roll of this embodiment. In this case, osmotic corrosion due to the molten metal and the acidic solution can be further effectively suppressed by the sealing agent.
  • the high-speed gas spraying apparatus 300 in FIG. 4 is provided with a cylindrical gas supply unit 310.
  • a cylindrical gas supply hole 310a that is a gas discharge port of the cylindrical gas supply unit 310 surrounds the injection port 103a. Therefore, a cylindrical gas dome is formed by the gas ejected from the cylindrical gas supply hole 310a.
  • the combustion gas injected from the injection nozzle 103 moves in the X-axis direction inside the gas dome.
  • the gas not only air but also non-oxidizing gas such as nitrogen gas, argon gas and helium gas, and flammable gas such as propane gas and acetylene gas can be used.
  • the thermal spray material supplied into the combustion gas from the thermal spray material supply nozzle 104 oxidizes the surface of the thermal spray material with residual oxygen in the combustion gas and oxygen in the air drawn from the periphery of the combustion gas, and between the thermal spray particles in the thermal spray coating. This reduces the bonding strength of the thermal spray coating and reduces the strength of the thermal spray coating. In particular, when the particle size of the thermal spray material is reduced, the specific surface area is increased, so that the influence of oxidation is increased. When a non-oxidizing gas is used as the gas, this non-oxidizing gas can act as a barrier, preventing oxygen in the atmosphere from being drawn into the combustion gas, and the non-oxidizing gas being drawn into the combustion gas. The oxygen partial pressure in the combustion gas decreases. Thereby, it can suppress that the thermal spray material in combustion gas oxidizes.
  • the cylindrical gas supply hole 310 a can be changed to another shape (for example, a rectangle) as long as it can surround the combustion gas injected from the thermal spray nozzle 103.
  • FIG. 6 is a schematic view schematically showing a method of spraying a roll as the sprayed material 204 using the high-speed gas spraying apparatus of FIG.
  • the thermal spray material is blown into the combustion gas 203 flowing at supersonic speed from the thermal spray material supply nozzle 104 and heated and accelerated.
  • the heated and accelerated thermal spray material is sprayed onto the thermal spray material 204 to form a thermal spray coating 205.
  • a gas dome formed by a cylindrical gas flow is supplied from the cylindrical gas supply unit 310a so that the sprayed material is not oxidized.
  • a non-oxidizing gas is used as the gas flow injected from the cylindrical gas supply unit 310a, the antioxidant effect can be enhanced.
  • the sprayed coating is retracted from the inside of the gas dome and exposed to the atmosphere.
  • the temperature of the sprayed coating immediately after spraying is about 800 ° C., which is higher than the oxidation start temperature of the sprayed material, 250 ° C. to 350 ° C. Therefore, when the thermal spray coating immediately after thermal spraying is exposed to the atmosphere, the surface is oxidized and the bonding force with a new thermal spray coating formed thereon is reduced. Therefore, in this embodiment, the cooling gas is sprayed onto the surface of the thermal spray coating 205 by the cooling gas spray nozzle 206.
  • thermal spray coating 205 immediately after thermal spraying is rapidly cooled below the oxidation start temperature, oxidation of the thermal spray coating 205 can be prevented.
  • a non-oxidizing gas such as nitrogen gas, argon gas or helium gas as the cooling gas is more effective.
  • Embodiments 1 to 3 the high-speed gas spraying apparatus shown in FIG. 4 is used.
  • the present invention is not limited to this, and other high-speed gas spraying apparatuses and plasma spraying apparatuses that can perform fine powder spraying are also used. Can be applied.
  • Example 1 The test conditions of Example 1 were as follows, and the method of Embodiment 1 was used. Mo, B, Co, and Cr were used as the thermal spray material. The average particle diameter of the spray particles was 3 ⁇ m.
  • the thermal spraying apparatus the high-speed gas spraying apparatus of the first embodiment illustrated in FIG. 4 was used, and the thermal spraying thickness was 200 ⁇ m.
  • a round bar made of SUS410 was used as a test material for the transport roll. The round bar had a diameter of 30 mm and a longitudinal dimension of 200 mm.
  • the test conditions of Comparative Example 1 are as follows.
  • the average particle diameter of the spray particles was 40 ⁇ m.
  • a JP-5000 high-speed gas spray gun manufactured by TAFA was used as the thermal spraying device.
  • the same round bar as in Example 1 was used for the transport roll.
  • the average particle diameter of the spray particles is a median diameter measured by a laser diffraction / scattering measurement method.
  • Example 1 shows a reflected electron image of a cross section of the sprayed coating of the comparative example
  • FIG. 7B shows an EDS mapping image
  • FIG. 8A shows a reflected electron image of the cross section of the sprayed coating of the example
  • FIG. 8B shows an EDS mapping image.
  • Table 1 In Example 1, no penetration of zinc was observed in the sprayed coating, but in Comparative Example 1, zinc penetrated into the sprayed coating and reached the base material of the round bar. In Example 1, it was further immersed for 10 days in molten zinc, but no penetration of zinc into the sprayed coating was observed.
  • Example 2 The test conditions of Example 2 were as follows, and the method of Embodiment 2 was used. Mo, B, Co, and Cr were used as the thermal spray material. The average particle diameter of the spray particles was 3 ⁇ m. Corrosion resistance was evaluated by applying the present invention to a support roll for conveying a steel plate in molten zinc for steel plate plating. The support roll was used for 30 days.
  • As the thermal spraying apparatus a high-speed gas spraying apparatus illustrated in FIG. 4 was used, and nitrogen gas was supplied as a non-oxidizing gas from a cylindrical gas supply unit. The sprayed thickness was 100 ⁇ m.
  • the material of the transport roll was SUS410, the diameter was 350 mm, and the length was 2690 mm.
  • thermal spraying with a conventional average particle size of 40 ⁇ m was performed on the end of the roll not in contact with the steel sheet using a JP-5000 high-speed gas spray gun manufactured by TAFA. Sealing treatment was performed for both for comparison.
  • FIG. 9A shows a reflected electron image of a cross section of the sprayed coating of Example 2
  • FIG. 9B shows an EDS mapping image.

Abstract

Disclosed is a process for producing a molten metal-resistant member with a coating being formed thereon by thermal spraying, the thermally sprayed coating having a prolonged service life. The process comprises jetting spray particles through a thermal spray nozzle onto a molten metal-resistant member to form a thermally sprayed coating.  The process is characterized in that the spray particles are fine particles having a diameter of not more than 15 μm.  The process is further characterized in that the spray particles during thermal spraying or immediately after thermal spraying are sealed with a non-oxidizing gas to prevent the oxidation of spray particles and further to form a dense thermally sprayed coating, whereby the resistance to corrosion by a molten metal and the resistance to corrosion by pickling are enhanced.

Description

耐溶融金属部材および耐溶融金属部材の製造方法Melt-resistant metal member and method for producing molten metal member
 本発明は、溶射粒子が溶射される耐溶融金属部材および耐溶融金属部材の製造方法に関する。 The present invention relates to a molten metal member on which spray particles are sprayed and a method for producing the molten metal member.
 鋼板の表面に皮膜を形成する方法として、亜鉛、アルミニウム、亜鉛・アルミニウム合金などの溶融金属が収容されたプール内に鋼板を浸漬させる方法が知られている。このプールには、鋼板を搬送する搬送ロールが設けられており、この搬送ロールは溶融金属により浸透腐食される恐れがある。そのため、浸透腐食対策として、搬送ロールの表面を保護用皮膜で覆う方法が知られている。 As a method for forming a film on the surface of a steel plate, a method in which the steel plate is immersed in a pool containing molten metal such as zinc, aluminum, zinc-aluminum alloy, or the like is known. The pool is provided with a transport roll for transporting the steel plate, and the transport roll may be eroded and corroded by the molten metal. Therefore, a method of covering the surface of the transport roll with a protective film is known as a countermeasure against penetration corrosion.
 この種の保護用皮膜形成方法として、高速ガス溶射法が知られている。特許文献1および2は、WC−Co系やWC−WB−Co系のサーメット材料を高速ガス溶射法で溶射する方法を開示する。特許文献3は、アルミナなどのセラミックスをプラズマ溶射することにより形成された溶射層に封孔処理を施す方法を開示する。 A high-speed gas spraying method is known as this type of protective film forming method. Patent Documents 1 and 2 disclose a method of spraying a WC-Co-based or WC-WB-Co-based cermet material by a high-speed gas spraying method. Patent Document 3 discloses a method of subjecting a sprayed layer formed by plasma spraying ceramics such as alumina to a sealing treatment.
特開昭48−11237号公報JP-A-48-11237 特許第2553937号明細書Japanese Patent No. 2553937 特開平10−306362号公報Japanese Patent Laid-Open No. 10-306362
 しかしながら、これまでの溶射方法では、使用期間が長くなると、搬送ロールの表面から保護用皮膜が剥離、損耗して搬送ロールを交換しなければならなかった。近年、コスト削減および生産効率の向上化などを背景として、搬送ロールの更なる長寿命化が求められるようになっている。また、搬送ロールは酸腐食環境下において使用される場合でも、同様に長寿命化が求められるようになっている。 However, in the conventional thermal spraying methods, when the use period is long, the protective film is peeled off from the surface of the transport roll and worn, and the transport roll must be replaced. In recent years, with the background of cost reduction and improvement in production efficiency, it has been required to further extend the life of the transport roll. Further, even when the transport roll is used in an acid corrosive environment, it is required to extend the life similarly.
 そこで、本願発明は、耐溶融金属部材に溶射される溶射皮膜の長寿命化を目的とする。 Therefore, an object of the present invention is to extend the life of a sprayed coating that is sprayed onto a molten metal member.
 本発明者等は、従来の溶射皮膜を分析して、溶射皮膜が剥離、損耗する原因を分析した。図1は、従来の溶射皮膜の断面を模式的に示した断面図である。図示しない溶射ガンから噴射された溶射粒子1は、半溶融した状態で大気中を移動して耐溶融金属部材(ここでは、溶融亜鉛内で鋼板を搬送する搬送ロールを耐溶融金属部材とする)に衝突する。溶射粒子1は、衝突時に超高速(約600m/s)・高温(約1750℃)に達しているため、搬送ロールに衝突することにより潰れて、扁平状に変形する。この扁平状に変形した溶射粒子1が順次積層されることにより、溶射皮膜が形成される。 The present inventors analyzed the conventional thermal spray coating to analyze the cause of the thermal spray coating peeling and wear. FIG. 1 is a cross-sectional view schematically showing a cross section of a conventional thermal spray coating. Thermal spray particles 1 ejected from a thermal spray gun (not shown) move in the atmosphere in a semi-molten state and are molten metal members (here, a transport roll for transporting a steel plate in molten zinc is a molten metal member) Collide with. Since the thermal spray particles 1 reach an ultra high speed (about 600 m / s) and a high temperature (about 1750 ° C.) at the time of collision, they are crushed and deformed into a flat shape by colliding with the transport roll. The thermal spray coating is formed by sequentially laminating the spray particles 1 deformed in a flat shape.
 図1に図示するように、従来の溶射皮膜には、多数の気孔3、貫通気孔4が形成されている。搬送ロールを溶融亜鉛の中に浸漬すると、溶融亜鉛は気孔3、貫通気孔4を通液して溶射皮膜の内部に浸透して、腐食を引き起こす。 As shown in FIG. 1, a number of pores 3 and through-holes 4 are formed in a conventional thermal spray coating. When the transport roll is immersed in the molten zinc, the molten zinc passes through the pores 3 and through-holes 4 and penetrates into the sprayed coating, causing corrosion.
 これらの気孔3、貫通気孔4の発生原因を分析した結果、溶射粒子の径が気孔3、貫通気孔4の形成に大きく影響を与えていることを発見した。すなわち、搬送ロールに溶射されて凝固した凝固溶射粒子2に溶射粒子1が衝突した際に、溶射粒子1の温度が低くて十分に潰れないため、凝固溶射粒子2および溶射粒子1の対向する面が全て接触せずに、空隙が生じ、気孔3が形成される。また、溶射粒子1の衝突時の変形速度は非常に速いため、溶射粒子1の変形中は周囲の空気の逃げ場がなくなり、変形後にこの空気は溶射粒子1の隙間を通って、外部に放出される。このため、気孔3から溶射層の外部に繋がる貫通路が形成され、貫通気孔4が形成される。発明者等の分析によれば、溶射皮膜中に面積比で1~3%程度の気孔が存在した。また、凝固溶射粒子2の周囲には溶融粒子1の酸化物5が生ずることにより、溶融粒子1間の結合力を弱めると共に貫通気孔4が生成されやすくしていた。 As a result of analyzing the cause of the generation of these pores 3 and through-holes 4, it was found that the diameter of the sprayed particles greatly affects the formation of the pores 3 and the through-holes 4. That is, when the sprayed particles 1 collide with the solidified sprayed particles 2 that are sprayed and solidified by the transport roll, the temperature of the sprayed particles 1 is low and does not collapse sufficiently, so that the surfaces of the solidified sprayed particles 2 and the sprayed particles 1 face each other. Are not in contact with each other, voids are formed, and pores 3 are formed. Further, since the deformation speed at the time of the collision of the sprayed particles 1 is very fast, there is no escape space for the surrounding air during the deformation of the sprayed particles 1, and after the deformation, the air is released to the outside through the gaps of the sprayed particles 1. The For this reason, a through passage connecting the pores 3 to the outside of the sprayed layer is formed, and the through pores 4 are formed. According to the analysis by the inventors, pores having an area ratio of about 1 to 3% were present in the sprayed coating. Further, the oxide 5 of the molten particles 1 is generated around the solidified sprayed particles 2 to weaken the bonding force between the molten particles 1 and to easily generate the through-holes 4.
 図2は従来の溶射皮膜内に亜鉛が浸入した状態の光学顕微鏡写真である。同図に示すように、溶射皮膜に亜鉛が浸入すると、腐食が進行して、溶射皮膜が剥離、損耗する。 FIG. 2 is an optical micrograph of zinc infiltrated into a conventional thermal spray coating. As shown in the figure, when zinc enters the thermal spray coating, corrosion progresses and the thermal spray coating peels off and wears out.
 図3Aは、従来の溶射粒子が積層された状態を図示した断面図であり、図3Bは従来の溶射粒子よりも粒径が小さい微粉溶射粒子が積層された状態を図示した断面図である。溶射粒子を完全な球と仮定した場合に、隣接する溶射粒子の間に形成される隙間の大きさは、粒子径の三乗に比例する。そのため、溶射粒子の径を小さくすることにより、微粉粒子の充填率が向上して、溶融亜鉛が浸入しにくい緻密な溶射皮膜を生成することができる。 3A is a cross-sectional view illustrating a state in which conventional spray particles are stacked, and FIG. 3B is a cross-sectional view illustrating a state in which fine powder spray particles having a particle diameter smaller than that of conventional spray particles are stacked. Assuming that the spray particles are perfect spheres, the size of the gap formed between adjacent spray particles is proportional to the cube of the particle diameter. Therefore, by reducing the diameter of the thermal spray particles, the filling rate of the fine powder particles can be improved, and a dense thermal spray coating in which molten zinc is difficult to enter can be generated.
 そこで、本願発明は、(1)Znおよび/またはAlを含む溶融金属に接触する接触部位を溶射皮膜で覆った耐溶融金属部材であって、前記溶射皮膜を、粒子径が15μm以下の溶射粒子を溶射することにより形成したことを特徴とする。 Accordingly, the present invention provides (1) a fusion-resistant metal member in which a contact portion that contacts a molten metal containing Zn and / or Al is covered with a thermal spray coating, and the thermal spray coating has a particle diameter of 15 μm or less. It was formed by spraying.
 (2)(1)の構成において、前記溶射粒子には、Niおよび/またはCoを含ませることができる。 (2) In the configuration of (1), the spray particles may contain Ni and / or Co.
 (3)(1)または(2)の構成において、溶射ノズルから噴射された溶射粒子を、筒状のガス流で形成されたガスドーム内を移動させながら前記耐溶融金属部材に衝突させることを特徴とする。 (3) In the configuration of (1) or (2), spray particles sprayed from the spray nozzle are caused to collide with the molten metal member while moving in a gas dome formed by a cylindrical gas flow. Features.
 (4)(3)の構成において、前記ガスドームは、非酸化性ガスにより形成されていることが好ましい。 (4) In the configurations of (3), the gas dome is preferably formed of a non-oxidizing gas.
 (5)(1)から(4)の構成において、溶射直後の溶射皮膜表面に非酸化性ガスを吹き付けることが好ましい。 (5) In the configurations of (1) to (4), it is preferable to spray a non-oxidizing gas on the surface of the sprayed coating immediately after spraying.
 本発明によれば、緻密な溶射皮膜を備えた耐溶融金属部材を提供することができる。 According to the present invention, it is possible to provide a molten metal member provided with a dense thermal spray coating.
従来の溶射皮膜の断面を模式的に示した断面図である。It is sectional drawing which showed the cross section of the conventional thermal spray coating typically. 従来の溶射皮膜内に亜鉛が浸入した状態を図示した光学顕微鏡写真である。It is the optical microscope photograph which illustrated the state which zinc infiltrated in the conventional sprayed coating. 従来の溶射粒子が積層された状態を図示した断面図である。It is sectional drawing which illustrated the state on which the conventional thermal spray particle was laminated | stacked. 従来の溶射粒子よりも粒径が小さい溶射粒子が積層された状態を図示した断面図である。It is sectional drawing which illustrated the state on which the thermal spray particle with a particle size smaller than the conventional thermal spray particle was laminated | stacked. 実施形態1の高速ガス溶射装置の断面図である。It is sectional drawing of the high-speed gas spraying apparatus of Embodiment 1. FIG. 溶射粒子の粒径を変化させた時の気孔率との関係を示した図である。It is the figure which showed the relationship with the porosity when changing the particle size of a thermal spray particle. 実施形態2の非酸化性ガスを吹き付けた図である。It is the figure which sprayed the non-oxidizing gas of Embodiment 2. 比較例の溶射皮膜の反射電子像を示している。The reflected electron image of the sprayed coating of a comparative example is shown. 比較例の溶射皮膜のEDSマッピング像を示している。The EDS mapping image of the sprayed coating of a comparative example is shown. 実施例1の溶射皮膜の反射電子像を示している。The reflected-electron image of the thermal spray coating of Example 1 is shown. 実施例1の溶射皮膜のEDSマッピング像を示している。The EDS mapping image of the sprayed coating of Example 1 is shown. 実施例2の溶射皮膜の反射電子像を示している。The reflected-electron image of the thermal spray coating of Example 2 is shown. 実施例2の溶射皮膜のEDSマッピング像を示している。The EDS mapping image of the sprayed coating of Example 2 is shown. 実施例3のブラスト摩耗試験方法を示した図である。It is the figure which showed the blast abrasion test method of Example 3.
 以下、図面を参照しながら、本発明の実施形態について説明する。本発明は、Alおよび/またはZnを含む溶融金属による腐食を防止することを目的とする。従って、本発明の耐溶融金属部材には、溶融金属に接触する様々な部材が含まれる。例えば、鋼板メッキ用の溶融金属が貯留された貯留容器内で鋼板を搬送する搬送ロール、溶融金属が付着した鋼板を貯留容器の外部で搬送する搬送ロール、溶融金属が流し込まれる鋳型、鋳型で使用される柄杓、溶融金属を搬送するポンプなどが含まれる。
(実施形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. An object of this invention is to prevent the corrosion by the molten metal containing Al and / or Zn. Accordingly, the molten metal member of the present invention includes various members that contact the molten metal. For example, a transport roll that transports steel sheets in a storage container in which molten metal for steel plate plating is stored, a transport roll that transports steel sheets with molten metal attached outside the storage container, a mold into which molten metal is poured, and a mold Handles to be handled, pumps for transporting molten metal, and the like are included.
(Embodiment 1)
 図4は、本発明の耐溶融金属部材の製造方法を有効に実施するための高速ガス溶射装置の断面図である。なお、X軸、Y軸およびZ軸は互いに直交する異なる三軸を示しており、X軸方向は溶射粒子の噴射方向である。また、本実施形態では、鋼板メッキ用の溶融金属が貯留された貯留容器内で鋼板を搬送する搬送ロール(耐溶融金属部材)を例にして説明する。 FIG. 4 is a cross-sectional view of a high-speed gas spraying apparatus for effectively carrying out the method for producing a fusion-resistant metal member of the present invention. The X axis, the Y axis, and the Z axis indicate three different axes that are orthogonal to each other, and the X axis direction is the spraying direction of the spray particles. Further, in the present embodiment, a description will be given by taking as an example a transport roll (molten metal member) that transports a steel plate in a storage container in which molten metal for steel plate plating is stored.
 高速ガス溶射装置300は、燃焼室101とその噴射方向前方に配置される溶射ノズル103を含む。燃焼室101は、筒状に形成され噴射方向に延びている。燃焼室101の後端は、燃焼室尾栓105により閉塞されている。燃焼室尾栓105は、燃料供給部106と酸素ガス供給部107とを含む。燃料供給部106は、燃焼室101に連通しており、燃料供給部106に投入された燃料は燃焼室101に向けて高速で移動する。酸素ガス供給部107は、燃焼室101に連通しており、酸素ガス供給部107内の酸素は燃焼室101に向けて高速で移動する。燃料供給部106に投入される燃料には、灯油を用いることができる。灯油の流量は、好ましくは15.5リットル/h~26.5リットル/hである。酸素の流量は、好ましくは40m/h~53m/hである。 The high-speed gas spraying apparatus 300 includes a combustion chamber 101 and a spray nozzle 103 disposed in front of the injection direction. The combustion chamber 101 is formed in a cylindrical shape and extends in the injection direction. The rear end of the combustion chamber 101 is closed by a combustion chamber tail plug 105. Combustion chamber tail plug 105 includes a fuel supply unit 106 and an oxygen gas supply unit 107. The fuel supply unit 106 communicates with the combustion chamber 101, and the fuel charged into the fuel supply unit 106 moves at high speed toward the combustion chamber 101. The oxygen gas supply unit 107 communicates with the combustion chamber 101, and oxygen in the oxygen gas supply unit 107 moves at high speed toward the combustion chamber 101. Kerosene can be used as the fuel supplied to the fuel supply unit 106. The flow rate of kerosene is preferably 15.5 liter / h to 26.5 liter / h. The flow rate of oxygen is preferably 40m 3 / h ~ 53m 3 / h.
 燃焼室101の溶射ノズル103との連結部分には、ラバル型ノズル102が形成されている。ラバル型ノズル102に供給される流体の温度、圧力を制御することによって、流体の速度を超音速にまで高めることができる。 A laval type nozzle 102 is formed at a portion where the combustion chamber 101 is connected to the thermal spray nozzle 103. By controlling the temperature and pressure of the fluid supplied to the Laval nozzle 102, the fluid velocity can be increased to supersonic speed.
 溶射ノズル103は、内径寸法が一定の筒形状に形成されており溶射方向に延びている。溶射ノズル103の長さは、好ましくは10~20cmである。この溶射ノズル103は燃焼室101から供給される高速の燃焼ガスを整流し、集束性を高める。そのため、溶射ノズル103の長さが上記の範囲よりも短くなると、整流効果や集束効果が少なくなり、また、上記の範囲よりも長くなると、燃焼ガスの速度が低下する。溶射ノズル103の先端部には、噴射口103aが形成されている。この噴射口103aから燃焼ガスとともに溶射材料が噴射される。 The thermal spray nozzle 103 is formed in a cylindrical shape having a constant inner diameter and extends in the thermal spray direction. The length of the thermal spray nozzle 103 is preferably 10 to 20 cm. This thermal spray nozzle 103 rectifies the high-speed combustion gas supplied from the combustion chamber 101 and improves the convergence. Therefore, when the length of the thermal spray nozzle 103 is shorter than the above range, the rectifying effect and the focusing effect are reduced, and when it is longer than the above range, the speed of the combustion gas is reduced. An injection port 103 a is formed at the tip of the thermal spray nozzle 103. A thermal spray material is injected with combustion gas from this injection port 103a.
 溶射ノズル103の噴射口103a近傍には、溶射材料供給ノズル104が形成されている。溶射ノズル103の内周面には、溶射材料供給ノズル104の溶射粒子供給口104aが形成されている。図示しない溶射材料供給装置は、溶射材料を溶射材料供給ノズル104に向けて搬送する。搬送手段には、窒素ガスなどのキャリアガスを用いることができる。従って、溶射材料は、キャリアガスとともに溶射ノズル103内部の燃焼ガス内に流入する。 A spray material supply nozzle 104 is formed in the vicinity of the spray port 103 a of the spray nozzle 103. A spray particle supply port 104 a of the spray material supply nozzle 104 is formed on the inner peripheral surface of the spray nozzle 103. A thermal spray material supply device (not shown) conveys the thermal spray material toward the thermal spray material supply nozzle 104. A carrier gas such as nitrogen gas can be used for the conveying means. Therefore, the thermal spray material flows into the combustion gas inside the thermal spray nozzle 103 together with the carrier gas.
 図5はWC12Co溶射粒子の粒径を変化させて溶射した時の気孔率を示した図である。従来溶射は粒径40μm程度の溶射材料を溶射厚150μm程度行ってきたが3%程度の気孔が避けられなかった。粒径40μmで溶射厚150μm溶射した試験片を40℃、10%希硫酸へ浸漬したところ希硫酸が溶射皮膜内に浸透し、5日間で基材から溶射皮膜が剥離した。図4に示す溶射装置を使用して、溶射粒子の粒径を変化させて試験を行った結果、15μm溶射粒子では気孔率は0.15%となり試験片を40℃、10%希硫酸へ20日間浸漬しても溶射皮膜内に希硫酸が浸透せず、溶射材料の粒径を15μm以下にすれば貫通気孔を防止できることが判明した。 FIG. 5 is a diagram showing the porosity when sprayed by changing the particle size of the WC12Co sprayed particles. Conventional thermal spraying has been performed by spraying a spray material having a particle size of about 40 μm to a spray thickness of about 150 μm, but pores of about 3% cannot be avoided. When a test piece sprayed with a particle size of 40 μm and a spray thickness of 150 μm was immersed in 10% diluted sulfuric acid at 40 ° C., the diluted sulfuric acid penetrated into the sprayed coating, and the sprayed coating peeled off from the substrate in 5 days. As a result of performing the test by changing the particle size of the thermal spray particles using the thermal spraying apparatus shown in FIG. It was found that dilute sulfuric acid did not penetrate into the sprayed coating even after being immersed for a day, and if the particle size of the sprayed material was made 15 μm or less, through pores could be prevented.
 粒径が15μm以下の微細な溶射粒子を用いることにより、貫通気孔をなくし緻密な溶射皮膜を形成することができる。これにより、Znおよび/またはAlを含む溶融金属が溶射皮膜の内部に浸入するのを効果的に抑制して、搬送ロールの腐食を防止できる。また、溶融金属内で使用されることにより搬送ロールの表面に付着したZnおよび/またはAlなどを酸性溶液を用いて除去する際に、この酸性溶液により腐食されるのを防止できる。ここで、溶射材料の粒径とは、溶射材料の平均粒子径のことであり、レーザー回折散乱式測定法により算出されるメジアン径のことである。 By using fine spray particles having a particle size of 15 μm or less, it is possible to eliminate the through pores and form a dense spray coating. Thereby, it can suppress effectively that the molten metal containing Zn and / or Al penetrate | invades into the inside of a sprayed coating, and can prevent corrosion of a conveyance roll. Moreover, when removing Zn and / or Al etc. adhering to the surface of a conveyance roll by using in a molten metal using an acidic solution, it can prevent being corroded by this acidic solution. Here, the particle diameter of the thermal spray material is an average particle diameter of the thermal spray material, and is a median diameter calculated by a laser diffraction scattering measurement method.
 また、粒径が1μm以上の溶射粒子を使用するのが好ましい。これにより、溶射材料供給ノズル104の溶射粒子供給口104aの近傍に溶射粒子が付着するのを防止できる。すなわち、溶射粒子の粒径が小さくなると、溶射粒子供給口104aから射出する際の運動エネルギが小さくなり、溶射粒子供給口104aの近傍に溶射粒子が堆積するおそれがある。そのため、溶射粒子の粒径を1μm以上に設定することにより、溶射粒子の堆積を効果的に抑制することができる。 Further, it is preferable to use spray particles having a particle size of 1 μm or more. Thereby, it can prevent that a thermal spray particle adheres to the vicinity of the thermal spray particle supply port 104a of the thermal spray material supply nozzle 104. FIG. That is, when the particle size of the sprayed particles is reduced, the kinetic energy at the time of injection from the sprayed particle supply port 104a is decreased, and the sprayed particles may be deposited in the vicinity of the sprayed particle supply port 104a. Therefore, deposition of spray particles can be effectively suppressed by setting the particle size of the spray particles to 1 μm or more.
 溶射材料には、溶射粒子同士を結合させるバインダーとして様々な材料を用いることができる。例えば、Ni、Co単体だけでなくNi基、Ni—Cr基、Co基などの合金(例えば、Coを主成分とし、約30質量%のCr、4~15質量%のWなどからなるステライト合金)を用いることができる。 Various materials can be used as the thermal spray material as a binder for bonding the thermal spray particles. For example, not only Ni and Co alone but also alloys such as Ni base, Ni-Cr base, Co base (for example, stellite alloy composed mainly of Co, about 30 mass% Cr, 4-15 mass% W, etc. ) Can be used.
 従来は貫通気孔によるZnおよび/またはAlを含む溶融金属および酸性溶液による浸透腐食を防止するために溶射皮膜の気孔を封孔剤で封孔する方法が行われてきたが、搬送ロールに鋼板が接触して表面が摩耗および内部応力が発生する。その結果、封孔剤に亀裂が生じて封孔処理の効果が低下し、搬送ロールの寿命が短くなる。本実施形態の搬送ロールは、貫通気孔および気孔がほとんど無いため封孔処理を必須とせず、封孔処理を施した従来の搬送ロールよりも寿命を長くすることができる。なお本実施形態の搬送ロールに封孔処理を施すこともできる。この場合、封孔剤により溶融金属および酸性溶液による浸透腐食を更に効果的に抑制することができる。 Conventionally, a method of sealing pores of a thermal spray coating with a sealing agent has been performed in order to prevent penetration corrosion due to molten metal containing Zn and / or Al and an acidic solution due to through-holes. Contact causes wear and internal stress on the surface. As a result, the sealing agent is cracked, the effect of the sealing treatment is reduced, and the life of the transport roll is shortened. The transport roll of this embodiment has almost no through-holes and pores, and therefore does not require sealing treatment, and can have a longer life than a conventional transport roll subjected to sealing treatment. In addition, a sealing process can also be given to the conveyance roll of this embodiment. In this case, osmotic corrosion due to the molten metal and the acidic solution can be further effectively suppressed by the sealing agent.
 (実施形態2)
 図4の高速ガス溶射装置300には、筒状ガス供給部310が設けられている。X軸方向視において、筒状ガス供給部310のガス排出口である筒状ガス供給孔310aは、噴射口103aを包囲している。そのため、筒状ガス供給孔310aから噴出したガスにより筒状のガスドームが形成される。噴射ノズル103から噴射された燃焼ガスは、このガスドームの内部をX軸方向に移動する。ガスとしては空気だけではなく窒素ガス、アルゴンガス、ヘリウムガス等の非酸化性ガスおよびプロパンガス、アセチレンガス等の可燃性ガスを使用することも可能である。
(Embodiment 2)
The high-speed gas spraying apparatus 300 in FIG. 4 is provided with a cylindrical gas supply unit 310. When viewed in the X-axis direction, a cylindrical gas supply hole 310a that is a gas discharge port of the cylindrical gas supply unit 310 surrounds the injection port 103a. Therefore, a cylindrical gas dome is formed by the gas ejected from the cylindrical gas supply hole 310a. The combustion gas injected from the injection nozzle 103 moves in the X-axis direction inside the gas dome. As the gas, not only air but also non-oxidizing gas such as nitrogen gas, argon gas and helium gas, and flammable gas such as propane gas and acetylene gas can be used.
 溶射材料供給ノズル104より燃焼ガス内に供給された溶射材料は燃焼ガス内の残存酸素および燃焼ガスの周囲より引き込まれた空気中の酸素により溶射材料の表面を酸化させ溶射皮膜内の溶射粒子間の結合力を低下させ溶射皮膜の強度を低下させる。特に溶射材料の粒径が小さくなった場合には比表面積が大きくなるので酸化の影響が大きくなる。ガスとして非酸化性ガスを使用した場合、この非酸化性ガスが障壁となって、大気中の酸素が燃焼ガス内に引き込まれるのを阻止できると共に非酸化性ガスが燃焼ガス内に引き込まれるので燃焼ガス内の酸素分圧が下がる。これにより燃焼ガス内の溶射材料が酸化するのを抑制できる。筒状ガス供給孔310aは、溶射ノズル103から噴射される燃焼ガスを包囲できる形状であれば他の形状(たとえば、矩形)に変更することもできる。 The thermal spray material supplied into the combustion gas from the thermal spray material supply nozzle 104 oxidizes the surface of the thermal spray material with residual oxygen in the combustion gas and oxygen in the air drawn from the periphery of the combustion gas, and between the thermal spray particles in the thermal spray coating. This reduces the bonding strength of the thermal spray coating and reduces the strength of the thermal spray coating. In particular, when the particle size of the thermal spray material is reduced, the specific surface area is increased, so that the influence of oxidation is increased. When a non-oxidizing gas is used as the gas, this non-oxidizing gas can act as a barrier, preventing oxygen in the atmosphere from being drawn into the combustion gas, and the non-oxidizing gas being drawn into the combustion gas. The oxygen partial pressure in the combustion gas decreases. Thereby, it can suppress that the thermal spray material in combustion gas oxidizes. The cylindrical gas supply hole 310 a can be changed to another shape (for example, a rectangle) as long as it can surround the combustion gas injected from the thermal spray nozzle 103.
 (実施形態3)
 図6は図4の高速ガス溶射装置を使用して被溶射材204としてのロールに溶射する方法を模式的に示した模式図である。溶射材料は、溶射材料供給ノズル104より超音速で流れる燃焼ガス203の中に吹き込まれ加熱、加速される。この加熱、加速された溶射材料は、被溶射材204に吹き付けられることにより、成膜して溶射皮膜205となる。被溶射材料が酸化しないように筒状ガス供給部310aより筒状のガス流で形成されたガスドームが供給される。筒状ガス供給部310aから噴射されるガス流として非酸化性ガスを使用する場合には、酸化防止効果を高めることができる。一方、非溶射材204が矢印方向に回転することにより、溶射皮膜がガスドームの内部から退避して、大気に晒される。ここで、溶射直後の溶射皮膜の温度は800℃程度あり、溶射材料の酸化開始温度である250℃~350℃より高い。そのため、溶射直後の溶射皮膜は、大気に晒されることにより、表面が酸化してその上に形成される新たな溶射皮膜との結合力が低下する。そこで、本実施形態では、冷却ガス吹き付けノズル206により溶射皮膜205の表面に冷却ガスを吹き付けている。これにより、溶射直後の溶射皮膜205の表面が急速に酸化開始温度以下に冷却されるため、溶射皮膜205の酸化を防止できる。冷却ガスとして窒素ガス、アルゴンガス、ヘリウムガス等の非酸化性ガスを使用するとより効果が大きい。
(Embodiment 3)
FIG. 6 is a schematic view schematically showing a method of spraying a roll as the sprayed material 204 using the high-speed gas spraying apparatus of FIG. The thermal spray material is blown into the combustion gas 203 flowing at supersonic speed from the thermal spray material supply nozzle 104 and heated and accelerated. The heated and accelerated thermal spray material is sprayed onto the thermal spray material 204 to form a thermal spray coating 205. A gas dome formed by a cylindrical gas flow is supplied from the cylindrical gas supply unit 310a so that the sprayed material is not oxidized. When a non-oxidizing gas is used as the gas flow injected from the cylindrical gas supply unit 310a, the antioxidant effect can be enhanced. On the other hand, when the non-spraying material 204 rotates in the direction of the arrow, the sprayed coating is retracted from the inside of the gas dome and exposed to the atmosphere. Here, the temperature of the sprayed coating immediately after spraying is about 800 ° C., which is higher than the oxidation start temperature of the sprayed material, 250 ° C. to 350 ° C. Therefore, when the thermal spray coating immediately after thermal spraying is exposed to the atmosphere, the surface is oxidized and the bonding force with a new thermal spray coating formed thereon is reduced. Therefore, in this embodiment, the cooling gas is sprayed onto the surface of the thermal spray coating 205 by the cooling gas spray nozzle 206. Thereby, since the surface of the thermal spray coating 205 immediately after thermal spraying is rapidly cooled below the oxidation start temperature, oxidation of the thermal spray coating 205 can be prevented. The use of a non-oxidizing gas such as nitrogen gas, argon gas or helium gas as the cooling gas is more effective.
 なお、実施形態1から3では図4に示した高速ガス溶射装置を用いたが、本発明はこれに限られるものではなく、他の微粉溶射が可能な高速ガス溶射装置およびプラズマ溶射装置にも適用することができる。 In Embodiments 1 to 3, the high-speed gas spraying apparatus shown in FIG. 4 is used. However, the present invention is not limited to this, and other high-speed gas spraying apparatuses and plasma spraying apparatuses that can perform fine powder spraying are also used. Can be applied.
 以下、実施例を示した本発明について具体的に説明する。 Hereinafter, the present invention showing examples will be described in detail.
 実施例1の試験条件は下記の通りで実施形態1の方法で実施した。溶射材料には、Mo、B、Co、Crを用いた。溶射粒子の平均粒子径は、3μmとした。溶射装置には、図4に図示する実施形態1の高速ガス溶射装置を用い、溶射厚は200μmとした。搬送ロールの試験材として、SUS410からなる丸棒を用いた。丸棒の径寸法は30mm、長手方向寸法は200mmとした。 The test conditions of Example 1 were as follows, and the method of Embodiment 1 was used. Mo, B, Co, and Cr were used as the thermal spray material. The average particle diameter of the spray particles was 3 μm. As the thermal spraying apparatus, the high-speed gas spraying apparatus of the first embodiment illustrated in FIG. 4 was used, and the thermal spraying thickness was 200 μm. A round bar made of SUS410 was used as a test material for the transport roll. The round bar had a diameter of 30 mm and a longitudinal dimension of 200 mm.
 比較例1の試験条件は下記の通りである。溶射粒子の平均粒子径は、40μmとした。溶射装置には、TAFA社製のJP−5000高速ガス溶射ガンを用いた。搬送ロールには、実施例1と同様の丸棒を用いた。なお、溶射粒子の平均粒子径は、レーザー回折散乱式測定法で測定したメジアン径である。 The test conditions of Comparative Example 1 are as follows. The average particle diameter of the spray particles was 40 μm. A JP-5000 high-speed gas spray gun manufactured by TAFA was used as the thermal spraying device. The same round bar as in Example 1 was used for the transport roll. The average particle diameter of the spray particles is a median diameter measured by a laser diffraction / scattering measurement method.
 これら実施例1および比較例1の丸棒を溶融亜鉛中に封孔材なしで10日間浸漬させた後、丸棒表面の溶射皮膜の断面をEDSマッピング像で解析した。図7Aに比較例の溶射皮膜断面の反射電子像、図7BにEDSマッピング像を示し、図8Aに実施例の溶射皮膜断面の反射電子像、図8BにEDSマッピング像を示した。また、試験結果を表1に示した。実施例1では溶射皮膜内に亜鉛の浸透がみられなかったが、比較例1では溶射皮膜内に亜鉛が浸透して丸棒の基材にまで達した。実施例1では、更に10日間、溶融亜鉛に浸漬させたが、溶射皮膜内への亜鉛の浸透が全くみられなかった。
Figure JPOXMLDOC01-appb-T000001
These round bars of Example 1 and Comparative Example 1 were immersed in molten zinc for 10 days without a sealing material, and then the cross section of the sprayed coating on the round bar surface was analyzed with an EDS mapping image. FIG. 7A shows a reflected electron image of a cross section of the sprayed coating of the comparative example, FIG. 7B shows an EDS mapping image, FIG. 8A shows a reflected electron image of the cross section of the sprayed coating of the example, and FIG. 8B shows an EDS mapping image. The test results are shown in Table 1. In Example 1, no penetration of zinc was observed in the sprayed coating, but in Comparative Example 1, zinc penetrated into the sprayed coating and reached the base material of the round bar. In Example 1, it was further immersed for 10 days in molten zinc, but no penetration of zinc into the sprayed coating was observed.
Figure JPOXMLDOC01-appb-T000001
 実施例2の試験条件は下記の通りで実施形態2の方法で実施した。溶射材料には、Mo、B、Co、Crを用いた。溶射粒子の平均粒子径は3μmとした。鋼板メッキ用の溶融亜鉛内で鋼板を搬送するサポートロールに本発明を適用して、耐食性を評価した。サポートロールの使用期間は30日とした。溶射装置には、図4に図示する高速ガス溶射装置を用い、筒状ガス供給部より非酸化性ガスとして窒素ガスを供給した。溶射厚は100μmとした。搬送ロールの材質はSUS410、径350mm、長さ2690mmとした。 The test conditions of Example 2 were as follows, and the method of Embodiment 2 was used. Mo, B, Co, and Cr were used as the thermal spray material. The average particle diameter of the spray particles was 3 μm. Corrosion resistance was evaluated by applying the present invention to a support roll for conveying a steel plate in molten zinc for steel plate plating. The support roll was used for 30 days. As the thermal spraying apparatus, a high-speed gas spraying apparatus illustrated in FIG. 4 was used, and nitrogen gas was supplied as a non-oxidizing gas from a cylindrical gas supply unit. The sprayed thickness was 100 μm. The material of the transport roll was SUS410, the diameter was 350 mm, and the length was 2690 mm.
 比較のため鋼板に接しないロール端部に従来の平均粒径40μmの溶射を溶射装置としてTAFA社製のJP−5000高速ガス溶射ガンを用いて行った。封孔処理は比較のため両方に行った。 For comparison, thermal spraying with a conventional average particle size of 40 μm was performed on the end of the roll not in contact with the steel sheet using a JP-5000 high-speed gas spray gun manufactured by TAFA. Sealing treatment was performed for both for comparison.
 比較部の従来法では封孔処理余剰層および溶射皮膜内に亜鉛が浸透してサポートロール基材にまで達し剥離した。本発明の実施例2では、封孔処理余剰層へのZnの浸透はみられたが溶射皮膜内への亜鉛の浸透が全くみられなかった。図9Aに実施例2の溶射皮膜断面の反射電子像、図9BにEDSマッピング像を示した。
Figure JPOXMLDOC01-appb-T000002
In the conventional method of the comparison part, zinc penetrated into the sealing treatment surplus layer and the sprayed coating, reached the support roll substrate, and peeled off. In Example 2 of the present invention, penetration of Zn into the sealing surplus layer was observed, but penetration of zinc into the sprayed coating was not observed at all. FIG. 9A shows a reflected electron image of a cross section of the sprayed coating of Example 2, and FIG. 9B shows an EDS mapping image.
Figure JPOXMLDOC01-appb-T000002
 非酸化性筒状ガスドームおよび溶射直後の溶射皮膜表面への非酸化性ガス吹き付けの効果を確認するため表3の試験を行った。溶射材料には、Mo、B、Co、Crを用いた。溶射粒子の平均粒子径は3μmとした。溶射装置には、図4に図示する実施形態1の高速ガス溶射装置を用い、溶射厚は200μmとした。試験材として、SUS410からなる
幅30mm×長さ50mm×厚さ5mmの平板を用いた。溶射条件は灯油量19.7リットル/h、酸素量700Nリットル/minとした。
条件1:非酸化性筒状ガスドーム無し、非酸化性ガス吹き付け無し (ベース)
条件2:非酸化性筒状ガスドーム有り、非酸化性ガス吹き付け無し
条件3:非酸化性筒状ガスドーム有り、非酸化性ガス吹き付け有り
In order to confirm the effect of spraying the non-oxidizing gas onto the non-oxidizing cylindrical gas dome and the sprayed coating surface immediately after the spraying, the tests shown in Table 3 were conducted. Mo, B, Co, and Cr were used as the thermal spray material. The average particle diameter of the spray particles was 3 μm. As the thermal spraying apparatus, the high-speed gas spraying apparatus of the first embodiment illustrated in FIG. 4 was used, and the thermal spraying thickness was 200 μm. As a test material, a flat plate made of SUS410 having a width of 30 mm, a length of 50 mm, and a thickness of 5 mm was used. The spraying conditions were a kerosene amount of 19.7 l / h and an oxygen amount of 700 Nl / min.
Condition 1: No non-oxidizing cylindrical gas dome, no non-oxidizing gas spraying (base)
Condition 2: Non-oxidizing cylindrical gas dome with non-oxidizing gas spraying Condition 3: Non-oxidizing cylindrical gas dome with non-oxidizing gas spraying
 非酸化性筒状ガスドームを使用することにより燃焼ガス中を流れる溶射粒子表面の酸化が抑制されるため溶射皮膜中の各粒子間の結合力が向上しブラスト摩耗量が減少すると共に、溶射1パス当たりの成膜量が向上した。また溶射直後の溶射皮膜に非酸化性ガスを吹き付けて急速に高温酸化開始温度以下に冷却することにより同様の効果があった。粒子間結合力を評価するための斜角ブラスト摩耗試験は図10に示す方法で行った。
Figure JPOXMLDOC01-appb-T000003
By using a non-oxidizing cylindrical gas dome, oxidation of the surface of the sprayed particles flowing in the combustion gas is suppressed, so that the bonding force between the particles in the sprayed coating is improved and the amount of blast wear is reduced. Improved film formation per pass. Further, the same effect was obtained by spraying a non-oxidizing gas on the sprayed coating immediately after spraying and rapidly cooling to a temperature not higher than the high temperature oxidation start temperature. The oblique blast wear test for evaluating the interparticle bonding force was performed by the method shown in FIG.
Figure JPOXMLDOC01-appb-T000003

Claims (5)

  1.  Znおよび/またはAlを含む溶融金属に接触する接触部位を溶射皮膜で覆った耐溶融金属部材であって、前記溶射皮膜を、粒子径が15μm以下の溶射粒子を溶射することにより形成したことを特徴とする耐溶融金属部材 A fusion-resistant metal member in which a contact portion that contacts a molten metal containing Zn and / or Al is covered with a thermal spray coating, wherein the thermal spray coating is formed by spraying thermal spray particles having a particle diameter of 15 μm or less. Fused metal parts
  2.  前記溶射粒子は、Niおよび/またはCoを含むことを特徴とする請求項1に記載の耐溶融金属部材 The molten metal member according to claim 1, wherein the sprayed particles contain Ni and / or Co.
  3.  溶射ノズルから噴射された溶射粒子を、筒状のガス流で形成されたガスドーム内を移動させながら前記耐溶融金属部材に衝突させることを特徴とする請求項1または2に記載の耐溶融金属部材の製造方法 The molten metal according to claim 1 or 2, wherein the sprayed particles sprayed from the spray nozzle are caused to collide with the molten metal member while moving in a gas dome formed by a cylindrical gas flow. Manufacturing method of member
  4.  前記ガスドームは、非酸化性ガスにより形成されていることを特徴とする請求項3に記載の耐溶融金属部材の製造方法 The method for producing a molten metal member according to claim 3, wherein the gas dome is formed of a non-oxidizing gas.
  5.  溶射直後の溶射皮膜表面に非酸化性の冷却ガスを吹き付けることを特徴とする請求項3または4に記載の耐溶融金属部材の製造方法 The method for producing a molten metal member according to claim 3 or 4, wherein a non-oxidizing cooling gas is sprayed on the surface of the sprayed coating immediately after spraying.
PCT/JP2009/063974 2009-07-22 2009-07-30 Molten metal-resistant member and process for producing molten metal-resistant member WO2011010400A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011523534A JP5647608B2 (en) 2009-07-22 2009-07-30 Melt-resistant metal member and method for producing molten metal member
BRPI0924287A BRPI0924287A2 (en) 2009-07-22 2009-07-30 Sturdy cast metal member and process for producing sturdy cast metal member
IN1566DEN2012 IN2012DN01566A (en) 2009-07-22 2012-02-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-171511 2009-07-22
JP2009171511 2009-07-22

Publications (1)

Publication Number Publication Date
WO2011010400A1 true WO2011010400A1 (en) 2011-01-27

Family

ID=43498885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/063974 WO2011010400A1 (en) 2009-07-22 2009-07-30 Molten metal-resistant member and process for producing molten metal-resistant member

Country Status (5)

Country Link
JP (1) JP5647608B2 (en)
KR (2) KR20120063471A (en)
BR (1) BRPI0924287A2 (en)
IN (1) IN2012DN01566A (en)
WO (1) WO2011010400A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021192821A (en) * 2016-11-22 2021-12-23 佛山市▲順▼▲徳▼区美的▲電▼▲熱▼▲電▼器制造有限公司Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Ltd. Magnetically conductive coating layer of dense structure and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102479133B1 (en) * 2021-06-15 2022-12-20 주식회사 에이프로젠 Powder for coating abration resistance and method for coating using the same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247470A (en) * 1985-08-23 1987-03-02 Toshiba Corp Formation of thermally sprayed coating on inside surface of cylinder
JPS63206459A (en) * 1987-02-23 1988-08-25 Showa Denko Kk Plasma thermal spraying method
JPH04276058A (en) * 1991-03-01 1992-10-01 Sumitomo Metal Ind Ltd Manufacture of dispersion plated steel sheet and torch to be used
JPH08188860A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Continuous hot-dip metal plating equipment
JPH09157866A (en) * 1995-11-30 1997-06-17 Mitsubishi Heavy Ind Ltd Corrosion resistant and oxidation resistant coating film
JPH09165665A (en) * 1995-12-12 1997-06-24 Nippon Steel Corp Thermal spraying method
JPH09165667A (en) * 1995-12-12 1997-06-24 Nippon Steel Corp Thermal spraying method
JPH11264062A (en) * 1998-03-16 1999-09-28 Pentel Kk Metallic nitride, thermal-sprayed coating thereof and production of member for electrochemical biological control or contamination prevention
JP2002004016A (en) * 2000-06-27 2002-01-09 Kawatetsu Galvanizing Co Ltd Member for hot-dip metal bath and its production method
JP2006185905A (en) * 2004-10-29 2006-07-13 United Technol Corp <Utc> Method and device for applying thermal spray of micro-plasma on compressor blade part of gas turbine engine
JP2008127614A (en) * 2006-11-20 2008-06-05 Mitsubishi Engineering Plastics Corp Thermal spray coating structure, and insert
JP2009019271A (en) * 2007-06-15 2009-01-29 Sanyo Special Steel Co Ltd Surface coating material for molten zinc bath member, its manufacturing method and member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306362A (en) * 1997-04-28 1998-11-17 Nippon Steel Hardfacing Co Ltd Member for hot dip metal bath in which composite sprayed coating excellent in corrosion resistance to hot dip metal and peeling resistance is formed
JP4058294B2 (en) * 2002-04-30 2008-03-05 株式会社荏原製作所 Wear-resistant surface treatment method for rotating member, impeller, and fluid machine having the impeller

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247470A (en) * 1985-08-23 1987-03-02 Toshiba Corp Formation of thermally sprayed coating on inside surface of cylinder
JPS63206459A (en) * 1987-02-23 1988-08-25 Showa Denko Kk Plasma thermal spraying method
JPH04276058A (en) * 1991-03-01 1992-10-01 Sumitomo Metal Ind Ltd Manufacture of dispersion plated steel sheet and torch to be used
JPH08188860A (en) * 1995-01-10 1996-07-23 Hitachi Ltd Continuous hot-dip metal plating equipment
JPH09157866A (en) * 1995-11-30 1997-06-17 Mitsubishi Heavy Ind Ltd Corrosion resistant and oxidation resistant coating film
JPH09165665A (en) * 1995-12-12 1997-06-24 Nippon Steel Corp Thermal spraying method
JPH09165667A (en) * 1995-12-12 1997-06-24 Nippon Steel Corp Thermal spraying method
JPH11264062A (en) * 1998-03-16 1999-09-28 Pentel Kk Metallic nitride, thermal-sprayed coating thereof and production of member for electrochemical biological control or contamination prevention
JP2002004016A (en) * 2000-06-27 2002-01-09 Kawatetsu Galvanizing Co Ltd Member for hot-dip metal bath and its production method
JP2006185905A (en) * 2004-10-29 2006-07-13 United Technol Corp <Utc> Method and device for applying thermal spray of micro-plasma on compressor blade part of gas turbine engine
JP2008127614A (en) * 2006-11-20 2008-06-05 Mitsubishi Engineering Plastics Corp Thermal spray coating structure, and insert
JP2009019271A (en) * 2007-06-15 2009-01-29 Sanyo Special Steel Co Ltd Surface coating material for molten zinc bath member, its manufacturing method and member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021192821A (en) * 2016-11-22 2021-12-23 佛山市▲順▼▲徳▼区美的▲電▼▲熱▼▲電▼器制造有限公司Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co., Ltd. Magnetically conductive coating layer of dense structure and its manufacturing method
JP6990565B2 (en) 2016-11-22 2022-01-12 佛山市▲順▼▲徳▼区美的▲電▼▲熱▼▲電▼器制造有限公司 Densely structured conductive coating layer, method of manufacturing densely structured magnetically conductive coating layer, pot body, and cooking utensils
JP7229311B2 (en) 2016-11-22 2023-02-27 佛山市▲順▼▲徳▼区美的▲電▼▲熱▼▲電▼器制造有限公司 Magnetically conductive coating layer with dense structure and manufacturing method thereof

Also Published As

Publication number Publication date
BRPI0924287A2 (en) 2016-01-26
JPWO2011010400A1 (en) 2012-12-27
KR20120063471A (en) 2012-06-15
JP5647608B2 (en) 2015-01-07
IN2012DN01566A (en) 2015-06-05
KR20120054600A (en) 2012-05-30

Similar Documents

Publication Publication Date Title
CN104894554B (en) A kind of preparation method and application of high-compactness cold spraying metal/metal base lithosomic body
US8597724B2 (en) Corrosion protective coating through cold spray
CN107761035A (en) A kind of corrosion resistant fine and close thermal spray metal alloy coat and preparation method thereof completely
WO2011148515A1 (en) Object produced by thermal spraying and method of thermal spraying therefor
EP1877598B1 (en) Magnesium repair and build up
CN100569989C (en) Method of spray plating
US20060090593A1 (en) Cold spray formation of thin metal coatings
US8052074B2 (en) Apparatus and process for depositing coatings
KR101543895B1 (en) Method for forming functional coating layer on zinc galvanized steel sheet by cold spraying and zinc galvanized steel sheet having functional coating layer
JP2007308737A (en) Corrosion protection method for welded part
CN106148876B (en) A kind of novel aluminum alloy die-casting die surface peening coating and preparation method thereof
JP2014530981A (en) piston
EP2576138B1 (en) Method for removal of ceramic coatings by solid co² blasting
JP2012025983A (en) Method for forming coating film, and composite material formed by the method
JP5647608B2 (en) Melt-resistant metal member and method for producing molten metal member
JP6008443B2 (en) Laminate spray coating formation method
CN109338264B (en) Preparation method and system of metal alloy coating in atmospheric atmosphere
Jifeng et al. Preparation of electrical contact materials by cold gas-spray
RU2489512C2 (en) Method for corrosion prevention treatment of part by deposition of layer of zirconium and/or zirconium alloy
JP2014018849A (en) Method for strengthening welding tip, and welding tip
CN112226723B (en) Preparation method of aluminum-containing alloy coating in atmospheric atmosphere
JP3165145U (en) Composite material with copper or aluminum coating on thin resin
JP2014237864A (en) Manufacturing method of coated member and coated member
JP4626945B2 (en) Cermet sprayed coating member and method for producing the same
Ramaiah et al. Optimization of Deposition Parameters in Plasma Spray Coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847585

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011523534

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10032/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127004108

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09847585

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924287

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924287

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111129