JP2008127614A - Thermal spray coating structure and nesting - Google Patents
Thermal spray coating structure and nesting Download PDFInfo
- Publication number
- JP2008127614A JP2008127614A JP2006312613A JP2006312613A JP2008127614A JP 2008127614 A JP2008127614 A JP 2008127614A JP 2006312613 A JP2006312613 A JP 2006312613A JP 2006312613 A JP2006312613 A JP 2006312613A JP 2008127614 A JP2008127614 A JP 2008127614A
- Authority
- JP
- Japan
- Prior art keywords
- spray coating
- thermal spray
- thickness
- porosity
- thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005507 spraying Methods 0.000 title claims abstract description 145
- 229910052751 metal Inorganic materials 0.000 claims abstract description 60
- 239000002184 metal Substances 0.000 claims abstract description 60
- 239000000919 ceramic Substances 0.000 claims abstract description 19
- 238000002347 injection Methods 0.000 claims abstract description 7
- 239000007924 injection Substances 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims description 43
- 238000000576 coating method Methods 0.000 claims description 43
- 239000002245 particle Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 15
- 230000003746 surface roughness Effects 0.000 claims description 10
- 238000001746 injection moulding Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 66
- 239000000203 mixture Substances 0.000 description 28
- 238000000034 method Methods 0.000 description 26
- 238000007751 thermal spraying Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 14
- 229920005992 thermoplastic resin Polymers 0.000 description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 238000007789 sealing Methods 0.000 description 9
- 239000011148 porous material Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 6
- 229910001928 zirconium oxide Inorganic materials 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000007749 high velocity oxygen fuel spraying Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- UAMZXLIURMNTHD-UHFFFAOYSA-N dialuminum;magnesium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Mg+2].[Al+3].[Al+3] UAMZXLIURMNTHD-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010285 flame spraying Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- -1 more specifically Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229940098458 powder spray Drugs 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Coating By Spraying Or Casting (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
【課題】高い耐久性を有し、表面に凹凸が少なく、表面の平滑性に優れた溶射皮膜を備え、キャビティを有する射出成形用の金型において用いられ、キャビティを構成する面を形成する入れ子を提供する。
【解決手段】入れ子11は、キャビティを有する射出成形用の金型において用いられ、キャビティを構成する面を形成し、(a)金属製ブロック22、(b)金属製ブロック22の少なくとも1表面に形成された、厚さ0.03mm乃至1mmの金属下地層23、及び、(c)金属下地層23上に形成された、セラミックスから成る溶射皮膜24から構成されており、溶射皮膜24は厚さ方向に変化した気孔率を有し、該気孔率は、溶射皮膜24の表面に近い側ほど、低い値である。
【選択図】 図1Nesting for forming a surface constituting a cavity, which has a high durability, is provided with a thermal spray coating having excellent surface smoothness, and has a cavity, and is used in an injection molding die having a cavity. I will provide a.
The insert 11 is used in an injection mold having a cavity, and forms a surface constituting the cavity, and (a) a metal block 22 and (b) at least one surface of the metal block 22 are formed. The formed metal base layer 23 having a thickness of 0.03 mm to 1 mm, and (c) a thermal spray coating 24 made of ceramics formed on the metal base layer 23, the thermal spray coating 24 having a thickness. The porosity changes in the direction, and the porosity is lower as the surface is closer to the surface of the thermal spray coating 24.
[Selection] Figure 1
Description
本発明は、金属から成る素地と溶射皮膜とから構成された溶射皮膜構造体、及び、係る溶射皮膜構造体を適用して成り、キャビティを有する射出成形用の金型において用いられ、キャビティを構成する面を形成する入れ子に関する。 The present invention is applied to a thermal spray coating structure composed of a metal base and a thermal spray coating, and the thermal spray coating structure, and is used in an injection mold having a cavity to form a cavity. It is related with the nesting which forms the surface to do.
射出成形方法においては、金属から作製され、キャビティを備えた金型を用いて、溶融熱可塑性樹脂をキャビティ内に射出し、冷却、固化させることで成形品を成形する。然るに、高い熱伝導率を有する金属から金型が作製されているため、溶融熱可塑性樹脂のキャビティ内への射出過程で、金型のキャビティを構成する面(キャビティ面と呼ぶ)と接した溶融熱可塑性樹脂の部分が直ちに冷却され、得られた成形品の外観不良や転写不良を招いている。 In the injection molding method, a molded product is formed by injecting molten thermoplastic resin into a cavity using a mold made of metal and provided with a cavity, and cooling and solidifying. However, since the mold is made of a metal having high thermal conductivity, the molten thermoplastic resin is melted in contact with the surface forming the cavity of the mold (called the cavity surface) during the injection process into the cavity. The portion of the thermoplastic resin is immediately cooled, resulting in poor appearance and poor transfer of the obtained molded product.
そこで、熱伝導率の小さいガラスやセラミックスから成る入れ子によって金型のキャビティ面を構成することで、入れ子の高い断熱性によってキャビティ内の溶融熱可塑性樹脂の急冷を防止し、成形品の外観を改良する技術が、例えば、特開平8−318534号公報に開示されている。 Therefore, by forming the cavity surface of the mold with a nest made of glass or ceramics with low thermal conductivity, the high heat insulation of the nest prevents rapid cooling of the molten thermoplastic resin in the cavity and improves the appearance of the molded product Such a technique is disclosed in, for example, Japanese Patent Laid-Open No. 8-318534.
また、金型のキャビティ面に、セラミックスあるいはサーメットから成る薄層が形成された合成樹脂成形用金型が、特開平5−38721号公報に開示されている。この薄層は、断熱性を高める目的で、意図的に空隙が多く発生する溶射法にて形成されている。尚、このような薄層を、便宜上、以下、セラミックス溶射層と呼ぶ。このセラミックス溶射層は、緻密で無いこともあり、熱や圧力によって破損し難い。 Japanese Unexamined Patent Publication No. 5-38721 discloses a synthetic resin molding die in which a thin layer made of ceramics or cermet is formed on the cavity surface of the die. This thin layer is formed by a thermal spraying method in which many voids are intentionally generated for the purpose of improving heat insulation. Such a thin layer is hereinafter referred to as a ceramic sprayed layer for convenience. This ceramic sprayed layer may not be dense and is not easily damaged by heat or pressure.
特開2004−175112の実施例5には、ステンレス鋼から成る入れ子本体26と、断熱層27と、封口層28とから構成された入れ子25が開示されている。尚、断熱層27は、ジルコニアセラミック材料粉末を使用したプラズマパウダースプレー溶射法にて入れ子本体26上に形成されている。一方、断熱層27の表面に、封口層28がNi−P無電解メッキ法にて形成されている。 In Example 5 of Japanese Patent Application Laid-Open No. 2004-175112, there is disclosed a nesting 25 constituted by a nesting body 26 made of stainless steel, a heat insulating layer 27, and a sealing layer 28. The heat insulating layer 27 is formed on the nested body 26 by a plasma powder spraying method using zirconia ceramic material powder. On the other hand, a sealing layer 28 is formed on the surface of the heat insulating layer 27 by Ni-P electroless plating.
ところで、特開平8−318534号公報に開示された技術にあっては、入れ子は緻密であるが脆性な材料から作製されており、入れ子を破損すること無く金型に配設するために、金属プレートを用いて特定のクリアランスで押さえ込み、特に、破損し易い入れ子のエッジ部を保護する対策を講じている。しかしながら、金型の構造、キャビティや成形品の形状等から、金属プレートを配置することが困難な場合がある。また、入れ子を焼結体から作製するので、入れ子を焼結するための焼成炉の制約や、冷却時の割れによって、大きな入れ子を作製することが困難であるばかりか、製造コストが非常に高いといった問題を有する。更には、焼成法によって得られる焼結体から成る入れ子は、緻密な構造であるが故に、ラップ加工を行うと、表面粗さRaが0.05μm以下の状態を得ることは非常に容易である。しかしながら、入れ子の密度が高いため、引っ張り応力が加わるような部位において入れ子を用いると、入れ子に破損が生じ易いといった欠点がある。 By the way, in the technique disclosed in Japanese Patent Application Laid-Open No. 8-318534, the nesting is made of a dense but brittle material. The plate is pressed with a specific clearance, and measures are taken to protect the edge of the nesting that is easily damaged. However, it may be difficult to arrange the metal plate due to the structure of the mold, the shape of the cavity, the molded product, or the like. In addition, since the insert is produced from a sintered body, it is difficult to produce a large insert due to the limitations of the firing furnace for sintering the insert and cracking during cooling, and the manufacturing cost is very high. Have the problem. Furthermore, since the insert made of a sintered body obtained by the firing method has a dense structure, it is very easy to obtain a state in which the surface roughness Ra is 0.05 μm or less when lapping is performed. is there. However, since the density of the nesting is high, using the nesting in a portion where tensile stress is applied has a drawback that the nesting is easily damaged.
特開平5−38721号公報に開示された技術にあっては、キャビティ内に射出された溶融熱可塑性樹脂の急冷を抑制することができるものの、セラミックス溶射層の表面に空隙が多く存在するので、空隙内に溶融熱可塑性樹脂が侵入し、金型から成形品を離型する際、セラミックス溶射層を破壊したり、成形品表面に凹凸が多く転写され、高品質な成形品が得られないといった問題を有する。尚、セラミックス溶射層の表面を平坦化するために、非常に薄い(数μm)のシリコーン系塗料を塗布する旨も開示されているが、耐久性に問題が生じ易い。 In the technique disclosed in Japanese Patent Laid-Open No. 5-38721, although quenching of the molten thermoplastic resin injected into the cavity can be suppressed, there are many voids on the surface of the ceramic sprayed layer. When molten thermoplastic resin penetrates into the gap and the molded product is released from the mold, the ceramic sprayed layer is destroyed or many irregularities are transferred to the surface of the molded product, making it impossible to obtain a high-quality molded product. Have a problem. It is also disclosed that a very thin (several μm) silicone-based paint is applied to flatten the surface of the ceramic sprayed layer, but a problem with durability tends to occur.
特開2004−175112の実施例5に開示された入れ子25にあっては、封口層28を無電解メッキ法にて形成しているが、一般的に、溶射法にて形成された断熱層27には空隙が多く存在するので、無電解メッキ法にて封口層28を形成したとき、以下の問題が生じ易い。即ち、断熱層27に深い空隙が多く存在する場合、メッキ工程で発生した水素の泡を巻き込みながらメッキ層が成長する結果、封口層28にピンホールが多発し易い。特に、空隙の大きな部分で発生した大きなピンホール又はその影響で、封口層28の断熱層27に対する密着力が低下する。そして、封口層28に生じたピンホールが成形品の表面に転写されてしまうといった問題や、封口層28に生じたピンホールに成形品の一部分が侵入し、金型から成形品を離型する際、封口層28に損傷が生じるといった問題が発生し易い。 In the insert 25 disclosed in Example 5 of Japanese Patent Application Laid-Open No. 2004-175112, the sealing layer 28 is formed by an electroless plating method. Generally, the heat insulating layer 27 is formed by a thermal spraying method. Since there are many voids, the following problems are likely to occur when the sealing layer 28 is formed by the electroless plating method. That is, when there are many deep voids in the heat insulating layer 27, the plated layer grows while entraining hydrogen bubbles generated in the plating step, and as a result, pinholes are likely to occur frequently in the sealing layer 28. In particular, the adhesion force of the sealing layer 28 to the heat insulating layer 27 is reduced due to a large pinhole generated in a large portion of the void or the influence thereof. Then, a problem that the pinhole generated in the sealing layer 28 is transferred to the surface of the molded product, or a part of the molded product enters the pinhole generated in the sealing layer 28, and the molded product is released from the mold. At this time, the problem that the sealing layer 28 is damaged is likely to occur.
従って、本発明の目的は、高い耐久性を有し、表面に凹凸が少なく、表面の平滑性に優れた、金属から成る素地と溶射皮膜とから構成された溶射皮膜構造体、係る溶射皮膜構造体を適用して成り、キャビティを有する射出成形用の金型において用いられ、キャビティを構成する面を形成する入れ子を提供することにある。 Accordingly, an object of the present invention is to provide a thermal spray coating structure comprising a metal base and a thermal spray coating, which has high durability, has less irregularities on the surface, and is excellent in surface smoothness, and the thermal spray coating structure. An object of the present invention is to provide a nest that is formed by applying a body and is used in an injection mold having a cavity to form a surface constituting the cavity.
上記の目的を達成するための本発明の溶射皮膜構造体は、
(a)金属から成る素地、
(b)素地上に形成された、厚さ0.03mm乃至1mmの金属下地層、及び、
(c)金属下地層上に形成された、セラミックスから成る溶射皮膜、
から構成された溶射皮膜構造体であって、
溶射皮膜は、厚さ方向に変化した気孔率を有し、
該気孔率は、溶射皮膜表面に近い側ほど、低い値であることを特徴とする。
In order to achieve the above object, the thermal spray coating structure of the present invention comprises:
(A) a substrate made of metal,
(B) a metal underlayer having a thickness of 0.03 mm to 1 mm formed on the substrate; and
(C) a thermal spray coating made of ceramics formed on a metal underlayer;
A thermal spray coating structure comprising:
The thermal spray coating has a porosity that varies in the thickness direction,
The porosity is characterized by a lower value closer to the surface of the sprayed coating.
上記の目的を達成するための本発明の入れ子は、キャビティを有する射出成形用の金型において用いられ、キャビティを構成する面を形成する入れ子であって、
(a)金属製ブロック、
(b)金属製ブロックの少なくとも1表面に形成された、厚さ0.03mm乃至1mmの金属下地層、及び、
(c)金属下地層上に形成された、セラミックスから成る溶射皮膜、
から構成されており、
溶射皮膜は、厚さ方向に変化した気孔率を有し、
該気孔率は、溶射皮膜表面に近い側ほど、低い値であることを特徴とする。
The nesting of the present invention for achieving the above object is used in an injection mold having a cavity and forms a surface constituting the cavity,
(A) metal block,
(B) a metal underlayer having a thickness of 0.03 mm to 1 mm formed on at least one surface of the metal block; and
(C) a thermal spray coating made of ceramics formed on a metal underlayer;
Consists of
The thermal spray coating has a porosity that varies in the thickness direction,
The porosity is characterized by a lower value closer to the surface of the sprayed coating.
本発明の溶射皮膜構造体、あるいは、入れ子(以下、これらを総称して、単に、本発明と呼ぶ場合がある)において、溶射によって形成された皮膜である溶射皮膜は、組成の観点から、同一組成から構成されていてもよいし(便宜上、同一組成皮膜と呼ぶ)、溶射材料の組成を積層間で連続的に変化させた漸変皮膜とすることもできる。また、溶射皮膜は、気孔率の変化状態の観点から、単層(単層溶射皮膜と呼ぶ)から構成されていてもよいし、複数層の積層構造(便宜上、各層を単位層と呼ぶ)から構成されていてもよい。複数の単位層のそれぞれの組成は、同一であってもよいし、異なっていてもよい。また、上述したとおり、溶射皮膜は厚さ方向に変化した気孔率を有するが、気孔率の変化の状態は、金属下地層と溶射皮膜との界面から溶射皮膜表面に向かって、徐々に(連続的に)減少する形態とすることもできるし、段階的に減少する形態とすることもできるし、徐々に(連続的に)、且つ、段階的に減少する形態とすることもできる。尚、溶射皮膜を同一組成皮膜あるいは漸変皮膜の単層溶射皮膜から構成する場合、溶射条件等によって、厚さ方向に変化した気孔率を有する溶射皮膜を得ることができる。また、溶射皮膜を複数の単位層の積層構造から構成する場合、溶射条件等によって、複数層の積層構造を構成する単位層のそれぞれにおける気孔率を異ならせることができる。 In the thermal spray coating structure of the present invention or in the nest (hereinafter, these may be collectively referred to simply as the present invention), the thermal spray coating formed by thermal spraying is the same from the viewpoint of composition. It may be composed of a composition (referred to as the same composition film for convenience), or may be a graded film in which the composition of the thermal spray material is continuously changed between the layers. In addition, the sprayed coating may be composed of a single layer (referred to as a single-layer sprayed coating) from the viewpoint of the change in porosity, or from a multilayer structure of multiple layers (for convenience, each layer is referred to as a unit layer). It may be configured. The composition of each of the plurality of unit layers may be the same or different. Further, as described above, the thermal spray coating has a porosity changed in the thickness direction, but the state of the porosity change gradually (continuously) from the interface between the metal base layer and the thermal spray coating toward the thermal spray coating surface. (A) may be reduced, may be reduced stepwise, or may be gradually (continuously) reduced stepwise. When the thermal spray coating is composed of a single-layer thermal spray coating having the same composition or a gradually changing coating, it is possible to obtain a thermal spray coating having a porosity changed in the thickness direction depending on the thermal spraying conditions and the like. Further, when the thermal spray coating is constituted by a laminated structure of a plurality of unit layers, the porosity in each of the unit layers constituting the laminated structure of the plurality of layers can be varied depending on the thermal spraying conditions or the like.
本発明において、溶射皮膜の熱伝導率は1W/(m・K)乃至4W/(m・K)であり、溶射皮膜の平均厚さは0.3mm乃至2.0mmである構成とすることが好ましい。 In the present invention, the thermal conductivity of the thermal spray coating is 1 W / (m · K) to 4 W / (m · K), and the average thickness of the thermal spray coating is 0.3 mm to 2.0 mm. preferable.
溶射皮膜の熱伝導率の値が上記の範囲の下限を下回る場合、溶射皮膜の所望の気孔率を得ることが困難となる虞がある。一方、溶射皮膜の熱伝導率の値が上記の範囲の上限を越える場合、例えば、溶射皮膜と接する溶融熱可塑性樹脂の急冷を抑制することが困難となり、係る熱可塑性樹脂から得られた成形品の外観改良効果が低減する虞がある。溶射皮膜の熱伝導率は、レーザーフラッシュ法、熱線法といった方法に基づき測定することができる。 When the thermal conductivity value of the thermal spray coating is below the lower limit of the above range, it may be difficult to obtain a desired porosity of the thermal spray coating. On the other hand, when the thermal conductivity value of the thermal spray coating exceeds the upper limit of the above range, for example, it becomes difficult to suppress quenching of the molten thermoplastic resin in contact with the thermal spray coating, and a molded product obtained from such a thermoplastic resin There is a possibility that the effect of improving the appearance will be reduced. The thermal conductivity of the thermal spray coating can be measured based on a method such as a laser flash method or a hot wire method.
また、例えば、溶射皮膜と接する溶融熱可塑性樹脂の急冷を抑制し、成形品の外観の改良するために、溶射皮膜を単層溶射皮膜から構成する場合、溶射皮膜の平均厚さを、上述のとおり、0.3mm乃至2.0mm、好ましくは0.3mm乃至1.0mmとすることが望ましい。一方、溶射皮膜を複数の単位層の積層構造から構成する場合、溶射皮膜の平均厚さ(総厚平均)を、0.5mm乃至1.8mm、好ましくは1.0mm乃至1.5mmとすることが望ましく、溶射皮膜表面を構成する単位層(トップコートと呼ばれる場合もある)の平均厚さを、0.05mm乃至0.3mm、好ましくは0.1mm乃至0.2mmとすることが望ましく、その他の単位層(中間層と呼ばれる場合もある)の平均厚さを、0.1mm乃至0.5mm、好ましくは0.2mm乃至0.4mmとすることが望ましく、単位層の層数を、2乃至4、好ましくは2乃至3とすることが望ましい。溶射皮膜の厚さ(膜厚)は、切断加工した断面に必要に応じて研磨加工やラップ加工を施し、係る断面をデジタル顕微鏡、光学顕微鏡、走査型電子顕微鏡(SEM)、レーザー顕微鏡等にて観察し、厚さを計測するといった方法に基づき測定することができる。 Further, for example, in order to suppress the rapid cooling of the molten thermoplastic resin in contact with the thermal spray coating and improve the appearance of the molded product, when the thermal spray coating is composed of a single-layer thermal spray coating, the average thickness of the thermal spray coating is As described above, it is desirable that the thickness is 0.3 mm to 2.0 mm, preferably 0.3 mm to 1.0 mm. On the other hand, when the thermal spray coating is composed of a laminated structure of a plurality of unit layers, the average thickness (total thickness average) of the thermal spray coating is 0.5 mm to 1.8 mm, preferably 1.0 mm to 1.5 mm. It is desirable that the average thickness of the unit layer (sometimes referred to as a top coat) constituting the surface of the sprayed coating is 0.05 mm to 0.3 mm, preferably 0.1 mm to 0.2 mm. The average thickness of the unit layer (sometimes referred to as an intermediate layer) is 0.1 mm to 0.5 mm, preferably 0.2 mm to 0.4 mm, and the number of unit layers is 2 to 4, preferably 2 to 3. The thickness (film thickness) of the thermal spray coating is applied to the cut cross section by polishing or lapping as necessary, and the cross section is measured with a digital microscope, optical microscope, scanning electron microscope (SEM), laser microscope, etc. It can be measured based on the method of observing and measuring the thickness.
上記の好ましい構成を含む本発明において、溶射皮膜表面から溶射皮膜内部に向かって厚さ0.05mmまでの部分(便宜上、溶射皮膜の表面領域と呼ぶ)における気孔率平均値は0.4%以上5%未満であり、金属下地層と溶射皮膜との界面から溶射皮膜内部に向かって厚さ0.2mmまでの部分(便宜上、溶射皮膜の底部領域と呼ぶ)における気孔率平均値は5%以上10%以下である構成とすることが好ましい。尚、見掛け密度から計算した気孔率平均値に換算すると、溶射皮膜の表面領域における気孔率平均値は3%以上10%未満であり、溶射皮膜の底部領域における気孔率平均値は10%以上20%以下となる。 In the present invention including the above preferred configuration, the average porosity value in a portion (referred to as a surface region of the sprayed coating for convenience) having a thickness of 0.05 mm from the surface of the sprayed coating toward the inside of the sprayed coating is 0.4% or more. The average porosity is 5% or more at a portion (referred to as the bottom region of the thermal spray coating for convenience) having a thickness of less than 5% and reaching a thickness of 0.2 mm from the interface between the metal base layer and the thermal spray coating toward the inside of the thermal spray coating. It is preferable that the composition is 10% or less. When converted into the average porosity calculated from the apparent density, the average porosity in the surface area of the sprayed coating is 3% or more and less than 10%, and the average porosity in the bottom area of the sprayed coating is 10% or more and 20%. % Or less.
更には、以上に説明した各種の好ましい構成、形態を含む本発明においては、溶射皮膜表面から溶射皮膜内部に向かって厚さ0.05mmまでの部分(溶射皮膜の表面領域)における溶射皮膜を構成する材料の平均粒径は2×10-6m(2μm)乃至5×10-5m(50μm)であり、金属下地層と溶射皮膜との界面から溶射皮膜内部に向かって厚さ0.2mmまでの部分(溶射皮膜の底部領域)における溶射皮膜を構成する材料の平均粒径は2×10-5m(20μm)乃至1×10-4m(100μm)であることが好ましい。 Furthermore, in the present invention including the various preferred configurations and forms described above, the thermal spray coating is formed in a portion (surface region of the thermal spray coating) having a thickness of 0.05 mm from the thermal spray coating surface toward the inside of the thermal spray coating. The average particle size of the material is 2 × 10 −6 m (2 μm) to 5 × 10 −5 m (50 μm), and the thickness is 0.2 mm from the interface between the metal underlayer and the sprayed coating toward the inside of the sprayed coating. The average particle diameter of the material constituting the thermal spray coating in the above portion (bottom region of the thermal spray coating) is preferably 2 × 10 −5 m (20 μm) to 1 × 10 −4 m (100 μm).
溶射皮膜の表面領域における溶射皮膜を構成する材料の平均粒径は、可能な限り小さいことが望ましいが、小さすぎると、溶射皮膜を形成する溶射工程で原料粉体(セラミックス粒子)の搬送が困難となる虞がある。従って、溶射皮膜の形成を容易としたり、あるいは又、溶射皮膜にクラックが発生することを防止するといった観点から、上述した範囲の平均粒径を有する原料粉体(セラミックス粒子)から溶射皮膜の表面領域を構成することが好ましい。一方、溶射皮膜の底部領域における溶射皮膜を構成する材料の平均粒径が上記の範囲にあることが、所望の気孔率を達成して断熱性を向上させ、溶射皮膜表面に与える凹凸の影響を少なくし、更には、溶射皮膜にクラックを発生させないといった観点から好ましい。 The average particle size of the material constituting the thermal spray coating in the surface area of the thermal spray coating is desirably as small as possible, but if it is too small, it is difficult to convey the raw material powder (ceramic particles) in the thermal spraying process for forming the thermal spray coating. There is a risk of becoming. Therefore, from the viewpoint of facilitating the formation of the sprayed coating or preventing the occurrence of cracks in the sprayed coating, the surface of the sprayed coating from the raw material powder (ceramic particles) having an average particle diameter in the above range. It is preferable to constitute a region. On the other hand, the average particle size of the material constituting the thermal spray coating in the bottom region of the thermal spray coating is within the above range, achieving the desired porosity and improving the heat insulation, and the influence of unevenness on the surface of the thermal spray coating. Further, it is preferable from the viewpoint of not generating cracks in the sprayed coating.
ここで、平均粒径とは、粉末の粒径累積度数が50%となる粒径であると定義され、例えば、光透過沈降法に基づき測定することができる。 Here, the average particle size is defined as a particle size at which the cumulative particle size of the powder is 50%, and can be measured based on, for example, a light transmission sedimentation method.
また、以上に説明した各種の好ましい形態を含む本発明において、溶射皮膜表面の表面粗さRaは0.05μm以下であることが望ましい。尚、表面粗さRaは、JIS B 0601:2001に規定されており、溶射皮膜表面に対して細かいダイヤモンド砥粒等で鏡面ラップ処理を行い、係る溶射皮膜表面を表面粗さ計を用いて、少なくとも倍率20000倍、基準長さ0.8mm、カットオフ0.8mm、測定速度0.05mm/秒の条件にて、数回スキャニングさせて、得られた粗さ曲線データより中心線平均粗さ(Ra)を選択して、その平均値を求めるといった方法に基づき測定することができる。ここで、上述したように、溶射皮膜の表面領域における気孔率平均値を上記の範囲とすることで、溶射皮膜表面が非常に緻密な表面状態となり、例えばラップ仕上げを行った後の溶射皮膜表面の表面粗さRaを容易に0.05μm以下にすることができる。気孔率が上記の範囲の上限を超えると、ラップ仕上げをしても溶射皮膜表面に細かい凹凸が残存してしまい、例えば、成形品表面に凹凸が転写され、成形品の外観に若干ヘーズが生じる。一方、気孔率を上記の範囲の下限を下回る値にすることは技術的に困難である。ラップ加工は、例えば、ダイヤモンド粉末や化学研磨液等を用いて行うことができ、研磨粒子の番手としては最終仕上げとして5000番以上の物を使用すればよい。 Further, in the present invention including the various preferred forms described above, the surface roughness R a of the sprayed coating surface is desirably 0.05μm or less. The surface roughness Ra is defined in JIS B 0601: 2001. The surface of the thermal spray coating is mirror-wrapped with fine diamond abrasive grains, and the surface of the thermal spray coating is measured using a surface roughness meter. The average roughness of the center line from the roughness curve data obtained by scanning several times under the conditions of at least a magnification of 20000 times, a reference length of 0.8 mm, a cutoff of 0.8 mm, and a measurement speed of 0.05 mm / sec. Measurement can be performed based on a method of selecting (R a ) and obtaining an average value thereof. Here, as described above, by setting the porosity average value in the surface area of the thermal spray coating within the above range, the thermal spray coating surface becomes a very dense surface state, for example, the surface of the thermal spray coating after lapping The surface roughness Ra can be easily reduced to 0.05 μm or less. If the porosity exceeds the upper limit of the above range, fine irregularities remain on the surface of the sprayed coating even after lapping, for example, the irregularities are transferred to the surface of the molded product, resulting in a slight haze in the appearance of the molded product. . On the other hand, it is technically difficult to make the porosity less than the lower limit of the above range. The lapping process can be performed using, for example, diamond powder, chemical polishing liquid, or the like, and the number of abrasive particles may be 5000 or higher as the final finish.
本発明において、気孔率とは、皮膜断面内の或る領域において、その面積に対して気孔が占める面積の割合と定義され、気孔率平均値の測定は、例えば、溶射皮膜を厚さ方向に切断して、デジタル顕微鏡、光学顕微鏡、走査型電子顕微鏡(SEM)、レーザー顕微鏡等にて断面の画像を得た後、画像解析装置を用いて係る画像のコントラスト差から気孔率を求め、更には、得られた気孔率から平均値を求めるといった方法に基づき行うことができる。また、本発明において、溶射皮膜に含まれる空隙である気孔とは、開口気孔(開孔)及び密閉気孔(閉孔)の両者を含む。 In the present invention, the porosity is defined as the ratio of the area occupied by the pores to a certain area in the cross section of the coating, and the average porosity is measured, for example, in the thickness direction of the thermal spray coating. After cutting and obtaining a cross-sectional image with a digital microscope, an optical microscope, a scanning electron microscope (SEM), a laser microscope, etc., the porosity is obtained from the contrast difference of the image using an image analyzer, and further The average value can be obtained from the obtained porosity. In the present invention, the pores that are voids contained in the thermal spray coating include both open pores (open holes) and closed pores (closed holes).
本発明において、素材の溶射される面である素地(基体)あるいは金属製ブロックを構成する材料として、炭素鋼やステンレス鋼を例示することができる。尚、金属から成る素地あるいは金属製ブロックという用語には、合金から成る素地あるいは合金製ブロックが包含される。 In this invention, carbon steel and stainless steel can be illustrated as a material which comprises the base (base | substrate) which is the surface to which the raw material is sprayed, or a metal block. The term “metal substrate or metal block” includes an alloy substrate or alloy block.
金属下地層は、溶射皮膜を素地あるいは金属製ブロックに強固に密着させるために必要とされ、その組成として、Ni−Cr、より具体的な組成として、Ni−20%Cr、Ni−50%Cr、Ni−16%Cr−20%Fe、Ni−19%Cr−6%Al、Ni−55%Cr−2.5%Mo−0.5%B等を例示することができる。尚、金属下地層という用語には、合金から成る下地層が包含される。金属下地層の厚さが0.03mm未満では素地あるいは金属製ブロックに対する強固な密着力が得られ難く、一方、1mmを超えると皮膜の溶射中に金属下地層と素地の層間で剥離が発生する虞がある。金属下地層の厚さ上限値として、好ましくは0.5mm、更に好ましくは0.3mmを挙げることができ、これによって、皮膜の溶射中に金属下地層と素地の層間で剥離が発生することを確実に防止することができ、溶射皮膜の耐久性を向上させることができる。金属下地層は、例えば、プラズマ溶射法やHVOF法、ワイヤーを用いた溶射法等の各種溶射法に基づき形成することができる。尚、溶射法に基づき形成された金属下地層は、下地溶射皮膜あるいはアンダーコートあるいはボンドコートとも呼ばれる。 The metal underlayer is required to firmly adhere the thermal spray coating to the substrate or the metal block, and its composition is Ni—Cr, more specifically, Ni-20% Cr, Ni-50% Cr. Ni-16% Cr-20% Fe, Ni-19% Cr-6% Al, Ni-55% Cr-2.5% Mo-0.5% B, and the like. The term “metal underlayer” includes an underlayer made of an alloy. If the thickness of the metal underlayer is less than 0.03 mm, it is difficult to obtain a strong adhesion to the substrate or the metal block. On the other hand, if the thickness exceeds 1 mm, peeling occurs between the metal underlayer and the substrate during the thermal spraying of the coating. There is a fear. The upper limit value of the thickness of the metal underlayer is preferably 0.5 mm, and more preferably 0.3 mm, which means that peeling occurs between the metal underlayer and the base layer during the thermal spraying of the coating. This can be reliably prevented and the durability of the sprayed coating can be improved. The metal underlayer can be formed based on various spraying methods such as a plasma spraying method, an HVOF method, and a spraying method using a wire. The metal underlayer formed based on the thermal spraying method is also referred to as an undercoat spray coating, an undercoat, or a bond coat.
溶射皮膜を構成するセラミックスとして、酸化ジルコニウム、及び、酸化アルミニウムを例示することができる。ここで、酸化ジルコニウムの組成として、より具体的には、CaO安定化ジルコニア(5%CaO−ZrO2,8%CaO−ZrO2,31%CaO−ZrO2)、MgO安定化ジルコニア(20%MgO−ZrO2,24%MgO−ZrO2)、Y2O3安定化ジルコニア(6%Y2O3−ZrO2,7%Y2O3−ZrO2,8%Y2O3−ZrO2,10%Y2O3−ZrO2,12%Y2O3−ZrO2,20%Y2O3−ZrO2)、ジルコン(ZrO2−33%SiO2)、CeO安定化ジルコニアを挙げることができるし、酸化アルミニウムの組成として、より具体的には、ホワイトアルミナ(Al2O3)、グレイアルミナ(Al2O3−1.5〜4%TiO2)、アルミナ・チタニア(Al2O3−13%TiO2,Al2O3−20%TiO2,Al2O3−40%TiO2,Al2O3−50%TiO2)、アルミナ・イットリア(3Al2O3・5Y2O3)、アルミナ・マグネシア(Mg・Al2O4)、アルミナ・シリカ(3Al2O3・2SiO2)を挙げることができるが、特に好ましいのは、気孔率を制御し易い酸化ジルコニウムである。但し、「%」は重量%を意味する。
Examples of ceramics constituting the thermal spray coating include zirconium oxide and aluminum oxide. Here, as the composition of zirconium oxide, more specifically, CaO stabilized zirconia (5% CaO—ZrO 2 , 8% CaO—ZrO 2 , 31% CaO—ZrO 2 ), MgO stabilized zirconia (20% MgO). -ZrO 2, 24% MgO-ZrO 2), Y 2 O 3 stabilized zirconia (6% Y 2 O 3 -ZrO 2, 7% Y 2 O 3 -ZrO 2, 8% Y 2 O 3 -
溶射皮膜は溶射法によって形成されるが、溶射法として、具体的には、プラズマパウダースプレー法あるいはHVOF法を挙げることができる。尚、溶射皮膜表面から溶射皮膜内部に向かって、少なくとも厚さ0.05mmまでの部分を形成するために、セラミックス粒子(粉末)の飛行速度が2×102m/秒以上であることが望ましい。また、溶射時の膜厚は、緻密な皮膜を得るために、1×10-4m(100μm)/パス以下にすることが望ましい。溶射装置として、飛行速度を早くすることが可能なプラズマ溶射装置、若しくは、高速フレーム溶射装置の一種であるHVOF(High Velocity Oxygen Fuel Spraying)用装置を用いることが好ましい。 The thermal spray coating is formed by a thermal spraying method. Specific examples of the thermal spraying method include a plasma powder spray method and an HVOF method. In order to form a portion having a thickness of at least 0.05 mm from the surface of the thermal spray coating to the inside of the thermal spray coating, the flying speed of the ceramic particles (powder) is preferably 2 × 10 2 m / second or more. . The film thickness during thermal spraying is desirably 1 × 10 −4 m (100 μm) / pass or less in order to obtain a dense film. As the thermal spraying device, it is preferable to use a plasma spraying device capable of increasing the flight speed or an HVOF (High Velocity Oxygen Fuel Spraying) device which is a kind of high-speed flame spraying device.
溶射時、発生する熱による熱膨張に起因して皮膜にクラックが発生することを防止するために、溶射物の表面及び裏面から強制的に溶射物を冷却することが望ましい。冷却には、圧縮空気を用いることができる。尚、溶射物の裏面からの冷却には、水冷ブロック等を用いることもできる。そして、クラックの発生状態を確認しながら、適宜冷却条件を変更して試験を行い、最適な冷却条件を決定すればよい。 During thermal spraying, it is desirable to forcibly cool the sprayed material from the front surface and back surface of the sprayed material in order to prevent cracks from being generated in the coating due to thermal expansion due to the generated heat. Compressed air can be used for cooling. In addition, a water cooling block etc. can also be used for cooling from the back surface of a thermal spray. Then, while confirming the state of occurrence of cracks, the test may be performed by changing the cooling conditions as appropriate to determine the optimal cooling conditions.
本発明にあっては、断熱皮膜としての溶射皮膜は、溶射法によって形成されている。従って、入れ子を焼結体といった緻密であるが脆性な材料から作製したときの種々の問題(焼成炉の問題、製造時の割れの問題、使用時の破損の問題、製造コストが非常に高いといった問題等)が発生することがないし、本発明の入れ子は、例えば、金型の構造、キャビティや成形品の形状等からの種々の制約を受けることが無い。また、断熱性を有し、破損し難い溶射皮膜は、厚さ方向に変化した気孔率を有し、この気孔率は、溶射皮膜表面に近い側ほど、低い値である。即ち、溶射皮膜の表面は緻密である。従って、溶射皮膜表面に凹凸が少なく、溶射皮膜表面は平滑性に優れている。それ故、例えば、溶射皮膜内に溶融熱可塑性樹脂が侵入し難く、また、金型から成形品を離型する際、溶射皮膜を破壊したり、成形品表面に凹凸が多く転写され、高品質な成形品が得られないといった問題が発生することも無いし、溶射皮膜の耐久性に問題が生じることも無い。 In the present invention, the thermal spray coating as the heat insulating coating is formed by a thermal spraying method. Therefore, various problems when the insert is made from a dense but brittle material such as a sintered body (a firing furnace problem, a crack problem during production, a breakage problem during use, a very high production cost, etc. The problem of the present invention does not occur, and the nesting of the present invention is not subject to various restrictions, for example, from the structure of the mold, the shape of the cavity or the molded product. Moreover, the thermal spray coating which has heat insulation property and is not easily damaged has a porosity changed in the thickness direction, and the porosity is lower as the side is closer to the surface of the thermal spray coating. That is, the surface of the sprayed coating is dense. Therefore, there are few unevenness | corrugations in the sprayed coating surface, and the sprayed coating surface is excellent in smoothness. Therefore, for example, it is difficult for the molten thermoplastic resin to penetrate into the sprayed coating, and when the molded product is released from the mold, the sprayed coating is destroyed or many irregularities are transferred to the surface of the molded product. There is no problem that a simple molded product cannot be obtained, and there is no problem with the durability of the sprayed coating.
溶射皮膜の気孔率が非常に小さい場合、ラップ仕上げを行った後の溶射皮膜表面の粗さは小さくなるものの、熱伝導率は大きくなる。また、そのような溶射皮膜は、製造時にクラックが発生し易く、膜厚を厚くすることが困難である。そこで、気孔率を溶射皮膜の厚さ方向に変化させ、表面付近を緻密とし、素地付近を粗くすることで、溶射皮膜全体の熱伝導率が低く、しかも、ラップ仕上げを行った後の表面の粗さが小さい溶射皮膜を得ることができる。また、熱伝導率が低く、しかも、厚さの厚い溶射皮膜を得ることができるので、例えば、射出成形工程において、溶融熱可塑性樹脂が急冷されることによって、成形品に外観不良や転写不良が発生することを確実に防止することができる。 When the porosity of the sprayed coating is very small, the roughness of the surface of the sprayed coating after lapping is reduced, but the thermal conductivity is increased. Further, such a sprayed coating is liable to generate cracks during production, and it is difficult to increase the film thickness. Therefore, by changing the porosity in the thickness direction of the thermal spray coating, making the vicinity of the surface dense and roughening the vicinity of the substrate, the thermal conductivity of the entire thermal spray coating is low, and the surface of the surface after lapping is performed. A sprayed coating with low roughness can be obtained. In addition, since a thermal spray coating having a low thermal conductivity and a large thickness can be obtained, for example, in the injection molding process, the molten thermoplastic resin is rapidly cooled, so that the molded product has poor appearance and poor transfer. It is possible to reliably prevent the occurrence.
従って、全てが緻密であるセラミックス焼結体から作製された入れ子を使用し、しかも、入れ子の破損防止対策として複雑な型組を採用した従来の金型組立体を用いること無く、表面が同等の品質を有する、即ち、外観特性に優れた成形品を成形する金型組立体を提供することが可能となる。また、大きさは、溶射装置で噴霧できる範囲であれば、基本的に制限がないため、例えば、300mm角を越えるような大きなキャビティを有する金型組立体に組み込むことができる入れ子を、比較的容易に、且つ、安価に提供することが可能となる。 Therefore, using a nesting made of a ceramic sintered body that is all dense, and without using a conventional mold assembly that employs a complicated mold assembly as a countermeasure for damaging the nesting, the surface is the same. It is possible to provide a mold assembly that forms a molded product having quality, that is, excellent appearance characteristics. In addition, since the size is basically not limited as long as it can be sprayed by a thermal spraying device, for example, a nesting that can be incorporated into a mold assembly having a large cavity exceeding 300 mm square is relatively It can be provided easily and inexpensively.
以下、図面を参照して、実施例に基づき本発明を説明する。 Hereinafter, the present invention will be described based on examples with reference to the drawings.
実施例1は、本発明の溶射皮膜構造体及び入れ子に関する。図1の(A)に模式的な断面図を示し、図1の(B)及び(C)に溶射皮膜等の拡大した模式的な一部断面図を示すように、実施例1の溶射皮膜構造体10は、
(a)金属から成る素地(基体)21、
(b)素地21上に形成された、厚さ0.03mm乃至1mmの金属下地層23、及び、
(c)金属下地層23上に形成された、セラミックスから成る溶射皮膜24、
から構成されている。
Example 1 relates to the thermal spray coating structure and the insert of the present invention. 1A is a schematic cross-sectional view, and FIGS. 1B and 1C are enlarged schematic partial cross-sectional views of a thermal spray coating, etc. The
(A) a base (base) 21 made of metal;
(B) a metal base layer 23 having a thickness of 0.03 mm to 1 mm formed on the substrate 21, and
(C) a
It is composed of
また、実施例1の入れ子11は、キャビティを有する射出成形用の金型において用いられ、キャビティを構成する面を形成する入れ子であって、
(a)金属製ブロック22、
(b)金属製ブロック22の少なくとも1表面に形成された、厚さ0.03mm乃至1mmの金属下地層23、及び、
(c)金属下地層23上に形成された、セラミックスから成る溶射皮膜24、
から構成されている。
Further, the nest 11 of Example 1 is used in an injection mold having a cavity, and is a nest that forms a surface constituting the cavity.
(A) Metal block 22,
(B) a metal base layer 23 having a thickness of 0.03 mm to 1 mm formed on at least one surface of the metal block 22; and
(C) a
It is composed of
そして、溶射皮膜24は、厚さ方向に変化した気孔率を有し、この気孔率は、溶射皮膜24の表面に近い側ほど(溶射皮膜24の表面に近い部分ほど)、低い値である。尚、図1の(B)及び(C)においては、気孔が整列しているように図示しているが、実際には、気孔はランダムに形成されている。また、専ら、密閉気孔(閉孔)を図示しているが、当然であるが、開口気孔(開孔)も存在する。
The
具体的には、素地11あるいは金属製ブロック22は、20゜C乃至200゜Cにおける線膨張係数が11.5×10-6/゜CであるSUS420J2(日立金属株式会社製HPM38)から作製されており、縦×横×高さは300mm×500mm×30mmである。また、金属下地層23は、溶射皮膜24を素地21あるいは金属製ブロック22に強固に密着させるために必要とされ、その組成は、Ni−Cr(より具体的には、Ni−20%Cr)であり、溶射法に基づき金属製ブロック22の頂面に形成されている。
Specifically, the substrate 11 or the metal block 22 is made of SUS420J2 (HPM38 manufactured by Hitachi Metals, Ltd.) having a linear expansion coefficient of 11.5 × 10 −6 / ° C. at 20 ° C. to 200 ° C. The height x width x height is 300 mm x 500 mm x 30 mm. In addition, the metal underlayer 23 is necessary for firmly attaching the
実施例1において、溶射皮膜24は、単層溶射皮膜から構成されており(図1の(A)参照、あるいは又、複数(実施例1にあっては、具体的には2層であり、図1の(B)参照)の単位層24A,24Bの積層構造から構成されている。また、溶射皮膜24は、厚さ方向に変化した気孔率を有するが、気孔率の変化の状態は、金属下地層23と溶射皮膜24との界面から溶射皮膜24の表面に向かって、気孔率が、段階的に減少している。
In Example 1, the
表1に、実施例1A、実施例1B、実施例1C及び実施例1Dにおける金属下地層の組成、厚さ;溶射皮膜全体の組成、層構成、総厚、熱伝導率、線膨張係数;溶射皮膜を構成する第2層目(上層)の単位層又は溶射皮膜の組成、厚さ、気孔率平均値、平均粒径、表面粗さ;溶射皮膜を構成する第1層目(下層)の単位層の組成、厚さ、気孔率平均値、平均粒径;表面領域の気孔率平均値、平均粒径;底部領域の気孔率平均値、平均粒径を示す。 Table 1 shows the composition and thickness of the metal underlayer in Example 1A, Example 1B, Example 1C, and Example 1D; the composition of the entire sprayed coating, the layer configuration, the total thickness, the thermal conductivity, and the linear expansion coefficient; Composition, thickness, porosity average value, average particle diameter, surface roughness of the second layer (upper layer) unit layer constituting the coating, or the unit of the first layer (lower layer) constituting the thermal spray coating Layer composition, thickness, average porosity, average particle size; average porosity of surface region, average particle size; average porosity of bottom region, average particle size.
尚、実施例1Aにおいては、溶射皮膜は組成が同じである2層の単位層から構成されており、実施例1Bにおいては、溶射皮膜は単層溶射皮膜から構成されており、実施例1C及び実施例1Dにおいては、溶射皮膜は組成が異なる2層の単位層から構成されている。また、実施例1A及び実施例1Bの組成は酸化ジルコニウムであり、実施例1Cにおける第2層/第1層の溶射皮膜の組成は酸化ジルコニウム/酸化アルミニウムであり、実施例1Dにおける第2層/第1層の溶射皮膜の組成は酸化アルミニウム/酸化ジルコニウムである。より具体的には、表中、「ZrO2(A)」及び「ZrO2(B)」の具体的な組成はZrO2−8%Y2O3であり、「Al2O3(A)」及び「Al2O3(B)」の具体的な組成はAl2O3である。 In Example 1A, the thermal spray coating is composed of two unit layers having the same composition. In Example 1B, the thermal spray coating is composed of a single-layer thermal spray coating. Examples 1C and In Example 1D, the thermal spray coating is composed of two unit layers having different compositions. The composition of Example 1A and Example 1B is zirconium oxide, the composition of the second layer / first layer sprayed coating in Example 1C is zirconium oxide / aluminum oxide, and the second layer / in Example 1D. The composition of the thermal spray coating of the first layer is aluminum oxide / zirconium oxide. More specifically, in the table, the specific composition of “ZrO 2 (A)” and “ZrO 2 (B)” is ZrO 2 -8% Y 2 O 3 , and “Al 2 O 3 (A) The specific composition of “Al 2 O 3 (B)” is Al 2 O 3 .
更には、比較のため、表2に、比較例1A、比較例1B、比較例1Cにおける金属下地層の組成、厚さ;溶射皮膜全体の組成、層構成、総厚、熱伝導率、線膨張係数;溶射皮膜を構成する第2層目(上層)の単位層又は溶射皮膜の組成、厚さ、気孔率平均値、平均粒径、表面粗さ;溶射皮膜を構成する第1層目(下層)の単位層の組成、厚さ、気孔率平均値、平均粒径;表面領域の気孔率平均値、平均粒径;底部領域の気孔率平均値、平均粒径を示す。 Further, for comparison, Table 2 shows the composition and thickness of the metal underlayer in Comparative Example 1A, Comparative Example 1B, and Comparative Example 1C; composition of the entire sprayed coating, layer configuration, total thickness, thermal conductivity, and linear expansion. Coefficient: Composition, thickness, porosity average value, average particle diameter, surface roughness of the second layer (upper layer) unit layer or thermal spray coating constituting the thermal spray coating; first layer (lower layer) constituting the thermal spray coating ) Unit layer composition, thickness, porosity average value, average particle size; surface region porosity average value, average particle size; bottom region porosity average value, average particle size.
尚、比較例1A、比較例1B、比較例1Cにおいては、金属下地層は形成されていない。また、比較例1Aにおいては、溶射皮膜は組成が同じである2層の単位層から構成されており、比較例1Bにおいては、溶射皮膜は組成が異なる2層の単位層から構成されており、比較例1Cにおいては、溶射皮膜は単層溶射皮膜から構成されている。ここで、比較例1Cにおいては、1層の溶射皮膜全体の気孔率の値が同じとなるように、溶射皮膜を形成した。 In Comparative Example 1A, Comparative Example 1B, and Comparative Example 1C, no metal underlayer is formed. In Comparative Example 1A, the thermal spray coating is composed of two unit layers having the same composition. In Comparative Example 1B, the thermal spray coating is composed of two unit layers having different compositions. In Comparative Example 1C, the thermal spray coating is composed of a single-layer thermal spray coating. Here, in Comparative Example 1C, the thermal spray coating was formed so that the porosity value of the entire one thermal spray coating was the same.
実施例1A、実施例1B、実施例1C及び実施例1Dによって得られた溶射皮膜の表面を目視観察したところ、高光沢を有しており、表面は平滑であり、クラックの発生は認められなかった。一方、比較例1Aにおいては、溶射皮膜の表面がざらつき、表面粗さが非常に粗くなっていた。また、比較例1Bによって得られた溶射皮膜の表面を目視観察したところ、クラックが発生していた。更には、比較例1Cによって得られた溶射皮膜の表面を目視観察したところ、表面に大きな凹凸が認められた。しかも、比較例で得られたサンプルには、金属素地との界面で剥離も生じていた。 When the surface of the thermal spray coating obtained by Example 1A, Example 1B, Example 1C and Example 1D was visually observed, it had high gloss, the surface was smooth, and no cracks were observed. It was. On the other hand, in Comparative Example 1A, the surface of the sprayed coating was rough and the surface roughness was very rough. Moreover, when the surface of the thermal spray coating obtained by Comparative Example 1B was visually observed, cracks were generated. Furthermore, when the surface of the thermal spray coating obtained by Comparative Example 1C was visually observed, large irregularities were observed on the surface. Moreover, the sample obtained in the comparative example was also peeled off at the interface with the metal substrate.
以上、本発明を好ましい実施例に基づき説明したが、本発明はこれらの実施例に限定されるものではない。実施例において説明した溶射皮膜構造体や入れ子の構造、構成、使用した材料等は例示であり、適宜変更することができる。例えば、金属下地層及び溶射皮膜を、金属製ブロックの底面を除く5面、あるいは、6面の全面に形成してもよい。 As mentioned above, although this invention was demonstrated based on the preferable Example, this invention is not limited to these Examples. The thermal spray coating structure and the nested structure, configuration, materials used, and the like described in the examples are examples, and can be appropriately changed. For example, the metal underlayer and the thermal spray coating may be formed on the entire surface of 5 surfaces or 6 surfaces excluding the bottom surface of the metal block.
10・・・溶射皮膜構造体、11・・・入れ子、21・・・素地、22・・・金属製ブロック、23・・・金属下地層、24・・・溶射皮膜、24A,24B・・・単位層
DESCRIPTION OF
Claims (10)
(b)素地上に形成された、厚さ0.03mm乃至1mmの金属下地層、及び、
(c)金属下地層上に形成された、セラミックスから成る溶射皮膜、
から構成された溶射皮膜構造体であって、
溶射皮膜は、厚さ方向に変化した気孔率を有し、
該気孔率は、溶射皮膜表面に近い側ほど、低い値であることを特徴とする溶射皮膜構造体。 (A) a substrate made of metal,
(B) a metal underlayer having a thickness of 0.03 mm to 1 mm formed on the substrate; and
(C) a thermal spray coating made of ceramics formed on a metal underlayer;
A thermal spray coating structure comprising:
The thermal spray coating has a porosity that varies in the thickness direction,
The porosity is a lower value on the side closer to the surface of the thermal spray coating, which is a thermal spray coating structure.
溶射皮膜の平均厚さは、0.3mm乃至2.0mmであることを特徴とする請求項1に記載の溶射皮膜構造体。 The thermal conductivity of the thermal spray coating is 1 W / (m · K) to 4 W / (m · K),
The thermal spray coating structure according to claim 1, wherein an average thickness of the thermal spray coating is 0.3 mm to 2.0 mm.
(a)金属製ブロック、
(b)金属製ブロックの少なくとも1表面に形成された、厚さ0.03mm乃至1mmの金属下地層、及び、
(c)金属下地層上に形成された、セラミックスから成る溶射皮膜、
から構成されており、
溶射皮膜は、厚さ方向に変化した気孔率を有し、
該気孔率は、溶射皮膜表面に近い側ほど、低い値であることを特徴とする入れ子。 A nesting that is used in an injection mold having a cavity and forms a surface constituting the cavity,
(A) metal block,
(B) a metal underlayer having a thickness of 0.03 mm to 1 mm formed on at least one surface of the metal block; and
(C) a thermal spray coating made of ceramics formed on a metal underlayer;
Consists of
The thermal spray coating has a porosity that varies in the thickness direction,
The nesting is characterized in that the porosity is lower on the side closer to the surface of the sprayed coating.
溶射皮膜の平均厚さは、0.3mm乃至2.0mmであることを特徴とする請求項6に記載の入れ子。 The thermal conductivity of the thermal spray coating is 1 W / (m · K) to 4 W / (m · K),
The nesting according to claim 6, wherein the average thickness of the thermal spray coating is 0.3 mm to 2.0 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006312613A JP2008127614A (en) | 2006-11-20 | 2006-11-20 | Thermal spray coating structure and nesting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006312613A JP2008127614A (en) | 2006-11-20 | 2006-11-20 | Thermal spray coating structure and nesting |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008127614A true JP2008127614A (en) | 2008-06-05 |
Family
ID=39553759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006312613A Pending JP2008127614A (en) | 2006-11-20 | 2006-11-20 | Thermal spray coating structure and nesting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008127614A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008183765A (en) * | 2007-01-29 | 2008-08-14 | Meiki Co Ltd | Molding die for disc substrate, molding method of disc substrate and disc substrate |
JP2008273125A (en) * | 2007-05-07 | 2008-11-13 | Mitsubishi Engineering Plastics Corp | Mold assembly, injection molding method, and molded product |
JP2009274351A (en) * | 2008-05-15 | 2009-11-26 | Mitsubishi Engineering Plastics Corp | Die assembly, injection molding method, and molded product |
WO2011010400A1 (en) * | 2009-07-22 | 2011-01-27 | 日鉄ハード株式会社 | Molten metal-resistant member and process for producing molten metal-resistant member |
JP2012507630A (en) * | 2008-11-04 | 2012-03-29 | プラクスエア・テクノロジー・インコーポレイテッド | Thermal spray coating for semiconductor applications |
JP2012187728A (en) * | 2011-03-08 | 2012-10-04 | Polyplastics Co | Method for producing injection molding and injection molding |
JP2012224893A (en) * | 2011-04-18 | 2012-11-15 | Mitsubishi Heavy Ind Ltd | Repairing method of heat-resistant member and repair heat-resistant member |
JP2013185202A (en) * | 2012-03-07 | 2013-09-19 | Mazda Motor Corp | Thermal insulation structure and method for producing the same |
JP2016037641A (en) * | 2014-08-08 | 2016-03-22 | ホウムラ産業株式会社 | Three-dimensional molded article and production method thereof |
JP2019167603A (en) * | 2018-03-26 | 2019-10-03 | 三菱重工業株式会社 | Heat shielding coating, turbine member, gas turbine and method for manufacturing heat shielding coating |
US10808308B2 (en) * | 2016-06-08 | 2020-10-20 | Mitsubishi Heavy Industries, Ltd. | Thermal barrier coating, turbine member, and gas turbine |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS602659A (en) * | 1983-06-20 | 1985-01-08 | Toyota Motor Corp | Thermally sprayed member for high temperature |
JPH0538721A (en) * | 1991-05-28 | 1993-02-19 | Asahi Chem Ind Co Ltd | Molding die and molding method using the same |
JPH05131456A (en) * | 1991-11-12 | 1993-05-28 | Nkk Corp | Resin mold and resin molding method |
JPH0621593A (en) * | 1992-04-14 | 1994-01-28 | Hitachi Chem Co Ltd | Manufacture of printed circuit board |
JPH07243018A (en) * | 1994-03-08 | 1995-09-19 | Mitsubishi Heavy Ind Ltd | Surface modification method for heat insulating film |
JPH08318534A (en) * | 1995-05-26 | 1996-12-03 | Mitsubishi Eng Plast Kk | Mold assembly and nest for molding thermoplastic resin |
JPH0967662A (en) * | 1995-08-30 | 1997-03-11 | Toshiba Corp | Ceramic-coated member |
JPH0978258A (en) * | 1995-09-20 | 1997-03-25 | Toshiba Corp | High-temperature member having thermal insulation coating film and its production |
JP2002069607A (en) * | 2000-06-16 | 2002-03-08 | Mitsubishi Heavy Ind Ltd | Coating material for shielding heat, its production method, gas-turbine member applied with the same material, and gas turbine |
JP2002129303A (en) * | 2000-10-31 | 2002-05-09 | Dai Ichi High Frequency Co Ltd | Rollers for use in molten salt bath |
JP2004175112A (en) * | 2002-11-13 | 2004-06-24 | Maxell Hi Tec Ltd | Molding die and its manufacturing method |
JP2006144061A (en) * | 2004-11-18 | 2006-06-08 | Toshiba Corp | Thermal barrier coating member, and its forming method |
-
2006
- 2006-11-20 JP JP2006312613A patent/JP2008127614A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS602659A (en) * | 1983-06-20 | 1985-01-08 | Toyota Motor Corp | Thermally sprayed member for high temperature |
JPH0538721A (en) * | 1991-05-28 | 1993-02-19 | Asahi Chem Ind Co Ltd | Molding die and molding method using the same |
JPH05131456A (en) * | 1991-11-12 | 1993-05-28 | Nkk Corp | Resin mold and resin molding method |
JPH0621593A (en) * | 1992-04-14 | 1994-01-28 | Hitachi Chem Co Ltd | Manufacture of printed circuit board |
JPH07243018A (en) * | 1994-03-08 | 1995-09-19 | Mitsubishi Heavy Ind Ltd | Surface modification method for heat insulating film |
JPH08318534A (en) * | 1995-05-26 | 1996-12-03 | Mitsubishi Eng Plast Kk | Mold assembly and nest for molding thermoplastic resin |
JPH0967662A (en) * | 1995-08-30 | 1997-03-11 | Toshiba Corp | Ceramic-coated member |
JPH0978258A (en) * | 1995-09-20 | 1997-03-25 | Toshiba Corp | High-temperature member having thermal insulation coating film and its production |
JP2002069607A (en) * | 2000-06-16 | 2002-03-08 | Mitsubishi Heavy Ind Ltd | Coating material for shielding heat, its production method, gas-turbine member applied with the same material, and gas turbine |
JP2002129303A (en) * | 2000-10-31 | 2002-05-09 | Dai Ichi High Frequency Co Ltd | Rollers for use in molten salt bath |
JP2004175112A (en) * | 2002-11-13 | 2004-06-24 | Maxell Hi Tec Ltd | Molding die and its manufacturing method |
JP2006144061A (en) * | 2004-11-18 | 2006-06-08 | Toshiba Corp | Thermal barrier coating member, and its forming method |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008183765A (en) * | 2007-01-29 | 2008-08-14 | Meiki Co Ltd | Molding die for disc substrate, molding method of disc substrate and disc substrate |
JP2008273125A (en) * | 2007-05-07 | 2008-11-13 | Mitsubishi Engineering Plastics Corp | Mold assembly, injection molding method, and molded product |
JP2009274351A (en) * | 2008-05-15 | 2009-11-26 | Mitsubishi Engineering Plastics Corp | Die assembly, injection molding method, and molded product |
JP2012507630A (en) * | 2008-11-04 | 2012-03-29 | プラクスエア・テクノロジー・インコーポレイテッド | Thermal spray coating for semiconductor applications |
JP5647608B2 (en) * | 2009-07-22 | 2015-01-07 | 日鉄住金ハード株式会社 | Melt-resistant metal member and method for producing molten metal member |
WO2011010400A1 (en) * | 2009-07-22 | 2011-01-27 | 日鉄ハード株式会社 | Molten metal-resistant member and process for producing molten metal-resistant member |
JP2012187728A (en) * | 2011-03-08 | 2012-10-04 | Polyplastics Co | Method for producing injection molding and injection molding |
JP2012224893A (en) * | 2011-04-18 | 2012-11-15 | Mitsubishi Heavy Ind Ltd | Repairing method of heat-resistant member and repair heat-resistant member |
JP2013185202A (en) * | 2012-03-07 | 2013-09-19 | Mazda Motor Corp | Thermal insulation structure and method for producing the same |
JP2016037641A (en) * | 2014-08-08 | 2016-03-22 | ホウムラ産業株式会社 | Three-dimensional molded article and production method thereof |
US10808308B2 (en) * | 2016-06-08 | 2020-10-20 | Mitsubishi Heavy Industries, Ltd. | Thermal barrier coating, turbine member, and gas turbine |
JP2019167603A (en) * | 2018-03-26 | 2019-10-03 | 三菱重工業株式会社 | Heat shielding coating, turbine member, gas turbine and method for manufacturing heat shielding coating |
WO2019187663A1 (en) * | 2018-03-26 | 2019-10-03 | 三菱重工業株式会社 | Heat shielding coating, turbine member, gas turbine, and heat shielding coating manufacturing method |
CN111902560A (en) * | 2018-03-26 | 2020-11-06 | 三菱重工业株式会社 | Thermal barrier coating, turbine component, gas turbine, and method for producing a thermal barrier coating |
JP7169077B2 (en) | 2018-03-26 | 2022-11-10 | 三菱重工業株式会社 | Thermal barrier coating, turbine component, gas turbine, and method for producing thermal barrier coating |
US11946147B2 (en) | 2018-03-26 | 2024-04-02 | Mitsubishi Heavy Industries, Ltd. | Thermal barrier coating, turbine member, gas turbine, and method for producing thermal barrier coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008127614A (en) | Thermal spray coating structure and nesting | |
JP5149069B2 (en) | Mold assembly and injection molding method | |
TWI310725B (en) | Optical element forming mold and manufacturing method thereof | |
KR20070081097A (en) | Thermal Spray Coating and Thermal Spray Powder | |
JP2009167512A (en) | Diamond-like carbon film for sliding component and method for manufacturing the same | |
KR101851488B1 (en) | Method for producing laminate, and laminate | |
TW200846495A (en) | Electrocast brick with metal film and production method therefor | |
TW201702191A (en) | Coatings for glass shaping molds and molds comprising the same | |
JPH0340105B2 (en) | ||
JP5040374B2 (en) | Mold assembly and injection molding method | |
JPS6137955A (en) | Roll for molten metal bath | |
JP4992682B2 (en) | Injection molding method | |
JP5069592B2 (en) | Immersion nozzle | |
TWI458635B (en) | Optical element forming metal mold and method of manufacturing optical element forming metal mold | |
JP4371048B2 (en) | Optical glass molding die and optical glass element | |
Dong et al. | Multi-layered thermal barrier coatings fabricated by plasma-spraying and dry-ice blasting: Microstructure characterization and prolonged lifetime | |
US6799437B2 (en) | Method for the hot shaping of molten gobs | |
JP5247233B2 (en) | Mold assembly and injection molding method | |
KR20210079693A (en) | Mold for continuous casting and coating method of mold for continuous casting | |
JP5045221B2 (en) | Mold assembly and injection molding method | |
JP5078002B2 (en) | Diamond film-coated member and manufacturing method thereof | |
JP4344635B2 (en) | Spinneret and manufacturing method thereof | |
JP7627992B2 (en) | Method for manufacturing thermal sprayed film-coated member and thermal sprayed film-coated member | |
JP6975602B2 (en) | Centrifugal spraying powder manufacturing disc | |
CN107737926A (en) | A kind of laser gain material manufacture method of porous Al alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080708 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080708 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080708 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090410 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100625 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110929 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110929 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110929 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111227 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120724 |