JP5069592B2 - Immersion nozzle - Google Patents

Immersion nozzle Download PDF

Info

Publication number
JP5069592B2
JP5069592B2 JP2008067853A JP2008067853A JP5069592B2 JP 5069592 B2 JP5069592 B2 JP 5069592B2 JP 2008067853 A JP2008067853 A JP 2008067853A JP 2008067853 A JP2008067853 A JP 2008067853A JP 5069592 B2 JP5069592 B2 JP 5069592B2
Authority
JP
Japan
Prior art keywords
layer
refractory
immersion nozzle
resistant
inner hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008067853A
Other languages
Japanese (ja)
Other versions
JP2009220150A (en
Inventor
良之 近藤
勝美 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2008067853A priority Critical patent/JP5069592B2/en
Publication of JP2009220150A publication Critical patent/JP2009220150A/en
Application granted granted Critical
Publication of JP5069592B2 publication Critical patent/JP5069592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、鋼の連続鋳造に使用するガス吹き込み機能を有する浸漬ノズルに関する。   The present invention relates to an immersion nozzle having a gas blowing function used for continuous casting of steel.

タンディッシュから鋳型への鋼の注入に浸漬ノズルを使用する連続鋳造工程においては、近年の鋼中へのアルミニウムの添加量の増加等に伴い、浸漬ノズルの内孔壁面に非金属介在物や凝固した金属(以下「介在物等」という。)が付着し、それが成長して浸漬ノズルの内孔を閉塞することが問題となっている。   In the continuous casting process that uses an immersion nozzle to inject steel from the tundish into the mold, non-metallic inclusions and solidification are formed on the inner wall surface of the immersion nozzle as the amount of aluminum added to the steel increases in recent years. It has been a problem that the deposited metal (hereinafter referred to as “inclusions”) adheres and grows to block the inner hole of the immersion nozzle.

この対策として、浸漬ノズルの内孔に面するように通気性の内孔体を配置し、その外周側に中空室を形成し、この中空室に導入された不活性ガスを内孔体から内孔に吹き出して不活性ガスの皮膜を形成することで、内孔壁面への介在物等の付着を防止するという対策が採用されている。   As a countermeasure against this, an air permeable inner hole body is disposed so as to face the inner hole of the immersion nozzle, a hollow chamber is formed on the outer peripheral side thereof, and the inert gas introduced into the hollow chamber is introduced from the inner hole body. A measure is taken to prevent adhesion of inclusions or the like to the wall surface of the inner hole by blowing out the hole to form an inert gas film.

しかし、このように不活性ガスを内孔に吹き込む対策を採用しても、実際の浸漬ノズルでは以下のとおりの問題がある。   However, even if such a measure for blowing an inert gas into the inner hole is employed, the actual immersion nozzle has the following problems.

浸漬ノズルにおいて鋳型内のパウダーラインに接する部分には、一般的にパウダーに対する耐食性に優れるZrOと耐熱衝撃性に優れる黒鉛を主成分とする耐火物(以下「ZG材質」という。)が使用されている。近年はさらなる多連鋳化(高耐用化)のニーズが高まり、それに対応するために当該耐火物にはZrOが90質量%程度の高ZrO含有のZG材質が用いられる傾向にある。 A part of the immersion nozzle that contacts the powder line in the mold is generally made of a refractory material (hereinafter referred to as “ZG material”) mainly composed of ZrO 2 having excellent corrosion resistance against powder and graphite having excellent thermal shock resistance. ing. In recent years, increasing the need for additional multi-continuous casting (higher life of), ZrO 2 in the refractory to accommodate it tends to use the ZG material of high ZrO 2 content of about 90 wt%.

高ZrO含有のZG材質は黒鉛が少ないために成形時のいわゆる締まりが悪く、例えば見掛け気孔率が、ZrOが82質量%程度の低ZrO含有のZG材質では14〜18%程度であるのに対し、ZrOが90質量%程度の高ZrO含有のZG材質では18〜22%程度と、粗い組織になる傾向がある。 ZG material of high ZrO 2 content is called interference is poor at the time of molding due to the low graphite, for example, apparent porosity, is about 14-18% in ZG material of low ZrO 2 content of ZrO 2 of about 82 wt% whereas, in the ZG material of high ZrO 2 content of ZrO 2 of about 90 wt% tends to the order of 18-22%, rough texture.

このようにZG材質の組織が粗くなると、前記中空室の不活性ガスは内孔側だけでなく浸漬ノズルの外周面からも多く散逸するようになる。実際に、ガス吹き込み機能を有する浸漬ノズルを製造する場合、個別の操業に合わせて通気量を調整しており、この場合、一般的には全体通気量(内孔側および外周面側の通気量の総和)にて管理しているが、高ZrO含有のZG材質を使用した浸漬ノズルの場合、その全体通気量に対する内孔側の通気量の割合(以下、単に「内孔通気割合」という。)が低ZrO含有のZG材質を使用した浸漬ノズルより低くなる傾向になる。 When the texture of the ZG material becomes coarse in this way, a large amount of the inert gas in the hollow chamber is dissipated not only from the inner hole side but also from the outer peripheral surface of the immersion nozzle. Actually, when manufacturing an immersion nozzle having a gas blowing function, the air flow rate is adjusted according to individual operations. In this case, generally, the overall air flow rate (the air flow rate on the inner hole side and the outer peripheral surface side) In the case of an immersion nozzle using a ZG material containing high ZrO 2 , the ratio of the ventilation rate on the inner hole side to the total ventilation rate (hereinafter simply referred to as “inner hole ventilation rate”) .) Tends to be lower than the immersion nozzle using the ZG material containing low ZrO 2 .

このような高ZrO含有のZG材質を使用した浸漬ノズルを鋼の連続鋳造に使用した場合、内孔壁面への不活性ガス膜形成が不十分となって、介在物等の付着の抑制効果が十分に得られなくなり、また介在物等の鋳片内への巻き込み等に起因した鋳片品質の低下の原因となる。また、ZG材質外周面からの不活性ガスの散逸が多くなると、過剰に浸漬ノズルや溶鋼等が冷却され、また鋳型内での湯面の変動も生じやすくなる。 When such an immersion nozzle using a ZG material containing high ZrO 2 is used for continuous casting of steel, the formation of an inert gas film on the wall surface of the inner hole becomes insufficient, and the effect of suppressing the adhesion of inclusions, etc. Cannot be obtained sufficiently, and the quality of the slab is reduced due to the inclusion of inclusions in the slab. Further, when the dissipation of the inert gas from the outer peripheral surface of the ZG material increases, the immersion nozzle, the molten steel, etc. are excessively cooled, and the fluctuation of the molten metal surface in the mold is likely to occur.

さらには、鋳造時間が長くなるにしたがってZG材質はパウダーにより溶損される等によって肉厚が小さくなり、ZG材質外周面からのガスの散逸はさらに増大する傾向となる(このことは流体力学上も明らかである。)。この現象は高ZrO含有のZG材質を使用した浸漬ノズルの場合はもちろん、低ZrO含有のZG材質を使用した浸漬ノズルでも生じる。 Furthermore, as the casting time becomes longer, the thickness of the ZG material becomes smaller due to, for example, being melted by the powder, and the dissipation of gas from the outer peripheral surface of the ZG material tends to further increase (this is because of hydrodynamics). Is also obvious.) This phenomenon occurs not only in the case of an immersion nozzle using a ZG material containing high ZrO 2 but also in an immersion nozzle using a ZG material containing low ZrO 2 .

これに対して、浸漬ノズルの内孔から不活性ガスを均一または効果的に吹き込むための改善の試みもさまざまに行われている。   On the other hand, various attempts have been made to improve in order to blow inert gas uniformly or effectively from the inner hole of the immersion nozzle.

例えば特許文献1には、内孔体を浸漬ノズルの吐出孔に向かう方向に複数の通気性の異なる耐火物から構成し、吐出孔に向かって順次通気性が大きな耐火物を配置することが示されている。これは、介在物等の付着の大きい吐出孔近傍に不活性ガスをより集中的に吹き出すことで、浸漬ノズルの内孔壁面全体における介在物等の付着速度を小さくすることを狙ったものである。   For example, Patent Document 1 shows that the inner hole body is composed of a plurality of refractories having different air permeability in the direction toward the discharge hole of the immersion nozzle, and refractories having higher air permeability are sequentially arranged toward the discharge hole. Has been. This is intended to reduce the deposition rate of inclusions and the like on the entire inner wall surface of the immersion nozzle by blowing out the inert gas more intensively in the vicinity of the discharge holes where adhesion of the inclusions is large. .

しかし、この特許文献1の対策では、介在物等の付着速度低下にある程度の効果はあるものの、上述したZG材質を中心とする浸漬ノズル外周面からの不活性ガスの散逸は防ぐことができない。
実開昭60−171652号公報
However, although the measure of Patent Document 1 has a certain effect on the reduction of the adhesion rate of inclusions and the like, the dissipation of the inert gas from the outer peripheral surface of the immersion nozzle centering on the ZG material described above cannot be prevented.
Japanese Utility Model Publication No. 60-171652

本発明の課題は、溶鋼の流通経路となる内孔に不活性ガスを吹き出すようにした浸漬ノズルにおいて、浸漬ノズル外周面からの不活性ガスの散逸を抑制し、内孔壁面への介在物等の付着を確実に防止できるようにすることにある。   An object of the present invention is to suppress the dissipation of inert gas from the outer peripheral surface of the immersion nozzle in the immersion nozzle that blows out the inert gas into the inner hole that becomes the flow path of the molten steel, and inclusions on the wall surface of the inner hole, etc. It is to make it possible to reliably prevent the adhesion of water.

本発明は、タンディッシュから鋳型への溶鋼の流通経路となる内孔と、この内孔に面するように配置された通気性の内孔体と、この内孔体の外周側に形成された中空室とを備え、中空室に導入された不活性ガスを内孔体から内孔に吹き出す浸漬ノズルにおいて、中空室の外周側壁面のうち、少なくとも鋳型のパウダーラインに対応する領域に、その領域の外周側の耐火物より低通気性の難通気性耐火層を配置したことを特徴とするものである。   The present invention is formed on an inner hole serving as a flow path of the molten steel from the tundish to the mold, a breathable inner hole disposed so as to face the inner hole, and an outer peripheral side of the inner hole. In an immersion nozzle that includes a hollow chamber and blows out an inert gas introduced into the hollow chamber from the inner hole body to the inner hole, at least a region corresponding to the powder line of the mold on the outer peripheral side wall surface of the hollow chamber This is characterized in that a flame-resistant fire-resistant layer having a lower air permeability than the refractory on the outer peripheral side is disposed.

浸漬ノズル外周面からの不活性ガスの散逸は、この中空室の外周側壁面のうち、とくに鋳型のパウダーラインに対応する領域、すなわち一般的にZG材質が使用される領域から生じる。ZG材質の中でも、ZrO含有量が85質量%を超える高ZrO含有のZG材質を使用している場合に浸漬ノズル外周面からの不活性ガスの散逸が顕著になる。また使用(鋳造)時間経過に伴うZG材質外部の侵食によるZG材質部分の肉厚の減少により、不活性ガスの散逸量が漸増していく。この現象はZrO含有量が85質量%を超える高ZrO含有のZG材質を使用している場合に顕著であるものの、ZrO含有量が85質量%以下のZG材質でも生じる。 Dissipation of the inert gas from the outer peripheral surface of the submerged nozzle occurs from a region corresponding to the powder line of the mold, that is, a region where a ZG material is generally used in the outer peripheral side wall surface of the hollow chamber. Among ZG material, dissipation of the inert gas from the immersion nozzle outer peripheral surface when the content of ZrO 2 is using ZG material of high ZrO 2 content exceeding 85 wt% is significant. Further, the amount of inert gas dissipated gradually increases due to a decrease in the thickness of the ZG material portion due to erosion outside the ZG material with the passage of use (casting) time. Although this phenomenon is remarkable when using the ZG material of high ZrO 2 content of ZrO 2 content exceeds 85 wt%, ZrO 2 content occurs in ZG material of 85 wt% or less.

ZG材質が使用されている領域以外からも不活性ガスの散逸は生じるが、ZG材質が使用されているパウダーラインに対応する領域以外には、一般的には黒鉛の含有量がZG材質よりも多い30〜40質量%程度のアルミナ−黒鉛質(以下「AG材質」という。)が使用されており、このAG材質の通気率はZG材質よりはるかに小さい。すなわち、AG材質は耐食性よりも耐熱衝撃性を重視することから、ZG材質よりも黒鉛を多量に含有させ、かつジルコニアよりも熱膨張が小さいアルミナを主成分とするので、ZG材質よりも通気率は小さく、不活性ガスの散逸の程度も低い。したがって、AG材質部分からの不活性ガスの散逸は、操業上問題になることは少ない。   Dissipation of the inert gas occurs outside the region where the ZG material is used, but generally the graphite content is higher than that of the ZG material, except in the region corresponding to the powder line where the ZG material is used. A large amount of about 30 to 40% by mass of alumina-graphite (hereinafter referred to as “AG material”) is used, and the air permeability of this AG material is much smaller than that of ZG material. In other words, since AG material emphasizes thermal shock resistance rather than corrosion resistance, it contains a larger amount of graphite than ZG material, and mainly contains alumina whose thermal expansion is smaller than that of zirconia. And the degree of inert gas dissipation is low. Therefore, the dissipation of the inert gas from the AG material portion is rarely an operational problem.

このことから、本発明では、中空室の外周側壁面のうち、少なくとも鋳型のパウダーラインに対応する領域に難通気性耐火層を配置し、この難通気性耐火層によって浸漬ノズル外周面からの不活性ガスの散逸を抑制するようにしている。   For this reason, in the present invention, a flame-resistant fireproof layer is disposed at least in a region corresponding to the powder line of the mold on the outer peripheral side wall surface of the hollow chamber, and this flame-resistant fireproof layer is used to prevent the outer peripheral surface from being immersed from the outer circumferential surface of the immersion nozzle. The dissipation of active gas is suppressed.

ここで、鋳型のパウダーラインに対応する領域からの不活性ガスの散逸を抑制するために、その領域に使用されるZG材質自体の貫通気孔の大きさの縮小や量の低減等によって、その通気率を低くしても、上述のとおり浸漬ノズルの使用によりZG材質の肉厚が漸次薄くなるのにしたがい、不活性ガスがZG材質内を通過する抵抗が漸次小さくなり通気量が増大するので、浸漬ノズル外周面からの不活性ガスの散逸を抑制する手段としては不十分である。   Here, in order to suppress the dissipation of the inert gas from the region corresponding to the powder line of the mold, the ventilation of the ZG material itself used in the region is reduced by reducing the size or amount of the through-holes. Even if the rate is lowered, as the thickness of the ZG material is gradually reduced by using the immersion nozzle as described above, the resistance of the inert gas passing through the ZG material is gradually reduced and the air flow rate is increased. It is insufficient as a means for suppressing dissipation of the inert gas from the outer peripheral surface of the immersion nozzle.

これに対し、本発明では中空室の外周側壁面に難通気性耐火層を配置していることにより、浸漬ノズル外周面からの不活性ガスの散逸の大小は、ZG材質自体の通気特性よりも難通気性耐火層の通気特性に依存するので、ZG材質の肉厚が溶損によって漸次薄くなっても、その肉厚の減少に伴って浸漬ノズル外周面からの不活性ガスの散逸が増大することを大幅に抑制することができる。   On the other hand, in the present invention, since the non-breathable refractory layer is disposed on the outer peripheral side wall surface of the hollow chamber, the magnitude of the dissipation of the inert gas from the outer peripheral surface of the immersion nozzle is larger than the ventilation characteristics of the ZG material itself. Since it depends on the ventilation characteristics of the flame-resistant refractory layer, even if the thickness of the ZG material is gradually reduced due to melting damage, the dissipation of the inert gas from the outer peripheral surface of the immersion nozzle increases as the thickness decreases. This can be greatly suppressed.

難通気性耐火層の通気率は、難通気性耐火層を配置した領域の外周側の耐火物(一般的にはZG材質)の通気率よりも低いことが必要である。そうでなければ、当然、浸漬ノズル外周面からの不活性ガスの散逸を抑制することはできない。   The air permeability of the flame-resistant fireproof layer needs to be lower than the air permeability of the refractory (generally ZG material) on the outer periphery side of the region where the flame-resistant fireproof layer is disposed. Otherwise, naturally, dissipation of the inert gas from the outer peripheral surface of the immersion nozzle cannot be suppressed.

難通気性耐火層の具体的な通気率は、本来、浸漬ノズルの各耐火物部分の肉厚や長さ、径等の構造、各構成耐火物の通気率、操業条件等によって個別に設定すべき、相対的な性質のものである。とくにZG材質の肉厚の減少に伴って浸漬ノズル外周面からの不活性ガスの散逸が増大することを抑制するためには、難通気性耐火層の通気率はその浸漬ノズルに使用されているZG材質の通気率よりも小さければよい。しかし、例えばZrO含有量が約90質量%等の、高ZrO含有のZG材質を使用する場合にZG材質から散逸する不活性ガスの絶対量をさらに低減するためには、難通気性耐火層の通気率はその浸漬ノズルに使用されるZG材質の通気率よりも相当程度小さくすることが必要である。この程度については、経験上一般的に、鋳型のパウダーラインに接する部分に使用されるZG材質のZrO含有量が約85質量%未満の場合、また、ZG材質部分の通気率が内孔体の通気率に対して約20%程度以下の場合は操業上問題になることが少ないので、難通気性耐火層の通気率は、ZrO含有量が約85質量%程度のZG材質の通気率以下にすることが好ましく、また内孔体の通気率に対して約20%程度以下にすることがさらに好ましい。 The specific air permeability of the flame-resistant refractory layer is originally set individually according to the structure of each refractory part of the immersion nozzle, such as the thickness, length, diameter, etc., the air permeability of each constituent refractory, the operating conditions, etc. Should be of a relative nature. In particular, in order to suppress the increase in the dissipation of the inert gas from the outer peripheral surface of the immersion nozzle as the thickness of the ZG material decreases, the air permeability of the flame-resistant refractory layer is used for the immersion nozzle. What is necessary is just to be smaller than the air permeability of ZG material. However, in order to further reduce the absolute amount of inert gas dissipated from the ZG material when using a ZG material with a high ZrO 2 content, such as a ZrO 2 content of about 90% by mass, The air permeability of the layer needs to be considerably smaller than the air permeability of the ZG material used for the immersion nozzle. In terms of this degree, experience generally indicates that when the ZrO 2 content of the ZG material used in the part in contact with the powder line of the mold is less than about 85% by mass, the air permeability of the ZG material part is the inner pore body. When the air permeability is about 20% or less, the air permeability of the hardly breathable refractory layer is the air permeability of the ZG material having a ZrO 2 content of about 85% by mass. It is preferable to make it below, and it is more preferable to make it about 20% or less with respect to the air permeability of the inner pore.

具体的には、ZrO含有量が約85質量%程度の一般的なZG材質の通気率は、耐火れんがの通気率の試験方法(JIS R2115)による通気率で、1000℃の非酸化雰囲気下の熱処理後において約0.0007cm・cm/cm・cmHO・sec程度、1550℃の非酸化雰囲気下の熱処理後において約0.0008cm・cm/cm・cmHO・sec程度である。したがって、難通気性耐火層の通気率はこれらの通気率以下とすることが好ましい。 Specifically, the air permeability of a general ZG material having a ZrO 2 content of about 85% by mass is the air permeability according to a test method for air permeability of refractory bricks (JIS R2115), and in a non-oxidizing atmosphere at 1000 ° C. After heat treatment of about 0.0007 cm 3 · cm / cm 2 · cmH 2 O · sec, after heat treatment in a non-oxidizing atmosphere at 1550 ° C., about 0.0008 cm 3 · cm 2 · cmH 2 O · sec It is. Therefore, it is preferable that the air permeability of the hardly breathable refractory layer is not more than these air permeability.

ここで、通気率の測定条件を1000℃および1550℃の非酸化雰囲気下の熱処理後としたのは、難通気性耐火層としては、浸漬ノズル製造時の焼成温度(800〜1200℃)および実使用時の温度(1500〜1570℃)の2水準下で、かつ酸素の極めて少ない状態において、その特性を発揮すればよいからである。言い換えれば、本発明において難通気性耐火層は、浸漬ノズル製造時の焼成条件に相当する1000℃の非酸化雰囲気下の加熱後、および実使用時の条件に相当する1550℃の非酸化雰囲気下の加熱後において消失することなく存在し、上述の通気率の条件を満足する必要がある。   Here, the measurement conditions for the air permeability were after heat treatment in a non-oxidizing atmosphere at 1000 ° C. and 1550 ° C., as the hardly breathable refractory layer, the firing temperature (800 to 1200 ° C.) and the actual This is because it is only necessary to exhibit the characteristics under two levels of the temperature during use (1500 to 1570 ° C.) and in an extremely low amount of oxygen. In other words, in the present invention, the non-breathable refractory layer is heated in a non-oxidizing atmosphere at 1000 ° C. corresponding to the firing conditions during the production of the immersion nozzle and in a non-oxidizing atmosphere at 1550 ° C. corresponding to the conditions for actual use. It exists without disappearing after heating, and it is necessary to satisfy the above-described air permeability conditions.

また、本発明において形成する難通気性耐火層の厚みは、0.1mm以上0.5mm以下が好ましく、0.1mm以上0.3mm以下がさらに好ましい。難通気性耐火層の厚みが0.1mm未満であると、温度変化を伴う熱間使用時において安定かつ均一な状態で難通気性耐火層を維持することが困難であり、当該難通気性耐火層の剥離や損傷を生じるおそれがある。また、均一な厚みの難通気性耐火層を形成することも困難であって、とくに薄い部分が生じた場合にその部分が局部的に破壊してガス漏れを生じる可能性がある。一方、難通気性耐火層の厚みが0.5mmを超えると、難通気性耐火層自体に亀裂が生じやすくなり、また比較的広範囲の剥離も生じやすくなって通気抑制効果が不安定になり、さらには、ZG材質部分だけでなくAG材質部分にも形成する場合は、AG材質部分も含めて、それらの耐火物の厚みが小さくなるために構造体としての浸漬ノズルが脆弱となって折損や亀裂等を生じやすくなったり、ZG材質部分の厚みが小さくなることでZG材質部分の使用可能時間が短くなる等の弊害も生じやすくなる。   In addition, the thickness of the breathable fire resistant layer formed in the present invention is preferably 0.1 mm or more and 0.5 mm or less, and more preferably 0.1 mm or more and 0.3 mm or less. If the thickness of the flame-resistant fire-resistant layer is less than 0.1 mm, it is difficult to maintain the flame-resistant fire-resistant layer in a stable and uniform state during hot use with temperature changes. May cause delamination or damage. In addition, it is difficult to form a non-breathable refractory layer having a uniform thickness. In particular, when a thin portion is generated, the portion may be locally broken to cause gas leakage. On the other hand, if the thickness of the flame-resistant fireproof layer exceeds 0.5 mm, the flame-resistant fireproof layer itself is prone to cracking, and a relatively wide range of peeling is likely to occur, resulting in an unstable ventilation suppression effect. Furthermore, when forming not only on the ZG material part but also on the AG material part, the thickness of the refractory including the AG material part becomes small, so that the immersion nozzle as a structure becomes brittle and breaks. Defects such as cracks or the like are easily generated, and the usable time of the ZG material portion is shortened by reducing the thickness of the ZG material portion.

なお、浸漬ノズルの耐火物内における難通気性耐火層の厚みは、断面にて、基材としてのZG材質等の耐火物と難通気性耐火層との境界部の最も難通気性耐火層側の原料粒子端部を線で結び、その内面側の線と外面側の線との間の距離を測定し、採取試料の断面のその平均とする。すなわち、難通気性耐火層と接する耐火物に難通気性耐火層が食い込んだ部分は、難通気性耐火層の厚みから除外する。   In addition, the thickness of the fire-resistant fire-resistant layer in the refractory of the immersion nozzle is the most breath-resistant fire-resistant layer side of the boundary between the fire-resistant material such as ZG material as the base material and the fire-resistant fire resistant layer in the cross section. The raw material particle ends are connected with a line, and the distance between the inner surface side line and the outer surface side line is measured, and the average of the cross section of the collected sample is obtained. That is, the portion where the non-breathable refractory layer bites into the refractory in contact with the non-breathable refractory layer is excluded from the thickness of the non-breathable refractory layer.

上述の好ましい通気率を有する難通気性耐火層は、耐火原料を骨材として、熱処理後の残炭率が高い炭素結合を形成しかつ焼成収縮の比較的小さいフェノール樹脂を結合材にした混合物を非酸化雰囲気(還元雰囲気を含む)で熱処理して得ることができる。   The non-breathable refractory layer having a preferable air permeability described above is a mixture of a refractory raw material as an aggregate and a phenol resin that forms a carbon bond having a high residual carbon ratio after heat treatment and a relatively small firing shrinkage. It can be obtained by heat treatment in a non-oxidizing atmosphere (including a reducing atmosphere).

骨材となる耐火原料の形状は、球状に近いものより、扁平状または扁平に近いものが好ましい。ここで扁平状とは、アスペクト比(薄片状粒子の面積の平方根を厚さで割った値)が約2以上のものをいう。  The shape of the refractory raw material to be an aggregate is preferably flat or nearly flat rather than nearly spherical. Here, the flat shape means one having an aspect ratio (a value obtained by dividing the square root of the area of the flaky particles by the thickness) of about 2 or more.

扁平状または扁平に近い耐火原料が好ましい理由は、その扁平状または扁平に近い形状により、またそれらが複数の積層状態となってマトリクス中に存在することで、マトリクス部分に通気経路が生じにくく、通気経路が生じてもその通気経路は積層状態の耐火原料粒子面を経由することになって貫通気孔等の通気経路の長さも長くなって圧損を増加させることができ、通気抑制性を強化することができるからである。   The reason why a refractory raw material that is flat or nearly flat is preferred is that the flat shape or the shape close to flat, and the presence of them in the matrix in a plurality of laminated states, makes it difficult for a ventilation path to occur in the matrix portion, Even if a ventilation path occurs, the ventilation path passes through the laminated refractory raw material particle surface, and the length of the ventilation path such as the through-holes can be increased to increase the pressure loss, thereby strengthening the ventilation suppression. Because it can.

これに対して、扁平状または扁平に近い形状以外の、例えば球に近い耐火原料を使用した場合は、球に近い耐火原料間のマトリクス部分に通気経路が生じやすく、扁平状または扁平に近い耐火原料を使用する場合に比較して通気抑制性が乏しくなり、また耐火原料間の絡み合いが少なくなるので、強度が小さくなる傾向になり、難通気性耐火層の剥離や部分的崩壊等を生じやすくなる。   On the other hand, when using a refractory material close to a sphere, for example, other than a flat shape or a shape close to a flat shape, an air passage is likely to occur in the matrix portion between the refractory materials close to the sphere, so Compared to the case where raw materials are used, the ventilation control is poor, and the entanglement between the refractory raw materials is reduced. Therefore, the strength tends to decrease, and peeling of the flame-resistant refractory layer or partial collapse is likely to occur. Become.

扁平状または扁平に近い耐火原料としては、黒鉛、窒化硼素、β−アルミナ、マイカ板等が挙げられる。   Examples of the refractory raw material that is flat or nearly flat include graphite, boron nitride, β-alumina, and mica plate.

好ましい難通気性耐火層の厚みの下限である0.1mmを得るためには、これら骨材となる耐火原料の厚みは0.1mm以下が好ましい。さらに、難通気性耐火層の厚み方向の骨材の構造は、薄い骨材が重なった多層であることが好ましい。そのような多層構造であれば、難通気性耐火層に加わる外力を効果的に分散して難通気性耐火層の靱性や強度を高めることができる。またこのような多層構造になることで、骨材間の境界が難通気性耐火層の厚み方向に貫通せず、それを結ぶ線は複雑な経路になることから、通気を抑制する効果が高まる。   In order to obtain 0.1 mm which is the lower limit of the thickness of the preferable flame-resistant fireproof layer, the thickness of the fireproof raw material to be the aggregate is preferably 0.1 mm or less. Furthermore, the structure of the aggregate in the thickness direction of the breathable fire resistant layer is preferably a multilayer in which thin aggregates are overlapped. With such a multilayer structure, it is possible to effectively disperse the external force applied to the breathable refractory layer and increase the toughness and strength of the breathable refractory layer. Moreover, since it becomes such a multilayer structure, the boundary between aggregates does not penetrate in the thickness direction of the flame-resistant fireproof layer, and the line connecting them becomes a complicated path, so the effect of suppressing ventilation is enhanced. .

また、難通気性耐火層表面での骨材の飛び出しやその骨材間に隙間ができないようにするためには、すなわち難通気性耐火層の平滑度と骨材間の隙間をできるだけ小さくするためには、これら骨材となる耐火原料の粒子サイズは、0.5mm以下であることが好ましい。0.5mmを超えると、骨材相互の絡み合いの状態によっては難通気性耐火層内に隙間が生じやすくなり、また難通気性耐火層表面でのそれらの飛び出しが生じやすくもなる。ここで粒子サイズとは、厚みと直角の方向の面の最大長さ、すなわち、所定の長さの目開き寸法(前記の場合は0.5mm)の金網を通過する大きさをいう。したがってこの粒子サイズは、扁平状の耐火原料の厚み方向のサイズを指すものではない。   Also, in order to prevent the aggregate from jumping out on the surface of the breathable refractory layer and creating a gap between the aggregates, that is, to minimize the smoothness of the breathable refractory layer and the gap between the aggregates. In addition, the particle size of the refractory raw material used as the aggregate is preferably 0.5 mm or less. If it exceeds 0.5 mm, depending on the state of entanglement between the aggregates, gaps are likely to be formed in the fire-resistant fire-resistant layer, and they are likely to jump out on the surface of the fire-resistant fire-resistant layer. Here, the particle size refers to the maximum length of the surface in the direction perpendicular to the thickness, that is, the size passing through a wire mesh having a predetermined opening size (0.5 mm in the above case). Therefore, this particle size does not indicate the size in the thickness direction of the flat refractory raw material.

これら耐火原料の中では、フェノール樹脂に濡れやすく、また耐火性に富み、結合材との炭素結合も形成しやすく、変形能に富んで破壊を招来しにくい、黒鉛が最も好ましい。一般に黒鉛は、人造黒鉛と天然黒鉛に大別される。天然黒鉛は鱗状黒鉛および土状黒鉛として産出されるが、産地・純度・精錬方法などによりさまざまな品位のものがあり、アスペクト比は5〜80程度のものが一般的で、微粉の鱗状黒鉛や土状黒鉛のアスペクト比はやや小さい傾向にある。人造黒鉛については、高純度であるが、粒状のものなどアスペクト比の低いものが多い。   Among these refractory raw materials, graphite is most preferable because it is easily wetted by phenolic resin, has high fire resistance, easily forms a carbon bond with a binder, has high deformability, and does not easily break. In general, graphite is roughly classified into artificial graphite and natural graphite. Natural graphite is produced as scaly graphite and earthy graphite, but there are various grades depending on the production area, purity, refining method, etc., and those with an aspect ratio of about 5 to 80 are generally used. The aspect ratio of earthy graphite tends to be slightly small. Artificial graphite is highly pure but often has a low aspect ratio such as granular.

黒鉛としては、前記のように粒子サイズが0.5mm以下、より好ましくは粒子サイズが0.020mm以上0.5mm以下でかつ厚みが0.1mm以下のものを使用することが好ましい。粒子サイズが0.020mm未満では耐火原料の嵩が非常に大きくなり、併用する結合材に対する添加量を増やすことができにくくなる。   As described above, graphite having a particle size of 0.5 mm or less, more preferably 0.020 mm or more and 0.5 mm or less and a thickness of 0.1 mm or less is preferably used. If the particle size is less than 0.020 mm, the bulk of the refractory raw material becomes very large, and it becomes difficult to increase the amount added to the binder used together.

また、黒鉛としては、天然黒鉛でも人造黒鉛でも使用することができるが、熱処理により厚みが変化する膨張黒鉛のような難通気性耐火層の安定性を損なうような原料は使用しないことが好ましい。   Further, as graphite, natural graphite or artificial graphite can be used, but it is preferable not to use a raw material that impairs the stability of the non-breathable refractory layer such as expanded graphite whose thickness changes by heat treatment.

結合材としてフェノール樹脂は、レゾールタイプ、ノボラックタイプのどちらのタイプでも使用することができる。   As the binder, the phenol resin can be used in either a resol type or a novolac type.

黒鉛と結合材の混合割合は、難通気性耐火層を均一な厚みで塗布等により形成可能な作業性を得るために調整すればよい。例えば、天然の鱗状黒鉛および粘度が10〜50MPa・s程度の液状フェノール樹脂を使用する場合には塗布のしやすさと共に、安定した難通気性耐火層の形成の点から、黒鉛10質量%以上30質量%以下、フェノール樹脂70質量%以上90質量%以下程度の混合割合とすることが好ましい。   The mixing ratio of the graphite and the binder may be adjusted in order to obtain workability capable of forming the breathable refractory layer with a uniform thickness by coating or the like. For example, when using natural scaly graphite and a liquid phenol resin having a viscosity of about 10 to 50 MPa · s, it is easy to apply, and from the viewpoint of forming a stable flame-resistant refractory layer, 10% by mass or more of graphite. The mixing ratio is preferably about 30% by mass or less and about 70% by mass to 90% by mass of phenol resin.

前記にて例示したもの以外の耐火原料としては、炭化珪素、炭化硼素、窒化珪素、アルミナ質、アルミナ−シリカ質(マイカ板を含む)、スピネル質、マグネシア質から選択する1種以上を使用することができる。しかしこれらは、例えば球に近い形状等の、扁平状または扁平に近い形状ではないものが多く、そのような耐火原料を使用した場合には、扁平状または扁平に近い耐火原料を使用する場合に比較して、難通気性耐火層の厚み方向での原料間を結ぶ線が短くなり、通気しやすい経路が生じて通気抑制性が乏しくなり、また耐火原料間の絡み合いが少なくなることから難通気性耐火層の靱性や強度が小さくなる傾向になって、難通気性耐火層の剥離や部分的崩壊等を生じやすくなる。したがってこれらの原料を使用する場合にも、できるだけ扁平に近い形状や凹凸の多い破断面を有している形状のものを選択することが好ましい。なお、これらの扁平状または扁平に近い形状ではない原料を使用する場合は、その粒子サイズは0.1mm以下であることが好ましい。   As the refractory raw materials other than those exemplified above, at least one selected from silicon carbide, boron carbide, silicon nitride, alumina, alumina-silica (including mica plate), spinel, and magnesia is used. be able to. However, many of these are not flat or nearly flat, such as a shape close to a sphere, and when using such a refractory material, when using a refractory material that is flat or nearly flat, In comparison, the line connecting the raw materials in the thickness direction of the fire-resistant fire-resistant layer is shortened, a path that facilitates ventilation is created, and the air-flow suppressing property is poor, and the entanglement between the fire-resistant raw materials is reduced. The toughness and strength of the refractory refractory layer tend to be reduced, and peeling or partial collapse of the breathable refractory layer is likely to occur. Therefore, even when these raw materials are used, it is preferable to select one having a shape as close to flat as possible or a shape having a fractured surface with many irregularities. In addition, when using the raw material which is not these flat shapes or the shape close | similar to a flat shape, it is preferable that the particle size is 0.1 mm or less.

また、黒鉛以外の骨材となる耐火原料の場合の、難通気性耐火層内の含有量は、10質量%以上70質量%以下であることが好ましい。骨材となる耐火原料の含有量が10質量%未満であると、通気抑制効果が小さく非効率であると共に、難通気性耐火層に亀裂や破損が生じやすくなり、通気抑制性が不安定になりやすい。一方、骨材となる耐火原料の含有量が70質量%を超えると、難通気性耐火層を形成する際に均一な厚みの難通気性耐火層を得ることが困難であり、また結合部分(炭素結合部分)が過少となって、難通気性耐火層の強度が低下してその安定性が低下する。   Moreover, in the case of the refractory raw material used as aggregates other than graphite, it is preferable that content in a flame-resistant fireproof layer is 10 mass% or more and 70 mass% or less. If the content of the refractory raw material that is an aggregate is less than 10% by mass, the airflow suppressing effect is small and inefficient, and the flame-resistant fireproof layer is liable to crack and break, making the airflow suppressing property unstable. Prone. On the other hand, if the content of the refractory raw material to be an aggregate exceeds 70% by mass, it is difficult to obtain a breathable refractory layer having a uniform thickness when forming the breathable refractory layer, and a bonded portion ( When the carbon bond portion is too small, the strength of the breathable fire-resistant layer is lowered and the stability thereof is lowered.

なお、耐火原料を含まずにフェノール樹脂等の有機結合材単独を熱処理して難通気性耐火層を形成することも可能ではあるが、その組織中に空隙が多くなって、また収縮等も生じやすくなって亀裂を生じやすくなる等、難通気性耐火層の強度が小さくなる傾向になり、難通気性耐火層の厚みを厚く(例えば0.1mmを超える厚み)すると難通気性耐火層の剥離や部分的崩壊等も生じやすくなり、難通気性を確保することが困難になるので、とくに難通気性の程度をその難通気性耐火層を設けるZG材質の通気特性よりも大幅に高める場合には好ましくない。   Although it is possible to form a flame-resistant fire-resistant layer by heat-treating an organic binder alone such as phenol resin without containing a refractory raw material, there are more voids in the structure, and shrinkage or the like occurs. The strength of the fire-resistant fire-resistant layer tends to decrease, for example, it becomes easier to cause cracks. If the thickness of the fire-resistant fire-resistant layer is increased (for example, a thickness exceeding 0.1 mm), the fire-resistant fire-resistant layer is peeled off. And partial collapse, etc., and it is difficult to ensure the breathability, especially when the degree of breathability is significantly higher than the breathability of the ZG material provided with the flame-resistant fireproof layer. Is not preferred.

また、一般的に耐火物に使用できる無機結合材(例えば水ガラス、コロイダルシリカ、リン酸塩溶液など)を使用して形成した難通気性耐火層は、浸漬ノズル製造時の非酸化雰囲気中での焼成温度(800〜1200℃)および実使用時の温度(1500〜1570℃)で浸漬ノズルを構成する耐火材料中のカーボンとの反応によって消失したり、無機結合材自体の熱収縮が大きいために亀裂が発生して通気特性が変化すると共に剥離等の損傷を招来しやすいなどの理由から、それらを結合材として単独で使用することは好ましくない。   In addition, the non-breathable refractory layer formed using an inorganic binder (such as water glass, colloidal silica, phosphate solution, etc.) that can generally be used as a refractory is in a non-oxidizing atmosphere during the production of the immersion nozzle. Disappears due to the reaction with carbon in the refractory material constituting the immersion nozzle at the firing temperature (800 to 1200 ° C.) and the actual use temperature (1500 to 1570 ° C.), or the thermal contraction of the inorganic binder itself is large It is not preferable to use them alone as a binding material because cracks are generated in the film to change the air permeability characteristics and damage such as peeling is likely to occur.

本発明によれば、浸漬ノズル外周面からの不活性ガスの散逸を抑制でき、内孔への不活性ガス吹き出しの安定化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, dissipation of the inert gas from an immersion nozzle outer peripheral surface can be suppressed, and stabilization of the inert gas blowing to an inner hole can be aimed at.

また、浸漬ノズルを構成する耐火物自体の通気率の低減では抑制できない、当該耐火物の溶損に伴う不活性ガスの散逸の増大も大幅に抑制することができる。   Moreover, the increase in the dissipation of the inert gas accompanying the melting of the refractory that cannot be suppressed by reducing the air permeability of the refractory constituting the immersion nozzle can be significantly suppressed.

これらによって、浸漬ノズルの内孔壁面への介在物等の付着や内孔の閉塞を防止でき、鋳型内の湯面変動を抑制することもでき、鋳片品質を向上させることができる。また、鋼の連続鋳造の多連鋳化にも十分に対応可能となる。   By these, it is possible to prevent inclusions and the like from adhering to the inner wall surface of the immersion nozzle and blockage of the inner hole, to suppress the fluctuation of the molten metal surface in the mold, and to improve the slab quality. In addition, it is possible to sufficiently cope with the continuous casting of steel.

以下、図面を参照して本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1および図2は、それぞれ本発明の浸漬ノズルの一例を示す断面図である。   1 and 2 are cross-sectional views showing examples of the immersion nozzle of the present invention.

浸漬ノズル10は、溶鋼の流通経路となる内孔1を有し、この内孔1に面するように内孔体2が配置され、さらに内孔体2の外周側に中空室3が形成されている。中空室3にはガス導入ソケット4が接続されており、ガス導入ソケット4から不活性ガスが中空室3に導入され、導入された不活性ガスが内孔体2から内孔1に吹き出される。このように、対孔体2は不活性ガスを通過させるものであるから、通気性に富む耐火材料によって構成する。   The immersion nozzle 10 has an inner hole 1 that becomes a flow path of molten steel, an inner hole body 2 is disposed so as to face the inner hole 1, and a hollow chamber 3 is formed on the outer peripheral side of the inner hole body 2. ing. A gas introduction socket 4 is connected to the hollow chamber 3, an inert gas is introduced into the hollow chamber 3 from the gas introduction socket 4, and the introduced inert gas is blown out from the inner hole body 2 to the inner hole 1. . Thus, since the counter-hole body 2 allows an inert gas to pass through, the counter-hole body 2 is made of a fire-resistant material having high air permeability.

また、浸漬ノズル10の本体部分において、鋳型のパウダーラインに対応する領域はZrOが90質量%程度の高ZrO含有のZG材質5で構成され、それ以外の部分はAG材質6で構成されている。 Further, in the body portion of the immersion nozzle 10, the region corresponding to the template powder line of ZrO 2 is composed of ZG material 5 High ZrO 2 content of about 90 wt%, the other portion is constituted by AG Material 6 ing.

そして、図1の例では、浸漬ノズル10外周面からの不活性ガスの散逸を防止するために、中空室3の外周側壁面のうち、鋳型のパウダーラインに対応する領域、すなわちZG材質5で構成されている領域に、ZG材質より低通気性の難通気性耐火層7を配置している。また、図2の例では、中空室3の外周側壁面の全領域に難通気性耐火層7を配置している。なお、中空室3には、内孔体2とAG材質6との接合等のために、柱状の耐火物を設ける場合があるが、この場合、その柱状の耐火物の側面にまで難通気性耐火層7を配置する必要はない。   In the example of FIG. 1, in order to prevent the dissipation of the inert gas from the outer peripheral surface of the immersion nozzle 10, the region corresponding to the powder line of the mold in the outer peripheral side wall surface of the hollow chamber 3, that is, the ZG material 5 is used. In the configured region, a flame-resistant fireproof layer 7 having a lower air permeability than the ZG material is disposed. Further, in the example of FIG. 2, the hardly breathable refractory layer 7 is disposed in the entire region of the outer peripheral side wall surface of the hollow chamber 3. The hollow chamber 3 may be provided with a columnar refractory material for joining the inner hole body 2 and the AG material 6. In this case, the air permeability of the columnar refractory material is poor. There is no need to arrange the refractory layer 7.

AG材質6の通気率は、先に説明したとおりZG材質よりはるかに小さいので、図1の例のように、中空室3の外周側壁面のうち少なくともZG材質5の領域に難通気性耐火層7を配置しておけば、浸漬ノズル10外周面からの不活性ガスの散逸を抑制するという目的を達成できる。   The air permeability of the AG material 6 is much smaller than that of the ZG material as described above. Therefore, as shown in the example of FIG. If 7 is arrange | positioned, the objective of suppressing dissipation of the inert gas from the immersion nozzle 10 outer peripheral surface can be achieved.

なお、図1および図2の例では、内孔体2を浸漬ノズル10の吐出孔8の途中まで配置したが、吐出孔8の下端部分まで配置してもよい。また、中空室3は内孔体2の外周側の全体に形成してもよい   In the example of FIGS. 1 and 2, the inner hole body 2 is disposed up to the middle of the discharge hole 8 of the immersion nozzle 10, but may be disposed up to the lower end portion of the discharge hole 8. The hollow chamber 3 may be formed on the entire outer peripheral side of the inner hole body 2.

以上、図1および図2に示したような本発明の浸漬ノズルは、以下の工程により製造できる。
(1)内孔体となる耐火物成形体の外周に、800℃以下の温度で消失する有機物層を配置する工程
(2)有機物層の外周に、800℃以上の焼成により難通気性耐火層を形成する、耐火原料と結合材とを混合した耐火性原料または結合材単体からなる耐火性原料の層を配置し、その後、硬化処理または乾燥処理により前記耐火性原料の層に保形性を付与する工程
(3)前記工程(1)および(2)で得られた構造体を、静圧成形用の型枠内にセットする工程
(4)前記構造体とその外側の型枠との間に、浸漬ノズル本体を構成する原料としてのはい土を充填し、前記構造体とともに静圧成形する工程
(5)前記工程(4)で得られた成形体を800℃以上の温度で焼成することにより、前記有機物層の部分に中空室を形成するとともに、この中空室の外周側壁面のうち、少なくとも鋳型のパウダーラインに対応する領域に難通気性耐火層を形成する工程
As mentioned above, the immersion nozzle of this invention as shown in FIG. 1 and FIG. 2 can be manufactured according to the following processes.
(1) A step of disposing an organic material layer that disappears at a temperature of 800 ° C. or less on the outer periphery of a refractory molded body that becomes an inner hole body. Forming a layer of a refractory raw material composed of a refractory raw material mixed with a refractory raw material and a binder, or a binder alone, and then forming a shape-retaining property in the layer of the refractory raw material by a curing treatment or a drying treatment. Step of applying (3) Step of setting the structure obtained in steps (1) and (2) in a mold for static pressure molding (4) Between the structure and the outer mold Step (5): Filling the soil as a raw material constituting the submerged nozzle body and hydrostatic forming together with the structure (5) Firing the molded body obtained in the step (4) at a temperature of 800 ° C. or higher. Thus, a hollow chamber is formed in the organic material layer, and Of the outer peripheral side wall surface of the cavity, forming a air-impermeable refractory layer in a region corresponding to at least the mold powder line of

ここで、工程(1)で配置する有機物層は、パラフィン等のワックス、紙、プラスチック等により形成できる。   Here, the organic layer disposed in the step (1) can be formed of wax such as paraffin, paper, plastic, or the like.

また、工程(2)において刷毛塗りによる塗布により耐火性原料の層を配置する場合、刷毛による耐火性原料の延性等の作業性を得るために、耐火性原料の液状部分を比較的多量(例えば70質量%〜90質量%)と必要することが好ましい。一方、乾式の吹き付け(例えば、黒鉛を空気搬送して、噴出ノズル付近で霧状の樹脂と混合して被射体に吹き付ける方法)によれば、耐火性原料の液状部分は比較的少量(例30質量%〜70質量%)とすることができる。   In addition, when the layer of the refractory raw material is disposed by application by brush coating in the step (2), a relatively large amount of liquid portion of the refractory raw material is obtained in order to obtain workability such as ductility of the refractory raw material by brush (for example, 70 mass% to 90 mass%) is preferable. On the other hand, according to dry spraying (for example, a method in which graphite is pneumatically transported and mixed with a mist-like resin near the spray nozzle and sprayed onto an object to be irradiated), the liquid part of the refractory raw material is relatively small (eg, 30 mass% to 70 mass%).

また、工程(2)における耐火性原料の層の配置は、上述の刷毛塗り、吹き付けのほか、浸漬によって行うこともできる。さらに、耐火性原料の層を予め作製しておき、これを所定の位置に配置するようにしてもよい   Moreover, the arrangement | positioning of the layer of a refractory raw material in a process (2) can also be performed by immersion other than the above-mentioned brush coating and spraying. Further, a layer of a refractory raw material may be prepared in advance and disposed at a predetermined position.

この実施例では、ZrOの含有量が90質量%で、通気率が約0.001〜0.0011cm・cm/cm・cmHO・sec程度と高いZG材質に対し、各種の難通気性耐火層を形成し、通気抑制効果を調査した。 In this example, the ZrO 2 content is 90% by mass and the air permeability is about 0.001 to 0.0011 cm 3 · cm 2 · cm H 2 O · sec. A breathable refractory layer was formed, and the airflow suppression effect was investigated.

実施例の各試料は、前記ZG材質をφ50×20mmの寸法に成形し、その円筒上面にのみ表1に示す難通気性耐火層の構成材料を所定の厚さになるように刷毛塗りにより塗布し、乾燥処理の後、1000℃および1550℃雰囲気のコークスブリーズ中で加熱・焼成して作製した。なお、表1に示す「加熱前の難通気性耐火層の厚み」とは、前記の加熱・焼成前の難通気性耐火層の厚みのことである。   Each sample of the example was formed by forming the ZG material into a size of φ50 × 20 mm, and applying the constituent material of the breathable refractory layer shown in Table 1 only on the upper surface of the cylinder by brushing so as to have a predetermined thickness. Then, after the drying treatment, it was prepared by heating and baking in a coke breeze atmosphere at 1000 ° C. and 1550 ° C. The “thickness of the non-breathable fireproof layer before heating” shown in Table 1 is the thickness of the non-breathable fireproof layer before heating and firing.

難通気性耐火層の構成材料としては、粒子サイズ0.3mm以下が70質量%の天然の鱗状黒鉛、粒子サイズ0.1mm以下が100質量%の焼結アルミナ(粒の形状は大粗粒から破壊した破断面を有する不均一なもの)、粘度10〜50mPa・s程度のフェノール樹脂を用いた。なお、事前にフェノール樹脂と鱗状黒鉛との混合割合を調査したところ、鱗状黒鉛の含有量が30質量%程度までは塗布作業性に関して問題なく、均一な難通気性耐火層を形成することができた。しかし、鱗状黒鉛の含有量が30質量%を超えると混合物の粘性が高くなりすぎて均一に塗布することが困難であり、塗布用には不向きであった。   As the constituent material of the fire-resistant fire-resistant layer, natural scaly graphite having a particle size of 0.3 mm or less is 70% by mass, sintered alumina having a particle size of 0.1 mm or less is 100% by mass (the shape of the particles is from large coarse particles). A non-uniform one having a broken fracture surface) and a phenol resin having a viscosity of about 10 to 50 mPa · s were used. In addition, when the mixing ratio of the phenol resin and the scaly graphite was investigated in advance, it was possible to form a uniform fire-resistant fire-resistant layer without any problem with respect to the coating workability until the scaly graphite content was about 30% by mass. It was. However, when the content of scaly graphite exceeds 30% by mass, the viscosity of the mixture becomes too high to be uniformly applied, and is unsuitable for application.

また、比較例として、難通気性耐火層を形成しない試料も作製した。   Moreover, the sample which does not form a fire-resistant fireproof layer as a comparative example was also produced.

これらの各試料について、外観確認を行うと共に、JIS R2115の試験方法により通気率を測定した。また、形成した難通気性耐火層の厚みは、その形成前後の試料の高さの差から求めた。難通気性耐火層の状況は、目視による観察で評価した。なお、難通気性耐火層の通気率の測定および難通気性耐火層の状況の評価は、浸漬ノズル製造時の焼成条件に相当する1000℃還元焼成後および実使用時の条件に相当する1550℃還元焼成後に行った。   About each of these samples, while confirming the external appearance, the air permeability was measured by the test method of JIS R2115. Moreover, the thickness of the formed flame-resistant fireproof layer was calculated | required from the height difference of the sample before and behind the formation. The state of the breathable fire resistant layer was evaluated by visual observation. The measurement of the air permeability of the hardly breathable fireproof layer and the evaluation of the state of the hardly breathable fireproof layer are 1550 ° C corresponding to the conditions after 1000 ° C reduction firing corresponding to the firing conditions at the time of manufacturing the immersion nozzle and the actual use. Performed after reduction firing.

表1にその結果を示す。   Table 1 shows the results.

Figure 0005069592
Figure 0005069592

難通気性耐火層を形成し、それが浸漬ノズルの実使用時の条件に相当する1550℃還元焼成後でも消失しなかった実施例A〜Iはいずれも、難通気性耐火層を形成していない比較例Aに対して通気率が低減されており、難通気性耐火層による通気抑制効果が確認された。   In Examples A to I, in which a non-breathable refractory layer was formed and did not disappear after 1550 ° C. reduction firing corresponding to the actual use conditions of the immersion nozzle, all formed a non-breathable refractory layer. The air permeability was reduced as compared with Comparative Example A, and the airflow suppressing effect by the flame-resistant fireproof layer was confirmed.

とくに実施例のうち、フェノール樹脂と鱗状黒鉛の混合物から難通気性耐火層を形成し、かつその厚みを0.1mm〜0.3mmとした実施例A、B、D、Eでは、難通気性耐火層に亀裂や剥落がなく安定しており、その通気率は比較例Aに対して75%以上低減されており、大幅な通気抑制効果が得られた。   In particular, in Examples A, B, D, and E, in which a non-breathable refractory layer was formed from a mixture of a phenol resin and scaly graphite and the thickness thereof was 0.1 mm to 0.3 mm, the non-breathable property was used. The refractory layer was stable without cracks or peeling off, and its air permeability was reduced by 75% or more compared to Comparative Example A, and a significant airflow suppression effect was obtained.

一方、前記と同じフェノール樹脂と鱗状黒鉛の混合物から0.5mmの厚みの難通気性耐火層を形成した実施例C、Fでは、その通気率の比較例Aに対する低減割合は約45%〜約30%であり、実施例A、B、D、Eに比べ通気抑制効果が劣っていた。これは難通気性耐火層が実施例A、B、D、Eに比べ厚いため、微亀裂や剥離傾向が難通気性耐火層に発生していたためと考えられる。なお、表1には示していないが、難通気性耐火層の厚みを0.7mmにした場合には、さらに顕著に微亀裂や剥離傾向が難通気性耐火層に発生していた。これらの微亀裂や剥離傾向は、本実施例の試験方法では供試料の難通気性耐火層が、平面かつφ50mmと比較的狭くしかも周囲が開放されている状況であったために生じやすかったと考えられる。   On the other hand, in Examples C and F in which a fire-resistant layer having a thickness of 0.5 mm was formed from the same mixture of phenol resin and scaly graphite as described above, the reduction rate of the air permeability relative to Comparative Example A was about 45% to about It was 30%, and the air flow suppressing effect was inferior to Examples A, B, D, and E. This is presumably because microscopic cracks and peeling tendency occurred in the non-breathable refractory layer because the non-breathable refractory layer was thicker than Examples A, B, D, and E. Although not shown in Table 1, when the thickness of the flame-resistant fireproof layer was 0.7 mm, the cracks and peeling tendency were more prominently generated in the flame-resistant fireproof layer. These microcracks and the tendency to peel off are considered to have been likely to occur in the test method of this example because the breathable refractory layer of the sample was flat and relatively narrow with a diameter of 50 mm and the periphery was open. .

実際の浸漬ノズルでは難通気性耐火層は曲面で、かつその全端部は拘束されているので亀裂や剥離は本実施例の試験条件よりも生じにくいと考えられ、またZG材質からの剥離傾向が生じても難通気性耐火層が破壊しない限りはその剥離によって不活性ガスが直ちにZG材質に漏出することはないので、厚みが0.7mmまでは問題なく使用できると考えられる。しかし、厚みが0.7mmの場合は難通気性耐火層に顕著な微亀裂等が観察されたことから、とくに長時間の使用等での亀裂拡大や剥離等が進行して通気抑制効果が低下する可能性も考えられるので、本実施例の試験による知見からは、難通気性耐火層の厚みは0.5mmまでが好ましい。   In an actual immersion nozzle, the flame-resistant fire-resistant layer is curved and its entire end is constrained, so cracks and delamination are considered less likely to occur than the test conditions of this example, and the tendency to delaminate from the ZG material As long as the flame-resistant refractory layer does not break down, the inert gas does not immediately leak into the ZG material due to the separation, so that it can be used without any problem up to a thickness of 0.7 mm. However, when the thickness is 0.7mm, remarkable microcracks and the like were observed in the fire-resistant fire-resistant layer, so that the effect of suppressing air flow deteriorates due to the progress of crack expansion and peeling especially during long-term use. Therefore, from the knowledge of the test of this example, the thickness of the breathable fire resistant layer is preferably up to 0.5 mm.

以上の実施例の結果から、安定した難通気性耐火層の保持と安定した通気抑制効果を得るためには、フェノール樹脂と鱗状黒鉛の混合物の場合、難通気性耐火層の厚みは0.1以上0.5mm以下であることが好ましく、0.1mm以上0.3mm以下であることがより好ましいといえる。   From the results of the above examples, in order to obtain a stable flame-resistant fire-resistant layer and a stable air-flow suppressing effect, in the case of a mixture of phenol resin and scaly graphite, the thickness of the flame-resistant fire-resistant layer is 0.1. It is preferably 0.5 mm or less and more preferably 0.1 mm or more and 0.3 mm or less.

次に、フェノール樹脂とアルミナの混合物から難通気性耐火層を形成した実施例Gでは、比較例Aの通気率に対して約1000℃の非酸化雰囲気下の熱処理後約40%、約1550℃の非酸化雰囲気下の熱処理後約30%の低減効果が得られ、実用上十分な通気抑制効果が得られた。ただし、フェノール樹脂との混合割合および厚みが同じ条件の鱗状黒鉛の場合(実施例E)と比較して、1000℃の熱処理後でその約53%程度、1550℃の熱処理後でその約38%程度と通気抑制効果が劣っている。これは、アルミナが扁平な鱗状黒鉛に比較して球形に近いという形状要因のためと考えられ、アルミナまたは他の耐火原料でも、形状がより扁平に近いものであれば、通気抑制効果はより高まると考えられる。   Next, in Example G in which a hardly breathable refractory layer was formed from a mixture of phenol resin and alumina, about 40% after heat treatment in a non-oxidizing atmosphere at about 1000 ° C. with respect to the air permeability of Comparative Example A, about 1550 ° C. After the heat treatment in a non-oxidizing atmosphere, a reduction effect of about 30% was obtained, and a practically sufficient ventilation suppression effect was obtained. However, as compared with the case of scaly graphite having the same mixing ratio and thickness with the phenol resin (Example E), about 53% after heat treatment at 1000 ° C. and about 38% after heat treatment at 1550 ° C. The degree and the airflow suppression effect are inferior. This is thought to be due to the shape factor that alumina is nearly spherical compared to flat scaly graphite, and even if the shape of the alumina or other refractory raw material is more flat, the airflow suppression effect is further enhanced. it is conceivable that.

一方、耐火原料の骨材を含まないフェノール樹脂単独から難通気性耐火層を形成した実施例H、Iでは、比較例Aに対する通気率の低減割合が約8〜19%と小さく、さらに0.1mmの厚みで形成すると難通気性耐火層に微亀裂が発生していた。このことから、耐火原料の骨材を含まないフェノール樹脂単独からなる難通気性耐火層は、比較例Aに対しては通気抑制効果はあるものの、好ましくないことがわかる。   On the other hand, in Examples H and I in which a fire-resistant fire-resistant layer was formed from a phenol resin alone that does not contain an aggregate of a fire-resistant raw material, the reduction rate of the air permeability with respect to Comparative Example A was as small as about 8 to 19%. When it was formed with a thickness of 1 mm, microcracks were generated in the fire-resistant fire-resistant layer. From this, it can be seen that the hardly breathable fire-resistant layer made of a phenolic resin alone containing no aggregate of the fire-resistant raw material is not preferable for Comparative Example A, although it has an air-flow suppressing effect.

なお、表1には、比較例Bとして、ZrOの含有量が85質量%のZG材質について難通気性耐火層を形成せずに上記と同様の評価を行った結果と、比較例Cとして、Alが70質量%、黒鉛が18質量%の一般的な内孔体の材質について難通気性耐火層を形成せずに上記と同様の評価を行った結果を併せて示している。 In Table 1, as Comparative Example B, as a Comparative Example C, the same evaluation as described above was performed on a ZG material having a ZrO 2 content of 85% by mass without forming a non-breathable fireproof layer. FIG. 5 also shows the results of the same evaluation as described above, without forming a non-breathable refractory layer, for a general inner-pore body material having 70% by mass of Al 2 O 3 and 18% by mass of graphite. .

この実施例は、本発明の難通気性耐火層を配置した浸漬ノズルにつき、難通気性耐火層の材質および厚みを変化させて、浸漬ノズルの内孔、外周面および全体の通気量を、難通気性耐火層を配置しない従来の浸漬ノズル(比較例D)と比較して調査したものである。   In this example, the material and thickness of the non-breathable refractory layer are changed for the submerged nozzle provided with the non-breathable refractory layer of the present invention, so that the inner hole, the outer peripheral surface and the entire air flow rate of the submerged nozzle are difficult. This was investigated in comparison with a conventional immersion nozzle (Comparative Example D) in which no breathable refractory layer was disposed.

浸漬ノズルの構造は、実施例については図1に示す構造とし、比較例については図1の構造から難通気性耐火層を除いた図3に示す構造とした。この浸漬ノズルの主要部分の寸法は、ZG材質部分の外径が150mm、中空室の外径が100mm、内孔径が80mm、中空室の軸方向長さが450mm、ZG材質部分の軸方向の長さが200mmである。ZG材質としては、ZrOが90質量%の高ZrO含有のZG材質を使用し、ZG材質部分以外のAG材質部分にはAlが65質量%、黒鉛が30質量%のAG材質を使用し、内孔体にはAlが70質量%、黒鉛が18質量%の通気性の耐火物を使用した。 The structure of the immersion nozzle was the structure shown in FIG. 1 for the example, and the structure shown in FIG. 3 was obtained by removing the non-breathable fireproof layer from the structure of FIG. The dimensions of the main part of this immersion nozzle are as follows: the outer diameter of the ZG material part is 150 mm, the outer diameter of the hollow chamber is 100 mm, the inner hole diameter is 80 mm, the axial length of the hollow chamber is 450 mm, and the axial length of the ZG material part Is 200 mm. The ZG material, ZrO 2 is used to ZG material of high ZrO 2 content of 90 wt%, Al 2 O 3 is 65 wt% to AG material portion other than ZG material portion, AG material of graphite 30% A breathable refractory having 70% by mass of Al 2 O 3 and 18% by mass of graphite was used for the inner pores.

製品状態に製造した各浸漬ノズルにつき、浸漬ノズルの全通気量、内孔通気量を測定した。具体的には、常温にてガス導入ソケットから空気を0.1MPaの圧力で供給し、質量流量計にて全通気量および内孔通気量を測定した。そして、その比より内孔通気割合を算出した。外周面通気量は、全通気量と内孔通気量の差から求めた。また、製造時の欠陥は、X線透過検査により調査した。   For each immersion nozzle manufactured in a product state, the total ventilation amount and inner hole ventilation amount of the immersion nozzle were measured. Specifically, air was supplied at a normal pressure from a gas introduction socket at a pressure of 0.1 MPa, and the total air flow rate and inner hole air flow rate were measured with a mass flow meter. And the inner-pore aeration rate was computed from the ratio. The air flow rate on the outer peripheral surface was determined from the difference between the total air flow rate and the inner hole air flow rate. Moreover, the defect at the time of manufacture was investigated by the X-ray transmission inspection.

その結果を表2に示す。   The results are shown in Table 2.

Figure 0005069592
Figure 0005069592

表2中の実施例J、K、Lは、難通気性耐火層として先の実施例で評価が良好であった実施例A、B、Eの難通気性耐火層をそれぞれ配置したものである。   Examples J, K, and L in Table 2 are obtained by disposing the flame-resistant refractory layers of Examples A, B, and E, which had good evaluation in the previous examples, as the flame-resistant refractory layers, respectively. .

比較例Dの内孔通気割合が62.5%であったのに対し、全ての実施例において、内孔通気割合が80%以上となり、ZG材質からの外部へのガス漏れ抑制効果が確認できた。   Whereas the air permeability of the inner hole of Comparative Example D was 62.5%, the air permeability of the inner hole was 80% or more in all the examples, and the effect of suppressing gas leakage from the ZG material to the outside could be confirmed. It was.

また、X線透過検査での製造欠陥、すなわち耐火物にガス漏れを生じるような亀裂等は確認されず、本実施例の結果は本発明の難通気性耐火層による効果によることがわかる。   In addition, manufacturing defects in the X-ray transmission inspection, that is, cracks that cause gas leakage in the refractory are not confirmed, and it can be seen that the result of this example is due to the effect of the breathable refractory layer of the present invention.

本発明の浸漬ノズルの一例を示す断面図である。It is sectional drawing which shows an example of the immersion nozzle of this invention. 本発明の浸漬ノズルの他の例を示す断面図である。It is sectional drawing which shows the other example of the immersion nozzle of this invention. 従来の浸漬ノズルを示す断面図である。It is sectional drawing which shows the conventional immersion nozzle.

符号の説明Explanation of symbols

10 浸漬ノズル
1 内孔
2 内孔体
3 中空室
4 ガス導入ソケット
5 ZG材質
6 AG材質
7 難通気性耐火層
8 吐出孔
DESCRIPTION OF SYMBOLS 10 Immersion nozzle 1 Inner hole 2 Inner hole body 3 Hollow chamber 4 Gas introduction socket 5 ZG material 6 AG material 7 Breathable fireproof layer 8 Discharge hole

Claims (6)

タンディッシュから鋳型への溶鋼の流通経路となる内孔と、この内孔に面するように配置された通気性の内孔体と、この内孔体の外周側に形成された中空室とを備え、中空室に導入された不活性ガスを内孔体から内孔に吹き出す浸漬ノズルにおいて、
中空室の外周側壁面のうち、少なくとも鋳型のパウダーラインに対応する領域に、その領域の外周側の耐火物より低通気性の難通気性耐火層を配置したことを特徴とする浸漬ノズル。
An inner hole serving as a flow path of molten steel from the tundish to the mold, a breathable inner hole body arranged to face the inner hole, and a hollow chamber formed on the outer peripheral side of the inner hole body In the immersion nozzle that blows out the inert gas introduced into the hollow chamber from the inner hole body to the inner hole,
An immersion nozzle comprising a flame-resistant fire-resistant layer having a lower air permeability than a refractory on the outer periphery side of at least a region corresponding to a powder line of a mold in an outer peripheral side wall surface of a hollow chamber.
難通気性耐火層の厚みが0.1mm以上0.5mm以下である請求項1に記載の浸漬ノズル。   The immersion nozzle according to claim 1, wherein the thickness of the flame-resistant fireproof layer is 0.1 mm or more and 0.5 mm or less. 難通気性耐火層のJIS R2115の試験方法による通気率が、1000℃の非酸化雰囲気下の熱処理後において0.0007cm・cm/cm・cmHO・sec以下、1550℃の非酸化雰囲気下の熱処理後において約0.0008cm・cm/cm・cmHO・sec以下である請求項1または請求項2に記載の浸漬ノズル。 A non-oxidizing atmosphere having a breathability of 0.0007 cm 3 · cm 2 · cm 2 · cmH 2 O · sec or less after heat treatment in a non-oxidizing atmosphere at 1000 ° C. and a non-oxidizing atmosphere of 1550 ° C. 3. The immersion nozzle according to claim 1, wherein the immersion nozzle is about 0.0008 cm 3 · cm / cm 2 · cmH 2 O · sec or less after the lower heat treatment. 難通気性耐火層が、粒子サイズが0.5mm以下の黒鉛を10質量%以上30質量%以下含み、残部が前記黒鉛以外の炭素からなる請求項1から請求項3のいずれかに記載の浸漬ノズル。   The immersion according to any one of claims 1 to 3, wherein the non-breathable refractory layer contains 10% by mass or more and 30% by mass or less of graphite having a particle size of 0.5 mm or less, and the balance is made of carbon other than the graphite. nozzle. 難通気性耐火層が、それぞれ粒子サイズが0.1mm以下の、炭化珪素、炭化硼素、窒化珪素、アルミナ質、アルミナ−シリカ質(マイカ板を含む)、スピネル質、マグネシア質から選択する1種以上の耐火原料を10質量%以上70質量%以下含み、残部が前記耐火原料以外の炭素からなる請求項1から請求項3のいずれかに記載の浸漬ノズル。   One kind selected from silicon carbide, boron carbide, silicon nitride, alumina, alumina-silica (including mica plate), spinel, and magnesia, each of which has a particle size of 0.1 mm or less. The immersion nozzle according to any one of claims 1 to 3, wherein the refractory raw material is contained in an amount of 10 mass% or more and 70 mass% or less, and the balance is made of carbon other than the refractory raw material. 請求項1から請求項5のいずれかに記載の浸漬ノズルの製造方法であって、
(1)内孔体となる耐火物成形体の外周に、800℃以下の温度で消失する有機物層を配置する工程と、
(2)有機物層の外周に、800℃以上の焼成により難通気性耐火層を形成する、耐火原料と結合材とを混合した耐火性原料または結合材単体からなる耐火性原料の層を配置し、その後、硬化処理または乾燥処理により前記耐火性原料の層に保形性を付与する工程と、
(3)前記工程(1)および(2)で得られた構造体を、静圧成形用の型枠内にセットする工程と、
(4)前記構造体とその外側の型枠との間に、浸漬ノズル本体を構成する原料としてのはい土を充填し、前記構造体とともに静圧成形する工程と、
(5)前記工程(4)で得られた成形体を800℃以上の温度で焼成することにより、前記有機物層の部分に中空室を形成するとともに、この中空室の外周側壁面のうち、少なくとも鋳型のパウダーラインに対応する領域に難通気性耐火層を形成する工程とを含む浸漬ノズルの製造方法。
It is a manufacturing method of the immersion nozzle in any one of Claims 1-5, Comprising:
(1) A step of disposing an organic material layer that disappears at a temperature of 800 ° C. or less on the outer periphery of a refractory molded body that becomes an inner hole body;
(2) A layer of a refractory raw material composed of a refractory raw material mixed with a refractory raw material and a binder or a single binder is formed on the outer periphery of the organic material layer to form a fire-resistant fire-resistant layer by firing at 800 ° C. or higher. Then, a step of imparting shape retention to the layer of the refractory raw material by a curing treatment or a drying treatment,
(3) a step of setting the structure obtained in the steps (1) and (2) in a form for static pressure molding;
(4) filling the earth as a raw material constituting the submerged nozzle body between the structure and the outer formwork, and hydrostatic forming with the structure;
(5) The molded body obtained in the step (4) is baked at a temperature of 800 ° C. or higher to form a hollow chamber in the organic material layer, and at least of the outer peripheral side wall surface of the hollow chamber. And a step of forming a breathable fire-resistant layer in a region corresponding to the powder line of the mold.
JP2008067853A 2008-03-17 2008-03-17 Immersion nozzle Expired - Fee Related JP5069592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067853A JP5069592B2 (en) 2008-03-17 2008-03-17 Immersion nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067853A JP5069592B2 (en) 2008-03-17 2008-03-17 Immersion nozzle

Publications (2)

Publication Number Publication Date
JP2009220150A JP2009220150A (en) 2009-10-01
JP5069592B2 true JP5069592B2 (en) 2012-11-07

Family

ID=41237513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067853A Expired - Fee Related JP5069592B2 (en) 2008-03-17 2008-03-17 Immersion nozzle

Country Status (1)

Country Link
JP (1) JP5069592B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130490B2 (en) * 2008-09-19 2013-01-30 新日鐵住金株式会社 Immersion nozzle
CN102039404B (en) * 2009-10-16 2013-01-09 洛阳利尔耐火材料有限公司 Ventilation top water gap for continuous casting tundish and preparation method thereof
JP5291662B2 (en) * 2010-04-28 2013-09-18 黒崎播磨株式会社 Refractory, continuous casting nozzle using the refractory, method for producing the continuous casting nozzle, and continuous casting method using the continuous casting nozzle
AU2010320042B2 (en) * 2010-05-07 2013-10-03 Krosakiharima Corporation Refractory material, continuous casting nozzle using the refractory material, production method for the continuous casting nozzle, and continuous casting method using the continuous casting nozzle
KR101639753B1 (en) * 2014-11-18 2016-07-14 주식회사 포스코 Nozzle and manufacturing method of the same
KR101639749B1 (en) * 2014-11-28 2016-07-14 주식회사 포스코 Nozzle and method for producing the same
CN109570484A (en) * 2019-01-24 2019-04-05 北京利尔高温材料股份有限公司 A kind of ventilative submersed nozzle of bottom blowing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620623B2 (en) * 1985-07-30 1994-03-23 日本坩堝株式会社 High durability, continuous nozzle for steel casting with slits
JPS62203666A (en) * 1986-02-28 1987-09-08 Kurosaki Refract Co Ltd Nozzle for pouring molten metal and its production

Also Published As

Publication number Publication date
JP2009220150A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5069592B2 (en) Immersion nozzle
US20160039719A1 (en) Zirconia based coating for refractory elements and refractory element comprising of such coating
KR101310737B1 (en) Nozzle for continuous casting
JP4410796B2 (en) Continuous casting nozzle
KR101288028B1 (en) Refractory material, continuous casting nozzle using the refractory material production method for the continuous casting nozzle, and continuous casting method using the continuous casting nozzle
JP5166302B2 (en) Continuous casting nozzle
JP6021667B2 (en) Refractory, refractory manufacturing method, and immersion nozzle for continuous casting
JP3774557B2 (en) Refractory for injecting inert gas into molten metal and method for producing the same
JP5129684B2 (en) Continuous casting nozzle
JP4589151B2 (en) Nozzle for continuous casting and continuous casting method
JP2010029894A (en) Refractory for interlayer of nozzle for continuous casting and nozzle for continuous casting
JP5048928B2 (en) Breathable refractory material for continuous casting
JP3803740B2 (en) Manufacturing method of refractories for gas blowing
JP5354495B2 (en) Immersion nozzle for continuous casting of steel
JP4456443B2 (en) Pitch-containing difficult adhesion continuous casting nozzle
JP2011224651A (en) Immersion nozzle
JP7071605B1 (en) Refractory and refractory members for continuous casting
JP6855646B1 (en) Refractory for sliding nozzle plate and its manufacturing method
JP7071604B1 (en) Refractory and refractory members for continuous casting
WO2021117742A1 (en) Refractory material
JP2010029895A (en) Refractory for nozzle used for continuous casting and nozzle for continuous casting
JP4533052B2 (en) Non-adhesive continuous casting nozzle
JPH11123508A (en) Method for applying monolithic refractory to tundish
JP2022189169A (en) Stopper for continuous casting
JP2001059113A (en) Gas permeable refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees