WO2011009991A2 - Micelas pic dendríticas con proteínas bioactivas - Google Patents

Micelas pic dendríticas con proteínas bioactivas Download PDF

Info

Publication number
WO2011009991A2
WO2011009991A2 PCT/ES2010/070504 ES2010070504W WO2011009991A2 WO 2011009991 A2 WO2011009991 A2 WO 2011009991A2 ES 2010070504 W ES2010070504 W ES 2010070504W WO 2011009991 A2 WO2011009991 A2 WO 2011009991A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
dendritic
derivatives
polymeric
pic
Prior art date
Application number
PCT/ES2010/070504
Other languages
English (en)
French (fr)
Other versions
WO2011009991A3 (es
Inventor
Ana Sousa Herves
Eduardo Fernandez Megia
Ricardo Riguera Vega
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Priority to US13/386,858 priority Critical patent/US20120269895A1/en
Priority to EP10801996.9A priority patent/EP2457591A4/en
Publication of WO2011009991A2 publication Critical patent/WO2011009991A2/es
Publication of WO2011009991A3 publication Critical patent/WO2011009991A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin

Definitions

  • the present invention relates to a dendritic polyionic polymer micelle (Polyion Complex, PIC) incorporating a bioactive protein as one of the polyphonic blocks that constitute the micelle. More specifically, the present invention relates to a PIC micelle formed by electrostatic interaction between a dendritic block copolymer and a bioactive protein of opposite charge.
  • the micelle can be stable under physiological conditions and has applications in nanomedicine, medical and biological engineering, protein and drug transport processes, biotechnology, therapy and diagnosis.
  • bioactive proteins as therapeutic agents has aroused enormous interest in recent decades due to its high and selective therapeutic activity.
  • certain diseases related to the deficiency of some lysosomal enzymes can only be treated by the administration of exogenous enzymes [Enzymes as Drugs 1981, p. 167, J. Wiley].
  • insulin a peptide hormone
  • antitumor enzymes which act by destroying certain amino acid sequences necessary for tumor growth
  • digestive enzymes for the treatment of different insufficiencies of the digestive tract
  • antibacterial, antiviral and anti-inflammatory enzymes are also important.
  • PIC micelles Polyion Complex
  • these micelles have a crown formed by a hydrophilic and biocompatible polymer (usually Polyethylene Glycol, PEG) which, once in the bloodstream, prevents its recognition and opsonization by the immune system, ensuring prolonged circulation times [Pharm. Res. 2001, 18, 1411].
  • a hydrophilic and biocompatible polymer usually Polyethylene Glycol, PEG
  • PIC micelles [Macmmolecules 1995, 28, 5294. Bioconjugate Chem. 1995, 6, 639] are a type of polymeric micelles formed by electrostatic interaction between polymers or macromolecules of opposite charge, in which one of the species is a block copolymer which incorporates a hydrophilic and biocompatible block. They are nanostructures with a very low polydispersion and have a size similar to that of viruses and lipopro teins (10-200 nm), which greatly facilitates their entry into cells. Another advantage of PIC micelles is their tendency to passively accumulate in solid tumors thanks to the EPR (Enhanced Permeability and Retention) effect [Cancer Res. 1986, 46, 6387], which together with their long circulation times in the bloodstream , causes them to accumulate selectively in tumor tissues.
  • EPR Enhanced Permeability and Retention
  • PIC micelle formed by electrostatic interaction between a polyionic polymer and a protein was described by Kataoka et al [Macromolecules 1998, 31, 288].
  • Kataoka himself highlighted, not only the preservation of the enzymatic activity of certain proteins inside a PIC micelle, but an increase thereof as a result of the special properties of the micelle core [J. Am. Chem. Soc. 2003, 125, 15306].
  • PIC micelles containing proteins can be considered as nano-reactors with applications in the fields of medical and biological engineering.
  • the present invention demonstrates that PIC micelles containing dendritic block copolymers are an optimal transport system for bioactive proteins that solve current problems in the state of the art. Description of the invention
  • Dendrimer Highly branched polymer in which the repeating units are organized in generations from a focal point. Its nanometric size and multivalence makes them suitable macromolecules f
  • Block Copolymer A copolymer is a polymer composed of two or more monomer species. Copolymers formed by two blocks of different polymerized monomers are called block copolymers.
  • Bioactive proteins Macromolecules formed by linear chains of amino acids that regulate or perform some biological process. Bioactive proteins are characterized by being organized in four structural levels called primary, secondary, tertiary and quaternary structure.
  • the primary structure is a description of the covalent bonds that bind the different amino acids of a protein chain.
  • the secondary structure refers to particularly stable arrangements of the amino acids that give rise to repetitive structural patterns.
  • the tertiary structure describes all aspects of the three-dimensional folding of the protein.
  • a protein has two or more polypeptide subunits, its arrangement in space is called a quaternary structure. The bioactivity of a protein depends on these four levels of organization. Thus, if the three-dimensional structure of a protein is destroyed (denaturation), the protein function is also destroyed.
  • Bioactive proteins are also characterized by having a low charge density since only 5 of the 20 protein amino acids have ionizable groups.
  • Isoelectric point (pl) The isoelectric point is the pH at which an amphoteric substance exhibits zero net charge. This concept is particularly important in the case of bioactive proteins since at the isoelectric point its solubility is practically zero. Knowing the isoelectric point, the net charge of a protein can be varied by modifying the pH. Thus, a protein with a high isoelectric point such as lysozyme (pl ⁇ l), will have a positive net charge in aqueous solution at pH values lower than 11, while at pH 11 it will have zero net charge.
  • PIC micelles They are a type of polymeric micelles that are characterized because their formation is mainly based on electrostatic interactions between polymers or macromolecules of opposite charge. They have the peculiarity that the relationship between charges It is stoichiometric, so its net charge is zero. Will be
  • EPR Enhanced Permeability and Retention Effect: The effect by which macromolecules (for example polymeric numbers) tend to passively accumulate in tumor tissues. This fact has been exploited in the context of anti-cancer therapy with the intention of selectively accumulating drug toxicity in cancerous tissues, minimizing their effect on healthy ones.
  • the present invention provides the following improvements.
  • the present invention provides a type of PIC micelle formed by electrostatic interaction between a charged dendritic block copolymer and a bioactive protein.
  • a fundamental advantage offered by the present invention is to solve the problem of instability of PIC numbers with bioactive proteins under physiological saline conditions, by incorporating charged dendritic block copolymers. In this way, the low stability against the ionic force caused by the low charge density of the bioactive proteins is compensated by the greater stability provided by the dendritic block.
  • the present invention constitutes the first example of dendritic PIC micelle with stable bioactive proteins under physiological conditions. This increase in stability is reflected in the possibility of lyophilizing these micelles, greatly facilitating the conservation and storage process.
  • bioactive protein itself is one of the constituent parts of the micelle. Thus, the preparation of a system in which the protein is subsequently encapsulated is not necessary.
  • Another fundamental advantage of the present invention is that the formation of PIC micelles with bioactive proteins is carried out in an aqueous medium, without the need to form covalent bonds, and under very mild conditions, whereby the activity of the protein is not affected.
  • Bioactive proteins of the present invention are extremely simple, due to the ease of synthesis of the dendritic block copolymers, which represents an economical reduction and suitability from the industrial point of view.
  • the present invention relates to a polymeric micelle formed by electrostatic interaction between: a) a dendritic block copolymer represented by the general formula [I];
  • PD q (c) [1] where P is a polymer, D is a dendritic structure, q represents the number of atoms charged at the periphery of the dendritic structure that ranges between 1 and 5000, c represents positive or negative charge, and b) a bioactive protein A that has a net charge c 'opposite to c.
  • polymer P is selected from linear polymers, block copolymers, copolymers, terpolymers, graft copolymers, graft terpolymers and amphiphilic copolymers.
  • polymer P is selected from naturally occurring polymers or polymers produced by chemical synthesis or biotechnological processes.
  • polymer P is preferably selected from N- (2- Hydroxypropyl) methacrylamide (HPMA), Poly (styrene-co-maleic acid / anhydride)
  • SMA Poly (divinyl ether maleic anhydride)
  • DIVEMA Poly (N-vinyl pyrrolidone)
  • PVP Poly (N-vinyl pyrrolidone)
  • PAcM Poly (N-acryloyl) morpholine
  • PEG Polyethylene glycol
  • PEG Poly (propylene oxide)
  • the polymer P is Polyethylene Glycol (PEG).
  • the bioactive protein A is preferably selected from antibodies, antibody fragments, heteroproteins, enzymes and hormones.
  • the bioactive protein A is preferably selected from myoglobin, lysozyme and insulin.
  • the dendritic structure D is a dendrimer, dendron or dendritic polymer constructed from a single or several repeating units. In a particular embodiment, the dendritic structure D
  • Ri and R 2 are linear or branched chains that can be identical or different and that are characterized by containing alkyl groups, alcohols, thiols, azides, nitriles, amines, imides, imines, cyanates, isocyanates, isothiocyanates, ethers, thioethers, ketones, aldehydes, esters, carboxylic acids or aromatic groups;
  • X represents the repeat unit of the next generation or alternatively an anionic or cationic group.
  • the dendritic structure D is preferably a dendron constructed from the repeating unit represented by the general formula [2] where
  • Z is preferably an amide bond
  • Ri and R 2 are identical and are selected from polyethylene glycol or oligoethylene glycol chains preferably are triethylene glycol;
  • X when X is an anionic group, it is preferably selected from carboxylic acids and their derivatives, sulfates and their derivatives, sulphonates and their derivatives, phosphates and their derivatives, phosphonates and their derivatives, arylphosphonic acids and their derivatives, phenols and their derivatives;
  • X when X is a cationic nature group, it is preferably selected from amines, polyamines, oligoamines, preferably spermidines, spermines, anilines, benzylamines, imidazoles, morpholines, ammonium salts, primary, secondary, tertiary or guanidinium groups.
  • the invention relates to a polymeric micelle as defined above, formed by electrostatic interaction between a copolymer.
  • the invention relates to a polymeric micelle as defined above, formed by electrostatic interaction between a PEG-dendrimer block copolymer with benzoate groups at its periphery and the bioactive myoglobin protein.
  • the invention relates to a polymeric micelle as defined above, formed by electrostatic interaction between a PEG-dendrimer block copolymer with positively charged aniline groups on its periphery and the bioactive insulin protein.
  • the present invention also refers to the encapsulation of a drug, diagnostic agent, molecule or macromolecule inside the polymeric micelle as defined above.
  • Another aspect of the present invention relates to the use of a micelle, as defined above, as a vehicle for the therapeutic administration of a bioactive protein.
  • the present invention relates to the use of a micelle, as defined above, as a vehicle for the administration of a diagnostic drug or agent, molecule or macromolecule.
  • Another aspect of the present invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polymeric micelle as defined above and an active ingredient.
  • the present invention provides a type of polymeric micelle formed from bioactive proteins, which can be stable under physiological conditions, and is prepared by a quick, simple and economical method.
  • the type of polymeric micelle described can be used in nanomedicine, medical and biological engineering, protein and drug transport processes, biotechnology, therapy and diagnosis.
  • FIG. 1 AFM of a PIC micelle with insulin formed from dendritic block copolymers with positively charged aniline groups.
  • the dendritic unit 2 was prepared starting from methyl gallate 1 as indicated in Scheme 1.
  • the generation block copolymer one PEG- [Gl] -Ns was obtained by coupling the dendritic unit 2 with a PEG-NH 2 ( 3).
  • Block copolymers of higher generations are obtained by reduction of the terminal azide groups of the previous generation by catalytic hydrogenation and coupling of the resulting amines with the dendritic unit 2 as shown in Scheme 2
  • PEG-dendrimer block copolymers (PEG- [Gn] -Ns).
  • the functionalization of the block copolymers with anionic groups was carried out by a cycloaddition [3 + 2] azide-alkyne reaction catalyzed by Cu (I). For this, it is necessary that the anionic ligands to be introduced are functionalized with terminal alkyne groups.
  • EXAMPLE 3 General procedure for the cationic functionalization of the PEG-dendrimer block copolymers, (PEG- [Gn] -Ns). To introduce cationic groups at the periphery of the block copolymer, two strategies can be followed:
  • EXAMPLE 4 Preparation of PIC numbers from a functionalized block copolymer with terminal benzoate groups and the bioactive lysozyme protein (pl> 7).
  • the PEG- [G3] -Benzoate block copolymer obtained from PEG-NH 2 (M n 5219) and following the procedure described in Examples 1 and 2, was dissolved in a pH 7.4 phosphate buffer (PBS). Separately the lysozyme protein (commercial product) was dissolved in the same PBS buffer pH 7.4. The two solutions were filtered and mixed, in a stoichiometric ratio of charges, considering for this purpose only the positive charges of the protein at the working pH, to give rise to PIC numbers in a final solution of pH 7.4. After 24h under magnetic stirring, the resulting solution was filtered and analyzed by DLS (Dynamic Ligth Scattering).
  • DLS Dynamic Ligth Scattering
  • PIC dendritic micelles with lysozyme are stable for more than one month at 4 0 C in 10 mM PBS, pH 7.4, and for several weeks at this temperature in the presence of 150 mM NaCl. In addition, these micelles are stable for weeks at room temperature in 10 mM PBS, pH 7.4, although storage at this temperature is not recommended due to their protein nature.
  • EXAMPLE 5 Preparation of PIC micelles from a block copolymer functionalized with terminal benzoate groups and the bioactive myoglobin protein (pl ⁇ 7).
  • the PEG- [G3] -Benzoate block copolymer obtained from PEG-NH 2 (Mn 5219) and following the procedure described in Examples 1 and 2, was dissolved in a pH 9 phosphate buffer (PBS).
  • PBS pH 9 phosphate buffer
  • the miglobin commercial product was dissolved in PBS pH 3.
  • the two solutions were filtered and mixed, in a stoichiometric ratio of charges, considering for this purpose only the positive charges of the protein at the working pH, to give rise to PIC micelles at a final pH 7.4.
  • the PEG- [G3] -Aniline-HCl block copolymer obtained from PEG-NH 2 (M n 5219) and following the procedure described in Examples 1 and 3, was dissolved in a pH phosphate buffer (PBS) 3. Separately, insulin (commercial product) was dissolved in PBS pH 12. The two solutions were filtered and mixed, in a stoichiometric ratio of charges, considering for this purpose only the negative charges of the protein at the working pH, for give rise to PIC type numbers at a final pH 7.4. After 24h under magnetic stirring, the resulting solution was filtered and analyzed by DLS (Figure 5). The DLS measurements confirmed the existence of polymeric micelles with a low polydispersion (0.15) and a size of 45 nm. These data were corroborated by AFM.
  • PIC dendritic micelles with insulin are stable for several weeks at room temperature, although storage at this temperature is not recommended due to their protein nature.
  • micelles can be stored for more than one month at 4 0 C, both in 10 mM PBS pH 7.4 and in 10 mM PBS pH 7.4, 150 mM NaCl.

Abstract

Micelas PIC dendríticas con proteínas bioactivas. Se refiere a una micela polimérica de complejo poliiónico (Polyion Complex, PIC) formada por interacción entre una proteína bioactiva y un copolímero de bloque dendrítico de carga opuesta. La tradicional baja estabilidad de micelas PIC con proteínas bioactivas frente a la fuerza iónica es compensada en la presente invención por la estabilidad que aporta el bloque dendrítico. El proceso global de preparación de estas micelas se ve facilitado por la sencillez de la síntesis de copolímeros de bloque dendríticos.

Description

MICELAS PIC DENDRÍTICAS CON PROTE
Sector de la técnica
La presente invención se refiere a una micela polimérica de complejo poliiónico (Polyion Complex, PIC) dendrítica que incorpora una proteína bioactiva como uno de los bloques polifónicos que constituyen la micela. De forma más concreta, la presente invención se refiere a una micela PIC formada por interacción electrostática entre un copolímero de bloque dendrítico y una proteína bioactiva de carga opuesta. La micela puede ser estable en condiciones fisiológicas y tiene aplicaciones en nanomedicina, ingeniería médica y biológica, procesos de transporte de proteínas y fármacos, biotecnología, terapia y diagnóstico.
Antecedentes de la invención
El uso de proteínas bioactivas como agentes terapéuticos ha despertado un enorme interés en las últimas décadas debido a su elevada y selectiva actividad terapéutica. Así, por ejemplo, ciertas enfermedades relacionadas con la deficiencia de algunas enzimas lisosomales sólo pueden ser tratadas por la administración de enzimas exógenas [Enzymes as Drugs 1981, p. 167, J. Wiley]. Entre el amplio número de proteínas terapéuticas, la insulina, una hormona peptídica, es una de las más ampliamente utilizadas, pero son importantes también las enzimas antitumorales (que actúan destruyendo determinadas secuencias de aminoácidos necesarias para el crecimiento de tumores), las enzimas digestivas (para el tratamiento de distintas insuficiencias del tracto digestivo) o las enzimas antibacterianas, antivirales y antiinflamatorias.
Sin embargo, el uso de proteínas como agentes terapéuticos presenta como inconveniente un transporte lento e inefectivo a través de las barreras biológicas, además de un corto tiempo de vida media in vivo provocado por la degradación enzimática y la metabolización. La incorporación de proteínas bioactivas en sistemas de transporte (nanopartículas, liposomas, etc) presenta numerosas ventajas frente a las rutas de administración convencionales. Así, de esta forma, se ha conseguido aumentar la solubilidad y estabilidad de estos agentes terapéuticos frente a la degradación enzimática, mejorar la farmacocinética y, en algunos casos, controlar la liberación de la proteína terapéutica. Sin embargo, hasta el momento, la eficacia de estos sistemas no ha sido demostrada in vivo debido a diversos factores, como por ejemplo, en el caso de liposomas, su falta de estabilidad en medios biológicos
Chem. 2008, 46, I].
A la hora de diseñar un sistema adecuado para el transporte de proteínas bioactivas, uno de los problemas que se presentan es la pérdida de actividad. Así, debido a la tendencia de proteínas a la desnaturalización, las condiciones de preparación, purificación y almacenamiento están considerablemente limitadas. Además, el sistema de transporte debe ser biocompatible y proteger a la proteína frente a la opsonización por parte del sistema reticuloendotelial (SRE).
En este contexto, las micelas PIC (Polyion Complex) se presentan como un prometedor vehículo de transporte para proteínas bioactivas, ya que permiten la incorporación de las mismas mediante uniones no covalentes y en condiciones fisiológicas, preservando así su actividad. Además, estas micelas poseen una corona formada por un polímero hidrofílico y biocompatible (generalmente Polietilenglicol, PEG) que, una vez en el torrente sanguíneo, evita su reconocimiento y opsonización por parte del sistema inmunológico, asegurando prolongados tiempos de circulación [Pharm. Res. 2001, 18, 1411].
Las micelas PIC [Macmmolecules 1995, 28, 5294. Bioconjugate Chem. 1995, 6, 639] son un tipo de micelas polímericas formadas por interacción electrostática entre polímeros o macromoléculas de carga opuesta, en las que una de las especies es un copolímero de bloque que incorpora un bloque hidrofílico y biocompatible. Son nanoestructuras con una muy baja polidispersión y que presentan un tamaño similar al de virus y lipopro teínas (10-200 nm), lo que facilita enormemente su entrada en las células. Otra ventaja que presentan las micelas PIC es su tendencia a acumularse pasivamente en tumores sólidos gracias al efecto EPR (Enhaced Permeability and Retention) [Cáncer Res. 1986, 46, 6387], lo que unido a sus prolongados tiempos de circulación en el torrente sanguíneo, hace que se acumulen selectivamente en los tejidos tumorales.
El primer ejemplo de micela PIC formada por interacción electrostática entre un polímero poliiónico y una proteína fue descrito por Kataoka y colaboradores [Macromolecules 1998, 31, 288]. El propio Kataoka resaltó, no sólo la preservación de la actividad enzimática de ciertas proteínas en el interior de una micela PIC, sino un aumento de la misma como resultado de las especiales propiedades del núcleo de la micela [J. Am. Chem. Soc. 2003, 125, 15306]. En este sentido, se ha propuesto que las micelas PIC que contienen proteínas pueden ser consideradas como nano-reactores con aplicaciones en los campos de la ingeniería médica y biológica. Sin embargo, las núcelas PIC formadas a partir de proteí
una muy baja estabilidad frente a la fuerza iónica, por lo que su aplicación en sistemas biológicos se ha visto considerablemente limitada. La estabilidad de núcelas PIC frente a concentraciones salinas está directamente relacionada con la densidad de cargas de sus componentes. Así, se han descrito núcelas PIC estables en medio fisiológico cuando los bloques constituyentes de las núcelas presentan una gran densidad de carga, como es el caso de los poliaminoácidos. Sin embargo, la sustitución de un poliaminoácido por una proteína bioactiva provoca la disociación inmediata de las micelas PIC resultantes en condiciones fisiológicas. Este hecho ha sido explicado en base a la baja densidad de carga de las proteínas. Así, mientras un poliaminoácido comercial como Poli-L-lisina presenta una carga positiva por cada -200 Da, en una proteína como lisozima hay sólo una carga neta positiva cada -2000 Da [Angew. Chem. Int. Ed. 2009, DOI: 10.1002/anie.200900064].
Recientemente se ha puesto de manifiesto un gran aumento en la estabilidad de núcelas PIC mediante el uso de dendrímeros [Macromolecules 2003, 36, 1304] y copolímeros de bloque dendríticos [Chem. Comm. 2008, 27, 3136], hecho que se ha atribuido principalmente a la mayor rigidez asociada a este tipo de estructuras. Las micelas PIC construidas a partir de copolímeros de bloque dendríticos presentan como ventaja adicional la facilidad con la que estos copolímeros se sintetizan y por lo tanto un consecuente abaratamiento e idoneidad desde el punto de vista industrial [Chem. Comm. 2008, 27, 3136].
De acuerdo con el estado de la técnica anterior conocido y establecido, hasta el momento no se han descrito micelas PIC formadas a partir de copolímeros de bloque dendríticos y proteínas bioactivas.
En la presente invención se demuestra que las micelas PIC que contienen copolímeros de bloque dendríticos son un sistema de transporte óptimo para proteínas bioactivas que resuelven los problemas actuales en el estado de la técnica. Descripción de la invención
Definiciones
Dendrímero: Polímero altamente ramificado en el que las unidades de repetición se organizan en generaciones a partir de un punto focal. Su tamaño nanométrico y multivalencia hace que sean macromoléculas idóneas f
interacción receptor- ligando.
Copolímero de bloque: Un copolímero es un polímero compuesto por dos o más especies monoméricas. Los copolímeros formados por dos bloques de diferentes monómeros polimerizados se denominan copolímeros de bloque.
Proteínas bioactivas: Macromoléculas formadas por cadenas lineales de aminoácidos que regulan o desempeñan algún proceso biológico. Las proteínas bioactivas se caracterizan por organizarse en cuatro niveles estructurales denominados estructura primaria, secundaria, terciaria y cuaternaria. La estructura primaria es una descripción de los enlaces covalentes que unen los distintos aminoácidos de una cadena proteica. La estructura secundaria se refiere a disposiciones particularmente estables de los aminoácidos que dan lugar a patrones estructurales repetitivos. La estructura terciaria describe todos los aspectos del plegamiento tridimensional de la proteína. Por último, cuando una proteína posee dos o más subunidades polipeptídicas, su disposición en el espacio se denomina estructura cuaternaria. La bioactividad de una proteína depende de estos cuatro niveles de organización. Así, si se destruye la estructura tridimensional de una proteína (desnaturalización) se destruye también la función proteica.
Las proteínas bioactivas se caracterizan además por poseer una baja densidad de carga ya que sólo 5 de los 20 aminoácidos proteicos presentan grupos ionizables.
Punto isoeléctrico (pl): El punto isoeléctrico es el pH al que una sustancia anfótera presenta carga neta nula. Este concepto es particularmente importante en el caso de proteínas bioactivas ya que en el punto isoeléctrico su solubilidad es prácticamente nula. Conociendo el punto isoeléctrico se puede variar la carga neta de una proteína modificando el pH. Así, una proteína con un punto isoeléctrico elevado como lisozima (pl~l l), presentará carga neta positiva en disolución acuosa a valores de pH inferiores a 11, mientras que a pH 11 tendrá carga neta cero.
Micelas PIC: Son un tipo de micelas poliméricas que se caracterizan porque su formación se basa principalmente en interacciones electrostáticas entre polímeros o macromoléculas de carga opuesta. Tienen la particularidad de que la relación entre cargas es estequiométrica, por lo que su carga neta es nula. Fuere
Kataoka (1995), quien las denominó "Polyion Complex Micelles" (PIC Micelles).
Efecto EPR (Enhanced Permeability and Retention): Efecto por el cual las macromoléculas (por ejemplo núcelas poliméricas) tienden a acumularse pasivamente en los tejidos tumorales. Este hecho ha sido aprovechado en el contexto de la terapia anticáncer con la intención de acumular selectivamente la toxicidad de fármacos en los tejidos cancerosos, minimizando su efecto en los sanos.
Actualmente se sabe que este efecto se debe principalmente a dos factores, (i) la hiperpermeabilidad de la vasculatura tumoral, que permite el trasvase de macromoléculas al tumor, (ii) un pobre drenaje linfático, que proporciona una elevada retención de macromoléculas en el tumor.
Con objeto de resolver los problemas existentes en el estado anterior de la técnica, la presente invención proporciona las siguientes mejoras.
La presente invención proporciona un tipo de micela PIC formada por interacción electrostática entre un copolímero de bloque dendrítico cargado y una proteína bioactiva. Una ventaja fundamental que ofrece la presente invención es solventar el problema de la inestabilidad de núcelas PIC con proteínas bioactivas en condiciones salinas fisiológicas, mediante la incorporación de copolímeros de bloque dendríticos cargados. De este modo, la baja estabilidad frente a la fuerza iónica originada por la baja densidad de carga de las proteínas bioactivas es compensada por la mayor estabilidad aportada por el bloque dendrítico. La presente invención constituye el primer ejemplo de micela PIC dendrítica con proteínas bioactivas estable en condiciones fisiológicas. Este aumento de estabilidad se ve reflejado en la posibilidad de liofilizar estas micelas, facilitando enormemente el proceso de conservación y almacenamiento.
Otra ventaja fundamental que ofrece la presente invención es que, a diferencia de otros sistemas de transporte de proteínas, la propia proteína bioactiva es una de las partes constituyentes de la micela. De este modo, no es necesaria la preparación de un sistema en el que posteriormente se encapsule la proteína.
Otra ventaja fundamental de la presente invención es que la formación de las micelas PIC con proteínas bioactivas se realiza en medio acuoso, sin necesidad de formar enlaces covalentes, y bajo condiciones muy suaves, por lo que la actividad de la proteína no se ve afectada. Por último, es de destacar que el proceso global de prep;
proteínas bioactivas de la presente invención es extremadamente sencillo, debido a la facilidad de síntesis de los copolímeros de bloque dendríticos, lo que representa un abaratamiento e idoneidad desde el punto de vista industrial.
La presente invención se refiere a una micela polimérica formada por interacción electrostática entre: a) un copolímero de bloque dendrítico representado por la fórmula general [I];
P D q (c) [1] donde P es un polímero, D es una estructura dendrítica, q representa el número de átomos cargados en la periferia de la estructura dendrítica que oscila entre 1 y 5000, c representa carga positiva o negativa, y b) una proteína bioactiva A que presenta una carga neta c' opuesta a c.
En una realización particular, el polímero P se selecciona entre polímeros lineales, copolímeros de bloque, copolímeros, terpolímeros, copolímeros de injerto, terpolímeros de injerto y copolímeros anfifílicos.
En una realización particular, el polímero P se selecciona entre polímeros de origen natural o polímeros producidos por síntesis química o procesos biotecnológicos.
En una realización particular, el polímero P se selecciona preferentemente entre N- (2- Hidroxipropil)metacrilamida (HPMA), Poli(estireno-co-ácido maleico/anhídrido)
(SMA), Poli(divinil éter anhídrido maleico) (DIVEMA), Poli(N-vinil pirrolidona) (PVP),
Poli(N-acriloil)morfolina (PAcM), Polietilenglicol (PEG), Poli(oxido de propileno)
(POP) y sus derivados.
En una realización más particular, el polímero P es Polietilenglicol (PEG).
En otra realización particular, la proteína bioactiva A se selecciona preferentemente entre anticuerpos, fragmentos de anticuerpos, heteroproteínas, enzimas y hormonas.
En una realización más particular, la proteína bioactiva A se selecciona preferentemente entre mioglobina, lisozima e insulina.
En una realización particular, la estructura dendrítica D es un dendrímero, dendrón o polímero dendrítico construidos a partir de una única o varias unidades de repetición. En una realización particular, la estructura dendrítica D
construido a partir de la unidad de repetición representada por la fórmula general [2]
Figure imgf000008_0001
[2] donde Z representa un enlace covalente entre la unidad de repetición y el polímero P o la unidad de repetición de la generación anterior,
Ri y R2 son cadenas lineales o ramificadas que pueden ser idénticas o diferentes y que se caracterizan por contener grupos alquilo, alcoholes, tioles, azidas, nitrilos, aminas, imidas, iminas, cianatos, isocianatos, isotiocianatos, éteres, tioéteres, cetonas, aldehidos, esteres, ácidos carboxílicos o grupos aromáticos;
X representa la unidad de repetición de la siguiente generación o alternativamente un grupo aniónico o catiónico.
En otra realización particular, la estructura dendrítica D es preferiblemente un dendrón construido a partir de la unidad de repetición representada por la fórmula general [2] donde
Z es preferentemente un enlace amida;
Ri y R2 son idénticos y se seleccionan entre cadenas de polietilenglicol u oligoetilenglicol, preferentemente son trietilenglicol;
cuando X es un grupo aniónico se selecciona preferentemente entre ácidos carboxílicos y sus derivados, sulfates y sus derivados, sulfonatos y sus derivados, fosfatos y sus derivados, fosfonatos y sus derivados, ácidos arilfosfónicos y sus derivados, fenoles y sus derivados;
cuando X es un grupo de naturaleza catiónica se selecciona preferentemente entre aminas, poliaminas, oligoaminas, preferentemente son espermidinas, esperminas, anilinas, benzilaminas, imidazoles, morfolinas, sales de amonio, aminas primarias, secundarias, terciarias o grupos guanidinio.
En una realización más particular, la invención se refiere a una micela polimérica como se ha definido anteriormente, formada por interacción electrostática entre un copolímero de bloque PEG-dendrímero con grupos benzoato en su p
lisozima, tal y como se esquematiza en la figura 1.
En una realización más particular, la invención se refiere a una micela polimérica como se ha definido anteriormente, formada por interacción electrostática entre un copolímero de bloque PEG-dendrímero con grupos benzoato en su periferia y la proteína bioactiva mioglobina.
En una realización más particular, la invención se refiere a una micela polimérica como se ha definido anteriormente, formada por interacción electrostática entre un copolímero de bloque PEG-dendrímero con grupos anilina cargados positivamente en su periferia y la proteína bioactiva insulina.
La presente invención hace también referencia a la encapsulación de un fármaco, agente de diagnóstico, molécula o macromolécula en el interior de la micela polimérica como se ha definido anteriormente.
Otro aspecto de la presente invención se refiere al uso de una micela, como se ha definido anteriormente, como vehículo para la administración terapéutica de una pro teína bioactiva.
En otro aspecto la presente invención se refiere al uso de una micela, como se ha definido anteriormente, como vehículo para la administración de un fármaco o agente de diagnóstico, molécula o macromolécula.
Otro aspecto de la presente invención se refiere a una composición farmacéutica que comprenda una micela polimérica como se ha definido anteriormente y un principio activo.
Tal y como se ha descrito en detalle, la presente invención proporciona un tipo de micela polimérica formada a partir de proteínas bioactivas, que puede ser estable en condiciones fisiológicas, y se prepara mediante un método rápido, sencillo y económico. El tipo de micela polimérica descrito puede ser empleado en nanomedicina, ingeniería médica y biológica, procesos de transporte de proteínas y fármacos, biotecnología, terapia y diagnóstico.
Descripción de las figuras
Figura 1. Formación de una micela PIC con lisozima
Figura 2. Formación de una micela PIC con Lisozima e histograma de DLS. Figura 3. AFM de una núcela PIC con lisozima forma
bloque dendríticos con grupos benzoato.
Figura 4. Formación de una micela PIC con Mioglobina e histograma de DLS.
Figura 5. Formación de una micela PIC con Insulina e histograma de DLS.
Figura 6. AFM de una micela PIC con insulina formada a partir de copolímeros de bloque dendríticos con grupos anilina cargados positivamente.
La preparación de las micelas con proteínas bioactivas de esta invención se ilustra mediante los siguientes ejemplos, que no deben ser considerados en modo alguno como una limitación del alcance de la misma:
EJEMPLO 1. Síntesis de los copolímeros de bloque.
Se preparó la unidad dendrítica 2 partiendo de galato de metilo 1 según se indica en el Esquema 1. El copolímero de bloque de generación uno PEG-[Gl]-Ns se obtuvo por acoplamiento de la unidad dendrítica 2 con un PEG-NH2 (3).
Figure imgf000011_0001
Esquema 1
Los copolímeros de bloque de generaciones superiores se obtienen por reducción de los grupos azida terminales de la generación anterior mediante hidrogenación catalítica y acoplamiento de las aminas resultantes con la unidad dendrítica 2 tal y como se muestra en el Esquema 2
Figure imgf000012_0001
PEG-[G3]-N3
Esquema 2 EJEMPLO 2. Procedimiento general para la ñinα
copolímeros de bloque PEG-dendrímero, (PEG-[Gn]-Ns).
La funcionalización de los copolímeros de bloque con grupos aniónicos se llevó a cabo mediante una reacción de cicloadición [3+2] azida-alquino catalizada por Cu (I). Para ello, es necesario que los ligandos aniónicos que se desea introducir estén funcionalizados con grupos alquinos terminales.
Se disolvieron el copolímero de bloque PEG-dendrímero PEG-[Gn]-Ns y el ligando aniónico en una mezcla /-BuOH-H2O (1:1). Posteriormente, se añadieron cantidades catalíticas de CuSO4 y ascorbato sódico (Esquema 3).
Figure imgf000013_0001
PEG-[GnI-N3
Esquema 3
EJEMPLO 3. Procedimiento general para la funcionalización catiónica de los copolímeros de bloque PEG-dendrímero, (PEG-[Gn]-Ns). Para introducir grupos catiónicos en la periferia del copolímero de bloque pueden seguirse dos estrategias:
1. La reducción de las azidas terminales, por ejemplo mediante hidrogenación catalítica en medio ácido, conduce a sales de amonio de las correspondientes aminas primarias en la periferia del dendrímero. En el Esquema 4 se muestra la obtención de PEG-[G3]-NH3 +.
2. Una reacción de cicloadición [3+2] azida-alquino catalizada por Cu (I), tal y como se ha descrito en el Esquema 3, pero utilizando ligandos catiónicos funcionalizados con alquinos terminales.
Figure imgf000014_0001
PEG-[G3]-NH3 +
Esquema 4
EJEMPLO 4. Preparación de núcelas PIC a partir de un copolímero de bloque funcionalizado con grupos benzoato terminales y la proteína bioactiva lisozima (pl > 7).
El copolímero de bloque PEG-[G3]-Benzoato, obtenido a partir de PEG-NH2 (Mn 5219) y siguiendo el procedimiento descrito en los ejemplos 1 y 2, se disolvió en un tampón fosfato (PBS) de pH 7.4. Separadamente se disolvió la proteína lisozima (producto comercial) en el mismo tampón PBS pH 7.4. Las dos disoluciones se filtraron y se mezclaron, en una relación estequiométrica de cargas, considerando para este fin sólo las cargas positivas de la proteína al pH de trabajo, para dar lugar a núcelas PIC en una disolución final de pH 7.4. Tras 24h bajo agitación magnética, la disolución resultante se filtró y se analizó por DLS (Dynamic Ligth Scattering). Las medidas de DLS confirmaron la existencia de micelas poliméricas con una muy baja polidispersión (0.1) y un tamaño de 120 nm. (Figura 2). Este tamaño fue corroborado por Atomic Forcé Microscopy (AFM). Para comprobar la estabilidad de las núcelas PIC
fisiológicas, se añadió NaCl a la disolución original de micelas hasta alcanzar una concentración salina de 150 mM y se calentó a 37° C. Posteriormente, la disolución de micelas se analizó mediante DLS, no observándose ningún cambio en el tamaño ni ningún otro signo de desestabilización.
Caracterización. Para la visualización mediante AFM de las micelas PIC dendríticas con lisozima, se tomó una alícuota de una disolución de micelas de concentración 1.18 mg/mL en PBS 10 mM, pH 7.4 y se diluyó con agua Milli-Q hasta una concentración de 0.05 mg/mL. 10 μL de esa disolución se depositaron sobre una superficie de silicio que se dejó secar a temperatura ambiente. Se observaron partículas esféricas de aproximadamente 140 nm, en concordancia con las medidas de DLS (Fig. 3).
Estabilidad de las micelas. Las micelas PIC dendríticas con lisozima son estables durante más de un mes a 4 0C en PBS 10 mM, pH 7.4, y durante varias semanas a esta temperatura en presencia de 150 mM NaCl. Además, estas micelas son estables durante semanas a temperatura ambiente en PBS 10 mM, pH 7.4, aunque no es recomendable su almacenamiento a esta temperatura debido a su naturaleza proteica.
Una prueba más de la estabilidad de estas micelas es la posibilidad de liofilizarlas y resuspenderlas posteriormente en el mismo volumen, observándose tan sólo una mínima disminución de tamaño por DLS.
EJEMPLO 5. Preparación de micelas PIC a partir de un copolímero de bloque funcionalizado con grupos benzoato terminales y la proteína bioactiva mioglobina (pl ~ 7). El copolímero de bloque PEG-[G3]-Benzoato, obtenido a partir de PEG-NH2 (Mn 5219) y siguiendo el procedimiento descrito en los ejemplos 1 y 2, se disolvió en un tampón fosfato (PBS) de pH 9. Separadamente, se disolvió la miglobina (producto comercial) en PBS pH 3. Las dos disoluciones se filtraron y se mezclaron, en una relación estequiométrica de cargas, considerando para este fin sólo las cargas positivas de la proteína al pH de trabajo, para dar lugar a micelas tipo PIC a un pH final 7.4. Tras 24h bajo agitación magnética, la disolución resultante se filtró y se analizó por DLS (Figura 4). Las medidas de DLS confirmaron la existencia de micelas poliméricas con una baja polidispersión (0.15) y un tamaño de unos 50 nm. Estos datos fueron corroborados por AFM. EJEMPLO 6. Preparación de núcelas PIC a partir de un copolímero de bloque funcionalizado con grupos anilina cargados positivamente y la proteína bioactiva insulina (pl < 7).
El copolímero de bloque PEG-[G3]-Anilina-HCl, obtenido a partir de PEG-NH2 (Mn 5219) y siguiendo el procedimiento descrito en los ejemplos 1 y 3, se disolvió en un tampón fosfato (PBS) de pH 3. Separadamente, se disolvió la insulina (producto comercial) en PBS pH 12. Las dos disoluciones se filtraron y se mezclaron, en una relación estequiométrica de cargas, considerando para este fin sólo las cargas negativas de la proteína al pH de trabajo, para dar lugar a núcelas tipo PIC a un pH final 7.4. Tras 24h bajo agitación magnética, la disolución resultante se filtró y se analizó por DLS (Figura 5). Las medidas de DLS confirmaron la existencia de micelas poliméricas con una baja polidispersión (0.15) y un tamaño de 45 nm. Estos datos fueron corroborados por AFM.
Para la visualización mediante AFM de las micelas PIC dendríticas con insulina, se tomó una alícuota de una disolución de núcelas de concentración 0.96 mg/mL en PBS 10 mM, pH 7.4, y se diluyó con agua Milli-Q hasta una concentración de 0.05 mg/mL. 10 μL de esa disolución se depositaron sobre una superficie de silicio que se dejó secar a temperatura ambiente. Se observaron partículas esféricas de aproximadamente 45 nm, en concordancia con las medidas de DLS (Fig. 6).
Para comprobar la estabilidad de las micelas PIC con insulina en condiciones fisiológicas, se añadió NaCl a la disolución original de micelas hasta alcanzar una concentración salina de 150 mM y se calentó a 37° C. Posteriormente, la disolución de núcelas se analizó mediante DLS, no observándose ningún cambio en el tamaño ni ningún otro signo de desestabilización.
Las micelas PIC dendríticas con insulina son estables durante varias semanas a temperatura ambiente, aunque no es recomendable su almacenamiento a esta temperatura debido a su naturaleza proteica. Además, las micelas pueden conservarse durante más de un mes a 4 0C, tanto en PBS 10 mM pH 7.4 como en PBS 10 mM pH 7.4, 150 mM NaCl.

Claims

Reivindicaciones.
1. Una núcela polimérica formada por interacción electrostática entre: a) un copolímero de bloque dendrítico representado por la fórmula general [I];
P D q (c) [1] donde P es un polímero, D es una estructura dendrítica, q representa el número de átomos cargados en la periferia de la estructura dendrítica que oscila entre 1 y 5000, c representa carga positiva o negativa, y b) una proteína bioactiva A que presenta una carga neta c' opuesta a c.
2. Una micela polimérica, según la reivindicación 1, donde el polímero P se selecciona preferentemente entre polímeros lineales, copolímeros de bloque, copolímeros, terpolímeros, copolímeros de injerto, terpolímeros de injerto y copolímeros anfifflicos.
3. Una micela polimérica, según la reivindicación 1 y 2, donde el polímero P se selecciona preferentemente entre polímeros de origen natural o polímeros producidos por síntesis química o procesos biotecnológicos.
4. Una micela polimérica, según las reivindicaciones 1, 2 y 3, donde el polímero P se selecciona preferentemente entre N-(2-Hidroxipropil)metacrilamida (HPMA), Poli(estireno-co-ácido maleico/anhídrido) (SMA), Poli(divinil éter anhídrido maleico) (DIVEMA), Poli (N- vinil pirrolidona) (PVP), Poli(N-acriloil)morfolina (PAcM), Polietilenglicol (PEG), Poli(oxido de propileno) (POP) y sus derivados.
5. Una micela polimérica, según las reivindicaciones anteriores, donde el polímero P es preferentemente Polietilenglicol (PEG).
6. Una micela polimérica, según la reivindicación 1, donde la pro teína bioactiva A se selecciona preferentemente entre anticuerpos, fragmentos de anticuerpos, heteropro teínas, enzimas y hormonas.
7. Una micela polimérica, según las reivindicaciones 1 y 6, donde la proteína bioactiva A se selecciona preferentemente entre mioglobina, lisozima e insulina.
8. Una núcela polimérica, según la reivindicación 1, dom
un dendrímero, dendrón o polímero dendrítico construidos a partir de la misma o diferentes unidades de repetición.
9. Una micela polimérica, según las reivindicaciones 1 y 8, donde D es preferiblemente un dendrón construido a partir de la unidad de repetición representada por la fórmula general [2]
Figure imgf000018_0001
[2] donde Z representa un enlace covalente entre la unidad de repetición y el polímero P o la unidad de repetición de la generación anterior,
Ri y R2 son cadenas lineales o ramificadas que pueden ser idénticas o diferentes y que se caracterizan por contener grupos alquilo, alcoholes, tioles, azidas, nitrilos, aminas, imidas, iminas, cianatos, isocianatos, isotiocianatos, éteres, tioéteres, cetonas, aldehidos, esteres, ácidos carboxílicos o grupos aromáticos,
X representa la unidad de repetición de la siguiente generación o alternativamente un grupo aniónico o catiónico.
10. Una micela polimérica, según la reivindicación 9, donde
Z es preferentemente un enlace amida;
Ri y R2 son idénticos y se seleccionan entre cadenas de polietilenglicol u oligoetilenglicol, preferentemente son trietilenglicol;
cuando X es un grupo aniónico se selecciona preferentemente entre ácidos carboxílicos y sus derivados, sulfatos y sus derivados, sulfonatos y sus derivados, fosfatos y sus derivados, fosfonatos y sus derivados, ácidos arilfosfónicos y sus derivados, fenoles y sus derivados;
cuando X es un grupo de naturaleza catiónica se selecciona preferentemente entre aminas, poliaminas, oligoaminas, preferentemente son espermidinas, esperminas, anilinas, benzilaminas, imidazoles, morfolinas, sales de amonio, aminas primarias, secundarias, terciarias o grupos guanidinio.
11. Una núcela polimérica, según la reivindicación 1, car
contiene grupos benzoato en su periferia y A es lisozima.
12. Una núcela polimérica, según la reivindicación 1, caracterizada porque P es PEG, D contiene grupos benzoato en su periferia y A es mioglobina.
13. Una núcela polimérica, según la reivindicación 1, caracterizada porque P es PEG, D contiene grupos anilina cargados positivamente en su periferia y A es insulina.
14. Una micela polimérica, según las reivindicaciones anteriores, caracterizada porque un fármaco, agente de diagnóstico, molécula o macromolécula de cualquier naturaleza está encapsulada en su interior.
15. Uso de una micela, según las reivindicaciones de 1 a 14, como vehículo para la administración terapéutica de una proteína bioactiva.
16. Uso de una micela, según las reivindicaciones de 1 a 14, como vehículo para la administración de un fármaco o agente de diagnóstico, molécula o macromolécula de cualquier naturaleza.
17. Composición farmacéutica que comprende una micela según las reivindicaciones de 1 a 14 y un principio activo.
PCT/ES2010/070504 2009-07-24 2010-07-22 Micelas pic dendríticas con proteínas bioactivas WO2011009991A2 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/386,858 US20120269895A1 (en) 2009-07-24 2010-07-22 Dendritic pic micelles with bioactive proteins
EP10801996.9A EP2457591A4 (en) 2009-07-24 2010-07-22 DENDRITIC PIC MICELLES WITH BIOACTIVE PROTEINS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200901645 2009-07-24
ES200901645A ES2351484B2 (es) 2009-07-24 2009-07-24 Micelas pic dendriticas con proteinas bioactivas.

Publications (2)

Publication Number Publication Date
WO2011009991A2 true WO2011009991A2 (es) 2011-01-27
WO2011009991A3 WO2011009991A3 (es) 2011-07-28

Family

ID=43499473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070504 WO2011009991A2 (es) 2009-07-24 2010-07-22 Micelas pic dendríticas con proteínas bioactivas

Country Status (4)

Country Link
US (1) US20120269895A1 (es)
EP (1) EP2457591A4 (es)
ES (1) ES2351484B2 (es)
WO (1) WO2011009991A2 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116073A2 (en) * 2011-02-23 2012-08-30 The Board Of Trustees Of The University Of Illinois Amphiphilic dendron-coils, micelles thereof and uses
CN103120644A (zh) * 2011-11-17 2013-05-29 山东绿叶制药有限公司 生物功能性蛋白大分子的两亲嵌段共聚物胶束及其制备和应用
US10543171B2 (en) 2013-02-22 2020-01-28 The Board Of Trustees Of The University Of Illinois Dermal drug delivery using amphiphilic dendron-coil micelles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6564369B2 (ja) 2013-12-09 2019-08-21 デュレクト コーポレイション 薬学的活性剤複合体、ポリマー複合体、ならびにこれらを伴う組成物及び方法
US10858484B2 (en) * 2016-05-23 2020-12-08 Ineb—Instituto Nacional De Engenharia Biomedica Biodegradable dendritic structure, methods and uses thereof
CN109206610B (zh) 2017-06-30 2020-06-30 北京键凯科技股份有限公司 一种适用于点击化学反应的多臂多爪聚乙二醇衍生物
CN115386037B (zh) * 2022-08-03 2023-11-17 上海大学 一种基于树形烷氧醚的树枝化共聚物、其合成方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080305174A1 (en) * 2007-06-08 2008-12-11 Gyurik Robert J Polymeric nanocapsules for use in drug delivery
ES2333087B2 (es) * 2008-07-31 2010-09-23 Universidade De Santiago De Compostela Micelas polimericas dendriticas sensibles al ph.

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Enzymes as Drugs", 1981, J. WILEY, pages: 167
ANGEW. CHEM. INT. ED, 2009
BIOCONJUGATE CHEM., vol. 6, 1995, pages 639
CANCER RES., vol. 46, 1986, pages 6387
CHEM. COMM., vol. 27, 2008, pages 3136
CHEM. COMMUN., vol. 27, 2008, pages 3136
J POLYM. SCI. PART A: POLYM. CHEM., vol. 46, 2008, pages 1
J. AM. CHEM. SOC., vol. 125, 2003, pages 15306
MACROMOLECULES, vol. 28, 1995, pages 5294
MACROMOLECULES, vol. 31, 1998, pages 288
MACROMOLECULES, vol. 36, 2003, pages 1304
PHARM. RES., vol. 18, 2001, pages 1411
See also references of EP2457591A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116073A2 (en) * 2011-02-23 2012-08-30 The Board Of Trustees Of The University Of Illinois Amphiphilic dendron-coils, micelles thereof and uses
WO2012116073A3 (en) * 2011-02-23 2013-02-21 The Board Of Trustees Of The University Of Illinois Amphiphilic dendron-coils, micelles thereof and uses
US9212258B2 (en) 2011-02-23 2015-12-15 The Board Of Trustees Of The University Of Illinois Amphiphilic dendron-coils, micelles thereof and uses
US9770413B2 (en) 2011-02-23 2017-09-26 The Board Of Trustees Of The University Of Illinois Amphiphilic dendron-coils, micelles thereof and uses
CN103120644A (zh) * 2011-11-17 2013-05-29 山东绿叶制药有限公司 生物功能性蛋白大分子的两亲嵌段共聚物胶束及其制备和应用
US10543171B2 (en) 2013-02-22 2020-01-28 The Board Of Trustees Of The University Of Illinois Dermal drug delivery using amphiphilic dendron-coil micelles

Also Published As

Publication number Publication date
EP2457591A2 (en) 2012-05-30
US20120269895A1 (en) 2012-10-25
ES2351484B2 (es) 2011-10-11
ES2351484A1 (es) 2011-02-07
WO2011009991A3 (es) 2011-07-28
EP2457591A4 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
ES2333087B2 (es) Micelas polimericas dendriticas sensibles al ph.
Liarou et al. Smart polymersomes and hydrogels from polypeptide-based polymer systems through α-amino acid N-carboxyanhydride ring-opening polymerization. From chemistry to biomedical applications
Svenson Dendrimers as versatile platform in drug delivery applications
Fleige et al. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications
Zheng et al. Redox sensitive shell and core crosslinked hyaluronic acid nanocarriers for tumor-targeted drug delivery
Svenson et al. Dendrimers in biomedical applications—reflections on the field
She et al. The potential of self-assembled, pH-responsive nanoparticles of mPEGylated peptide dendron–doxorubicin conjugates for cancer therapy
Mohammadifar et al. Polyamidoamine and polyglycerol; their linear, dendritic and linear–dendritic architectures as anticancer drug delivery systems
Bai et al. Recent progress in dendrimer-based nanocarriers
ES2206311T3 (es) Suspension coloidal de particulas submicronicas de vectorizacion de principios activos y su modo de preparacion.
ES2351484B2 (es) Micelas pic dendriticas con proteinas bioactivas.
ES2364987T3 (es) Copolímero de bloques para conjugados de fármaco y sus composiciones farmacéuticas.
CN110229323B (zh) 还原敏感可逆交联的具有不对称膜结构的聚合物囊泡及其在制备治疗肝癌药物中的应用
Fan et al. Recent progress of crosslinking strategies for polymeric micelles with enhanced drug delivery in cancer therapy
CN110023407B (zh) 标记的聚(酯酰胺氨基甲酸酯)、由其形成的纳米粒子和其用途
US20020136769A1 (en) Nanogel networks including polyion polymer fragments and biological agent compositions thereof
Zhou et al. The application of stimuli-responsive nanocarriers for targeted drug delivery
WO2011058776A1 (ja) ブロックコポリマー、ブロックコポリマー-金属錯体複合体、及びそれを用いた中空構造体キャリア
ES2431316T3 (es) Sistema de nanotransporte con arquitectura dendrítica
JP2014518862A (ja) 薬物送達用ポリマーナノ粒子
US20140294967A1 (en) Stable nanocomposition comprising paclitaxel, process for the preparation thereof, its use and pharmaceutical compositions containing it
US20080008755A1 (en) Pharmaceutical formulation of cholanic acid-chitosan complex incorporated with hydrophobic anticancer drugs and preparation method thereof
BRPI0714718B1 (pt) Composição de micela polimérica de encapsulamento de polipeptídeos ou proteínas e seu método de preparo
Kim et al. Cross-linked polymeric micelles based on block ionomer complexes
CN108339124B (zh) 一种双级脑靶向聚合物胶束递药系统的制备方法和应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010801996

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13386858

Country of ref document: US