WO2011009294A1 - 通过诱导分化获得肝脏细胞、肝脏内胚层细胞和肝脏前体细胞的方法 - Google Patents

通过诱导分化获得肝脏细胞、肝脏内胚层细胞和肝脏前体细胞的方法 Download PDF

Info

Publication number
WO2011009294A1
WO2011009294A1 PCT/CN2010/001118 CN2010001118W WO2011009294A1 WO 2011009294 A1 WO2011009294 A1 WO 2011009294A1 CN 2010001118 W CN2010001118 W CN 2010001118W WO 2011009294 A1 WO2011009294 A1 WO 2011009294A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
liver
cell
human
culture medium
Prior art date
Application number
PCT/CN2010/001118
Other languages
English (en)
French (fr)
Inventor
邓宏魁
丁明孝
赵东昕
陈松
宋治华
Original Assignee
北京华源博创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 200910089765 external-priority patent/CN101962630B/zh
Priority claimed from CN 200910089693 external-priority patent/CN101962628B/zh
Priority claimed from CN200910089695.4A external-priority patent/CN101962629B/zh
Application filed by 北京华源博创科技有限公司 filed Critical 北京华源博创科技有限公司
Priority to JP2012520888A priority Critical patent/JP2012533310A/ja
Priority to EP10801854.0A priority patent/EP2457998A4/en
Priority to US13/386,373 priority patent/US20120190059A1/en
Publication of WO2011009294A1 publication Critical patent/WO2011009294A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • C12N5/0672Stem cells; Progenitor cells; Precursor cells; Oval cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/117Keratinocyte growth factors (KGF-1, i.e. FGF-7; KGF-2, i.e. FGF-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/12Hepatocyte growth factor [HGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/237Oncostatin M [OSM]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • liver cells liver endoderm cells and liver precursor cells by induced differentiation
  • the present invention relates to a method for inducing differentiation of embryonic stem cells (ESC) or induced pluripotent stem cells (iPS) into liver cells, and a method for inducing differentiation of embryonic stem cells or induced pluripotent stem cells into liver endoderm cells And a method of inducing differentiation of embryonic stem cells (ESC) or induced pluripotent stem cells into liver precursor cells.
  • the invention also relates to liver cells, liver endoderm cells and liver precursor cells obtained by these methods and to the use of such cells. Background technique
  • iPS cells induced pluripotent stem cells
  • embryonic stem cells are very similar in nature and have the potential to differentiate into various cells in vitro. Such cells can maintain their cell population size or expansion by cell division, and can be further differentiated into various specific cell types.
  • the first mammalian iPS cell was established in August 2006. Professor Yamanaka of Japan reported that the transformation of mouse genes into "induction” by transduction of four genes (Oct4, Sox2, Klf4 and c-Myc) Formation of pluripotent stem cells (iPS cells)" (Takahashi, K. Cell 2006; 126, 663-676.).
  • iPS cells induced pluripotent stem cells
  • iPS cells can be expanded indefinitely in vitro and maintain the potential to differentiate in multiple directions, a sufficient number of cells can be obtained for cell transplantation therapy and gene therapy by directed differentiation of iPS cells. If it is possible to obtain the cell type required by the patient by obtaining the patient's somatic cells and establishing an iPS cell line with the same genetic background as the patient, and finally transplanting it back into the patient for treatment; thus avoiding the external transplantation Immune rejection.
  • the implementation of this therapeutic cloning approach will provide a new therapeutic approach for many currently intractable diseases such as diabetes, leukemia and cardiovascular disease.
  • research on human iPS cells will help provide an experimental platform unmatched by animal models for drug screening, pharmacological analysis, and toxicity assessment.
  • Human iPS cells can be differentiated into a variety of cell types in vitro, such as neural cells (Dimos JT. Science 2008; 321 : 1218-1221; Chambers SM. Nat Biotechnol 2009; 27: 275-280; Karumbayaram S. Stem Cells 2009; 27 : 806-811; Hirami Y. Neurosci Lett 2009; 458: 126-131. ), Osteoblasts (Karner E. J Cell Physiol 2009; 218: 323-333.), Cardiomyocytes (Zhang J. Circ Res 2009; 104: e30-4L), adipocytes (Taura D.
  • pancreatic cells Tateishi. J Biol Chem 2008; 283: 31601-31607; Zhang D. Cell Res 2009; 19: 429-438.
  • hematopoietic system cells Taura D. Arterioscler Thromb Vase Biol 2009; Choi KD. Stem Cells 2009; 27: 559-567.
  • Human embryonic stem cells have the ability to proliferate indefinitely and the pluripotency of differentiation, and can differentiate into various cell types of the human body under appropriate conditions. Therefore, human embryonic stem cells have the potential to provide a source for a variety of cells, and have enormous application potential, such as the application of a mechanism for determining cell lineage during development, or a cell transplantation for various degenerative diseases.
  • liver cells have received special attention. This is because the liver plays an important role in the metabolism of the human body and has many important functions, including glycogen synthesis, decomposition of red blood cells, synthesis of plasma proteins, and detoxification. Recently, many research groups have successfully differentiated human or mouse embryonic stem cells into the liver lineage.
  • liver precursor cells are a major component of liver parenchyma. Through developmental studies in mice and humans, these liver precursor cells are a common precursor of mature hepatocytes and intrahepatic biliary epithelial cells. The differentiation of liver precursor cells into the two lineages of the liver and gallbladder is only gradually determined during the second trimester. Preliminary studies have been carried out on the characteristics of liver precursor cells by isolating liver precursor cells from human and mouse fetal livers and culturing them in vitro. In vitro culture, human liver precursor cells exhibit strong proliferative capacity while exhibiting a stable phenotype. When placed under appropriate conditions, liver precursor cells can differentiate into adenoid cells that express ALB, store glycogen; and differentiate into bile duct cells that express KRT19.
  • liver precursor cells Although the proliferative capacity of liver precursor cells and the bidirectional differentiation potential of hepatobiliary have been confirmed, the origin and function of these liver precursor cells is still a controversial field. This may be mainly because people can only directly obtain liver precursor cells from the liver, and the lack of early human embryos greatly limits the collar. Domain research. Summary of invention
  • the present invention provides the following -
  • a method for inducing differentiation of embryonic stem cells (ESC) or induced pluripotent stem cells (iPS) into liver cells comprising the steps of:
  • ESC Embryonic stem cells
  • iPS induced pluripotent stem cells
  • step 2) transferring the cells obtained from step 1) into a basal cell culture medium containing insulin-transferrin-selenium salt (preferably sodium selenite) and activin A;
  • insulin-transferrin-selenium salt preferably sodium selenite
  • liver cell culture medium containing fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) to obtain liver precursor cells
  • the embryonic stem cell (ESC) or induced pluripotent stem cell (iPS) is a mammalian cell, more preferably a mouse or a human cell, most preferably a human cell, wherein when the cell is a human cell, preferably Activin A is human activin A, the fibroblast growth factor is human fibroblast growth factor, and the bone morphogenetic protein is human bone morphogenetic protein.
  • the basal cell culture medium is selected from the group consisting of MEM, DMEM BME, DMEM / F12 RPMI 1640 and Fischer, s.
  • the fibroblast growth factor is acidic fibroblast growth factor, fibroblast growth factor 2 or fibroblast growth factor 4;
  • the bone morphogenetic protein is bone morphogenesis Protein 2 or bone morphogenetic protein 4.
  • liver cell growth factor preferably human liver cell growth factor
  • keratinocyte growth factor preferably human keratinocyte growth factor
  • the tumor cells are cultured in the liver cell culture medium of dexamethasone M and dexamethasone, and then transferred to a differentiation medium V to obtain mature liver cells
  • the differentiation medium V is (0.1-10 ml/100 ml of N2, ( 0.1 -20 )ml/100ml of B27, 0.5-2 mM glutamine, (0.1 _ 10) ml/100 ml of non-essential amino acids, 0.05-0.2 mM ⁇ -mercaptoethanol, 1-100 ng/ml of Oncostatin M ( OSM) Wo B 0.05 — basal medium for ⁇ dexamethasone (Dex), pH 7.2-7.6.
  • OSM Oncostatin M
  • liver cell growth factor is 5 to 100 ng/ml of the liver cell culture medium; and the keratinocyte growth factor is 5 to 100 ng/ml.
  • liver cell preferably the liver cell
  • the cells have glycogen synthesis and storage functions, have urea synthesis functions, function to secrete leukocytes, and/or have P450 enzyme activity in response to drug induction. .
  • a method of inducing differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells (iPS) into liver endoderm cells comprising the steps of:
  • ESC Embryonic stem cells
  • iPS induced pluripotent stem cells
  • step 2) transferring the cells obtained from step 1) into a basal cell culture medium containing insulin-transferrin-selenium salt (preferably sodium selenite) and activin A;
  • insulin-transferrin-selenium salt preferably sodium selenite
  • the cells obtained from the step 2) are cultured in a liver endoderm cell-inducing medium containing fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) to obtain liver endoderm cells.
  • FGF fibroblast growth factor
  • BMP bone morphogenetic protein
  • the embryonic stem cell (ESC) or induced pluripotent stem cell (iPS) is a mammalian cell, more preferably a mouse or a human cell, most preferably a human cell, wherein when the cell is a human cell, preferably Activin A is human activin A, the fibroblast growth factor is human fibroblast growth factor, and the bone morphogenetic protein is human bone morphogenetic protein.
  • the basal cell culture medium in steps 1) and 2) is further Containing bovine serum albumin component V, wherein preferably the fibroblast growth factor is acidic fibroblast growth factor, fibroblast growth factor 2 or fibroblast growth factor 4; the bone morphogenetic protein is bone morphogenesis Protein 2 or bone morphogenetic protein 4.
  • step 2) the cells obtained from step 1) are first transferred to a basal cell containing activin A and a first concentration of insulin-transferrin-selenium salt
  • the medium is cultured, and the obtained cells are then cultured in a basal cell culture medium containing activin A and a second concentration of insulin-transferrin-selenium salt, the second concentration being higher than the first concentration.
  • the medium used in the step 1) is a bovine serum albumin component V and a 50-200 ng/ml human activin A containing 0.02% to 1% by mass.
  • the basic cell culture medium; the medium used in the step 2) is a bovine serum albumin component V containing 0.02% to 1% by mass, and 0.05% to 0.5% by volume of insulin-transfer iron.
  • the liver endoderm cell induction medium contains 20-60 ng/ml Hepatocyte culture medium of human fibroblast growth factor-4 and 10-30 ng/ml human bone morphogenetic protein-2.
  • the basal cell culture medium is selected from the group consisting of MEM, DMEM, BME, DMEM / F12, RPMI 1640 and Fischer, s.
  • step 16 The method according to the above 11, further comprising the step of: after step 3): sorting the cells expressing the neuro-cadherin surface protein by flow cytometry.
  • the embryonic stem cell is a human embryonic stem cell
  • the human embryonic stem cell is a commercially available human embryonic stem cell line; preferably any one of the following cell lines: BG01 , BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UCOl, UC06, WA01, WA07, WA09 , WA13 and WA14; the number is the number of the NIH.
  • Liver endoderm cells obtained by differentiation of human embryonic stem cells or human induced pluripotent stem cells by the method according to any one of the above 11-18, preferably expressing at least alpha-fetoprotein, liver nuclear factor 4A and nerve Liver endoderm cells of the three hallmark proteins of the cadherin.
  • liver endoderm cell according to the above 19, wherein the liver endoderm cells express alpha-fetoprotein, white Protein, liver cell nuclear factor 4A, liver cell nuclear factor 3B and neurogenic calcium adhesion protein.
  • hepatic endoderm cells according to the above 19 or 20 for the preparation of hepatic parenchymal cells or cholangiocarcinoma cells.
  • a method of inducing differentiation of embryonic stem cells (ESC) or induced pluripotent stem cells (iPS) into liver precursor cells comprising the steps of:
  • ESC Embryonic stem cells
  • iPS induced pluripotent stem cells
  • step 2) transferring the cells obtained from step 1) into a basal cell culture medium containing insulin-transferrin-selenium salt (preferably sodium selenite) and activin A;
  • insulin-transferrin-selenium salt preferably sodium selenite
  • the cells obtained in the step 2) are cultured in a liver endoderm cell-inducing medium containing fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) to obtain liver endoderm cells, and
  • FGF fibroblast growth factor
  • BMP bone morphogenetic protein
  • liver endoderm cells obtained in step 3) are cultured on a STO cell word layer using a liver precursor cell culture medium to obtain liver precursor cells.
  • the embryonic stem cell (ESC) or induced pluripotent stem cell (iPS) is a mammalian cell, more preferably a mouse or a human cell, most preferably a human cell, wherein when the cell is a human cell, preferably Activin A is human activin A, the fibroblast growth factor is human fibroblast growth factor, and the bone morphogenetic protein is human bone morphogenetic protein.
  • the basal cell culture medium in steps 1) and 2) further comprises bovine serum albumin component V, wherein preferably the fibroblast growth factor is acidic fibroblast Growth factor, fibroblast growth factor 2 or fibroblast growth factor 4; the bone morphogenetic protein is bone morphogenetic protein 2 or bone morphogenetic protein 4.
  • step 2 the cells obtained from step 1) are first transferred to basal cell culture containing activin A and a first concentration of insulin-transferrin-selenium salt.
  • the medium is cultured, and the obtained cells are then cultured in a basal cell culture medium containing activin A and a second concentration of insulin-transferrin-selenium salt, the second concentration being higher than the first concentration.
  • the medium used in the step 1) is a bovine serum albumin component V and a 50-200 ng/ml human activin A containing 0.02% to 1% by mass.
  • the basic cell culture medium; the medium used in the step 2) is a bovine serum albumin component V containing 0.02% to 1% by mass, and 0.05% to 0.5% by volume of insulin-transfer iron.
  • the basal cell culture medium is selected from the group consisting of MEM, DMEM, BME, DMEM/F12, RPMI 1640 and Fischer's.
  • the embryonic stem cell is a human embryonic stem cell
  • the human embryonic stem cell is a commercially available human embryonic stem cell line; preferably any one of the following cell lines: BG01, BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WA01, WA07, WA09, WA13 and WA14; the number is the number of the NIH.
  • liver precursor cells according to 31 above for the preparation of hepatic parenchymal cells or cholangiocarcinoma cells. Detailed description of the invention
  • the method for inducing the formation of pluripotent stem cells differentiated into liver cells is to induce formation
  • the pluripotent stem cells are cultured in differentiation medium I, transferred to differentiation medium I containing insulin-transferrin-selenium salt, and then cultured in liver cell medium containing fibroblast growth factor and bone morphogenetic protein.
  • the liver precursor cells are cultured in (HCM) to promote maturation of the liver precursor cells to obtain liver cells; and the differentiation medium I is a basal cell culture medium containing activin A.
  • the basal cell culture medium is MEM (Minimum Essential Medium), DMEM, BME (Basal Medium Eagle), DMEM/F12, RPMI1 640 or Fischer's Medium (Fischer's Medium) which are well known in the prior art. Available from companies such as Sigma Aldrich, Invitrogen, Gibco.
  • the amount of activin A may be 10-500 ng/ml of the differentiation medium I; the volume ratio of the insulin-transferrin-selenium salt (preferably sodium selenite) to the differentiation medium I is 0.01 — 20%.
  • the insulin-transferrin-selenium salt preferably sodium selenite
  • the fibroblast growth factor is acidic fibroblast growth factor, fibroblast growth factor 2 or fibroblast growth factor 4;
  • the bone morphogenetic protein is bone morphogenetic protein 2 or bone morphology Protein 4 is formed.
  • the amount of the fibroblast growth factor (FGF) may be 5 - 100 ng / ml of the liver cell culture medium; the amount of the bone morphogenetic protein (BMP) may be 5 - 100 ng / ml of the liver cell culture medium .
  • the liver precursor cells can be cultured in a liver cell culture medium containing liver cell growth factor (HGF) and keratinocyte growth factor (KGF) by using the existing method.
  • HGF liver cell growth factor
  • KGF keratinocyte growth factor
  • the expanded liver precursor cells are then transferred to a liver cell culture medium containing oncostatin M and dexamethasone, and then transferred to a differentiation medium V to obtain mature liver cells; the differentiation medium V Containing 0.1 - 10% by volume of N2 (purchased from Invitrogen, Cat. No. 17502-048), 0.1-20% by volume B27 (purchased from Invitrogen, Cat. No.
  • the amount of the liver cell growth factor (HGF) may be 5 to 100 ng/ml of the liver cell culture medium; the amount of the keratinocyte growth factor (KGF) may be 5 to 100 ng/ml of the liver cell culture medium.
  • the amount of the oncostatin M may be 1 to 100 ng / ml of the liver cell culture medium or basal medium; the amount of the dexamethasone (Dex) may be in the liver cell culture medium or basal medium
  • the concentration in the range is 0.05-1 ⁇ .
  • the normal liver cell marker molecules obtained by the above methods are expressed as AFP (alpha-fetoprotein), Alb (albumin (ALB)), CK18 (cytokeratin (keratin) 18), CK8 (cytokeratin (keratin) 8) , CK19 (cytokeratin (keratin) 19), AAT ( ⁇ -antitrypsin), CYP3A4 (hepatic drug enzyme), hepatocyte nuclear factor 4 ⁇ (HNF4A, or HNF4a), GAPDH (glyceraldehyde-3-phosphate dehydrogenase) Or have a normal liver Cellular functions such as glycogen synthesis and storage, urea synthesis, secretion of albumin and the like of liver cells are also within the scope of the present invention.
  • AFP alpha-fetoprotein
  • Alb albumin
  • CK18 cytokeratin (keratin) 18
  • CK8 cytokeratin (keratin) 8
  • CK19 cytokeratin (ker
  • the first aspect of the invention provides the following:
  • a method for differentiating the formed pluripotent stem cells into liver cells by culturing the induced pluripotent stem cells in a differentiation medium I, and then transferring them into a differentiation medium I containing insulin-transferrin-selenium salt And then obtaining liver precursor cells in a liver cell culture medium containing fibroblast growth factor and bone morphogenetic protein, promoting liver cell maturation, and obtaining liver cells; said differentiation medium I is containing activin A Basal cell culture medium.
  • the basal cell culture medium is MEM, DMEM, BME, DMEM / F12, RPMI 1640 or Fischer's.
  • fibroblast growth factor is acidic fibroblast growth factor, fibroblast growth factor. 2 or fibroblast growth factor 4; the bone morphogenetic protein Protein 2 or bone morphogenetic protein 4 is formed for bone morphology.
  • the amount of the fibroblast growth factor (FGF) may be 5 - 100 ng / ml of the liver cell culture medium; the bone morphogenetic protein (BMP) The amount may be 5 - 100 ng / ml of the liver cell culture medium.
  • FGF fibroblast growth factor
  • BMP bone morphogenetic protein
  • promoting the liver cell maturation is carried out by culturing the liver cell in a liver cell culture medium containing liver cell growth factor and keratinocyte growth factor, and obtaining the amplified The liver precursor cells; then transferred to a liver cell culture medium containing oncostatin M and dexamethasone, and then transferred to a differentiation medium V to obtain mature liver cells;
  • the differentiation medium V is contained ( 0.1-10) ml/ 100ml N2, (0.1-20)ml/100ml B27, 0.5-2mM glutamine, (0.1-10)ml/100ml non-essential amino acids, 0.05-0.2 ⁇ -mercaptoethanol, l _ 100ng/ Methyl Oncostatin M (OSM) and 0.05- ⁇ Dexamethasone (Dex) basal medium, pH 7.2-7.6.
  • the amount of the liver cell growth factor is 5 - 100 ng / ml of the liver cell culture medium; the amount of the keratinocyte growth factor is 5 - lOOng / ml
  • the liver cell culture medium, the amount of the oncostatin M is 1 - 100 ng / ml of the liver cell culture medium; the dexamethasone The amount is 0.05 - ⁇ the liver cell culture medium.
  • the activin ⁇ induces efficient differentiation of human iPS cells into definitive endoderm cells, and then further cooperates with fibroblast growth factor and bone morphogenetic protein.
  • the early growth of early liver cells can be promoted by the combination of liver cell growth factor and keratinocyte growth factor, which can be promoted by the combination of OSM, Dex and N2, B27.
  • the differentiated early liver cells are further matured.
  • the differentiated cells obtained have a relatively typical morphology of liver cells, and more than 60% of the cells express the marker proteins CK8 (cytokeratin (keratin) 8), Alb, CK18 and AFP of early liver cells.
  • the liver cells differentiated from iPS cells also express mature liver cell marker molecules AAT and CYP3A4.
  • the whole differentiation process is very similar to the early development of the liver, and the liver cells obtained by the method have inducible CYP450 enzyme activity and can respond to drugs. Induction.
  • the method for differentiating the induced pluripotent stem cells (iPS cells) into liver cells by the invention has the advantages of short cycle, high differentiation efficiency, safety and stability, and the liver cells obtained by differentiation can be used for cell transplantation for treating liver diseases, artificial livers and drugs. Toxicity tests, etc., in addition, the entire differentiation process can also be used for the study of human early embryonic liver development, and has broad application prospects.
  • Another object of the present invention is to provide a liver endoderm cell and a method of producing and purifying the same.
  • the liver endoderm cells provided by the present invention are at least expressed alpha-fetoprotein (AFP), liver nucleus obtained by differentiation of human embryonic stem cells (human ES cells) or human induced pluripotent stem cells (human iPS cells). Hepatic endoderm cells of three marker proteins, factor 4A (HNF4A) and neuro-cadherin.
  • AFP alpha-fetoprotein
  • HNF4A human induced pluripotent stem cells
  • the liver endoderm cells can also express albumin (ALB) and liver cell nuclear factor 3B (FOXA2).
  • ALB albumin
  • FOXA2 liver cell nuclear factor 3B
  • the human embryonic chimeric cell may specifically be a human embryonic stem cell line obtainable commercially, as shown in Table 1.
  • Another object of the present invention is to provide a method for preparing and purifying liver endoderm cells.
  • the method for preparing and purifying liver endoderm cells comprises the following steps
  • Step 1) The obtained cells are cultured on the endoderm induction medium II;
  • Step 2) The obtained cells are cultured on endodermal induction medium III;
  • Step 3) Obtaining the cell liver endoderm cell-inducing medium
  • the endoderm induction medium I is a basal cell culture medium containing 0.02% to 1% by mass of bovine serum albumin component V-200 ng/ml human activin A; wherein, bovine serum albumin component V Quality of 100
  • the content of the fraction is preferably from 0.02% to 0.1%, particularly preferably 0.05%
  • the content of human activin A is preferably from 80 to 150 ng/ml, particularly preferably 100 ng/ml ;
  • the endoderm-inducing medium is a mixture of insulin-transferrin-sodium selenite containing 0.02%-1% by mass of bovine serum albumin component V and 0.05%-0.5% by volume. And a basal cell culture medium of 50-200 ng/ml human activin A; wherein the content of the bovine serum albumin component V is preferably 0.02% to 0.1%, particularly preferably 0.05%; and the content of human activin A is preferably 80-150 ng/ml, particularly preferably 100 ng/ml ; the content of the insulin-transferrin-sodium selenite mixed supplement is preferably 0.05%-0.15%, particularly preferably 0.1%; the endoderm induction medium III It is a bovine serum albumin component V containing 0.02%-1% by mass, 0.5%-2% by volume of insulin-transferrin-sodium selenite mixed supplement and 50-200ng/ml human a basal cell culture medium of activin A; wherein the content of the bo
  • the liver endoderm cell induction medium is a liver cell culture medium containing 20-60 ng/ml human fibroblast growth factor-4 and 10-30 ng/ml human bone morphogenetic protein-2; wherein, human fibroblast growth factor
  • the content of -4 is preferably 30 ng/ml
  • the content of human bone morphogenetic protein-2 is preferably 20 ng/ml.
  • the pH of the above-mentioned endoderm-inducing medium I, endoderm-inducing medium II, endoderm-inducing medium III and liver endoderm cell-inducing medium can be a conventional pH for culturing mammalian cells, such as pH 7.2-7.6.
  • the method further comprises sorting cells expressing a neuronal cadherin surface protein by flow cytometry.
  • liver endoderm cells were digested with trypsin containing no EDTA and added with 2 mM calcium ions, followed by flow cytometry to sort cells expressing the neurotropin surface protein.
  • the human embryonic stem cells are shown in Table 1.
  • the basal cell culture medium may be MEM, DMEM, BME, DMEM / F12, RPMI 1640 or Fischer's medium.
  • human embryonic stem cells or induced pluripotent stem cells are cultured on endodermal induction medium I for 24 ho, and the obtained cells of step 1) are cultured for 24 h on endoderm induction medium II.
  • the obtained cells of step 2) were cultured for 24 hours on endoderm induction medium III.
  • the obtained cell liver endoderm cells were cultured on the induction medium for 5 days.
  • a medium for preparing liver endoderm cells from human embryonic stem cells or induced pluripotent stem cells is also within the scope of the present invention.
  • the medium for preparing liver endoderm cells from human embryonic stem cells or induced pluripotent stem cells, wherein said endoderm induction medium I, said endoderm induction medium II, said endoderm induction culture The base III and the above liver endoderm cell induction medium are composed.
  • liver endoderm cells In the invention, the process of differentiation of human embryonic stem cells into the liver lineage is examined, and the production of liver endoderm cells during this differentiation process is identified.
  • a surface marker protein N-cadheriri was found, which can effectively represent the AFP+ liver endoderm cells that were first produced during differentiation. Therefore, liver endoderm cells can be isolated and purified from the mixed human embryonic stem cell differentiation products by flow cytometric sorting.
  • the second aspect of the invention provides the following:
  • Liver endoderm cells are liver endoderm cells expressing at least three marker proteins, alpha-fetoprotein, hepatocyte nuclear factor 4A and neuro-cadherin-f protein, obtained by differentiation of human embryonic stem cells or human-induced pluripotent stem cells. .
  • liver endoderm cell characterized in that the liver endoderm cells express alpha-fetoprotein, albumin, hepatocyte nuclear factor 4A, hepatocyte nuclear factor 3B and neurogenic calcium adhesion protein.
  • liver endoderm cell according to the above 1 or 2, wherein the human embryonic stem cell is a human embryonic stem cell line.
  • liver endoderm cell according to the above 3, wherein the human embryonic stem cell line is any one of the following cell lines: BG01, BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WA01, WA07, WA09, WA13 and WA14; the number is the number of the NIH.
  • the human embryonic stem cell line is any one of the following cell lines: BG01, BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WA01, WA
  • Step 1) The obtained cells are cultured on the endoderm induction medium II;
  • Step 2) The obtained cells are cultured on endodermal induction medium III;
  • the obtained cell liver endoderm cell induction medium is cultured to obtain liver endoderm cells;
  • the endoderm induction medium I is a bovine serum albumin fraction containing 0.02% to 1% by mass. V and 50-200 ng/ml basal cell culture medium of human activin A;
  • said endoderm induction medium II is a bovine serum albumin component V containing 0.02% to 1% by mass, volume percentage 0.05 %-0.5% insulin-transferrin-sodium selenite mixed supplement and 50-200 ng/ml human activin A basal cell culture medium;
  • said endoderm induction medium III is 0.02% by mass -1% bovine serum albumin fraction V, 0.5%-2% by volume of insulin-transferrin-sodium selenite mixed supplement and 50-200 ng/ml human activin A basal cell culture medium
  • the liver endoderm cell induction medium is a hepatocyte culture medium containing 20-60 ng/ml human fibroblast growth factor-4 and 10
  • basal cell culture medium is MEM, DMEM, BME, DMEM / F12, RPMI 1640 or Fischer, s.
  • human embryonic stem cell is a human embryonic stem cell line obtainable commercially;
  • the commercially available human embryonic stem cell line is preferably any one of the following cell lines: BG01, BG02, BG03, BG04, SAOl, SA02, SA03, ESOl, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UCO1, UC06, WAOl, WA07, WA09, WA13 and WA14; the number is the number of the NIH.
  • a medium for preparing liver endoderm cells from human embryonic stem cells or induced pluripotent stem cells which comprises endodermal induction medium I, endoderm induction medium II, endoderm induction medium III and liver endoderm cell induction medium Composition
  • the endoderm-inducing medium I is a basal cell culture medium containing 0.02%-1% by mass of bovine serum albumin component V and 50-200 ng/ml human activin A
  • said endoderm induction Medium II is a bovine serum albumin component V containing 0.02%-1% by mass, 0.05%-0.5% by volume of insulin-transferrin-sodium selenite mixed supplement and 50-200ng /ml basal cell culture medium of human activin A
  • the endoderm-inducing medium ⁇ is a bovine serum albumin component V containing 0.02% to 1% by mass, and the volume percentage is 0.5% to 2%.
  • Insulin-transferrin-sodium selenite mixed supplement and 50-200 ng/ml human activin A basal cell culture medium; liver endoderm cell induction medium containing 20-60 ng/ml human fibroblast growth Factor-4 and 10-30ng/ml human bone Liver cell culture medium is protein-2 state is formed.
  • liver endoderm cells of the present invention are liver endoderm cells which are obtained from human embryonic stem cells or induced pluripotent thousand cell differentiation and which express at least three marker proteins: alpha-fetoprotein, hepatocyte nuclear factor 4A and neuro-cadherin. .
  • Liver precursor cells can be obtained by continuing culture of the liver endoderm of the present invention. These liver precursor cells It has the potential to differentiate into liver parenchyma and bile ducts in vitro.
  • Still another object of the present invention is to provide a liver precursor cell and a method and application thereof.
  • the liver precursor cells provided by the invention are differentiated from human embryonic stem cells (human ES cells) or human induced pluripotent stem cells (human iPS cells) to express early liver marker protein alpha fetoprotein (AFP). And cells expressing the bile duct marker proteins keratin 19 (KRT19) and keratin 7 (KRT7), which have proliferative ability and have bidirectional differentiation potential to hepatic parenchymal cells and bile duct-like cells.
  • Another object of the invention is to provide a method of preparing liver precursor cells.
  • the method for preparing liver precursor cells according to the present invention comprises the following steps:
  • Step 1) The obtained cells are cultured on the endoderm induction medium II;
  • Step 2) The obtained cells are cultured on the endoderm induction medium III;
  • Step 3) The obtained cell liver endoderm induction medium is cultured to obtain liver endoderm cells;
  • liver endoderm cells are cultured on a STO cell as a feeder layer using a liver precursor cell culture medium to obtain liver precursor cells.
  • the endoderm-inducing medium I is a basal cell culture medium containing 0.02% to 1% by mass of bovine serum albumin component V and 50-200 ng/ml of human activin A; wherein, bovine serum albumin group
  • the content of the fraction V is preferably 0.02%-0.1%, particularly preferably 0.05%
  • the content of human activin A is preferably 80-150 ng/ml, particularly preferably 100 ng/ml;
  • the endoderm induction medium II is a mixture of insulin-transferrin-sodium selenite containing 0.02%-1% by mass of bovine serum albumin component V and 0.05%-0.5% by volume. And a basal cell culture medium of 50-200 ng/ml human activin A; wherein the content of the bovine serum albumin component V is preferably 0.02% to 0.1%, particularly preferably 0.05%; and the content of human activin A is preferably 80-150 ng/ml, particularly preferably 100 ng/ml; the content of the insulin-transferrin-sodium selenite mixed supplement is preferably 0.05%-0.15%, particularly preferably 0.1%; the endoderm induction medium III It is a bovine serum albumin component V containing 0.02%-1% by mass, 0.5%-2% by volume of insulin-transferrin-sodium selenite mixed supplement and 50-200ng/ml human a basal cell culture medium of activin A; wherein the content of the bovine serum
  • the liver endoderm induction medium is a liver cell culture medium containing 20-60 ng/ml human fibroblast growth factor-4 and 10-30 ng/ml human bone morphogenetic protein-2; wherein, human fibroblast growth factor- 4
  • the content is preferably 30 ng/ml, and the content of human bone morphogenetic protein-2 is preferably 20 ng/ml;
  • the liver precursor cell culture medium is an insulin-transferrin-sodium selenite mixed supplement containing 5-25 mM HEPES, and the volume fraction is 0.5%-2%, and the bovine mass percentage is 0.02%-1%.
  • Serum albumin fraction V 2-20 mM nicotinamide, 0.2-2 mM diphosphorylated ascorbic acid, 0.02-0.2 ⁇ dexamethasone, and 5-40 ng/mI EGF basal cell culture medium; wherein HEPES content is preferred It is 9-12 mM, particularly preferably 10 mM ; the content of the insulin-transferrin-sodium selenite mixed supplement is preferably 0.8%-1.5%, particularly preferably 1%; the content of bovine serum albumin component V Preferably, it is from 0.02% to 0.1%, particularly preferably 0.05%; the content of nicotinamide is preferably from 8 to 14 mM, particularly preferably 11 mM; the content of diphosphorylated ascorbic acid is preferably
  • the pH of the above-mentioned endoderm-inducing medium I, endoderm-inducing medium II, endoderm-inducing medium III, liver endoderm-inducing medium and liver precursor cell medium can be a conventional pH for culturing mammalian cells, such as pH. 7.2-7.6.
  • the step 3) and the step 4) further comprise the step of sorting cells expressing the neuronal calcium adhesion protein (N-cadherin) surface protein by flow cytometry.
  • the human embryonic stem cells are shown in Table 1.
  • the basal cell culture medium may be MEM, DMEM, BME, DMEM / F12 > RPMI 1640 or Fischer 's.
  • human embryonic stem cells or induced pluripotent stem cells are cultured on endodermal induction medium I for 24 ho, and the obtained cells of step 1) are cultured for 24 h on endoderm induction medium II.
  • the obtained cells of step 2) were cultured for 24 hours on endoderm induction medium III.
  • the obtained cell liver endoderm induction medium was cultured for 5 days.
  • the step 4) the liver endoderm cells are cultured on the STO cells as a word culture layer using a liver precursor cell culture medium to obtain liver precursor cells.
  • a method for substituting liver precursor cells is further included; the method for substituting liver precursor cells is to digest the liver precursor cells with trypsin-EDTA digestive solution (Hwitmgen, USA), and then to feed them in STO cells.
  • the layer is cultured on liver precursor cell culture medium.
  • the above-mentioned endoderm-inducing medium I, the above-mentioned endoderm-inducing medium II, the above-mentioned endoderm-inducing medium III, the above-mentioned liver endoderm-inducing medium and the above-described liver precursor cell culture medium are used for human embryonic stem cells or induction.
  • the preparation of a medium for liver precursor cells by pluripotent stem cells is also within the scope of the present invention. .
  • the process of differentiation of human embryonic stem cells into the liver lineage is examined, and the production of liver precursor cells during this differentiation process is identified.
  • a surface marker protein N-cadherin was found, which can effectively represent the first generation of AFP+ liver endoderm cells during differentiation. Therefore, the method can be sorted by flow cytometry
  • the liver endoderm cells are isolated and purified from the mixed human embryonic stem cell differentiation products.
  • the liver endoderm cells of the present invention grow in a clonal manner and, unlike the previously reported liver endoderm cells, exhibit a strong proliferative capacity. These liver endoderms continue to be cultured to obtain liver precursor cells. These liver precursor cells also exhibit differentiation potential to both the liver parenchyma and the bile duct in vitro.
  • liver precursor cells can differentiate into cells of hepatic parenchymal cells, and express their specific functional proteins such as ALB, AAT, etc., and store glycogen; liver precursor cells can also differentiate into bile duct-like cells, and express KRT7, KRT19, form a bile duct-like structure and obtain epithelial polarity.
  • the third aspect of the present invention provides the following items:
  • Liver precursor cells which are differentiated from human embryonic stem cells or human-induced pluripotent stem cells to obtain cells expressing alpha-fetoprotein, keratin 19 and keratin 7, which have proliferative ability and have hepatic parenchymal cells and bile ducts.
  • the two-way differentiation potential of cells are provided.
  • liver precursor cell characterized in that the human embryonic stem cell is a human embryonic stem cell line.
  • the human embryonic stem cell line is any one of the following cell lines: BG01, BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WA01, WA07, WA09, WA13 and WA14; the number is the number of the NIH.
  • Step 1) The obtained cells are cultured on the endoderm induction medium II;
  • Step 2) The obtained cells are cultured on the endoderm induction medium III;
  • Step 3) The obtained cell liver endoderm induction medium is cultured to obtain liver endoderm cells;
  • liver endoderm cells are cultured on the STO cells as a feeder layer using liver precursor cell culture medium to obtain liver precursor cells;
  • the endoderm-inducing medium I is a basal cell culture medium containing 0.02%-1% by mass of bovine serum albumin component V and 50-200 ng/ml human activin-A; said endoderm-induced culture Group II is a bovine serum albumin component V containing 0.02%-1% by mass, 0.05%-0.5% by volume of insulin-transferrin-sodium selenite mixed supplement and 50-200 ng/
  • the basic cell culture medium of ml human activin-A; the endoderm induction medium III is a bovine serum albumin component V containing 0.02% to 1% by mass, and the volume percentage is 0.5% to 2%.
  • Insulin-transferrin-sodium selenite mixed supplement and 50-200 ng/ml human activin-A The basal cell culture medium;
  • the liver endoderm induction medium is a hepatocyte culture medium containing 20-60 ng/ml human fibroblast growth factor-4 and 10-30 ng/ml human bone morphogenetic protein-2;
  • the liver precursor cell culture medium is a mixed solution of insulin-transferrin-sodium selenite containing 5-25 mM HEPES, 0.5%-2% by volume, and a bolus of 0.02%-1% by mass.
  • Serum albumin fraction V 2-20 mM nicotinamide, 0.2-2 mM diphosphorylated ascorbic acid, 0.02-0.2 ⁇ dexamethasone, and 5-40 ng/ml EGF basal cell culture medium.
  • the method further comprises a passage step of liver precursor cells; the method of passage of liver precursor cells is to use the liver precursor cells
  • the trypsin-EDTA digest was digested and then cultured on STO cells as a feeder layer of liver precursor cell culture medium.
  • the commercially available human embryonic stem cell line is preferably any one of the following cell lines: BG01, BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WA01, WA07, WA09, WA13 and WA14; the number is the number of the NIH.
  • a medium for preparing liver precursor cells from human embryonic stem cells or induced pluripotent stem cells which comprises endodermal induction medium I, endoderm induction medium II, endoderm induction medium III, liver endoderm induction medium, and
  • the liver precursor cell culture medium is composed;
  • the endoderm-induced culture I is a basal cell culture medium containing 0.02%-1% by mass of bovine serum albumin component V and 50-200 ng/ml human activin-A.
  • the endoderm-inducing medium II is a mixture of insulin-transferrin-sodium selenite containing 0.02%-1% by mass of bovine serum albumin component V, and 0.05%-0.5% by volume.
  • the endoderm induction medium III is a bovine serum albumin component V containing 0.02% to 1% by mass, and 0.5% to 2% by volume of insulin-iron Protein-sodium selenite mixed supplement and 50-200 ng/ml human auxin-A basal cell culture medium; said liver endoderm induction medium contains 20-60 ng/ml human fibroblast growth factor-4 and Hepatocyte culture medium of 10-30 ng/ml human bone morphogenetic protein-2; the liver precursor cell culture medium is insulin-transferrin-selenium containing 5-25 mM HEPES, volume fraction 0.5%-2% Sodium mixed supplement, bovine serum albumin fraction V, 2-20 mM nicotinamide, 0.2-2 mM diphosphorylated ascorbic acid, 0.02-0.2 ⁇ dexamethasone, and 5 -40 ng/ml EGF basal cell culture medium.
  • the liver precursor cells of the present invention are obtained by differentiation of human embryonic stem cells or induced pluripotent stem cells to obtain an early liver marker gene alpha-fetoprotein (AFP) and a bile duct-expressing marker gene keratin 19 (KRT19) and keratin 7 (KRT7).
  • AFP alpha-fetoprotein
  • KRT19 bile duct-expressing marker gene keratin 19
  • KRT7 keratin 7
  • the liver precursor cells of the present invention have the potential to differentiate into hepatic parenchyma and bile ducts in vitro.
  • Figure 1 shows the results of immunofluorescence and RT-PCR detection of IPS cells initially differentiated into liver cells (HI: differentiated ES cells HI; 3U1: differentiated hAFF-4U-M-iPS-1; 3U2: differentiated hAFF-4U- M-iPS-3. The same as below).
  • Figure 2 shows the results of detection of mature liver cell marker molecules AAT and CYP3A4 on differentiated cells.
  • Figure 3 shows the results of detection of glycogen synthesis function of differentiated cells.
  • a human liver cells b, c, d are differentiated ES cells H1, hAFF-4U-M-iPS-1 and hAFF-4U-M-iPS-3; e is feeder cells; f, g, h respectively ES cells H1, hAFF-4U-M-iPS-1 and hAFF-4U-M-iPS-3 cells spontaneously differentiated without addition of cytokines.
  • Figure 4 shows the results of the test for the synthesis of urea in differentiated cells.
  • Figure 5 shows the results of detection of the secreted albumin function of differentiated cells.
  • Control human liver cells; 18: cells differentiated for 18 days; 21: cells differentiated for 21 days.
  • Figure 6 shows the results of detection of CYP450 enzyme activity by differentiated cells.
  • Control human liver cells; administration: 200 ⁇ ⁇ / ⁇ 1 sodium phenobarbital;
  • Figure 7 is a time log of the expression of liver endoderm-associated genes.
  • Figure 8 shows immunofluorescence showing co-expression of N-cadherin with AFP, ALB, HNF4A, GATA4 and FOXA2.
  • AFP is co-expressed with N-cadherin (AFP green, N-cadherin red); 2: AFP is co-expressed with N-cadherin (AFP red, N-cadherin green); 3: ALB is co-expressed with N-cadherin; 4: HNF4A is co-expressed with N-cadherin; 5: GATA4 is co-expressed with N-cadherin; 6: FOXA2 is co-expressed with N-cadherin.
  • Figure 9 shows intracellular flow cytometry analysis showing that N-cadherin and AFP are expressed in the same cell.
  • Isotype antibody control B Expression of neuronal cadherin and alpha-fetoprotein in liver endoderm cells
  • Figure 10 shows the results of sorting of cells on day 8 of differentiation by N-cadherin.
  • A Digested by trypsin
  • B Digested by trypsin and EDTA
  • C Trypsin and calcium ion are digested.
  • Figure 11 shows the AFP expression of N-cadherin+ cell population and N-cadherin-cell population after sorting.
  • A cell population of N-cadherin+; B: N-cadherin-cell population.
  • Figure 12 shows quantitative RT-PCR showing that the cell population of N-cadherin+ is enriched for liver-specific protein after sorting.
  • Figure 13 shows the ability of cells of N-cadherin+ cells to differentiate into ALB, AAT, and positive hepatocytes, and also to differentiate into KRT7-positive cells.
  • FIG. 14 shows that liver endoderm cells have only weak proliferative capacity.
  • liver endoderm cells express Ki67.
  • BrdU the number of liver endoderm cells express Ki67.
  • AFP+ cells are BrdU negative.
  • the nucleus was counterstained by DAPI (blue). Ruler, 50 ⁇ .
  • Figure 15 shows the corresponding morphological changes in liver precursor cells.
  • Figure 16 is a specific staining for human nuclear nuclei.
  • the clones (upper row) on the STO feeder layer are of human cell origin. In the lower row, the STO feeder layer does not express human nuclear antigen. The nucleus is counterstained by DAPI (blue). Ruler, 50 ⁇ .
  • Figure 17 shows that most of the cells in the clones of liver precursor cells express Ki67.
  • the nucleus is counterstained by DAPI (blue). Ruler, 50 ⁇ .
  • Figure 18 shows the proliferative capacity of liver precursor cells.
  • Figure 19 shows the gene expression characteristics of liver precursor cells.
  • Figure 20 is a flow cytometric analysis of expression of EpCAM and CD133 in liver precursor cells.
  • Figure 21 shows that liver precursor cells can spontaneously differentiate into hepatocytes.
  • Figure 22 is a directed induction of differentiation of liver precursor cells into hepatocytes.
  • Figure 23 shows the mRNA expression of hepatocytes derived from differentiation of liver precursor cells.
  • Figure 24 shows the detection of human albumin secretion by ELISA.
  • Fig. 24, 1 medium; 2: liver precursor cells obtained by differentiation of human embryonic stem cells; 3: hepatocytes derived from liver precursor cells; 4: liver parenchy cells directly differentiated from human embryonic stem cells 25 is a functional analysis of hepatic parenchymal cells obtained by differentiation of liver precursor cells.
  • Figure 26 shows the differentiation of liver precursor cells into KRT7-positive and KRT19-positive cells.
  • Figure 27 shows differentiation of liver precursor cells into bile duct cells in a three-dimensional culture system.
  • Figure 28 shows the function of the key protein MDR involved in the transport and secretion of the bile duct.
  • Figure 29 shows liver endoderm cells obtained by differentiation of induced pluripotent stem cells.
  • AFP is co-expressed with N-cadherin (AFP red, N-CAD green); right, HNF4A is co-expressed with N-cadherin (HNF4A red, N-CAD green).
  • Figure 30 is a diagram showing liver precursor cells formed by differentiation of induced pluripotent stem cells.
  • Figure 31 shows the differentiation of induced pluripotent stem cells into hepatocytes.
  • HI human embryonic liver cell line
  • 3U1 and 3U2 induced pluripotent stem cell lines hAFF-4U-M-iPS-1 and hAFF-4U-M-iPS-3.
  • bovine serum albumin component V (Calbiochem, USA 126579), human activin A (Activin A, Peprotech, USA, 120-14E), insulin-transferrin-sodium selenite mixed supplement (Invitrogen, USA) Company, 51300-044), HCM medium (Lonza, USA, CC-3198), human fibroblast growth factor-4 (FGF4, Peprotech, USA, 100-31), human bone morphogenetic protein-2 (BMP2, USA) Peprotech, 120-02), HEPES (Calbiochem, USA, 391338), Nicotinamide (American Sigma-aldrich, N0636-100G;), ascorbic acid (Asc-2P, Sigma-aldrich, USA, 49752-10G) and EGF (American R&D, 236-EG-200).
  • the corresponding cells obtained from the human embryonic stem cell line HI were obtained from the human embryonic stem cell line H7 (NIH number WA07) and the human embryonic stem cell line H9 (NIH number WA09), respectively.
  • the corresponding cells are basically the same, with no substantial differences.
  • Example 1 Induction of differentiation of human ES cells or iPS cells into liver cells and its detection 1. Conventional culture of human ES cells or iPS cells
  • PBS Weigh 8 g of NaCl, 0.2 g of KC1, 1.44 g of Na 2 HP0 4 and 0.24 g of K 3 ⁇ 4 P0 4 , and force the ddH 2 0 (double distilled water) to a volume of 1000 mL, and adjust the pH of the solution to 7.4 with HC1.
  • 2M ⁇ -mercaptoethanol (20000 ⁇ ) 1 mL of 14.3 M ⁇ -mercaptoethanol was added, diluted with 6.15 mL of PBS, and sterilized by filtration.
  • HESM Human iPS Cell Culture Medium
  • 20% serum replacement Knock-out Serum Replacement, KSR
  • ImM glutamine Gibco, USA
  • O.lmM ⁇ -mercaptoethanol 1% non-essential amino acids (Non- Essential Amino Acids (Gibco, USA)
  • bFGF basic fibroblast growth factor
  • Dispase 1 Omg powder was weighed, dissolved in 20 mL of DMEM/F12 medium, and sterilized by filtration.
  • MEF medium DMEM (Gibco, USA) containing 10% fetal bovine serum. ⁇
  • Mitomycin C working solution 2 mg of mitomycin C was dissolved in 200 mL of DMEM containing 10% fetal bovine serum to a final concentration of l ( ⁇ g/mL, filtered and sterilized.
  • gelatin 0.1% gelatin: Weigh O.lg gelatin powder, dissolve it in lOOmL double distilled water, and autoclave.
  • Mouse embryonic fibroblast (MEF) was treated as a word for culturing human iPS cells by the following method:
  • the MEF cells treated by the above steps were inoculated into a petri dish coated with 0.1% gelatin according to the density of 1.6 ⁇ 10 5 cells/3.5 cm culture dish, and cultured in a 37 ° C incubator for 12-24 hours. A feeder layer for culturing human ES cells or human iPS cells is obtained.
  • the cultivation method comprises the following steps:
  • Differentiation medium 1-1 Containing 10 ng/ml human activin A (Activin A) and 0.01% (by volume) insulin-transferrin-selenium salt (sodium selenite) (ITS) mixed replenisher (Gibco, USA) RPMI 1640 medium (Gibco, USA), pH 7.2-7.6.
  • Differentiation medium 1-2 RPMI 1640 medium (Gibco, USA) containing 500 ng/ml human activin A (Activin A) and 20% (by volume) ITS, pH 7.2-7.6.
  • Differentiation medium 1-3 RPMI 1640 medium (Gibco, USA) containing 100 ng/ml human activin A (Activin A) and 1% (by volume) ITS, pH 7.2-7.6.
  • Differentiation medium 1-4 RPMI 1640 medium (Gibco, USA) containing 100 ng/ml human activin A (Activin A) and 0.1% by volume ITS, pH 7.2-7.6.
  • Differentiation medium ⁇ -1 Liver cell culture medium (HCM) containing 5 ng/ml of human fibroblast growth factor (FGF2) and 5 ng/ml of human bone morphogenetic protein (BMP4) (Peprotech, USA) (purchased from Cambrex) Company), pH 7.2-7.6.
  • HCM Liver cell culture medium
  • FGF2 human fibroblast growth factor
  • BMP4 human bone morphogenetic protein
  • Differentiation medium ⁇ -2 Liver cell culture medium (HCM) containing 100 ng/ml human fibroblast growth factor (FGF2) and 100 ng/ml human bone morphogenetic protein (BMP4) (Peprotech, USA) (purchased from Cambrex) Company), pH 7.2-7.6.
  • HCM Liver cell culture medium
  • FGF2 human fibroblast growth factor
  • BMP4 human bone morphogenetic protein
  • Differentiation medium II-3 Liver cell culture medium (HCM) containing 30 ng/ml human fibroblast growth factor (FGF2) and 20 ng/ml human bone morphogenetic protein (BMP4) (Peprotech, USA) (purchased from Cambrex) Company), pH 7.2-7.6.
  • HCM Liver cell culture medium
  • FGF2 human fibroblast growth factor
  • BMP4 human bone morphogenetic protein
  • Differentiation medium ⁇ -1 HCM medium containing 5 ng/ml human liver cell growth factor (HGF, Peprotech, USA, 100-39) and 5 ng/ml human keratinocyte growth factor (KGF, Amgen, USA), pH 7.2-7.6.
  • HGF human liver cell growth factor
  • KGF human keratinocyte growth factor
  • Differentiation medium ⁇ -2 HCM medium containing 100 ng/ml human liver cell growth factor (HGF) and 100 ng/ml human keratinocyte growth factor (KGF), pH 7.2-7.6.
  • Differentiation medium ⁇ -3 HCM medium containing 20 ng/ml human liver cell growth factor (HGF) and 20 ng/ml human keratinocyte growth factor (KGF), pH 7.2-7.6.
  • Differentiation medium IV-1 HCM medium containing lng/ml oncostatin M (OSM) (American R&D) and 0.05 ⁇ M dexamethasone (Dex), pH 7.2-7.6.
  • Differentiation medium IV-2 HCM medium containing 100 ng/ml oncostatin M (OSM) (American R&D) and ⁇ dexamethasone (Dex), pH 7.2-7.6.
  • Differentiation medium IV-3 HCM medium containing 10 ng/ml oncostatin M (OSM) (American R&D) and 0.1 ⁇ M dexamethasone (Dex), pH 7.2-7.6.
  • OSM oncostatin M
  • Dex dexamethasone
  • Differentiation medium V-1 containing 0.1% by volume of N2, 0.1% B27, 0.5 mM glutamine, 0.1% non-essential amino acid, 0.05 ⁇ ⁇ -mercaptoethanol, l ng/ml Oncostatin M (OSM) And 0.05 ⁇ ⁇ dexamethasone (Dex) basal medium, pH 7.2-7.6.
  • Differentiation medium V-2 contains 10% (by volume) N2, 20% B27, 2 mM glutamine, 10% non-essential amino acid, 0.2 mM ⁇ -mercaptoethanol, 100 ng/ml oncostatin M (OSM) and ⁇
  • Differentiation medium V-3 containing 1% by volume of N2, 2% B27, 1 mM glutamine, 1% non-essential amino acid, ⁇ . ⁇ ⁇ ⁇ -mercaptoethanol, 10 ng/ml oncostatin M (OSM) ⁇ . ⁇ Dexamethasone (Dex) basal medium, pH 7.2-7.6.
  • Initiation of liver cell differentiation Discard the differentiation medium 1-1 containing ITS, differentiation medium 1-2, differentiation medium 1-3 or differentiation medium 1-4, wash 1 time with PBS, and add to differentiation.
  • the medium 11-1, the differentiation medium ⁇ -2 or the differentiation medium ⁇ -3 was placed in a 37 ° C cell culture incubator for 4 days, and the solution was changed once a day to obtain differentiated IPS cells or ES cells;
  • Amplification of differentiated IPS cells or ES cells discarding differentiation medium 11-1, differentiation medium II-2 or differentiation medium ⁇ -3, washing once with PBS, adding differentiation medium 111-1, The differentiation medium ⁇ -2 or the differentiation medium 111-3 was placed in a 37-inch cell culture incubator for 6 days, and the solution was changed once a day;
  • IPS cells or ES cells Promote differentiation of IPS cells or ES cells: discard the differentiation medium ⁇ -1, differentiation medium ⁇ -2 or differentiation medium 111-3, wash once with PBS, add differentiation medium IV-1, differentiate Medium IV-2 or differentiation medium IV-3, placed in a 37 ° C cell culture incubator for 5 days, change the solution once a day; discard the differentiation medium IV-1, differentiation medium IV-2 or differentiation medium IV-3, wash 1 time with PBS The differentiation medium IV-1, the differentiation medium IV-2 or the differentiation medium IV-3 was added, and the cells were cultured in a 37 °C cell culture incubator for 3 days, and the solution was changed once a day.
  • Blocking solution PBST solution containing 2% goat serum (or horse serum).
  • the differentiation state of the cells obtained in the step 2) is detected by immunofluorescence staining, and the detection method includes the following steps:
  • Trizol invitrogen, USA treated iPS cells and ES cells differentiated for 7 days, extracted total RNA from the sample, and reverse-transcribed cDNA (American promega reverse transcription kit), and PCR was used to identify the cDNA.
  • the primer sequences are as follows:
  • AFP sense primer TTTTGGGACCCGAACTTTCC; (SEQ ID No: 1)
  • AFP antisense primer CTCCTGGTATCCTTTAGC AACTCT (SEQ ID No: 2)
  • Alb sense primer GGTGTTGATTGCCTTTGCTC; (SEQ ID No: 3)
  • Alb antisense primer CCCTTCATCCCGAAGTTCAT. (SEQ ID No: 4)
  • CK8 sense primer GGAGGC ATCACCGC AGTAC; (SEQ ID No: 5)
  • CK8 antisense primer TCAGCCCTTCCAGGCGAGAC. (SEQ ID No: 6)
  • CK18 antisense primer GGCAATCTGGGCTTGTAGGC. (SEQ ID No: 8)
  • HNF4a sense primer CC ACGGGC A AAC ACTACGG; (SEQ ID No: 9)
  • HNF4a antisense primer GGCAGGCTGCTGTCCTCAT. (SEQ ID No: 10)
  • GAPDH sense primer AATCCCATC ACCATCTTCC; (SEQ ID No: 11)
  • GAPDH antisense primer CATCACGCCACAGTTTCC. (SEQ ID No: 12)
  • CK19 sense primer AATAAATAGGATCCATGCAG
  • CK19 antisense primer TTTTAATGAATTCAGTAGAT
  • iPS and ES cells express liver cell marker molecules AFP, Alb, CK18, AAT and CYP3A4.
  • RT-PCR results also showed that iPS and ES cells differentiated for 7 days expressed liver cell marker molecules AFP, Alb, CK8, CK18, CK19, HNF4a and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) ( Figures 1 and 2).
  • Differentiated iPS and ES cells have a glycogen synthesis and storage function similar to liver cells (Fig. 3). V. Detection of urea synthesis in liver cells It is carried out by a urea nitrogen test kit. For the implementation steps, refer to the instruction manual (STANBIO, USA). Differentiated iPS and ES cells have a similar function to urea synthesis as liver cells (Fig. 4).
  • Differentiated iPS and ES cells have a function of secreting albumin similar to liver cells (Fig. 5).
  • liver cells CYP450 enzyme activity detection
  • the CYP450 fluorescence detection kit is used.
  • Differentiated iPS and ES cells have drug-induced P450 enzyme activity similar to liver cells (Fig. The above results indicate that human iPS cells are induced to differentiate into liver cells.
  • Example 2 Preparation and identification of liver endoderm cells
  • Human embryonic stem cells H1, H7 or H9 are induced 2-3 days after passage, and cells with good growth state are selected for differentiation experiments;
  • Endoderm Induction Medium I is a medium obtained by adding bovine serum albumin component V (Calbiochem, USA, 126579) and human activin A (Activin A, Peprotech, Inc., 120-14E) to RPMI1640 medium.
  • the pH of the medium is 7.2-7.6.
  • the final concentration of bovine serum albumin component V was 0.05% (mass percent), and the final concentration of human activin A (activin A) was 100 ng/ml.
  • Endoderm Induction Medium II is to add bovine serum albumin component V (American Calbiochem, 126579) in RPMI1640 medium, human live Medium obtained from Activin A and insulin-transferrin-sodium selenite mixed supplement (Invitrogen, USA 51300-044). The pH of the medium is 7.2-7.6.
  • bovine serum albumin component V is 0.05% (mass percent)
  • the final concentration of human activin A (Activin A) is 100 ng/ml
  • the final concentration of the sodium selenite mixed replenisher is 0.1% (volume percent).
  • Endoderm Induction Medium III is a mixture of bovine serum albumin component V, human activin A (Activin A) and insulin-transferrin-sodium selenite in RPMI1640 medium (Invitrogen, USA 51300- 044) The obtained medium.
  • the pH of the medium is 7.2-7.6.
  • the final concentration of bovine serum albumin component V is 0.05% (mass percent)
  • the final concentration of human activin A (Activin A) is 100 ng/ml
  • the final concentration of the sodium selenite mixed replenisher is 1% (volume percent).
  • the 4th-8th repeat the following steps every day -
  • liver endoderm cells were obtained on day 8; liver endoderm cell induction medium was added with human fibroblast growth factor-4 in HCM medium (Lonza, CC-3198, USA) (FGF4, Peprotech, USA, 100-31) And the medium obtained by human bone morphogenetic protein-2 (BMP2, Peprotech, USA, 120-02). The pH of the medium is 7.2-7.6. In the liver endoderm cell-inducing medium, the final concentration of human fibroblast growth factor-4 (FGF4) was 30 ng/ml, and the final concentration of human bone morphogenetic protein-2 (BMP2) was 20 ng/ml.
  • FGF4 human fibroblast growth factor-4
  • BMP2 human bone morphogenetic protein-2
  • the RT-PCR method was used to detect the expression time of early liver-related genes such as 4FP, ALB (ie Alb), HNF4A, CE 3 ⁇ 4.
  • ALB upstream GCACAGAATCCTTGGTGAACAG (SEQ ID No: 15),
  • HNF4A upstream ACTACATCAACGACCGCCAGT (SEQ ID No: 17),
  • CEBPA upstream ACAAGAACAGCAACGAGTACCG (SEQ ID No: 19), Downstream CATTGTCACTGGTCAGCTCCA (SEQ ID No: 20).
  • AFP, ALB, HNF4A, C£S 3 ⁇ 4 These genes all showed similar expression patterns during differentiation, that is, expression started on day 5 and reached the maximum on day 8 (Fig. 7), indicating intrahepatic Embryonic cells have been produced.
  • N-cadherin In the differentiation product of human embryonic stem cells, N-cadherin is specifically expressed in all AFP-expressing cells, and is expressed only in AFP-expressing cells. The specificity of co-expression of N-cadherin and AFP was confirmed by repeated experiments and observation by laser confocal microscopy (Fig. 8). The picture 1 in Fig. 8 was taken by a fluorescence microscope, and the rest of the pictures were taken by a laser confocal microscope. Ruler, 50 ⁇ . The nucleus was counterstained (D) by DAPI (Roche, USA, 10236276001).
  • N-cadherin is a surface marker protein specific for liver endoderm.
  • N-cadherin is a calcium-dependent cell-cell adhesion protein that is highly sensitive to pancreatic enzyme processing, but calcium ions protect pancreatic enzymes from digestion (Yoshida and Takeichi, Cell. 1982 Feb; 28(2) ): 217-24
  • trypsin-EDTA digest American Invitrogen, 25200114
  • a large number of extracellular segments of N-cadherin were cleaved by trypsin. Therefore, the N-cadherin antibody (clone number GC4, purchased from Sigma-Aldrich, USA) used in the flow sorting did not recognize the N-cadherin protein (Fig. 10B).
  • liver endoderm is EDTA-free trypsin (Invitrogen, USA) Company, 27250018) Treatment with simultaneous addition of 2 mM calcium ions effectively protects the integrity of N-caherin protein (Reiss et al, EMBO J. 2005 Feb 23; 24, 742-752).
  • the N-cadherin+ cell population was isolated by flow cytometry, and the N-cadherin-cell population was collected as a control. Flow cytometry sorted out a population of N-cadheim positive cells from the day 8 of differentiation (60.9% ⁇ 9.1%, Figure 10C).
  • AFP alpha-fetoprotein
  • ALB albumin
  • HNF4A hepatocyte nuclear factor 4A
  • FOXA2 liver cell nuclear factor 3B
  • ALB upstream GCACAGAATCCTTGGTGAACAG (SEQ ID No: 23), downstream ATGGAAGGTGAATGTTTCAGCA (SEQ ID No: 24);
  • HNF4A upstream ACTACATCAACGACCGCCAGT (SEQ ID No: 25), downstream ATCTGCTCGATCATCTGCCAG (SEQ ID No: 26);
  • FOXA2 upstream CTGAGCGAGATCTACCAGTGGA (SEQ ID No: 27), downstream CAGTCGTTGAAGGAGAGCGAGT. (SEQ ID No: 28)).
  • Liver endoderm cells are induced to differentiate into mature hepatocytes
  • N-cadheirn+ cells or N-cadherin-derived cells obtained in the first step are washed once with PBS; replaced with hepatic parenchymal cell medium I; hepatic parenchymal medium I contains 20 ng/ml human liver cell growth factor (HGF) , US Peprotech, 100-39) HCM medium (Lonza, USA, CC-3198). Repeat the above steps once a day for 5 days;
  • HGF human liver cell growth factor
  • hepatic parenchymal cell medium I Discard the hepatic parenchymal cell medium I, wash it with PBS; replace it with hepatic parenchymal cell medium II, and the hepatic parenchymal medium II contains 10 ng/ml of tumor suppressor M (OSM, R&D, 295-OM- 050), 0.1 ⁇ M dexamethasone (Sigma-aldrich, D8893, USA) HCM medium.
  • OSM tumor suppressor M
  • R&D 295-OM- 050
  • 0.1 ⁇ M dexamethasone Sigma-aldrich, D8893, USA
  • N-cadheim + cells can continue to differentiate into hepatic parenchymal cells expressing ALB and AAT, as well as biliary cells expressing KRT7 (Fig. 13).
  • the cells of N-cadherin+ cells in Fig. 7 have the ability to differentiate into hepatocyte parenchymal cells positive for ALB (Fig. 13A), AAT (Fig. 13B), and also have the ability to differentiate into KRT7 (Fig. 13C) positive cells.
  • cells of ⁇ -cadherin cannot differentiate into the hepatobiliary lineage.
  • the above experiments show that the cells of N-cadheirn + are liver endoderm cells differentiated from human embryonic stem cells.
  • liver endoderm cells can also be obtained.
  • the liver endoderm cells co-express AFP and N-cadherin, as well as co-express HNF4A and N-cadherin (Fig. 30).
  • the liver endoderm cells also express genes such as ALB, FOXA2, and GATA4.
  • liver precursor cells from human embryonic stem cell-derived liver endoderm cells 1. Production of liver precursor cells from liver endoderm cells
  • N-cadherin If N-cadherin is not sorted, it can be digested with trypsin-EDTA solution for about 1 minute at room temperature. If sorting with N-cadherin is required, trypsin without EDTA (pancreatin solution, add 2mM) CaCl 2 ) is digested at 37 ° C for about half an hour;
  • liver precursor cell culture medium was added with HEPES (Calbiochem, 391338, USA), insulin-transferrin-sodium selenite mixed supplement solution (Invitrogen, 51300-044, USA) in DMEM/F-12 basal medium.
  • Bovine serum albumin component V Bovine serum albumin component V, nicotinamide (Sigma-aldrich, N0636-100G), ascorbic acid (Asc-2P, Sigma-aldrich, USA, 49752-10G), dexamethasone and EGF (American R&D, 236 -EG-200) The obtained medium.
  • the pH of the medium is 7.2-7.6.
  • the final concentration of HEPES is 10 mM
  • the final concentration of insulin-transferrin-sodium selenite mixed supplement is 1% (volume percent)
  • the final of bovine serum albumin component V was 0.05% (mass percentage)
  • the final concentration of nicotinamide was l lmM
  • the final concentration of ascorbic acid (ASC-2P) was lmM
  • the final concentration of dexamethasone was ⁇ . ⁇ and the final concentration of EGF was 10 ng/ Ml.
  • STO feeder cells Prepare STO feeder cells. Using a growth state of about 90% of the rat embryonic fibroblast cell line (STO) cells (Chinese Cell Bank Collection Cell Center), treated with 10 g/ml of mitomycin C (Roche, USA 10107409001) 4-6 hours. The petri dish was treated with 0.1% gelatin (Sigma-Aldrich, G1890-100G, USA), placed at 37 ° C for 30 minutes or at room temperature for 2 hours. The mitomycin C-treated cells were washed 5 times with PBS solution to thoroughly wash away the remaining mitomycin C. After trypsinization, inoculate to a gelatin-treated petri dish at a density of 1:3, and use it overnight after incubation;
  • the cells of step B) are cultured on the STO feeder layer using liver precursor cell culture medium, and the medium is changed once a day, usually once every 7 to 10 days.
  • the feeding time of the feeder layer is up to two weeks or the transformation state is poor, or the liver precursor cell clone is too dense or too large, and passage is carried out in time.
  • liver endoderm cells AFP and Ki67 (AFP and Ki67 antibodies were purchased from Nakasujinjinqiao), and almost no AFP-positive cells were co-stained with Ki67 (Fig. 14).
  • BrdU was added to the culture medium for the entire 5 days of the liver endoderm production phase, only less than 5% of AFP-positive cells were found to express BrdU (Fig. 14).
  • the process of producing precursor cells of the liver is as follows:
  • Human embryonic stem cell-derived liver endoderm cells can produce some substantial cell clones when cultured by the above method (Fig. 15).
  • the human embryonic stem cell clone in Figure 15 is flat and round with a tight cell edge.
  • Endoderm cells are fish scales and are flat monolayers.
  • Liver endoderm cells are single or multi-layered.
  • Liver precursor cells form tight clones with smooth edges. Ruler, 50 ⁇ . These clones have intact, smooth edges. Unlike liver endoderm cells that cannot be passaged, these clones can be continuously expanded. Specific immunofluorescence against human nuclei (antibody purchased from Chemicon, USA) showed that these cells were of human cell origin, rather than STO cell sources ( Figure 16).
  • these clones are liver precursor cells derived from human embryonic stem cells.
  • the major cells in the clone all express Ki67 (Fig. 17).
  • these clones were investigated for their size as they grew. When the clones were passed to STO feeder cells for 7 days, the clones formed by these liver precursor cells were 62.0 ⁇ 15.4 ⁇ m, and when cultured until day 20, these clones could reach 225.4 ⁇ 92.0 ⁇ m, indicating slow but tangible cells. proliferation.
  • These liver precursor cells have been cultured in vitro for more than 12 passages at 1:2 or 1:3 and can be repeatedly frozen and resuscitated (Figure 18). As a control, mitomycin-treated feeder cells cultured alone did not produce clones under the same culture conditions.
  • liver precursor cells To further identify liver precursor cells, the expression of alpha-fetoprotein (AFP), albumin (ALB), cytokeratin 19 (KRT19) and cytokeratin 7 (KRT7) was detected by immunofluorescence (AFP, KRT19 and KRT7).
  • the antibody was purchased from the company of Nakasu Jinqiao, and the antibody of ALB was purchased from DAKO, USA.
  • These liver progenitor cells express the early liver marker gene AFP, but weakly or do not express the mature liver cell marker ALB.
  • These clones also expressed the bile duct marker genes KRT19 and KRT7 (Fig. 19).
  • Fig. 19A shows that AFP and KRT7 are co-expressed by liver precursor cells, Fig.
  • FIG. 19B is KRT19, and Fig. 19C is expression of ALB.
  • Figure 19 D is a negative control, the nuclei are counterstained by DAPI (blue), scale, 50 ⁇ .
  • DAPI blue
  • scale 50 ⁇ .
  • they also express putative liver precursor cell markers EpCAM and CD133 (Fig. 20) (Schmelzer et al, J Exp Med. 2007 Aug 6; 204(8): 1973-87).
  • N-cadherin-cell populations were cultured in the same manner and found to be from sputum.
  • the number of clones produced by the -cadherin ⁇ cell population is at least 6 times lower than that of the N- C adherin+ population (Fig. 18).
  • these clones were also rapidly lost after passage, indicating that their proliferative ability was low, not the previous liver precursor cells.
  • N-cadherin can be used as a specific surface marker protein for the isolation and purification of liver endoderm cells in human embryonic stem cell differentiation system for differentiation and production of liver precursor cells.
  • liver precursor cells differentiate into two lines of hepatobiliary
  • hepatic parenchymal cell medium I is HCM medium containing 20 ng/ml liver cell growth factor (HGF).
  • hepatic parenchymal cell culture medium II is HCM medium containing 10 ng/ml OSM, 0.1 ⁇ dexamethasone.
  • AFP+KRT7+ precursor cells When human embryonic stem cell-derived liver precursor cells were cultured in expansion, we found that some cells migrated from the edges of the rigorous clone. Unlike AFP+KRT7+ precursor cells, cells at the edge of these clones become AFP+KRTT cells, which may mean that they have spontaneously differentiated into hepatocytes (Fig. 21). The cell indicated by the arrow is AFP+KRT7-. The nucleus is counterstained by DAPI (blue). Ruler, 50 ⁇ !
  • HGF and OSM were used to promote the differentiation of precursor cells into hepatocytes.
  • Liver precursor cells were first cultured in hepatic parenchymal medium (HCM) containing 20 ng/ml HGF for 5 days, followed by hepatic parenchymal medium (HCM) containing 10 ng/ml OSM and 0.1 ⁇ M dexamethasone. Continue to train for 5 days.
  • HCM hepatic parenchymal medium
  • HCM hepatic parenchymal medium
  • dexamethasone containing 10 ng/ml OSM and 0.1 ⁇ M dexamethasone.
  • the differentiated cells are detected by immunofluorescence techniques for marker proteins of hepatic parenchymal cells.
  • the differentiated cell colonies lost the expression of KRT7 and began to express ALB, whereas ALB was only slightly expressed in liver precursor cells.
  • ALB-expressing cells also expressed AAT (Fig. 22).
  • Liver precursor cells were induced to be KRT7 negative (upper row), ALB (middle and lower row) and AAT (lower row) positive hepatic parenchymal cells.
  • the nucleus is counterstained by DAPI (blue). Ruler, 50 ⁇ .
  • RT-PCR analysis revealed that many mature hepatocytes, such as ALB, AAT, TAT, KRT8, KRT18, and cytochrome ⁇ 450 family, CYP3A7 and CYP2A6 are also expressed in induced cells (Fig. twenty three ).
  • the differentiated cells lost the expression of the pluripotency marker genes OCT4 and Nanog, indicating that the differentiated cell population no longer contains undifferentiated human embryonic stem cells, and may be used for cell transplantation experiments in the future (Fig. 23). (See Table 2 for primers)
  • Fig. 23 1 : human embryonic stem cells; 2: liver precursor cells obtained by differentiation of human embryonic stem cells; 3: hepatocytes derived from liver precursor cells; 4: hepatocytes directly differentiated from human embryonic stem cells 5: human fetal liver cells; 6: cDNA not reverse transcribed.
  • Table 2 Primer sequences for detection of gene expression in hepatocytes by RT-PCR
  • the amount of albumin secreted by the progenitor cells obtained by differentiation of precursor cells can reach 439 ng/day/million cells, which is close to that obtained by direct differentiation of embryonic stem cells.
  • the amount of albumin secreted by hepatic parenchymal cells (439 ng/day/million cells) (Fig. 24).
  • detecting the absorption and release of indocyanine green by the differentiated hepatic parenchymal cells capable of absorbing and releasing ICG is a specific function of hepatocytes, and has been widely used for identification of hepatocytes in embryonic stem cell differentiation. .
  • Detection method The cells were incubated with a medium containing 1 mg/ml of indigo cyanide (purchased from Sigma-Aldrich, I2633-25MG, USA) for 15 minutes, and then the medium containing phthalocyanine was discarded, using PBS. Wash three times and replace the fresh medium to observe the absorption of phthalocyanine green. The cells were then cultured for 6 hours, replaced with fresh medium, and the release of indocyanine green was observed under a microscope.
  • indigo cyanide purchased from Sigma-Aldrich, I2633-25MG, USA
  • the hepatic parenchymal cells obtained by differentiation of the precursor cells can absorb the indocyanine green in the medium and appear green, and can discharge the indocyanine green absorbed into the cells after 6 hours.
  • undifferentiated precursor cells were unable to absorb indocyanine green (Fig. 25B).
  • Further detection of hepatic parenchymal cells differentiated by precursor cells can absorb low density lipoprotein (LDL) (Fig. 25C).
  • LDL low density lipoprotein
  • Detection method 10 g/ml of Dil-Ac-LDL (purchased from Biomedical Technologies, BT-902, USA) was added to the cultured cells, and cultured at 37 degrees for 4 hours. Thereafter, the medium containing Dil-Ac-LDL was discarded, washed three times with PBS, replaced with fresh medium and observed under a fluorescence microscope.
  • Dil-Ac-LDL purchased from Biomedical Technologies, BT-902, USA
  • the activity of cytochrome p450 in differentiated cells was analyzed by PROD assay. In the absence of phenobarbital induction, the differentiated cells have only a slight PROD activity. Induction of phenobarbital can increase the activity of the PROD of the differentiated cells, which demonstrates that the differentiated cells do have cytochrome p450 activity. As a control, the PROD activity of undifferentiated precursor cells was low (Fig. 25D).
  • Fig. 25A shows that the cytoplasm of the differentiated hepatic parenchyma cells was red with PAS staining analysis, indicating that glycogen was stored therein.
  • Figure 25B shows that differentiated cells can absorb ICG (left) and release (middle) after 6 hours, and precursor cells cannot absorb ICG (right).
  • Figure 25C shows that differentiated hepatic parenchymal cells can absorb dil-labeled LDL.
  • Figure 25D shows that the differentiated cells exhibit only weak PROD activity (middle) in the absence of phenobarbital. Increased PROD activity was induced by phenobarbital (left). The precursor cells showed only weak PROD activity (right). (middle), phenobarbital. Ruler, 50 ⁇ .
  • liver precursor cells into cholangiocarcinoma cells
  • step A 1) Take the liver precursor cells with better growth in step A), discard the medium, and wash once with PBS;
  • bile duct differentiation medium which is a GlutaMAX-I dipeptide containing 20 mM HEPES, 17 mM NaHC0 3 , 5 mM sodium pyruvate, 0.2 mM Asc-2P, 14 mM glucose, and 1% by volume (Invitrogen, USA) Company, 35050-061), ⁇ . ⁇ dexamethasone, 1% by volume of islets ⁇ -transferrin-sodium selenite mixed supplement (Gibco, USA), bovine serum albumin component V, mass percentage 0.05%, 5.35 g/ml linoleic acid (US BD, 354227), 20ng /ml EGF.
  • GlutaMAX-I dipeptide containing 20 mM HEPES, 17 mM NaHC0 3 , 5 mM sodium pyruvate, 0.2 mM Asc-2P, 14 mM glucose, and 1% by volume (Invitrogen, USA) Company, 35050-061
  • liver precursor cells differentiated into cholangiocarcinoma cells under three-dimensional culture conditions
  • the liver precursor cells were differentiated and cultured for 7 days as described above, and the differentiated cells formed a vesicle structure in which the central layer was a cavity and the outer layer was composed of a single layer of cells.
  • Immunofluorescence assay revealed that two traditional biliary cell marker proteins, KRT7 and KRT19, were expressed in vesicle monolayers, whereas liver lineage-specific protein AFP was not expressed.
  • the differentiated cells constituting the vesicle structure are epithelial polarities having a apical-substrate side.
  • E-cadherin and integrina 6 were also specifically expressed on the basal side (Fig. 27).
  • Figure 27A shows a bile tubular structure of a bile-like tubular cell
  • Figure 27B shows immunofluorescence showing that the biliary-like cells express KRT19 (red)
  • Figure 27C shows that immunofluorescence shows that the biliary-like cells express KRT7 (red) but not AFP (green)
  • Figure 27D Localization of the epithelial polar marker protein ⁇ -catenin
  • Figure 27J is the localization of Integrin a 6 , ⁇ -catenin (D), E-cadherin ( G) and Integrina 6 (J) are located on the basal side of the cell
  • F-actin Fig. 27E and Fig.
  • FIG. 27H is located on the apical side of the cell.
  • the biliary cell marker KRT19 is located on both the apical and basal sides (Fig. 27K).
  • Figures 27F, I, and L show merged plots. Blue is the core of the DAPI label. Ruler, 50 ⁇ .
  • the differentiated cholangiocarcinoma cells were tested for transport and secretion functions as normal cholangiocarcinoma cells, and the function of the key protein MDR involved in bile duct transport and secretion was analyzed.
  • MDR is a sputum-dependent transmembrane transport pump that has been reported to be involved in the secretion of cationic substances in bile (Gigliozzi et al., Gastroenterology. 2000 Oct; 119, 1113 - 1122).
  • the differentiated sputum was incubated with the fluorescent dye rhodamine 123 (Sigma-Aldrich, USA, 83702-10MG).
  • the fluorescent strong path in the cavity portion of the vesicle is much higher than the fluorescence intensity in the surrounding cells.
  • Verapamil Sigma-Aldrich, V106-5MG
  • an inhibitor of 10 mM MDR protein, rhodamine 123 was confined to cells in the periphery of the vesicle, losing the ability to transport into the vesicle cavity ( Figure 28). ).
  • This suggests that the transport of rhodamine 123 is indeed dependent on the functional MDR protein located on the apical side of the cell.
  • the above results together indicate that these cells differentiated from liver precursor cells have strong similarities with cholangiocarcinoma cells.
  • liver precursor cells also have a clonal morphology with long-term proliferative capacity and express AFP, KRT19 (Fig. 30) and KRT7, as well as putative liver precursor cell markers EpCAM and CD133.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

通过诱导分化获得肝脏细胞、肝脏内胚层细胞和肝脏前体细胞的方法 技术领域
本发明涉及一种将胚胎干细胞 (ESC) 或诱导形成的多潜能干细胞 (iPS ) 诱导分 化为肝脏细胞的方法, 一种将胚胎干细胞或诱导形成的多潜能干细胞诱导分化为肝脏 内胚层细胞的方法和一种将胚胎干细胞 (ESC ) 或诱导形成的多潜能干细胞诱导分化 为肝脏前体细胞的方法。 本发明还涉及通过这些方法获得的肝脏细胞、 肝脏内胚层细 胞和肝脏前体细胞以及这些细胞的应用。 背景技术
诱导形成的多潜能干细胞
诱导形成的多潜能干细胞 (induced pluripotent stem cells, iPS细胞) 和胚胎干细胞 (embryonic stem cells)性质非常类似, 具有在体外分化成为各种细胞的潜能。 这类细 胞可以通过细胞分裂维持自身细胞群的大小或者扩增, 也可以进一步分化为各种特异 的细胞类型。 第一株哺乳动物 iPS细胞建立于 2006年 8月, 日本 Yamanaka教授实验室报 道, 通过 4个基因 (Oct4, Sox2,Klf4和 c-Myc) 的转导, 可以使小鼠体细胞转变成"诱导 形成的多潜能干细胞 (iPS 细胞) " (Takahashi, K. Cell 2006; 126, 663-676. )。 经证明, 这些诱导形成的多潜能干细胞 (iPS 细胞) 能够整合入胚泡, 参与正常的胚胎发育和 组织器官的形成, 而且在特定的条件下还能形成嵌合体小鼠。 2007年, Thomson实验 室和 Yamanaka实验室又几乎同时报道了人 iPS细胞系的建立 (Yu J, et al. Science 2007; 318:1917-1920, Takahashi K. Cell 2007; 131 :861-872. ), 这种细胞具有和胚胎干细胞类 似的性质, 在特定的诱导条件下可向内、 中、 外三个胚层分化, 并可以形成畸胎瘤。 到目前为止, 已有多个国家和地区的研究人员建立了人 iPS细胞系。
由于 iPS细胞可以在体外无限扩增, 并维持向多个方向分化的潜能, 因此通过 iPS 细胞的定向分化, 就可以获得足够数量的细胞, 用于细胞移植治疗和基因治疗。 如果 能够通过获得病人的体细胞并建立与患者具有相同遗传背景的 iPS细胞系,诱导其分化 为病人所需的细胞类型, 最后再植回患者体内进行治疗; 这样就可以避免由外源移植 导致的免疫排斥。 这种治疗性克隆方法的实现将为许多目前难以治愈的疾病, 如糖尿 病、 白血病以及心血管疾病等提供一条新的治疗途径。 另外, 人 iPS细胞的研究将有助 于为药物筛选、药理分析及毒性评估等提供动物模型无法比拟的实验平台。研究证明, 人 iPS细胞可以在体外分化为多种细胞类型, 如神经细胞 (Dimos JT. Science 2008; 321 :1218-1221; Chambers SM. Nat Biotechnol 2009; 27:275-280; Karumbayaram S. Stem Cells 2009; 27:806-811; Hirami Y. Neurosci Lett 2009; 458:126-131. ),成骨细胞(Karner E. J Cell Physiol 2009; 218:323-333. ), 心肌细胞 (Zhang J. Circ Res 2009; 104:e30-4L ), 脂肪细胞(Taura D. FEBS Lett 2009; 583:1029-1033. ),胰腺细胞(Tateishi . J Biol Chem 2008; 283:31601-31607; Zhang D. Cell Res 2009; 19:429-438. ), 和造血系统细胞 (Taura D. Arterioscler Thromb Vase Biol 2009; Choi KD. Stem Cells 2009;27:559-567.
如何有效地将 iPS细胞分化为特定组织的细胞, 是实现治疗性克隆的重要环节。 到目前为止胚胎干细胞和 iPS细胞的分化已经积累了大量的经验, 而且胚胎千细胞向 肝脏细胞的分化, 也己经取得了一些进展, 获得了表达肝脏细胞特定蛋白的细胞, 并 且具有合成糖原、 分泌白蛋白等功能 (Cai J. Hepatology 2007; 45:1229-1239. 人胚胎干细胞和肝脏前体细胞
人胚胎干细胞具有无限增殖的能力和分化的全能性, 在合适的条件下可以分化为 人体的各种细胞类型。 因此, 人胚胎干细胞有为各种细胞提供来源的潜力, 具有巨大 的应用潜能, 如应用于发育过程中 '细胞谱系决定的机制的研究, 或者是应用于各种退 行性疾病进行的细胞移植。 在人胚胎干细胞可分化产生的各种谱系中, 肝脏细胞受到 了人们格外的关注。 这是因为肝脏在人体内代谢过程中起到重要的作用, 具有许多重 要功能, 包括糖原合成, 分解红细胞, 合成血浆蛋白, 以及解毒等等。 最近, 有许多 研究小组都成功的将人或者小鼠胚胎干细胞分化到肝脏谱系。
在早期肝脏组织生成的过程中, 肝脏前体细胞是肝脏实质的主要组成部分。 通过 小鼠和人的发育学研究发现, 这些肝脏前体细胞是成熟肝实质细胞以及肝内胆管上皮 细胞的共同前体。 肝脏前体细胞向肝胆两个谱系的分化大约是在怀孕中期才逐渐确定 的。 人们通过从人和小鼠胎肝中分离肝脏前体细胞并进行体外培养的方法, 己经对肝 脏前体细胞的特性作了初步的研究。 在体外培养中, 人肝脏前体细胞表现出强大的增 殖能力, 同时表现出稳定的表型。 当置于合适的条件下, 肝脏前体细胞可以分化为表 达 ALB, 储存糖原的类肝实质细胞; 以及分化为表达 KRT19的胆管细胞。
尽管肝脏前体细胞的增殖能力和肝胆双向分化潜能都已经被人们证实, 但是这些 肝脏前体细胞的起源和功能目前还是一个存有争议的领域。 这可能主要是因为目前人 们只能从肝脏中直接分离获得肝脏前体细胞, 而早期人胚胎的缺乏极大的限制了该领 域的研究。 发明概述
鉴于现有技术的上述状况, 本发明提供以下各项-
1. 一种将胚胎干细胞(ESC )或诱导形成的多潜能干细胞(iPS )诱导分化为肝脏 细胞的方法, 所述方法包括以下步骤:
1 ) 将胚胎干细胞 (ESC ) 或诱导形成的多潜能干细胞 (iPS ) 在含有活化素 A的 基础细胞培养基中培养;
2) 将获自步骤 1 ) 的细胞转入含有胰岛素-转铁蛋白 -硒盐 (优选亚硒酸钠) 和活 化素 A的基础细胞培养基中培养;
3 ) 将获自步骤 2 ) 的细胞在含有成纤维细胞生长因子 (FGF)和骨形态形成蛋白 (BMP)的肝脏细胞培养基 (HCM)中培养获得肝脏前体细胞; 和
4) 促进获自步骤 3 ) 的肝脏前体细胞成熟, 获得肝脏细胞,
其中优选所述胚胎干细胞(ESC) 或诱导形成的多潜能干细胞 (iPS)是哺乳动物 细胞, 更优选为小鼠或人细胞, 最优选人细胞, 其中当所述细胞是人细胞时, 优选所 述活化素 A为人活化素 A, 所述成纤维细胞生长因子为人成纤维细胞生长因子, 所述 骨形态形成蛋白为人骨形态形成蛋白。
2. 根据以上 1所述的方法, 其中所述基础细胞培养基选自以下组成的组: MEM、 DMEM BME、 DMEM / F12 RPMI 1640和 Fischer,s。
3. 根据以上 1或 2所述的方法,其中所述活化素 A在所述基础细胞培养基中的含 量为 10至 500 ng/ml。
4. 根据以上 3所述的方法, 其中所述胰岛素-转铁蛋白 -硒盐以混合补充液的形式 加入, 其与所述基础细胞培养基的体积比为 0.01至 20%。
5. 根据以上 4所述的方法,其中所述成纤维细胞生长因子为酸性成纤维细胞生长 因子、 成纤维细胞生长因子 2或成纤维细胞生长因子 4; 所述骨形态形成蛋白为骨形 态形成蛋白 2或骨形态形成蛋白 4。
6. 根据以上 5所述的方法,其中所述成纤维细胞生长因子(FGF)的量为 5至 100 ng/ml所述肝脏细胞培养基; 并且所述骨形态形成蛋白 (BMP ) 的量为 5为 100 ng/ml 所述肝脏细胞培养基。
7. 根据以上 6所述的方法,其中促进所述肝脏细胞成熟是将所述肝脏细胞在含有 肝脏细胞生长因子 (优选人肝脏细胞生长因子) 和角化细胞生长因子 (优选人角化细 胞生长因子) 的肝脏细胞培养基中培养, 获得扩增后的肝脏前体细胞; 再转入含有制 瘤素 M和地塞米松的肝脏细胞培养基中培养,然后转入分化培养基 V中培养获得成熟 的肝脏细胞;所述分化培养基 V为含有(0.1— 10) ml/100ml的 N2, (0.1 -20 )ml/100ml 的 B27, 0.5-2mM谷氨酰胺, (0.1 _ 10)ml/100ml的非必需氨基酸, 0.05-0.2 mM β-巯基 乙醇, 1— 100ng/ml的制瘤素 M (OSM) 禾 B 0.05— ΙμΜ地塞米松 (Dex) 的基础培养 基, pH 7.2-7.6。
8. 根据以上 7所述的方法, 其中所述肝脏细胞生长因子的含量为 5至 100 ng/ml 所述肝脏细胞培养基;所述角化细胞生长因子的含量为 5至 100 ng/ml所述肝脏细胞培 养基, 所述制瘤素 M的含量为 1至 100 ng/ml所述肝脏细胞培养基; 所述地塞米松在 所述肝脏细胞培养基中的浓度为 0.05至 1 μΜ。
9. 以上 1至 8中任一所述的方法获得肝脏细胞,优选所述肝脏细胞表达肝脏细胞 的标记分子 AFP, Alb, CK8, CK18, CK19, HNF4a, 和 /或 GAPDH, 更优选所述肝 脏细胞具有糖原合成和贮存功能、 具有尿素合成功能、 具有分泌白细胞的功能和 /或具 有响应药物诱导的 P450酶活性。 .
10. 以上 1至 8中任一所述的方法获得肝脏细胞在制备人工肝脏、 药物的毒性测 试或药物筛选中的应用。
11. 一种将胚胎干细胞 (ESC) 或诱导形成的多潜能干细胞 (iPS ) 诱导分化为肝 脏内胚层细胞的方法, 所述方法包括以下步骤:
1 ) 将胚胎干细胞 (ESC) 或诱导形成的多潜能干细胞 (iPS) 在含有活化素 A的 基础细胞培养基中培养;
2) 将获自步骤 1 ) 的细胞转入含有胰岛素-转铁蛋白 -硒盐 (优选亚硒酸钠) 和活 化素 A的基础细胞培养基中培养; 和
3 ) 将获自步骤 2 ) 的细胞在含有成纤维细胞生长因子 (FGF)和骨形态形成蛋白 (BMP)的肝脏内胚层细胞诱导培养基中培养, 获得肝脏内胚层细胞,
其中优选所述胚胎干细胞 (ESC)或诱导形成的多潜能干细胞(iPS ) 是哺乳动物 细胞, 更优选为小鼠或人细胞, 最优选人细胞, 其中当所述细胞是人细胞时, 优选所 述活化素 A为人活化素 A, 所述成纤维细胞生长因子为人成纤维细胞生长因子, 所述 骨形态形成蛋白为人骨形态形成蛋白。
12. 根据以上 11所述的方法, 其中在步骤 1 ) 和 2) 中的所述基础细胞培养基还 含有牛血清白蛋白组分 V, 其中优选所述成纤维细胞生长因子为酸性成纤维细胞生长 因子、 成纤维细胞生长因子 2或成纤维细胞生长因子 4; 所述骨形态形成蛋白为骨形 态形成蛋白 2或骨形态形成蛋白 4。
13. 根据以上 11或 12所述的方法, 其中在歩骤 2) 中首先将获自步骤 1 ) 的细胞 转入含有活化素 A和第一浓度的胰岛素-转铁蛋白 -硒盐的基础细胞培养基中培养, 然 后将获得的细胞在含有活化素 A和第二浓度的胰岛素-转铁蛋白-硒盐的基础细胞培养' 基中培养, 所述第二浓度高于所述第一浓度。
14. 根据以上 13所述的方法, 其中在步骤 1 ) 中所用的培养基为含有质量百分含 量 0.02%-1%的牛血清白蛋白组分 V和 50-200 ng/ml人活化素 A的基础细胞培养基; 在步骤 2)中所用的培养基分别为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V、 体积百分含量 0.05%-0.5%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人 活化素 A的基础细胞培养基, 以及含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.5%-2%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人 活化素 A的基础细胞培养基;所述肝脏内胚层细胞诱导培养基为含有 20-60ng/ml人成 纤维细胞生长因子 -4和 10-30ng/ml人骨形态形成蛋白 -2的肝脏细胞培养基。
15. 根据以上 11-14 中任一项所述的方法, 其中所述基础细胞培养基选自由以下 组成的组: MEM、 DMEM、 BME、 DMEM / F12、 RPMI 1640和 Fischer,s。
16. 根据以上 11所述的方法, 其在步骤 3 ) 后还包括以下步骤: 用流式细胞仪分 选表达神经性钙黏附蛋白表面蛋白的细胞。
17. 根据以上 11所述的方法, 其中在步骤 1 )、 2) 和 3 ) 中细胞培养的时间分别 为 24小时、 48小时和 5天。
18. 根据以上 11所述的方法, 其中所述胚胎干细胞 (ESC) 为人胚胎干细胞, 所 述人胚胎干细胞为可从商业途径获得的人胚胎干细胞系; 优选为下述任一种细胞系: BG01, BG02,BG03,BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04,ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UCOl, UC06, WA01,WA07, WA09, WA13和 WA14; 所述编号为 NIH的编号。
19. 肝脏内胚层细胞, 其是通过以上 11-18 中任一项所述的方法从人胚胎干细胞 或人诱导的多潜能干细胞分化获得的, 优选至少表达甲胎蛋白、 肝脏细胞核因子 4A 和神经性钙黏附蛋白这三种标志性蛋白的肝脏内胚层细胞。
20. 根据以上 19所述的肝脏内胚层细胞, 所述肝脏内胚层细胞表达甲胎蛋白、 白 蛋白、 肝脏细胞核因子 4A、 肝脏细胞核因子 3B和神经性钙黏附蛋白。
21. 根据以上 19或 20所述肝脏内胚层细胞在制备类肝实质细胞或胆管细胞中的 应用。 '
22. 一种将胚胎干细胞 (ESC ) 或诱导形成的多潜能干细胞 (iPS ) 诱导分化为肝 脏前体细胞的方法, 所述方法包括以下步骤:
1 ) 将胚胎干细胞 (ESC ) 或诱导形成的多潜能干细胞 (iPS ) 在含有活化素 A的 基础细胞培养基中培养;
2) 将获自步骤 1 ) 的细胞转入含有胰岛素-转铁蛋白 -硒盐 (优选亚硒酸钠) 和活 化素 A的基础细胞培养基中培养; 和
3 ) 将获自步骤 2 ) 的细胞在含有成纤维细胞生长因子 (FGF)和骨形态形成蛋白 (BMP)的肝脏内胚层细胞诱导培养基中培养, 获得肝脏内胚层细胞, 和
4) 将获自步骤 3 ) 的肝脏内胚层细胞在 STO细胞词养层上用肝脏前体细胞培养 基进行培养, 获得肝脏前体细胞,
其中优选所述胚胎干细胞 (ESC )或诱导形成的多潜能干细胞 (iPS ) 是哺乳动物 细胞, 更优选为小鼠或人细胞, 最优选人细胞, 其中当所述细胞是人细胞时, 优选所 述活化素 A为人活化素 A, 所述成纤维细胞生长因子为人成纤维细胞生长因子, 所述 骨形态形成蛋白为人骨形态形成蛋白。
23. 根据以上 22所述的方法, 其中在步骤 1 ) 和 2) 中的所述基础细胞培养基还 含有牛血清白蛋白组分 V, 其中优选所述成纤维细胞生长因子为酸性成纤维细胞生长 因子、 成纤维细胞生长因子 2或成纤维细胞生长因子 4; 所述骨形态形成蛋白为骨形 态形成蛋白 2或骨形态形成蛋白 4。
24. 根据以上 22或 23所述的方法, 其中在步骤 2) 中首先将获自步骤 1 ) 的细胞 转入含有活化素 A和第一浓度的胰岛素-转铁蛋白 -硒盐的基础细胞培养基中培养, 然 后将获得的细胞在含有活化素 A和第二浓度的胰岛素 -转铁蛋白-硒盐的基础细胞培养 基中培养, 所述第二浓度高于所述第一浓度。
25. 根据以上 24所述的方法, 其中在步骤 1 ) 中所用的培养基为含有质量百分含 量 0.02%-1%的牛血清白蛋白组分 V和 50-200 ng/ml人活化素 A的基础细胞培养基; 在步骤 2)中所用的培养基分别为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V、 体积百分含量 0.05%-0.5%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人 活化素 A的基础细胞培养基, 以及含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.5%-2%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人 活化素 A的基础细胞培养基;所述肝脏内胚层细胞诱导培养基为含有 20-60ng/ml人成 纤维细胞生长因子 -4和 10-30ng/ml人骨形态形成蛋白 -2的肝脏细胞培养基, 所述肝脏 前体细胞培养基为含有 5-25 mM HEPES, 体积比含量 0.5%-2%的胰岛素-转铁蛋白-亚 硒酸钠混合补充液, 质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 2-20 mM 尼克 酰胺, 0.2-2mM的二磷酸化抗坏血酸, 0.02-0.2μΜ地塞米松, 和 5-40ng/ml EGF的基 础细胞培养基。
26. 根据以上 22-25 中任一项所述的方法, 其中所述基础细胞培养基选自由以下 组成的组: MEM、 DMEM、 BME、 DMEM / F12、 RPMI 1640和 Fischer's。
27. 根据以上 22所述的方法, 其在步骤 3 ) 后还包括以下步骤: 用流式细胞仪分 选表达神经性钙黏附蛋白表面蛋白的细胞。
28. 根据以上 22所述的方法, 其中在步骤 1 )、 2) 和 3 ) 中细胞培养的时间分别 为 24小时、 48小时和 5天。
29. 根据以上 22-28 中任一所述的方法, 其中在所述方法中, 还包括肝脏前体细 胞的传代步骤; 肝脏前体细胞的传代方法为将所述肝脏前体细胞用胰酶 -EDTA消化液 消化, 然后在 STO细胞作为饲养层的肝脏前体细胞培养基上培养。
30. 根据以上 22 述的方法, 其中所述胚胎干细胞 (ESC) 为人胚胎干细胞, 所 述人胚胎干细胞为可从商业途径获得的人胚胎干细胞系; 优选为下述任一种细胞系: BG01, BG02,BG03,BG04, SA01, SA02, SA03 , ES01, ES02, ES03, ES04,ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WA01,WA07, WA09, WA13和 WA14; 所述编号为 NIH的编号。
31. 肝脏前体细胞, 其是通过以上 22-30 中任一项所述的方法从人胚胎干细胞或 人诱导的多潜能干细胞分化获得的, 优选表达甲胎蛋白、角蛋白 19和角蛋白 7的肝脏 前体细胞, 其具有增殖能力并具有向类肝实质细胞和类胆管细胞的双向分化的潜能。
32. 根据以上 31所述的肝脏前体细胞在制备类肝实质细胞或胆管细胞中的应用。 发明详述
本发明的一个目的是提供一种诱导形成的多潜能干细胞分化成肝脏细胞的方法, 以及利用这种方法获得的肝脏细胞进行药物筛选的潜能。
本发明所提供的诱导形成的多潜能干细胞分化成肝脏细胞的方法, 是将诱导形成 的多潜能干细胞在分化培养基 I中培养,再转入含有胰岛素-转铁蛋白-硒盐的分化培养 基 I 中培养, 然后在含有成纤维细胞生长因子和骨形态形成蛋白的肝脏细胞培养基 (HCM) 中培养获得肝脏前体细胞, 促进所述肝脏前体细胞成熟, 获得肝脏细胞; 所 述分化培养基 I为含有活化素 A的基础细胞培养基。
其中, 所述基础细胞培养基为现有技术中公知公用的 MEM (Minimum Essential Medium), DMEM、 BME ( Basal Medium Eagle )、 DMEM/F12、 RPMIl 640或 Fischer's (Fischer's Medium),这些培养基可商购自例如 Sigma Aldrich, Invitrogen, Gibco等公司。
所述活化素 A的量可为 10-500ng/ml所述分化培养基 I; 所述胰岛素-转铁蛋白-硒 盐 (优选亚硒酸钠) 与所述分化培养基 I的体积比为 0.01— 20%。
所述成纤维细胞生长因子 (FGF ) 为酸性成纤维细胞生长因子、 成纤维细胞生长 因子 2或成纤维细胞生长因子 4; 所述骨形态形成蛋白 (BMP) 为骨形态形成蛋白 2 或骨形态形成蛋白 4。
所述成纤维细胞生长因子 (FGF) 的量可为 5-lOOng/ml所述肝脏细胞培养基; 所 述骨形态形成蛋白 (BMP) 的量可为 5-lOOng/ml所述肝脏细胞培养基。
促进所述肝脏前体细胞成熟可用现有的方法, 也可以将所述肝脏前体细胞在含有 肝脏细胞生长因子 (HGF) 和角化细胞生长因子 (KGF) 的肝脏细胞培养基中培养, 获得扩增后的肝脏前体细胞;然后转入含有制瘤素 M和地塞米松的肝脏细胞培养基中 培养, 然后转入分化培养基 V中培养获得成熟的肝脏细胞; 所述分化培养基 V为含有 0.1 - 10% (体积百分比) N2 (购自 Invitrogen, 货号: 17502-048 ) , 0.1—20% (体积 百分比) B27 (购自 Invitrogen, 货号: 17504-044) , 0.5-2mM谷氨酰胺, 0.1 _ 10% (体 积百分比) 非必需氨基酸, 0.05-0.2mM β-巯基乙醇, 1— 100ng/ml制瘤素 M (OSM) 和 0.05— ΙμΜ地塞米松 (Dex) 的肝脏细胞培养基或基础培养基。
所述肝脏细胞生长因子 (HGF ) 的量可为 5-lOOng/ml所述肝脏细胞培养基; 所述 角化细胞生长因子 (KGF) 的量可为 5-100ng/ml所述肝脏细胞培养基; 所述制瘤素 M 的量可为 1一 100ng/ml所述肝脏细胞培养基或基础培养基; 所述地塞米松(Dex)的量 可为在所述肝脏细胞培养基或基础培养基中的浓度为 0.05— 1μΜ。
上述方法获得的表达正常肝脏细胞标记分子如 AFP (甲胎蛋白), Alb (白蛋白 (ALB) ), CK18 (细胞角质素(角蛋白) 18), CK8 (细胞角质素(角蛋白) 8 ), CK19 (细胞角质素 (角蛋白) 19), AAT (α-抗胰蛋白酶), CYP3A4 (肝药酶), 肝细胞核 因子 4Α (HNF4A, 或 HNF4a), GAPDH (3-磷酸甘油醛脱氢酶) 等或具有正常肝脏 细胞功能如糖原合成与贮存, 尿素合成, 分泌白蛋白等的肝脏细胞也属于本发明的保 护范围。
因此, 本发明的第一方面提供以下各项:
1、诱导形成的多潜能干细胞分化成肝脏细胞的方法,是将诱导形成的多潜能干细 胞在分化培养基 I中培养, 再转入含有胰岛素-转铁蛋白 -硒盐的分化培养基 I中培养, 然后在含有成纤维细胞生长因子和骨形态形成蛋白的肝脏细胞培养基中培养获得肝脏 前体细胞, 促进所述肝脏细胞成熟, 获得肝脏细胞; 所述分化培养基 I为含有活化素 A的基础细胞培养基。
2、根据以上 1所述的方法, 其特征在于: 所述基础细胞培养基为 MEM、 DMEM、 BME、 DMEM / F12、 RPMI 1640或 Fischer's。
3、根据以上 1或 2所述的方法,其特征在于:所述活化素 A的量为 10— 500ng/ml 所述分化培养基 I。
4、 根据以上 3所述的方法, 其特征在于: 所述胰岛素-转铁蛋白-硒盐与所述分化 培养基 I体积比为 (0.01—20) %。
5、根据以上 4所述的方法, 其特征在于: 所述成纤维细胞生长因子为酸性成纤维 细胞生长因子、 成纤维细胞生长因子 . 2或成纤维细胞生长因子 4; 所述骨形态形成蛋 白为骨形态形成蛋白 2或骨形态形成蛋白 4。
6、 根据以上 5所述的方法, 其特征在于: 所述成纤维细胞生长因子(FGF) 的量 可为 5— lOOng/ml所述肝脏细胞培养基; 所述骨形态形成蛋白 (BMP) 的量可为 5— lOOng/ml所述肝脏细胞培养基。
7、根据以上 6所述的方法, 其特征在于: 促进所述肝脏细胞成熟是将所述肝脏细 胞在含有肝脏细胞生长因子和角化细胞生长因子的肝脏细胞培养基中培养, 获得扩增 后的肝脏前体细胞; 再转入含有制瘤素 M和地塞米松的肝脏细胞培养基中培养, 然后 转入分化培养基 V中培养获得成熟的肝脏细胞; 所述分化培养基 V为含有 (0.1— 10) ml/ 100ml N2, (0.1— 20 )ml/100ml B27, 0.5-2mM谷氨酰胺, (0.1— 10)ml/100ml非必需 氨基酸, 0.05-0.2ιηΜβ-巯基乙醇, l _ 100ng/ml制瘤素 M (OSM) 和 0.05— ΙμΜ地塞 米松 (Dex) 的基础培养基, pH 7.2-7.6。
8、 根据以上 7 所述的方法, 其特征在于: 所述肝脏细胞生长因子的量为 5— lOOng/ml所述肝脏细胞培养基; 所述角化细胞生长因子的量为 5— lOOng/ml所述肝脏 细胞培养基, 所述制瘤素 M的量为 1― lOOng/ml所述肝脏细胞培养基; 所述地塞米松 的量为 0.05— ΙμΜ所述肝脏细胞培养基。
9、 以上 1至 8中任一所述的方法获得肝脏细胞。
10、 以上 1至 8中任一所述的方法在制备人工肝脏或药物筛选中的应用。
在本发明诱导形成的多潜能干细胞分化成肝脏细胞的方法中, 用活化素 Α诱导人 iPS细胞向定形内胚层细胞高效分化,然后在成纤维细胞生长因子和骨形态形成蛋白的 共同作用下进一步分化为表达白蛋白的早期肝脏细胞, 在肝脏细胞生长因子和角化细 胞生长因子的共同作用下可促进分化的早期肝脏细胞继续扩增, 在 OSM, Dex和 N2, B27 的共同作用下可促进分化的早期肝脏细胞进一步成熟。 所获得的分化细胞具有比 较典型的肝脏细胞的形态, 并有约 60%以上的细胞表达有早期肝脏细胞的标记蛋白 CK8 (细胞角质素 (角蛋白) 8 )、 Alb、 CK18和 AFP。 同时, iPS细胞分化的肝脏细 胞也表达成熟肝脏细胞标记分子 AAT和 CYP3A4, 整个分化过程与肝脏的早期发育十 分相似, 而且通过本方法得到的肝脏细胞具有可诱导的 CYP450酶的活性, 能够响应 药物的诱导。用本发明对诱导形成的多潜能干细胞(iPS细胞)分化成肝脏细胞的方法 具有周期短、 分化效率高、 安全稳定的优点, 分化获得的肝脏细胞可用于细胞移植治 疗肝病、 人工肝脏和药物的毒性测试等, 此外整个分化过程也可用于人类早期胚胎肝 脏发育的研究, 应用前景广阔。
本发明的另一个目的是提供一种肝脏内胚层细胞及其制备和纯化方法。
本发明所提供的肝脏内胚层细胞是由人胚胎干细胞 (人 ES细胞) 或人诱导的多 潜能干细胞 (induced pluripotent stem cells, 人 iPS细胞) 分化获得的至少表达甲胎蛋 白 (AFP)、 肝脏细胞核因子 4A (HNF4A) 和神经性钙黏附蛋白这三种标志性蛋白的 肝脏内胚层细胞。
所述肝脏内胚层细胞还可表达白蛋白 (ALB) 和肝脏细胞核因子 3B (FOXA2)。 所述人胚胎千细胞具体地可为可从商业途径获得的人胚胎干细胞系, 如表 1。
表 1. 可从商业途径获得的人胚胎干细胞系
Figure imgf000012_0001
本发明的另一个目的是提供一种肝脏内胚层细胞的制备和纯化方法。
本发明所提供的肝脏内胚层细胞的制备和纯化方法, 包括如下步骤
1 ) 将人胚胎干细胞或诱导的多潜能干细胞在内胚层诱导培养基 I上培养;
2) 步骤 1 ) 获得的细胞在内胚层诱导培养基 II上培养;
3) 步骤 2) 获得的细胞在内胚层诱导培养基 III上培养;
4) 步骤 3 ) 获得的细胞肝脏内胚层细胞诱导培养基上培养;
所述内胚层诱导培养基 I为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V-200ng/ml人活化素 A的基础细胞培养基; 其中, 牛血清白蛋白组分 V的质量百 分含量优选为 0.02%-0.1%,尤其优选为 0.05%;人活化素 A的含量优选为 80-150ng/ml, 尤其优选为 100ng/ml;
所述内胚层诱导培养基 Π为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.05%-0.5%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人 活化素 A的基础细胞培养基; 其中, 牛血清白蛋白组分 V的含量优选为 0.02%-0.1%, 尤其优选为 0.05%; 人活化素 A的含量优选为 80-150ng/ml, 尤其优选为 100ng/ml; 胰 岛素 -转铁蛋白-亚硒酸钠混合补充液的含量优选为 0.05%-0.15%, 尤其优选为 0.1%; 所述内胚层诱导培养基 III为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.5%-2%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人活化 素 A的基础细胞培养基; 其中, 牛血清白蛋白组分 V的含量优选为 0.02%-0.1%, 尤 其优选为 0.05%; 人活化素 A的含量优选为 80-150ng/ml, 尤其优选为 100ng/ml; 胰岛 素 -转铁蛋白-亚硒酸钠混合补充液的含量优选为 0.8%-1.5%, 尤其优选为 1%;
所述肝脏内胚层细胞诱导培养基为含有 20-60ng/ml 人成纤维细胞生长因子 -4 和 10-30ng/ml人骨形态形成蛋白 -2的肝脏细胞培养基; 其中, 人成纤维细胞生长因子 -4 的含量优选为 30ng/ml, 人骨形态形成蛋白 -2的含量优选为 20ng/ml。
上述内胚层诱导培养基 I、 内胚层诱导培养基 II、 内胚层诱导培养基 III和肝脏内 胚层细胞诱导培养基的 pH均可为培养哺乳动物细胞的常规 pH, 如 pH 7.2-7.6。
其中, 所述方法还包括用流式细胞仪分选表达神经性钙黏附蛋白(N-cadherin)表 面蛋白的细胞。
将获得的肝脏内胚层细胞用不含有 EDTA、 加入 2mM钙离子的胰酶进行消化处 理, 随后用流式细胞仪分选表达神经性钙黏附蛋白表面蛋白的细胞。
所述人胚胎干细胞为如表 1所示。所述基础细胞培养基可为 MEM、DMEM、BME、 DMEM / F12、 RPMI1640或 Fischer's培养基。
所述方法中, 人胚胎干细胞或诱导的多潜能干细胞在内胚层诱导培养基 I上培养 24ho 所述方法中, 步骤 1 ) 获得的细胞在内胚层诱导培养基 II上培养 24h。 所述方法 中, 步骤 2) 获得的细胞在内胚层诱导培养基 III上培养 24h。 所述方法中, 步骤 3 ) 获得的细胞肝脏内胚层细胞诱导培养基上培养 5天。
由人胚胎干细胞或诱导的多潜能干细胞制备肝脏内胚层细胞的培养基, 也属于本 发明的保护范围内。 该由人胚胎干细胞或诱导的多潜能干细胞制备肝脏内胚层细胞的 培养基, 由上述内胚层诱导培养基 I、 上述内胚层诱导培养基 II、 上述内胚层诱导培养 基 III和上述肝脏内胚层细胞诱导培养基组成。
在发明中, 检测了人胚胎干细胞向肝脏谱系分化的过程, 并鉴定出在这个分化过 程中肝脏内胚层细胞的产生。 找到了一个表面标志蛋白 N-cadheriri, 可以有效的代表 在分化过程中最早产生的 AFP+的肝脏内胚层细胞。 因此, 可以通过流式细胞分选的方 法将肝脏内胚层细胞从混杂的人胚胎干细胞分化产物中分离和纯化出来。
因此, 本发明的第二方面提供以下各项:
1、肝脏内胚层细胞,是由人胚胎干细胞或人诱导的多潜能干细胞分化获得的至少 表达甲胎蛋白、 肝细胞核因子 4A 和神经性钙黏 f蛋白这三种标志性蛋白的肝脏内胚 层细胞。
2、根据以上 1所述的肝脏内胚层细胞, 其特征在于: 所述肝脏内胚层细胞表达甲 胎蛋白、 白蛋白、 肝细胞核因子 4A、 肝细胞核因子 3B和神经性钙黏附蛋白。
3、根据以上 1或 2所述的肝脏内胚层细胞, 其特征在于: 所述人胚胎干细胞为人 胚胎干细胞系。
4、根据以上 3所述的肝脏内胚层细胞, 其特征在于: 所述人胚胎干细胞系为下述 任一种细胞系: BG01, BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WA01, WA07, WA09, WA13和 WA14; 所述编号为 NIH的编号。
5、 以上 1至 4中任一所述肝脏内胚层细胞的制备方法, 包括如下步骤
1 ) 将人胚胎干细胞或诱导的多潜能干细胞在内胚层诱导培养基 I上培养;
2) 步骤 1 ) 获得的细胞在内胚层诱导培养基 II上培养;
3) 步骤 2) 获得的细胞在内胚层诱导培养基 III上培养;
4)步骤 3 )获得的细胞肝脏内胚层细胞诱导培养基上培养, 得到肝脏内胚层细胞; 所述内胚层诱导培养基 I为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V 和 50-200ng/ml人活化素 A的基础细胞培养基; 所述内胚层诱导培养基 II为含有质量 百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.05%-0.5%的胰岛素 -转铁 蛋白-亚硒酸钠混合补充液和 50-200ng/ml人活化素 A的基础细胞培养基; 所述内胚层 诱导培养基 III为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.5%-2%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人活化素 A的基础细 胞培养基; 所述肝脏内胚层细胞诱导培养基为含有 20-60ng/ml人成纤维细胞生长因子 -4和 10-30ng/ml人骨形态形成蛋白 -2的肝细胞培养基。 6、根据以上 5所述的制备方法, 其特征在于: 所述方法还包括用流式细胞仪分选 表达神经性钙黏附蛋白表面蛋白的细胞。
7、 根据以上 5或 6所述的方法, 其特征在于: 所述基础细胞培养基为 MEM、 DMEM、 BME、 DMEM / F12, RPMI 1640或 Fischer,s。
8、 根据以上 5-7中任一所述的方法, 其特征在于: 所述方法中, 人胚胎干细胞或 诱导的多潜能干细胞在内胚层诱导培养基 I上培养 24h; 所述方法中, 步骤 1 )获得的 细胞在内胚层诱导培养基 II上培养 24h; 所述方法中, 步骤 2) 获得的细胞在内胚层 诱导培养基 III上培养 24h; 所述方法中, 步骤 3 ) 获得的细胞肝脏内胚层细胞诱导培 养基上培养 5天。
9、 根据以上 5-8中任一所述的方法, 其特征在于: 所述人胚胎干细胞为可从商业 途径获得的人胚胎干细胞系;
所述可从商业途径获得的人胚胎干细胞系优选为下述任一种细胞系: BG01, BG02, BG03, BG04, SAOl, SA02, SA03, ESOl, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UCOl, UC06, WAOl, WA07, WA09, WA13和 WA14; 所述编号为 NIH的编号。
10、 由人胚胎干细胞或诱导的多潜能干细胞制备肝脏内胚层细胞的培养基, 由内 胚层诱导培养基 I、 内胚层诱导培养基 II、 内胚层诱导培养基 III和肝脏内胚层细胞诱 导培养基组成, 所述内胚层诱导培养基 I为含有质量百分含量 0.02%-1%的牛血清白蛋 白组分 V和 50-200ng/ml人活化素 A的基础细胞培养基; 所述内胚层诱导培养基 II为 含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.05%-0.5%的胰 岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人活化素 A的基础细胞培养基;所 述内胚层诱导培养基 ΙΠ为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积 百分含量 0.5%-2%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人活化素 A 的基础细胞培养基; 所述肝脏内胚层细胞诱导培养基为含有 20-60ng/ml人成纤维细胞 生长因子 -4和 10-30ng/ml人骨形态形成蛋白 -2的肝细胞培养基。
11、 以上 1-4中任一所述的细胞、 以上 5-9中任一所述的方法或以上 10所述的培 养基在制备类肝实质细胞或胆管细胞中的应用。
本发明的肝脏内胚层细胞, 是由人胚胎干细胞或诱导的多潜能千细胞分化获得的 至少表达甲胎蛋白、 肝细胞核因子 4A和神经性钙黏附蛋白这三种标志性蛋白的肝脏 内胚层细胞。 本发明的肝脏内胚层继续培养可获得肝脏前体细胞。 这些肝脏前体细胞 具有在体外分化成肝实质和胆管的潜能。
本发明的还有的另一个目的是提供一种肝脏前体细胞及其制备方法与应用。
本发明所提供的肝脏前体细胞, 是由人胚胎干细胞 (人 ES 细胞) 或人诱导的多 潜能干细胞 (induced pluripotent stem cells, 人 iPS细胞) 分化获得表达早期肝脏标志 蛋白甲胎蛋白 (AFP)和表达胆管的标志蛋白角蛋白 19 (KRT19) 和角蛋白 7 (KRT7) 的细胞, 其具有增殖能力并具有向类肝实质细胞和类胆管细胞的双向分化潜能。
本发明的另一个目的是提供一种制备肝脏前体细胞的方法。
本发明所述的制备肝脏前体细胞的方法, 包括如下步骤:
1 ) 将人胚胎干细胞或诱导的多潜能干细胞在内胚层诱导培养基 I上培养;
2) 步骤 1 ) 获得的细胞在内胚层诱导培养基 II上培养;
3 ) 步骤 2) 获得的细胞在内胚层诱导培养基 III上培养;
4) 步骤 3 ) 获得的细胞肝脏内胚层诱导培养基上培养, 获得肝脏内胚层细胞;
5 ) 所述肝脏内胚层细胞在 STO细胞作为饲养层上用肝脏前体细胞培养基进行培 养, 获得肝脏前体细胞。
所述内胚层诱导培养基 I为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V 和 50-200ng/ml人活化素 A的基础细胞培养基; 其中, 牛血清白蛋白组分 V的含量优 选为 0.02%-0.1%, 尤其优选为 0.05%; 人活化素 A的含量优选为 80-150ng/ml, 尤其 优选为 100ng/ml;
所述内胚层诱导培养基 II为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.05%-0.5%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人 活化素 A的基础细胞培养基; 其中, 牛血清白蛋白组分 V的含量优选为 0.02%-0.1%, 尤其优选为 0.05%; 人活化素 A的含量优选为 80-150ng/ml, 尤其优选为 lOOng/ml; 胰 岛素 -转铁蛋白-亚硒酸钠混合补充液的含量优选为 0.05%-0.15%, 尤其优选为 0.1%; 所述内胚层诱导培养基 III 为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.5%-2%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人 活化素 A的基础细胞培养基; 其中, 牛血清白蛋白组分 V的含量优选为 0.02%-0.1%, 尤其优选为 0.05%; 人活化素 A的含量优选为 80-150ng/ml, 尤其优选为 100ng/ml; 胰 岛素 -转铁蛋白-亚硒酸钠混合补充液的含量优选为 0.8%-1.5%, 尤其优选为 1%;
所述肝脏内胚层诱导培养基为含有 20-60ng/ml 人成纤维细胞生长因子 -4 和 10-30ng/ml人骨形态形成蛋白 -2的肝脏细胞培养基; 其中, 人成纤维细胞生长因子 -4 的含量优选为 30ng/ml, 人骨形态形成蛋白 -2的含量优选为 20ng/ml;
所述肝脏前体细胞培养基为含有 5-25 mM HEPES, 体积比分含量 0.5%-2%的胰岛 素-转铁蛋白-亚硒酸钠混合补充液, 质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 2-20 mM尼克酰胺, 0.2-2mM的二磷酸化抗坏血酸, 0.02-0.2μΜ地塞米松,和 5-40ng/mI EGF的基础细胞培养基; 其中, HEPES的含量优选为 9-12 mM, 尤其优选为 10 mM; 胰岛素 -转铁蛋白-亚硒酸钠混合补充液的含量优选为 0.8%-1.5%, 尤其优选为 1%; 牛 血清白蛋白组分 V的含量优选为 0.02%-0.1%, 尤其优选为 0.05%; 尼克酰胺的含量优 选为 8-14mM, 尤其优选为 llmM; 二磷酸化抗坏血酸的含量优选为 0.8-1.5mM, 尤其 优选为 ImM; 地塞米松的含量优选为 0.08-0.15μΜ, 尤其优选为 Ο.ΙμΜ; EGF的含量 优选为 8-15 ng/ml, 尤其优选为 10 ng/mL
上述内胚层诱导培养基 I、 内胚层诱导培养基 II、 内胚层诱导培养基 III、 肝脏内 胚层诱导培养基和肝脏前体细胞培养基的 pH均可为培养哺乳动物细胞的常规 pH, 如 pH 7.2-7.6.
所述方法中, 所述步骤 3 )和步骤 4)之间还包括用流式细胞仪分选表达神经性钙 黏附蛋白 (N-cadherin)表面蛋白的细胞的步骤。 所述人胚胎干细胞为如表 1所示。 所 述基础细胞培养基可为 MEM、 DMEM、 BME、 DMEM / F12> RPMI 1640或 Fischer 's。
所述方法中, 人胚胎干细胞或诱导的多潜能干细胞在内胚层诱导培养基 I上培养 24ho 所述方法中, 步骤 1 ) 获得的细胞在内胚层诱导培养基 II上培养 24h。 所述方法 中, 步骤 2) 获得的细胞在内胚层诱导培养基 III上培养 24h。 所述方法中, 步骤 3 ) 获得的细胞肝脏内胚层诱导培养基上培养 5天。 所述方法中, 步骤 4) 所述肝脏内胚 层细胞在 STO细胞作为词养层上用肝脏前体细胞培养基进行培养,获得肝脏前体细胞。
所述方法中, 还包括肝脏前体细胞的传代方法; 肝脏前体细胞的传代方法为将所 述肝脏前体细胞用胰酶 -EDTA消化液 (美国 hwitmgen公司) 消化, 然后在 STO细胞 作为饲养层的肝脏前体细胞培养基上培养。
由上述内胚层诱导培养基 I、上述内胚层诱导培养基 II、上述内胚层诱导培养基 III、 上述肝脏内胚层诱导培养基和上述肝脏前体细胞培养基组成的用于由人胚胎干细胞或 诱导的多潜能干细胞制备肝脏前体细胞的培养基也属于本发明的保护范围。 .
在本发明中, 检测了人胚胎干细胞向肝脏谱系分化的过程, 并鉴定出在这个分化 过程中肝脏前体细胞的产生。 找到了一个表面标志蛋白 N-cadherin, 可以有效的代表 在分化过程中最早产生的 AFP+的肝脏内胚层细胞。因此,可以通过流式细胞分选的方 法将肝脏内胚层细胞从混杂的人胚胎干细胞分化产物中分离和纯化出来。 本发明的肝 脏内胚层细胞呈克隆状生长, 并且与之前报道的肝脏内胚层细胞不同, 表现出强大的 增殖能力。 这些肝脏内胚层继续培养可获得肝脏前体细胞。 这些肝脏前体细胞还在体 外表现出向肝实质和胆管两种分化潜能。 通过诱导之后, 肝脏前体细胞可以分化为类 肝实质细胞的细胞, 并且表达其特异的功能蛋白如 ALB, AAT等, 并储存糖原; 肝脏 前体细胞也可以分化为类胆管细胞, 并且表达 KRT7, KRT19, 形成类胆管状的结构, 并且获得上皮极性。
因此, 本发明的第三方面提供以下各项:
1、肝脏前体细胞,是由人胚胎干细胞或人诱导的多潜能干细胞分化获得表达甲胎 蛋白、角蛋白 19和角蛋白 7的细胞, 其具有增殖能力并具有向类肝实质细胞和类胆管 细胞的双向分化潜能。
2、根据以上 1所述的肝脏前体细胞, 其特征在于: 所述人胚胎干细胞为人胚胎干 细胞系。
3、根据以上 2所述的肝脏前体细胞, 其特征在于: 所述人胚胎干细胞系为下述任 一种细胞系: BG01, BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WA01, WA07, WA09, WA13和 WA14; 所述编号为 NIH的编号。
4、 制备以上 1-3中任一所述肝脏前体细胞的方法, 包括如下步骤
1 ) 将人胚胎干细胞或诱导的多潜能干细胞在内胚层诱导培养基 I上培养;
2) 步骤 1 ) 获得的细胞在内胚层诱导培养基 II上培养;
3 ) 步骤 2) 获得的细胞在内胚层诱导培养基 III上培养;
4) 步骤 3 ) 获得的细胞肝脏内胚层诱导培养基上培养, 得到肝脏内胚层细胞;
5 ) 将所述肝脏内胚层细胞在 STO细胞作为饲养层上用肝脏前体细胞培养基进行 培养, 获得肝脏前体细胞;
所述内胚层诱导培养基 I为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V 和 50-200ng/ml人活化素 -A的基础细胞培养基; 所述内胚层诱导培养基 II为含有质量 百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分含量 0.05%-0.5%的胰岛素一转 铁蛋白一亚硒酸钠混合补充液和 50-200ng/ml人活化素 -A的基础细胞培养基; 所述内 胚层诱导培养基 III为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 体积百分 含量 0.5%-2%的胰岛素一转铁蛋白一亚硒酸钠混合补充液和 50-200ng/ml人活化素 -A 的基础细胞培养基; 所述肝脏内胚层诱导培养基为含有 20-60ng/ml人成纤维细胞生长 因子 -4和 10-30ng/ml人骨形态形成蛋白 -2的肝细胞培养基;
所述肝脏前体细胞培养基为含有 5-25 mM HEPES,体积比分含量 0.5%-2%的胰岛 素一转铁蛋白一亚硒酸钠混合补充液, 质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 2-20 mM尼克酰胺, 0.2-2mM 的二磷酸化抗坏血酸, 0.02-0.2μΜ 地塞米松, 和 5-40ng/ml EGF的基础细胞培养基。
5、根据以上 4所述的制备方法, 其特征在于: 所述方法还包括用流式细胞仪分选 表达神经性钙黏附蛋白表面蛋白的细胞。
6、 根据以上 4或 5所述的方法, 其特征在于: 所述基础细胞培养基为 MEM、 DMEM、 BME、 DMEM / F12、 RPMI 1640或 Fischer,s。
7、 根据以上 4-6中任一所述的方法, 其特征在于: 所述方法中, 人胚胎干细胞或 诱导形成的多潜能干细胞在内胚层诱导培养基 I上培养 24h; 所述方法中, 步骤 1 )获 得的细胞在内胚层诱导培养基 II上培养 24h; 所述方法中, 步骤 2 ) 获得的细胞在内 胚层诱导培养基 III上培养 24h; 所述方法中, 步骤 3 ) 获得的细胞肝脏内胚层诱导培 养基上培养 5天。
8、 根据以上 4-7中任一所述的方法, 其特征在于: 所述方法中, 还包括肝脏前体 细胞的传代步骤; 肝脏前体细胞的传代方法为将所述肝脏前体细胞用胰酶 -EDTA消化 液消化, 然后在 STO细胞作为饲养层的肝脏前体细胞培养基上培养。
9、 根据以上 4-8中任一所述的方法, 其特征在于: 所述人胚胎干细胞为可从商业 途径获得的人胚胎干细胞系;
所述可从商业途径获得的人胚胎干细胞系优选为下述任一种细胞系: BG01,BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WA01, WA07, WA09, WA13和 WA14; 所述编号为 NIH的编号。
10、 由人胚胎干细胞或诱导的多潜能干细胞制备肝脏前体细胞的培养基, 由内胚 层诱导培养基 I、 内胚层诱导培养基 II、 内胚层诱导培养基 III、 肝脏内胚层诱导培养 基和肝脏前体细胞培养基组成; 所述内胚层诱导培养 I 为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V和 50-200ng/ml人活化素 -A的基础细胞培养基;所述 内胚层诱导培养基 II为含有质量百分含量 0.02%-1%的牛血清白蛋白组分 V,体积百分 含量 0.05%-0.5%的胰岛素一转铁蛋白一亚硒酸钠混合补充液和 50-200ng/ml人活化素 -A的基础细胞培养基; 所述内胚层诱导培养基 III为含有质量百分含量 0.02%-1%的牛 血清白蛋白组分 V, 体积百分含量 0.5%-2%的胰岛素一转铁蛋白一亚硒酸钠混合补充 液和 50-200ng/ml人活化素 -A的基础细胞培养基; 所述肝脏内胚层诱导培养基为含有 20-60ng/ml人成纤维细胞生长因子 -4和 10-30ng/ml人骨形态形成蛋白 -2的肝细胞培养 基; 所述肝脏前体细胞培养基为含有 5-25 mM HEPES, 体积比分含量 0.5%-2%的胰岛 素一转铁蛋白一亚硒酸钠混合补充液, 质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 2-20 mM 尼克酰胺, 0.2-2mM 的二磷酸化抗坏血酸, 0.02-0.2μΜ 地塞米松, 和 5-40ng/ml EGF的基础细胞培养基。
11、 以上 1-3中任一所述的细.胞、 以上 4-9中任一所述的方法或以上 10所述的培 养基在制备类肝实质细胞或胆管细胞中的应用。
本发明的肝脏前体细胞是由人胚胎干细胞或诱导的多潜能干细胞分化获得表达早 期肝脏标志基因甲胎蛋白 (AFP)和表达胆管的标志基因角蛋白 19 (KRT19)和角蛋白 7 (KRT7)的细胞, 其具有强增殖能力并具有向类肝实质细胞和类胆管细胞双向分化潜 能。 本发明的肝脏前体细胞具有在体外分化成肝实质和胆管的潜能。 附图说明
图 1为 IPS细胞向肝脏细胞初始分化的免疫荧光和 RT—PCR检测结果 (HI : 分 化的 ES细胞 HI ; 3U1 : 分化的 hAFF-4U-M-iPS-l ; 3U2: 分化的 hAFF-4U-M-iPS-3。 以下同)。
图 2为对分化细胞进行成熟肝脏细胞标记分子 AAT和 CYP3A4的检测结果。 图 3为分化细胞的糖原合成功能的检测结果。
a 人肝脏细胞; b, c, d 分别为分化的 ES 细胞 Hl, hAFF-4U-M-iPS-l 和 hAFF-4U-M-iPS-3; e 为饲养层细胞; f, g, h分别为不添加细胞因子自发分化的 ES 细胞 Hl, hAFF-4U-M-iPS-l和 hAFF-4U-M-iPS-3细胞。
图 4为对分化细胞的合成尿素功能的检测结果
图 5为对分化细胞的分泌白蛋白功能的检测结果。
对照: 人肝脏细胞; 18: 分化 18天的细胞; 21 : 分化 21天的细胞。
图 6为分化细胞可诱导 CYP450酶活的检测结果
对照: 人肝脏细胞; 给药: 200μ§/πι1 苯巴比妥钠;
图 7为肝脏内胚层相关基因的表达的时间动态。 图 8为免疫荧光显示 N-cadherin与 AFP、 ALB、 HNF4A、 GATA4和 FOXA2共表 达。
1 : AFP与 N-cadherin共表达(AFP绿色, N-cadherin红色); 2: AFP与 N-cadherin 共表达(AFP红色, N-cadherin绿色); 3: ALB与 N-cadherin共表达; 4: HNF4A与 N-cadherin共表达; 5: GATA4与 N-cadherin共表达; 6: FOXA2与 N-cadherin共表达。
图 9为胞内流式细胞分析表明 N-cadherin和 AFP在同一细胞中表达。
A: 同型抗体对照 B: 肝脏内胚层细胞中神经性钙黏附蛋白和甲胎蛋白的表达情 况
图 10为分化第 8天的细胞通过 N-cadherin进行分选的结果。
A: 经过胰酶进行消化; B: 经过胰酶和 EDTA进行消化; C: 胰酶和钙离子进行 消化。
图 11为分选后 N-cadherin+的细胞群和 N-cadherin-细胞群的 AFP表达。
A: N-cadherin+的细胞群; B: N-cadherin-细胞群。
图 12为定量 RT-PCR显示分选后 N-cadherin+的细胞群富集了肝脏特异蛋白。 图 13为 N-cadherin+细胞的细胞在具有继续向 ALB、 AAT、 阳性的类肝实质细胞 分化的能力, 也具有向 KRT7阳性细胞分化的能力。
图 14为肝脏内胚层细胞只具有较弱的增殖能力。
上排, 只有少量肝脏内胚层细胞表达 Ki67。 下排, 只有少量肝脏内胚层细胞与 BrdU共染。 注意大多数 AFP+的细胞均为 BrdU阴性。 细胞核由 DAPI进行复染 (蓝 色)。 标尺, 50μη。
图 15为肝脏前体细胞的相应的形态变化。
Α人胚胎干细胞; B定形内胚层细胞; C肝脏内胚层细胞; D肝脏前体细胞。 图 16为针对人细胞核的特异性染色。
说明 STO饲养层上的克隆(上排)是人细胞来源的。 下排, STO饲养层不表达人 细胞核抗原。 细胞核由 DAPI进行复染 (蓝色)。 标尺, 50μιη。
图 17为肝脏前体细胞的克隆中大部分细胞表达 Ki67。
细胞核由 DAPI进行复染 (蓝色)。 标尺, 50μπι。
图 18为肝脏前体细胞的增殖能力。
图 19为肝脏前体细胞的基因表达特性。
图 20为流式细胞分析肝脏前体细胞 EpCAM以及 CD133的表达。 A 同型对照; B STO细胞对照; C 肝脏前体细胞。
图 21为肝脏前体细胞能自发的向肝实质细胞分化。
图 22为定向诱导肝脏前体细胞向肝实质细胞分化。
图 23为肝脏前体细胞分化得到的肝实质细胞的 mRNA表达情况。
图 24为 ELISA检测人白蛋白分泌情况。
图 24中, 1 : 培养基; 2: 人胚胎干细胞分化得到的肝脏前体细胞; 3: 经由肝脏 前体细胞分化得到的肝实质细胞; 4: 直接由人胚胎干细胞分化得到的肝实质细胞 图 25为肝脏前体细胞分化得到的类肝实质细胞的功能分析。
图 26为肝脏前体细胞分化为 KRT7阳性和 KRT19阳性的细胞。
图 27为肝脏前体细胞在三维培养体系中向类胆管细胞分化。
图 28为参与胆管运输和分泌的关键蛋白 MDR的功能。
(左) 转运 rhodamine 123至中间空腔。 (右) MDR的抑制剂 Verapamil可以抑制 rhodamine 123的转运。 标尺, 50μπι。
图 29为诱导的多潜能干细胞分化得到的肝脏内胚层细胞。
左图, AFP与 N-cadherin共表达 (AFP红色, N-CAD绿色); 右图, HNF4A与 N-cadherin共表达 (HNF4A红色, N-CAD绿色)。
图 30为诱导的多潜能干细胞分化形成的肝脏前体细胞。
AFP绿色, KRT19红色。
图 31为诱导的多潜能干细胞进一步分化为肝实质细胞。 HI : 人胚胎肝脏细胞系; 3U1和 3U2: 诱导多潜能干细胞系 hAFF-4U-M-iPS-l和 hAFF-4U-M-iPS-3。
具体实施方式
下文将参考实施例详细描述本发明, 所述实施例仅是意图举例说明本发明, 而不 是意图限制本发明的范围。 本发明的范围由后附的权利要求具体限定。
下述实施例中如无特殊说明所用方法均为常规方法, 所用试剂均可从商业途径获 得。其中, 牛血清白蛋白组分 V (美国 Calbiochem公司, 126579), 人活化素 A (Activin A, 美国 Peprotech 公司, 120-14E ) , 胰岛素 -转铁蛋白-亚硒酸钠混合补充液 (美国 Invitrogen公司, 51300-044), HCM培养基 (美国 Lonza公司, CC-3198 ), 人成纤维 细胞生长因子 -4 (FGF4, 美国 Peprotech公司, 100-31 ), 人骨形态形成蛋白 -2 (BMP2, 美国 Peprotech公司, 120-02), HEPES (美国 Calbiochem公司, 391338 ), 尼克酰胺 (美国 Sigma-aldrich公司, N0636-100G;)、 抗坏血酸 (Asc-2P, 美国 Sigma-aldrich公 司, 49752-10G) 和 EGF (美国 R&D公司, 236-EG-200)。
实施例中由人胚胎干细胞系 HI (NIH的编号为 WA01 ) 获得的相应细胞与分别由 人胚胎干细胞系 H7(NIH的编号为 WA07)和人胚胎干细胞系 H9(NIH的编号为 WA09 ) 获得的相应细胞基本相同, 没有实质差别。 实施例 1 诱导人 ES细胞或 iPS细胞向肝脏细胞分化及其检测 一、 人 ES细胞或 iPS细胞的常规培养
(1)试剂
PBS: 称取 8g NaCl, 0.2g KC1, 1.44g Na2HP04和 0.24g K¾P04, 力口 ddH20 (双蒸 水) 定容至 lOOOmL, 用 HC1调节溶液 pH值至 7.4。
2M β-巯基乙醇 (20000χ ): 取 lmL 14.3M的 β-巯基乙醇, 加 6.15mL PBS稀释, 过 滤除菌。
人 iPS细胞培养基 (HESM): 20%血清替代物 (Knock-out Serum Replacement, KSR) , ImM 谷氨酰胺 (美国 Gibco公司), O.lmM β-巯基乙醇, 1 %非必需氨基酸 ( Non-essential Amino Acids, 美国 Gibco公司), 1 Ong/mL碱性成纤维细胞生长因子 (bFGF), 用 DMEM/F12(美国 Invitrogen 公司)定容至 1000mL。
0.5mg/mL Dispase (美国 Gibco公司): 称取 Dispase 1 Omg粉末, 溶解于 20mL DMEM/F12培养基中, 过滤除菌。
lmg/mL胶原酶 IV (美国 Gibco公司): 称取胶原酶 IV粉末 20mg, 溶解于 20mL DMEM/F12培养基中, 过滤除菌。
MEF培养基: 含 10%胎牛血清的 DMEM (美国 Gibco公司)。 ·
丝裂霉素 C工作液: 将 2mg丝裂霉素 C溶于 200mL含 10%胎牛血清的 DMEM中, 使 其终浓度为 l(^g/mL, 过滤除菌。
0.1 %明胶: 称取 O.lg明胶粉末, 溶解于 lOOmL双蒸水中, 高压灭菌。
(2) 饲养层 (feeder) 的获得
用下述方法对小鼠胚胎成纤维细胞(mouse embryonic fibroblast, MEF )进行处理, 以作为培养人 iPS细胞的词养层:
1)取生长状态良好的贴壁 MEF细胞, 弃去 MEF培养基, 加入含 10 g/mL丝裂霉素 C 的丝裂霉素 C工作液; 2)在 37°C下培养 3个小时, 培养期间用 0.1 %明胶处理将要接种 MEF细胞的培养皿, 室温放置 2小时以上 (或 37°C放置 30分钟以上), 用前吸掉明胶溶液即可;
3)取出 MEF细胞, 弃去含丝裂霉素 C工作液, 用 PBS洗 5遍, 以便彻底洗掉残存的 丝裂霉素 (因为丝裂霉素是有丝分裂抑制剂, 可能对 IPS细胞有毒性);
4)加入胰酶 -EDTA (美国 Gibco公司) 进行消化, 然后用 MEF培养基终止反应;
5) 1000rpm离心 5分钟, 弃上清, 用 MEF培养基重悬细胞沉淀并计数;
6)按照 1.6xl05个细胞 /3.5cm培养皿的密度将经上述步骤处理的 MEF细胞接种至包 被有 0.1 %明胶的培养皿中, 置于 37'C培养箱中培养 12-24小时, 得到用于培养人 ES细 胞或人 iPS细胞的饲养层。
(3 ) 人 ES细胞或 iPS细胞的常规培养
在步骤 1获得的 MEF饲养层上用人 iPS细胞培养基 (HESM) 对人 ES细胞 HI或 iPS 细胞系 hAFF-4U-M-iPS-l和 hAFF-4U-M-iPS-3 (赵扬, Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 2008; 3:475-479. ) (北京 大学) 进行培养, 具体培养方法包括以下步骤:
1)从 4°C冰箱中取出培养所需试剂及培养基 (HESM), 室温预热 15分钟左右;
2)取出细胞, 吸去 HESM, 将细胞用 PBS洗一遍;
3)加入 0.5mg/mL Dispase (或 lmg/mL胶原酶 IV) 进行消化 ( lm!J3.5cm培养皿), 置于 37°C培养箱中孵育 10-15分钟, 然后取出细胞在相差显微镜下观察, 若克隆边缘出 现卷边, 则可终止消化; 否则放回培养箱, 延长消化时间, 随时取出观察, 以防止因 消化过度导致克隆脱落;
4)消化结束后, 吸掉 Dispase或胶原酶 IV, 用 PBS和 DMEM/F12培养基分别洗一遍 后, 加入适量 DMEM/F12培养基 (2mL/3.5cm培养皿);
5)用无菌直头或弯头玻璃滴管轻柔地将所有细胞克隆从培养皿底部刮下, 并转移 至无菌的 15mL锥形底离心管中, 用滴管温和地吹吸若干次, 使细胞克隆变成大小较为 均一小的细胞团;
6) 1000rpm离心 3-4分钟, 小心吸掉上清, 用玻璃滴管吸新鲜的 HESM培养基重悬沉 淀;
7)取出上文 (2) 获得的 MEF 饲养层, 用 PBS 洗三遍, 将细胞的小团块接种于 MEF饲养层上, 置于 37°C细胞培养箱中培养 12-24小时, 细胞贴壁后可更换新鲜的 HESM培养基。 每天更换一次培养基, 通常 5-7天传代一次。 若出现以下情况之一时 则需及时进行传代: (1 ) MEF饲养层的放置时间达到两周; (2)细胞克隆过于致密或 面积过大; (3 ) 细胞出现明显的自发分化。
二、 人 ES细胞或 iPS细胞向肝脏细胞的诱导分化
分化培养基 1-1 : 含有 10ng/ml人活化素 A (Activin A) 和 0.01 % (体积百分比) 胰岛素-转铁蛋白 -硒盐(亚硒酸钠)(ITS )混合补充液(美国 Gibco公司)的 RPMI 1640 培养基 (美国 Gibco公司), pH 7.2-7.6。
分化培养基 1-2: 含有 500ng/ml人活化素 A (Activin A) 和 20% (体积百分比) ITS的 RPMI 1640培养基 (美国 Gibco公司), pH 7.2-7.6。
分化培养基 1-3: 含有 100ng/ml人活化素 A (ActivinA)和 1 % (体积百分比) ITS 的 RPMI 1640培养基 (美国 Gibco公司), pH 7.2-7.6。
分化培养基 1-4: 含有 100ng/ml人活化素 A (Activin A) 和 0.1 % (体积百分比) ITS的 RPMI 1640培养基 (美国 Gibco公司), pH 7.2-7.6。
分化培养基 Π-1 : 含有 5ng/ml的人成纤维细胞生长因子 (FGF2)和 5ng/ml的人骨 形态形成蛋白(BMP4) (美国 Peprotech公司)的肝脏细胞培养基(HCM) (购自 Cambrex 公司), pH 7.2-7.6。
分化培养基 Π-2: 含有 100ng/ml的人成纤维细胞生长因子 (FGF2)和 100ng/ml的 人骨形态形成蛋白 (BMP4) (美国 Peprotech公司) 的肝脏细胞培养基 (HCM) (购自 Cambrex公司), pH 7.2-7.6。
分化培养基 II-3: 含有 30ng/ml的人成纤维细胞生长因子 (FGF2)和 20ng/ml的人 骨形态形成蛋白 (BMP4) (美国 Peprotech 公司) 的肝脏细胞培养基 (HCM) (购自 Cambrex公司), pH 7.2-7.6。
分化培养基 ΙΠ-1 : 含有 5ng/ml人肝脏细胞生长因子(HGF, 美国 Peprotech公司, 100-39) 和 5ng/ml人角化细胞生长因子 (KGF, 美国 Amgen公司) 的 HCM培养基, pH 7.2-7.6。
分化培养基 ΠΙ-2: 含有 100ng/ml人肝脏细胞生长因子 (HGF ) 和 100ng/ml人角 化细胞生长因子 (KGF) 的 HCM培养基, pH 7.2-7.6。
分化培养基 ΠΙ-3: 含有 20ng/ml人肝脏细胞生长因子 (HGF) 和 20ng/ml人角化 细胞生长因子 (KGF) 的 HCM培养基, pH 7.2-7.6。
分化培养基 IV-1 : 含有 lng/ml制瘤素 M (OSM) (美国 R&D公司)和 0.05μΜ地 塞米松 (Dex) 的 HCM培养基, pH 7.2-7.6。 分化培养基 IV-2: 含有 100ng/ml制瘤素 M (OSM) (美国 R&D公司) 和 ΙμΜ地 塞米松 (Dex) 的 HCM培养基, pH 7.2-7.6。
分化培养基 IV-3: 含有 10ng/ml制瘤素 M (OSM) (美国 R&D公司)和 0.1 μΜ地 塞米松 (Dex) 的 HCM培养基, pH 7.2-7.6。
分化培养基 V-1 : 含有 0.1 % (体积百分比) N2, 0.1 % B27, 0.5mM谷氨酰胺, 0.1 %非必需氨基酸, 0.05 ηιΜ β-巯基乙醇, l ng/ml制瘤素 M (OSM) 和 0.05μΜ地塞米 松 (Dex) 的基础培养基, pH 7.2-7.6。
分化培养基 V-2: 含有 10% (体积百分比) N2,20% B27,2mM谷氨酰胺, 10%非 必需氨基酸, 0.2 mM β-巯基乙醇, 100ng/ml制瘤素 M (OSM)和 ΙμΜ地塞米松(Dex) 的基础培养基, pH 7.2-7.6。
分化培养基 V-3: 含有 1 % (体积百分比) N2, 2% B27, ImM谷氨酰胺, 1 %非必 需氨基酸, Ο.Ι ηιΜ β-巯基乙醇, 10ng/ml制瘤素 M (OSM)和 Ο.ΙμΜ地塞米松(Dex) 的基础培养基, pH 7.2-7.6。
诱导人 IPS细胞或 ES细胞向肝脏细胞分化, 包括以下步骤:
1 ) 向定形内胚层细胞的诱导: 取上文获得的培养在 MEF词养层上的人 IPS细胞或 ES细胞 Hl, 弃去培养基, 用 PBS洗 2遍, 加入分化培养基 1-1、 分化培养基 1-2、 分化培 养基 1-3或分化培养基 1-4, 置于 37°C细胞培养箱中培养 1天 (24小时), 弃去培养基, 更 换为含 0.1 % (体积百分含量)胰岛素-转铁蛋白 -硒盐 (ITS ) (美国 Gibco公司) 的分化 培养基 1-1、 分化培养基 1-2、 分化培养基 1-3或分化培养基 1-4, 在相同条件下培养 1天, 弃去培养基, 更换为含有 1 % (体积百分含量) ITS的分化培养基 1-1或分化培养基 1-2, 在相同条件下培养 1天;
2) 肝脏细胞分化的起始: 弃去含有 ITS的分化培养基 1-1、 分化培养基 1-2、 分化培 养基 1-3或分化培养基 1-4, 用 PBS洗 1遍, 加入分化培养基 11-1、 分化培养基 Π-2或分化培 养基 Π-3 , 置于 37°C细胞培养箱中培养 4天, 每天换液 1次, 获得分化的 IPS细胞或 ES细 胞;
3 ) 分化的 IPS细胞或 ES细胞的扩增: 弃去分化培养基 11-1、 分化培养基 II-2或分化 培养基 Π-3, 用 PBS洗 1遍, 加入分化培养基 111-1、 分化培养基 ΙΠ-2或分化培养基 111-3, 置于 37Ό细胞培养箱中培养 6天, 每天换液 1次;
4) 促进分化的 IPS细胞或 ES细胞成熟: 弃去分化培养基 ΙΠ-1、 分化培养基 ΠΙ-2或 分化培养基 111-3, 用 PBS洗 1遍, 加入分化培养基 IV-1、 分化培养基 IV-2或分化培养基 IV-3, 置于 37°C细胞培养箱中培养 5天, 每天换液 1次; 弃分化培养基 IV-1、 分化培养基 IV-2或分化培养基 IV-3, 用 PBS洗 1遍, 加入分化培养基 IV-1、 分化培养基 IV-2或分化培 养基 IV-3, 置于 37°C细胞培养箱中培养 3天, 每天换液 1次。
三、 IPS细胞或 ES细胞向肝脏细胞初始分化的检测
(1) 免疫荧光染色检测
PBST: 含 0.2% (体积百分比) TritonXlOO的 PBS溶液。
封闭液: 含 2%山羊血清 (或马血清) 的 PBST溶液。
二抗稀释液 (0.1%BSA溶液): 称取 O.lg牛血清白蛋白 (bovine serum albumin, BSA), 溶于 lOOmLPBS中。
诱导分化 7天的 ES和 iPS细胞表达早期肝脏细胞标记分子 AFP、 Alb (ALB) 和 CK18。
用免疫荧光染色的方法对步骤二 2) 中获得的细胞的分化状态进行检测, 检测方 法包括以下步骤:
1) 取出细胞, 弃培养基, 用 PBS洗 2遍;
2)加入 4%多聚甲醛室温固定 15 分钟(或加入无水甲醇室温固定 5-10分钟); 3) 用 PBS洗 3遍, 每遍 5 分钟;
4) 用 PBST溶液进行透化, 室温 10分钟;
4) 用 PBS洗 1遍, 5分钟;
6) 加入封闭液, 室温封闭 30-60分钟;
7) 弃封闭液, 加入一抗 (Polyclonal Rabbit Anti-Human Alb, 购自 DAKO公司)、 鼠抗人 α-Fetoprotein (AFP) 单克隆抗体 (北京中杉金桥生物技术有限公司)、 鼠抗人 细胞角蛋白 18 (CK18)单克隆抗体(北京中杉金桥生物技术有限公司)、 兔抗人 AAT 单克隆抗体 (北京中杉金桥生物技术有限公司) 或兔抗人 CYP3A4多克隆抗体 (购自 Serotec公司), 4 放置 12-24小时(或 37'C孵育 2小时), 上述抗体按 1:50的比例用 封闭液进行稀释;
8) 用 PBS洗 3遍, 每遍 5分钟;
9) 加入二抗 (FITC或 TRITC标记羊抗小鼠 IgG或 TRITC (tetraethyl rhodamine isothiocyanate)标记羊抗兔 IgG) (北京中杉金桥生物技术有限公司) (用前先将二抗按 1:50-150比例稀释于二抗稀释液中),避光 4 Ό放置 12小时(或 37Γ避光放置 1小时);
10) 用 PBS洗 3遍, 每遍 5分钟; 11 ) 加 入终浓度 为 lmg/mL 的 DAPI (4',6-二脒基 -2-苯基吲 哚 (4',6-diamidino-2-phenylindole))溶液 (美国 Roche公司), 室温放置 5分钟;
12) 用 PBS洗 3遍, 每遍 5分钟;
13 ) 加入 50(^1 PBS (或 PBS:甘油 (1 :1 , v/v) ), 在荧光显微镜下观察、 拍照。 (2) RT— PCR检测
Trizol (美国 invitrogen公司) 处理分化 7天的 iPS细胞和 ES细胞, 提取样品总 RNA, 反转录获得 cDNA (美国 promega公司反转录试剂盒), 以该 cDNA为模板进行 PCR鉴定。 引物序列如下:
AFP正义引物: TTTTGGGACCCGAACTTTCC; (SEQ ID No: 1)
AFP反义引物: CTCCTGGTATCCTTTAGC AACTCT (SEQ ID No: 2)
Alb正义引物: GGTGTTGATTGCCTTTGCTC; (SEQ ID No: 3)
Alb反义引物: CCCTTCATCCCGAAGTTCAT。 (SEQ ID No: 4)
CK8正义引物: GGAGGC ATCACCGC AGTAC; (SEQ ID No: 5)
CK8反义引物: TCAGCCCTTCCAGGCGAGAC。 (SEQ ID No: 6)
CK18正义弓 I物: GGTCTGGC AGGA ATGGGAGG; (SEQ ID No: 7)
CK18反义引物: GGCAATCTGGGCTTGTAGGC。 (SEQ ID No: 8)
HNF4a正义引物: CC ACGGGC A AAC ACTACGG; (SEQ ID No: 9)
HNF4a反义引物: GGCAGGCTGCTGTCCTCAT。 (SEQ ID No: 10)
GAPDH 正义引物: AATCCCATC ACCATCTTCC; (SEQ ID No: 11)
GAPDH反义引物: CATCACGCCACAGTTTCC。 (SEQ ID No: 12)
CK19正义引物: AATAAATAGGATCCATGCAG
CK19反义引物: TTTTAATGAATTCAGTAGAT
分化的 iPS和 ES细胞表达肝脏细胞的标记分子 AFP, Alb, CK18, AAT和 CYP3A4, RT— PCR检测结果也表明,分化 7天的 iPS和 ES细胞表达肝脏细胞的标记分子 AFP, Alb, CK8, CK18, CK19, HNF4a和 GAPDH (3-磷酸甘油醛脱氢酶) (图 1和 2)。
四、 肝脏细胞糖原合成功能的检测
通过 PAS染色 (Periodic Acid-Schiff Stain) 进行, 实施步骤参见肝脏细胞糖原合 成功能检测试剂盒说明书 (美国 Sigma公司)。
分化的 iPS和 ES细胞具有与肝脏细胞类似的糖原合成和贮存的功能 (图 3 )。 五、 肝脏细胞尿素合成功能的检测 通过尿素氮检测试剂盒进行, 实施步骤参见说明书 (美国 STANBIO公司)。 分化的 iPS和 ES细胞具有与肝脏细胞类似的尿素合成的功能 (图 4)。
六、 肝脏细胞白蛋白分泌功能的检测
通过 ELISA试剂盒进行, 实施步骤参见说明书 (美国 Bethyl公司)。
分化的 iPS和 ES细胞具有与肝脏细胞类似的分泌白蛋白的功能 (图 5 )。
七、 肝脏细胞 CYP450酶活的检测
通过 CYP450荧光检测试剂盒进行, 实施步骤参见说明书 (美国 Sigma公司)。 分化的 iPS和 ES细胞具有与肝脏细胞类似的响应药物诱导的 P450酶的活性 (图 上述结果表明人 iPS细胞诱导分化为肝脏细胞。 实施例 2 肝脏内胚层细胞的制备及鉴定
一、 肝脏内胚层细胞的获得
第 1天:
1) 人胚胎干细胞 Hl、 H7或者 H9传代后 2-3天开始诱导, 选择生长状态好的细 胞进行分化实验;
2) 弃去人胚胎干细胞培养基(为基础细胞培养基 DMEM/F12中添加 20%血清替 代物(Knock-out Serum Replacement, KSR, 美国 Invitrogen公司, 10828028), ImM 谷 氨酰胺(美国 Invitroge公司, 25030-081 ), Ο.ΙιηΜ β-巯基乙醇(美国 Invitrogen公司, 21985-023 ) , 1 %非必需氨基酸 (Non-essential Amino Acids) (美国 Invitrogen公司,
11140-076 ), 4ng/mL碱性成纤维细胞生长因子( bFGF,美国 Peprotech公司, 100-18B ) ), 用 PBS洗 2遍;
3) 换上内胚层诱导培养基 I。 内胚层诱导培养基 I是在 RPMI1640培养基中加入 牛血清白蛋白组分 V (美国 Calbiochem公司, 126579)和人活化素 A (Activin A, 美国 Peprotech公司, 120-14E)得到的培养基。 该培养基的 pH为 7.2-7.6。 在内胚层诱导培 养基 I中,牛血清白蛋白组分 V的终浓度为 0.05%(质量百分含量)、人活化素 A( Activin A) 的终浓度为 100ng/ml。
第 2天:
4) 弃去昨天的培养基, 换上内胚层诱导培养基 II。 内胚层诱导培养基 II为在 RPMI1640培养基中加入牛血清白蛋白组分 V (美国 Calbiochem公司, 126579)、 人活 化素 A ( Activin A) 和胰岛素 -转铁蛋白-亚硒酸钠混合补充液 (美国 Invitrogen公司, 51300-044 ) 得到的培养基。 该培养基的 pH为 7.2-7.6。 内胚层诱导培养基 II中, 牛血 清白蛋白组分 V的终浓度为 0.05% (质量百分含量) 、 人活化素 A (Activin A) 的终 浓度为 100ng/ml、 胰岛素-转铁蛋白 -亚硒酸钠混合补充液的终浓度为 0.1% (体积百分 含量) 。
第 3天-
5) 弃去昨天的培养基, 换上内胚层诱导培养基 III。 内胚层诱导培养基 III为在 RPMI1640培养基中加入牛血清白蛋白组分 V、 人活化素 A (Activin A ) 和胰岛素-转 铁蛋白-亚硒酸钠混合补充液 (美国 Invitrogen公司, 51300-044) 得到的培养基。 该培 养基的 pH为 7.2-7.6。内胚层诱导培养基 III中,牛血清白蛋白组分 V的终浓度为 0.05% (质量百分含量) 、 人活化素 A (Activin A) 的终浓度为 100ng/ml、 胰岛素-转铁蛋白 -亚硒酸钠混合补充液的终浓度为 1% (体积百分含量) 。
第 4-8夫每天重复如下步骤-
1 ) 弃昨日的培养基, PBS洗一遍;
2 ) 换上肝脏内胚层细胞诱导培养基, 进行培养。
第 8天获得肝脏内胚层细胞; 肝脏内胚层细胞诱导培养基为在 HCM培养基 (美 国 Lonza公司, CC-3198 ) 中添加人成纤维细胞生长因子 -4 (FGF4, 美国 Peprotech公 司, 100-31 )和人骨形态形成蛋白 -2 (BMP2, 美国 Peprotech公司, 120-02 )得到的培 养基。 该培养基的 pH为 7.2-7.6。 肝脏内胚层细胞诱导培养基中, 人成纤维细胞生长 因子 -4(FGF4)的终浓度为 30ng/ml、人骨形态形成蛋白 -2(BMP2 )的终浓度为 20ng/ml。
RT-PCR的方法检测 4FP, ALB (即 Alb), HNF4A , CE ¾等早期肝脏相关基因的表 达时间动态。
引物 (从左至右: 5'至 3'方向):
AFP: 上游 CCCGAACTTTCCAAGCCATA (SEQ ID No: 13),
下游 TACATGGGCCACATCCAGG (SEQ ID No: 14);
ALB: 上游 GCACAGAATCCTTGGTGAACAG (SEQ ID No: 15),
下游 ATGGAAGGTGAATGTTTCAGCA (SEQ ID No: 16);
HNF4A: 上游 ACTACATCAACGACCGCCAGT (SEQ ID No: 17),
下游 ATCTGCTCGATCATCTGCCAG (SEQ ID No: 18);
CEBPA: 上游 ACAAGAACAGCAACGAGTACCG (SEQ ID No: 19), 下游 CATTGTCACTGGTCAGCTCCA (SEQ ID No: 20)。
AFP, ALB, HNF4A , C£S ¾这些基因在分化的过程中都显示出类似的表达模式, 即在第 5天左右开始表达, 并在第 8天达到最大值 (图 7), 表明肝脏内胚层细胞己经 产生。
在人胚胎干细胞的分化产物中, N-cadherin特异性地表达在所有 AFP表达的细胞 中, 并且只在 AFP表达的细胞中表达。 重复实验以及通过激光共聚焦显微镜的观察, 确认了 N-cadherin和 AFP共表达的特异性(图 8 )。图 8中的图片 1通过荧光显微镜进 行拍摄, 其余的图片为激光共聚焦显微镜拍摄。 标尺, 50μιη。 细胞核由 DAPI (美国 Roche公司, 10236276001 ) 进行复染 (蓝色)。
胞内流式细胞分析也显示出类似的结果,即 N-cadheim和 AFP在同一个细胞中表 达(图 8)。 进一步的免疫荧光实验确认了 N-cadherin同时还和其他肝脏内胚层标志蛋 白如 ALB , HNF4A, FOXA2, GATA4等共表达, 表明 N-cadherin是肝脏内胚层特异 的表面标志蛋白。
N-cadherin 是一个钙依赖型细胞-细胞黏附蛋白, 对胰酶的处理具有高度的敏感 性, 但是钙离子可以保护胰酶对它的消化作用 (Yoshida and Takeichi, Cell. 1982 Feb; 28(2):217-24 当分化第 8 天的肝脏内胚层细胞用通常的胰酶 -EDTA 消化液 (美国 Invitrogen公司, 25200114)进行消化时,大量地 N-cadherin的胞外段都会被胰酶裂解, 因此流式分选所用的 N-cadherin的抗体 (克隆号 GC4, 购自美国 Sigma-Aldrich公司) 便无法识别 N-cadherin 蛋白 (图 10B )。 如果肝脏内胚层用无 EDTA 的胰酶 (美国 Invitrogen 公司, 27250018 ) 进行处理, 同时加入 2mM 钙离子, 则可以有效地保护 N-caherin蛋白的完整 (Reiss 等, EMBO J. 2005 Feb 23; 24,742 - 752)。
流式细胞仪分离 N-cadherin+细胞群, 同时收集 N-cadherin—的细胞群作为对照。 流式分选从分化第 8 天的产物中分选出一群 N-cadheim 阳性的细胞群 ( 60.9%±9.1%, 图 10C)。
对分选后的 N-cadherin的细胞进行免疫细胞化学显示, N-cadheim+的细胞群中超 过 90%的细胞都是 AFP表达的, 而 N-cadherin—的细胞群中则几乎没有 AFP阳性的细 胞 (图 11 )。 N-cadherin+的细胞群表达 AFP (绿色)。
进一步, 对分选得到的细胞进行定量 RT-PCR分析发现, N-cadheirn+的细胞群富 集了肝脏特异表达的基因甲胎蛋白 (AFP ), 白蛋白 (ALB ) , 肝脏细胞核因子 4A (HNF4A )和肝脏细胞核因子 3B (FOXA2) (图 12)。 所用上游和下游引物分别如下: AFP : 上 游 CCCGAACTTTCCAAGCCATA (SEQ ID No: 21) , 下 游 TACATGGGCCACATCCAGG (SEQ ID No: 22);
ALB: 上游 GCACAGAATCCTTGGTGAACAG (SEQ ID No: 23) , 下游 ATGGAAGGTGAATGTTTCAGCA (SEQ ID No: 24);
HNF4A: 上游 ACTACATCAACGACCGCCAGT (SEQ ID No: 25) , 下游 ATCTGCTCGATCATCTGCCAG (SEQ ID No: 26);
FOXA2: 上游 CTGAGCGAGATCTACCAGTGGA (SEQ ID No: 27), 下游 CAGTCGTTGAAGGAGAGCGAGT。 (SEQ ID No: 28))。
每个定量 PCR结果均为 3次重复, 每组基因中 N-cad+和 N-cad-之间表达量差异 的显著性均小于 0.01。
二、 肝脏内胚层细胞诱导分化为成熟的肝实质细胞
1)步骤一获得的 N-cadheirn+的细胞或 N-cadherin—的细胞用 PBS洗一遍;换上肝实 质细胞培养基 I; 肝实质细胞培养基 I为含有 20ng/ml人肝脏细胞生长因子 (HGF, 美 国 Peprotech公司, 100-39) 的 HCM培养基 (美国 Lonza公司, CC-3198 )。 每天重复 上述步骤一次, 共培养 5天;
2)弃去肝实质细胞培养基 I, PBS洗一遍; 换上肝实质细胞培养基 II, 肝实质细胞 培养基 II为含有 10ng/ml肿瘤抑制素 M (OSM,美国 R&D公司, 295-OM-050), 0.1 μΜ 地塞米松 (美国 Sigma-aldrich公司, D8893 ) 的 HCM培养基。
N-cadheim+的细胞可以继续分化为表达 ALB和 AAT的类肝实质细胞, 以及表达 KRT7的类胆管细胞 (图 13 )。 图 7中 N-cadherin+细胞的细胞在具有继续向 ALB (图 13A), AAT (图 13B ) 阳性的类肝实质细胞分化的能力, 也具有向 KRT7 (图 13C ) 阳性细胞分化的能力。
相反的, Ν-cadherin·的细胞则不能向肝胆谱系分化。 以上实验说明, N-cadheirn+ 的细胞为人胚胎干细胞分化得到的肝脏内胚层细胞。
利用诱导的多潜能干细胞(ips)细胞系 hAFF-4U-M-iPS-l和 hAFF-4U-M-iPS-3 (赵 扬, Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 2008;3:475-479. ) (北京大学) 用相同的方法进行分化, 同样可以得到肝脏 内胚层细胞。 该肝脏内胚层细胞共表达 AFP 和 N-cadherin, 以及共表达 HNF4A 和 N-cadherin (图 30)。 该肝脏内胚层细胞同时还表达 ALB、 FOXA2、 GATA4等基因。 按上文所示方法进一步还可以诱导分化为成熟的肝实质细胞, 表达 ALB和 AAT等蛋 白 (图 31 ), 也可以分化为 KRT7阳性的类胆管细胞。 实施例 3 由人胚胎干细胞来源的肝脏内胚层细胞制备肝脏前体细胞 一、 从肝脏内胚层细胞产生肝脏前体细胞
A) 肝脏前体细胞的获得
1) 实施例 2获得的肝脏内胚层细胞用 PBS洗一遍;
2) 如果不进行 N-cadherin分选, 则可以用胰酶 -EDTA溶液消化, 室温约 1分钟; 如果需要用 N-cadherin进行分选, 则用无 EDTA的胰酶(胰酶溶液, 加入 2mM CaCl2) 在 37°C消化约半小时;
3) 加入含有体积百分含量 10%胎牛血清的 DMEM培养基进行终止, 将细胞悬起 并转移到 15ml离心管中;
4) 1000转 /分钟离心 5分钟; 用肝脏前体细胞培养基重悬。 肝脏前体细胞培养基 为在 DMEM/F-12基础培养基中添加 HEPES (美国 Calbiochem公司, 391338 ) 、 胰岛 素 -转铁蛋白-亚硒酸钠混合补充液 (美国 Invitrogen公司, 51300-044) 、 牛血清白蛋 白组分 V、 尼克酰胺 (美国 Sigma-aldrich公司, N0636-100G) 、 抗坏血酸 (Asc-2P, 美国 Sigma-aldrich公司 , 49752-10G)、地塞米松和 EGF (美国 R&D公司, 236-EG-200) 得到的培养基。 该培养基的 pH为 7.2-7.6。 肝脏前体细胞培养基中, HEPES的终浓度 为 10mM、 胰岛素-转铁蛋白 -亚硒酸钠混合补充液的终浓度为 1% (体积百分含量) 、 牛血清白蛋白组分 V的终浓度为 0.05% (质量百分含量),尼克酰胺的终浓度为 l lmM、 抗坏血酸 (ASC-2P) 的终浓度为 lmM、 地塞米松的终浓度为 Ο.ΙμΜ和 EGF的终浓度 为 10ng/ml。
5) 用 N-cadherin对肝脏内胚层细胞进行分选纯化, 方法同实施例 2, 获得 N-cadheirn+的细胞;
6) 制备 STO饲养层细胞。 用生长状态良好, 汇合度约有 90%的鼠胚成纤维细胞 系 (STO) 细胞(中国细胞库典藏细胞中心) , 用 lO g/ml的丝裂霉素 C (美国 Roche 公司, 10107409001 ) 处理 4-6个小时。 用 0.1%的明胶 (美国 Sigma-Aldrich公司, G1890-100G) 处理培养皿, 37摄氏度 30分钟或者室温放置 2小时。 用 PBS溶液洗涤 丝裂霉素 C处理过的细胞 5遍, 以彻底洗掉残存的丝裂霉素 C。 胰酶消化后按照 1 : 3 的密度接种至明胶处理过的培养皿, 过夜培养后即可使用;
7) 将己经制备好的 STO饲养层细胞用 PBS洗两遍; 8) 将 N-Cadheim+的细胞接种至 STO词养层细胞上, 补足肝脏前体细胞培养基, 放入 C02培养箱进行培养;
9) 每天换液; 大约 7-10天可以见到明显的克隆产生。
B) 肝脏前体细胞的传代
1) 弃去 A) 中获得的细胞中的肝脏前体细胞培养基, 加入 PBS洗一次;
2) 加入胰酶 -EDTA消化液 (美国 Invitrogen公司, 252001 14 ) , 室温消化 3-5分 钟。 镜下观察细胞收缩变圆, 彼此分离即可;
3) 加入含有体积百分含量 10%胎牛血清的 DMEM培养基终止消化;
4) 将细胞悬起并转移到 15ml离心管中, 1000转 /分钟离心 5分钟;
5) 用肝脏前体细胞培养基重悬细胞;
6) 将已经制备好的 STO饲养层细胞用 PBS洗两遍;
7) 然后接种至 STO饲养层细胞上, 补足肝脏前体细胞培养基;
8) 放入 C02培养箱进行培养, 每天换液。
C) 肝脏前体细胞的维持培养
步骤 B)的细胞在 STO饲养层上用肝脏前体细胞培养基进行培养,每天更换一次 培养基, 通常 7〜10天传代一次。 饲养层的放置时间达到两周或转态变差, 或者肝脏 前体细胞克隆过于致密或面积过大, 及时进行传代。
在胚胎肝脏发育的过程中, 一旦肝脏命运特化完成, 肝芽产生, 肝脏前体细胞就 开始大量扩增, 直到最终达到相应肝脏组织的体积大小。 然而, 对人胚胎干细胞来源 的肝脏内胚层细胞进行检测, 发现这些肝脏内胚层细胞的增殖能力很低。 对肝脏内胚 层细胞进行免疫荧光检测 AFP和 Ki67发现( AFP和 Ki67的抗体购自中杉金桥公司 ), 几乎没有 AFP阳性的细胞和 Ki67共染 (图 14)。 当在肝脏内胚层产生阶段里整个 5 天里都在培养基中添加 BrdU, 检测发现只有小于 5%的 AFP阳性细胞表达 BrdU (图 14)。这些研究发现, 人胚胎干细胞来源的肝脏内胚层细胞迅速的走向了分化, 丧失了 增殖的能力。
肝脏的前体细胞产生过程如下:
FGF4 Sorting
Act A Defintive BMP2 Hepatic by N-CAD Hepatic
ES
endoderm endoderm STO progenitor
feeders 人胚胎干细胞来源的肝脏内胚层细胞采用上述方法培养的时候, 能产生一些实质 的细胞克隆(图 15 )。 图 15中人胚胎干细胞克隆呈扁平状圆形, 具有严整的细胞边缘。 内胚层细胞呈鱼鳞状, 为扁平的单层细胞。 肝脏内胚层细胞呈单层或者多层。 肝脏前 体细胞形成紧密的克隆, 边缘光滑严整。 标尺, 50μιη。 这些克隆具有完整的、 光滑的 边缘。 与不能传代的肝脏内胚层细胞不同, 这些克隆可以持续的扩增。 针对人细胞核 的特异性免疫荧光(抗体购自美国 Chemicon公司)显示这些细胞是人细胞来源的, 而 不是 STO细胞来源 (图 16)。 因此, 这些克隆为人胚胎干细胞来源的肝脏前体细胞。 克隆里主要的细胞都表达 Ki67 (图 17)。 为了进一步证明其增殖能力, 调査了这些克 隆随着生长其大小变化情况。 当克隆传到 STO饲养层细胞 7天时, 这些肝脏前体细胞 形成的克隆直径为 62.0±15.4μπι, 当培养到第 20 天时, 这些克隆可以达到 225.4±92.0μηι, 从而显示出缓慢但是切实的细胞增殖。 这些肝脏前体细胞按 1 : 2或者 1: 3进行传代已经在体外培养了超过 12代, 并且可以被反复的冻存和复苏 (图 18 )。 作为对照,单独培养的经丝裂霉素处理的饲养层细胞在同样的培养条件下不能产生克 隆。
图 18中, 左: 肝脏前体细胞的克隆随培养天数增加, 其大小也逐渐增加, η=3。 中- 肝脏前体细胞的生长曲线图。 右: N-cadherin+群产生克隆的能力大于 N-cadherin- 群产生克隆的能力。 该实验经过三次重复表现出类似的结果, 这里展示的是一次典型 结果。
为了进一步鉴定肝脏前体细胞, 用免疫荧光方法检测了甲胎蛋白(AFP)、 白蛋白 (ALB )、 细胞角蛋白 19 (KRT19) 和细胞角蛋白 7 (KRT7) 的表达 (AFP、 KRT19 和 KRT7的抗体购自中杉金桥公司, ALB的抗体购自美国 DAKO公司)。 这些肝脏前 体细胞表达早期肝脏标志基因 AFP, 但是微弱或者是不表达成熟肝脏细胞标志 ALB。 这些克隆同时也表达胆管的标志基因 KRT19和 KRT7 (图 19)。 图 19A为肝脏前体细 胞共表达 AFP和 KRT7, 图 19 B为 KRT19, 图 19 C为表达 ALB。 图 19 D为阴性对 照,细胞核由 DAPI进行复染 (蓝色) ,标尺, 50μιη。 此外, 它们还表达假定的肝脏前 体细胞标志 EpCAM 和 CD133 (图 20 ) (Schmelzer 等, J Exp Med. 2007 Aug 6;204(8): 1973-87)。
为了比较在肝脏命运决定之后 N-cadherin+的肝脏内胚层细胞和 N-cadherin—的细胞 群产生肝脏前体细胞的能力, 按照相同的方法对 N-cadherin—的细胞群进行培养, 结果 发现来自 Ν-cadherin·细胞群所能产生的克隆数量比 N-Cadherin+群的要低至少 6倍 (图 18 )。 而且这些克隆在传代后也迅速的丢失, 显示其增殖能力低下, 并不是之前的肝脏 前体细胞。 这样的结果也说明 N-cadherin可以作为一种特异的表面标志蛋白用于在人 胚胎干细胞分化体系中对肝脏内胚层细胞进行分离纯化,用来分化产生肝脏前体细胞。
二、 肝脏前体细胞向肝胆两个谱系分化
A) 人胚胎干细胞来源的肝脏前体细胞向类肝实质细胞分化
第 1天:
1) 将来自 (一)的肝脏前体细胞, 弃去培养基;
2) PBS洗一遍;
3) 加入肝实质细胞培养基 I, 肝实质细胞培养基 I为含有 20ng/ml肝脏细胞生长因 子 ( HGF) 的 HCM培养基。
第 2-5天每天重复如下步骤:
4) 弃去昨日的培养基; 加入新鲜的肝实质细胞培养基 I。
第 6-10天每天重复如下步骤:
5) 弃去昨日的培养基;
6) 换上肝实质细胞培养基 II, 肝实质细胞培养基 II为含有 10ng/ml OSM, 0.1 μΜ 地塞米松的 HCM培养基。
人胚胎干细胞来源的肝脏前体细胞在进行扩增培养的时候, 我们发现有一些细胞 会从严整的克隆边缘迁移出来。 与 AFP+KRT7+的前体细胞不同, 这些克隆边缘的细胞 成为 AFP+KRTT的细胞, 这可能意味着它们已经自发的向肝实质细胞分化 (图 21 )。 箭头所指的细胞为 AFP+KRT7-。 细胞核由 DAPI进行复染 (蓝色)。 标尺, 50μπ!。
为了进一步确认肝脏前体细胞向肝实质细胞分化的潜能,用 HGF和 OSM促进前 体细胞向肝实质细胞定向分化。 肝脏前体细胞首先在含有 20ng/ml HGF的肝实质细胞 培养基 (HCM) 中培养 5天, 随后再在含有 10ng/ml OSM和 0.1 μΜ的地塞米松的肝 实质细胞培养基 (HCM) 中继续培养 5天。 对分化后的细胞通过免疫荧光技术检测肝 实质细胞的标志蛋白。 分化了的细胞集落丧失了 KRT7的表达, 转而开始表达 ALB, 而 ALB在肝脏前体细胞中只有很微弱的表达。此外,这些 ALB表达的细胞还表达 AAT (图 22)肝脏前体细胞被诱导为 KRT7阴性(上排), ALB (中排和下排)和 AAT (下 排) 阳性的类肝实质细胞。 细胞核由 DAPI进行复染 (蓝色)。 标尺, 50μπι。
RT-PCR分析发现许多成熟肝实质细胞的特异基因, 如 ALB, AAT, TAT, KRT8, KRT18,以及细胞色素 Ρ450家族的 CYP3A7和 CYP2A6在诱导细胞中也都有表达(图 23 )。 同时, 分化的细胞丧失了多能性标志基因 OCT4和 Nanog的表达, 说明分化的 细胞群中不再含有未分化的人胚胎干细胞,在今后有可以用于细胞移植实验的可能(图 23 )。 (引物参见表 2)
图 23中, 1 : 人胚胎干细胞; 2: 人胚胎干细胞分化得到的肝脏前体细胞; 3: 经 由肝脏前体细胞分化得到的肝实质细胞; 4: 直接由人胚胎干细胞分化得到的肝实质细 胞; 5 : 人胎肝脏细胞; 6: 未反转录的 cDNA。 表 2: RT-PCR检测肝实质细胞基因表达的引物序列
Figure imgf000037_0001
Figure imgf000038_0001
为了进一步确认这些类肝实质细胞是否具有肝脏的功能, 对分化得到的细胞进行 了一系列的功能检测。
通过 ELISA检测 (ELISA检测试剂盒购自美国 BETHYL公司) 显示, 经由前体 细胞分化得到的类肝实质细胞白蛋白分泌量可达到 439ng/天 /百万细胞, 接近于由胚胎 干细胞直接分化得到的类肝实质细胞的白蛋白分泌量 (439ng/天 /百万细胞) (图 24)。
通过 Periodic acid Schiff (PAS)染色分析细胞储存的糖原的情况。 结果发现分化的 集落可以被特异的染成红色, 说明这些类肝实质细 ¾1具有储存糖原的功能 (图 25A)。
进一步, 检测分化得到的类肝实质细胞对吲哚氰绿的吸收与释放情况, 能够吸收 并释放 ICG是肝实质细胞的特异性功能, 已经被广泛用于胚胎干细胞分化过程中肝实 质细胞的鉴定。
检测方法: 细胞用含 lmg/ml 的吲哚氰绿 (购自美国 Sigma-Aldrich 公司, I2633-25MG)的培养基 37度孵育 15分钟, 之后弃去含吲哚氰绿的培养基, 用 PBS洗 三遍, 更换新鲜培养基进行观察吲哚氰绿的吸收状况。 之后细胞继续培养 6小时, 更 换新鲜培养基, 镜下观察吲哚氰绿的释放情况。
经由前体细胞分化得到的类肝实质细胞可以吸收培养基中的吲哚氰绿并呈现绿 色, 并且在 6个小时之后可以排掉吸收入细胞的吲哚氰绿。 作为对照, 未分化的前体 细胞则不能吸收吲哚氰绿 (图 25B )。 进一步检测经前体细胞分化得到的类肝实质细胞可以吸收低密度脂蛋白 (LDL) (图 25C )。
检测方法: 在培养的细胞中加入 lO g/ml 的 Dil-Ac-LDL (购自美国 Biomedical technologies公司, BT-902), 37度培养 4小时。 之后弃去含 Dil-Ac-LDL的培养基, 用 PBS洗三遍, 更换新鲜培养基并在荧光显微镜下观察。
通过 PROD检测分析分化细胞的细胞色素 p450的活性情况。 在没有苯巴比妥诱 导的情况下, 分化得到的细胞只具有轻微的 PROD活性。 苯巴比妥的诱导可以提高分 化细胞的 PROD的活性, 这证明分化的细胞的确具有细胞色素 p450的活性。 作为对 照, 未分化的前体细胞的 PROD活性则很低 (图 25D)。
综合以上功能性实验, 说明前体细胞可以分化得到有一定功能的类肝实质细胞。 图 25A为 PAS染色分析发现分化得到的类肝实质细胞胞浆着红色,说明其储存有 糖原。 图 25B为分化细胞可以吸收 ICG (左), 并在 6小时之后释放 (中), 前体细胞 不能吸收 ICG (右)。 图 25C为分化得到的类肝实质细胞可以吸收 dil标记的 LDL。 图 25D为缺少苯巴比妥的情况下, 分化细胞只表现微弱的 PROD活性(中)。通过苯巴比 妥的诱导, PROD活性增加 (左)。 前体细胞只表现微弱的 PROD活性 (右)。 (中), 苯巴比妥。 标尺, 50μηι。
Β ) 肝脏前体细胞向类胆管细胞分化
1) 取 16(^l Matrigel (美国 BD公司, 354230) , 加入 4.64ml DMEM/F-12基础培 养基, 混匀, 将混合液加入到培养皿中, 摇动使混合液覆盖全部皿底, 37°C放置 1小 时, 使用前弃去 Matrigel溶液;
2) 取步骤 A) 中生长状态较好的肝脏前体细胞, 弃去培养基, 加入 PBS洗一次;
3) 加入胰酶 -EDTA消化液, 室温消化 3-5分钟, 镜下观察细胞收缩变圆, 彼此分 离即可;
4) 加入含有体积百分含量 10%胎牛血清的 DMEM培养基终止消化;
5) 将细胞悬起并转移到 15ml离心管中, 1000转 /分钟离心 5分钟;
6) 用适量 William E培养基 (美国 Sigma-Aldrich公司, W4128) 重悬;
7) 将肝脏前体细胞接种至步骤 1 ) 中 Matrigel.包被的培养皿上;
8) 补足胆管分化培养基,胆管分化培养基为含有 20mM HEPES, 17mM NaHC03 , 5mM丙酮酸钠, 0.2mM Asc-2P, 14mM葡萄糖, 体积百分含量 1% 的 GlutaMAX-I二 肽 (美国 Invitrogen公司, 35050-061 ) , Ο.ΙμΜ地塞米松, 体积百分含量 1% 的胰岛 素 -转铁蛋白-亚硒酸钠混合补充液(美国 Gibco公司) , 质量百分含量 0.05%的牛血清 白蛋白组分 V, 5.35 g/ml亚麻油酸 (美国 BD公司, 354227) , 20ng/ml EGF。
9) 放入 C02培养箱进行培养, 每天换液。
己经有报道证明 Matrigel具有诱导从胎肝直接分离得到的肝脏前体细胞向胆管细 胞分化的作用 (Tanimizu and Miyajima, J Cell Sci. 2004 Jul 1;117, 3165 - 3174)。免疫荧光 显示经过诱导之后有 KRT19、 KRT7表达, AFP不表达的细胞出现(图 26) 图 26A中 红色为 KRT7阳性细胞, 图 26B中红色为 KRT19阳性; 标尺, 50μιη。 这说明肝脏前 体细胞具有向胆管细胞分化的潜能。
C ) 三维培养条件下肝脏前体细胞向类胆管细胞分化
1) 取生长状态较好的肝脏前体细胞, 弃去培养基, 加入 PBS洗一次;
2) 加入胰酶 -EDTA消化液, 室温消化 3-5分钟, 镜下观察细胞收縮变圆, 彼此分 离即可;
3) 加入含有体积百分含量 10%胎牛血清的 DMEM培养基终止消化, 将细胞悬起 并转移到 15ml离心管中; 1000转 /分钟离心 5分钟;
4) 用适量胆管分化培养基重悬;
5) 准备混合凝胶: 每 lml凝胶含有 400μ1 Matrigel, 240μ1 1型胶原 (美国 R&D 公司, 3442-100-01 ) , 360μ1胆管分化培养基;
6) 混匀混合凝胶, 用手掌型离心机轻轻离心一下, 避免气泡产生;
7) 将混合凝胶按 ΙΟΟμΙ/cm2小心加入到细胞培养皿中;
8) 放入 37Ό培养箱进行培养 1-2个小时, 等待凝胶凝固;
9) 在已经凝固的凝胶上补等体积的胆管分化培养基, 放入 37°C培养箱; 每天更 换凝胶上的胆管分化培养基。
肝脏前体细胞按照上述方法分化培养 7天之后, 分化的细胞形成中央为空腔, 外 层由单层细胞构成的囊泡结构。 通过免疫荧光检测发现, 两个传统的胆管细胞标志蛋 白 KRT7和 KRT19在囊泡的单层细胞中表达, 而肝脏谱系特异的蛋白 AFP则不表达。
进一步,我们通过免疫荧光的方法检测 P-catenin、E-cadherin、 integrin α6和 F-actin 等蛋白的亚细胞定位, 从而判断分化的细胞是否如胆管细胞一样具有顶侧 -基底侧的极 性。
检测发现 β-catenin只位于细胞的基底侧, 而 F-actin则富集在囊泡的内层, 即顶 端。 因此, 组成该囊泡结构的分化细胞是具有顶侧-基底侧的上皮极性的。 此外, E-cadherin和 integrina6也在基底侧特异表达 (图 27 )。 图 27A为类胆管状细胞形成胆 管状结构; 图 27B为免疫荧光显示类胆管细胞表达 KRT19 (红色); 图 27C为免疫荧 光显示类胆管细胞表达 KRT7 (红色) , 但不表达 AFP (绿色); 图 27D上皮极性的标 志性蛋白 β-catenin的定位; 图 27G上皮极性的标志性蛋白 E-cadherin的定位; 图 27J 为 Integrin a6的定位, β-catenin (D), E-cadherin (G) 和 Integrina6 (J) 定位于细胞的 基底侧; F-actin (图 27E和图 27H)位于细胞的顶侧。 胆管细胞标志 KRT19同时位于 顶侧和基底侧(图 27K)。 图 27F, I, L显示的为合并图。蓝色为 DAPI标记的细胞核。 标尺, 50μιη。
检测分化得到的类胆管细胞是否如正常的胆管细胞一样具有运输和分泌的功能, 分析参与胆管运输和分泌的关键蛋白 MDR的功能情况。 MDR是一种 ΑΤΡ依赖的跨膜 运输泵, 有文献报道其可能参与了胆汁中阳离子物质的分泌 (Gigliozzi 等, Gastroenterology. 2000 Oct; 119,1113 - 1122)。 将分化得到的嚢泡与荧光染料 rhodamine 123 (美国 Sigma-Aldrich公司, 83702-10MG)共同孵育。 囊泡内空腔部分的荧光强路 要远高于周围细胞内的荧光强度。 用 10mM的 MDR蛋白的抑制剂 Verapamil (美国 Sigma- Aldrich公司, V106-5MG) 进行处理, rhodamine 123被限制在囊泡外周的细胞 中, 而丧失了转运至囊泡内空腔的能力 (图 28 )。 这说明 rhodamine 123的转运的确是 依赖于位于细胞顶侧的功能性的 MDR蛋白的。 以上的结果共同说明, 这些从肝脏前 体细胞分化得到的细胞与胆管细胞具有很强的相似性的。
利用诱导的多潜能干细胞 (ips) 细胞系 hAFF-4U-M-iPS-l 和 hAFF-4U-M-iPS-3 (赵扬 , Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell, 2008;3:475-479. ) (北京大学) 用相同的方法进行分化, 同样可以得到 肝脏前体细胞。该肝脏前体细胞同样具有克隆形态, 具有长期增殖能力, 并表达 AFP、 KRT19 (图 30) 和 KRT7, 以及假定的肝脏前体细胞标志 EpCAM和 CD133。

Claims

权 利 要 求 书
1. 一种将胚胎干细胞(ESC )或诱导形成的多潜能干细胞(iPS )诱导分化为肝脏 细胞的方法, 所述方法包括以下步骤:
1 ) 将胚胎干细胞 (ESC ) 或诱导形成的多潜能干细胞 (iPS ) 在含有活化素 A的 基础细胞培养基中培养;
2) 将获自步骤 1 ) 的细胞转入含有胰岛素-转铁蛋白 -硒盐 (优选亚硒酸钠) 和活 化素 A的基础细胞培养基中培养;
3 ) 将获自步骤 2 ) 的细胞在含有成纤维细胞生长因子 (FGF)和骨形态形成蛋白 (BMP)的肝脏细胞培养基 (HCM)中培养获得肝脏前体细胞; 和
4) 促进获自步骤 3 ) 的肝脏前体细胞成熟, 获得肝脏细胞,
其中优选所述胚胎干细胞(ESC)或诱导形成的多潜能干细胞 (iPS) 是哺乳动物 细胞, 更优选为小鼠或人细胞, 最优选人细胞, 其中当所述细胞是人细胞时, 优选所 述活化素 A为人活化素 A, 所述成纤维细胞生长因子为人成纤维细胞生长因子, 所述 骨形态形成蛋白为人骨形态形成蛋白。
2. 根据权利要求 1 所述的方法, 其中所述基础细胞培养基选自以下组成的组: MEM、 DMEM、 BME、 DMEM / F12、 RPMI 1640和 Fischer's。
3. 根据权利要求 1或 2所述的方法,其中所述活化素 A在所述基础细胞培养基中 的含量为 10至 500 ng/ml。
4. 根据权利要求 3所述的方法, 其中所述胰岛素 -转铁蛋白-硒盐以混合补充液的 形式加入, 其与所述基础细胞培养基的体积比为 0.01至 20%。
5. 根据权利要求 4所述的方法,其中所述成纤维细胞生长因子为酸性成纤维细胞 生长因子、 成纤维细胞生长因子 2或成纤维细胞生长因子 4; 所述骨形态形成蛋白为 骨形态形成蛋白 2或骨形态形成蛋白 4。
6. 根据权利要求 5所述的方法, 其中所述成纤维细胞生长因子 (FGF) 的量为 5 至 100 ng/ml所述肝脏细胞培养基; 并且所述骨形态形成蛋白 (BMP) 的量为 5为 100 ng/ml所述肝脏细胞培养基。
7. 根据权利要求 6所述的方法,其中促进所述肝脏细胞成熟是将所述肝脏细胞在 含有肝脏细胞生长因子 (优选人肝脏细胞生长因子) 和角化细胞生长因子 (优选人角 化细胞生长因子) 的肝脏细胞培养基中培养, 获得扩增后的肝脏前体细胞; 再转入含 有制瘤素 M和地塞米松的肝脏细胞培养基中培养,然后转入分化培养基 V中培养获得 成熟的肝脏细胞; 所述分化培养基 V 为含有 (0.1— 10 ) ml/lOOml 的 N2, (0.1— 20 )ml/100ml的 B27, 0.5-2mM谷氨酰胺,(0.1— 10)ml/100ml的非必需氨基酸, 0.05-0.2 ιηΜ β-巯基乙醇, 1一 100ng/ml的制瘤素 M (OSM)和 0.05— ΙμΜ地塞米松(Dex) 的 基础培养基, pH 7.2-7.6。
8. 根据权利要求 7所述的方法, 其中所述肝脏细胞生长因子的含量为 5 至 100 ng/ml所述肝脏细胞培养基; 所述角化细胞生长因子的含量为 5至 100 ng/ml所述肝脏 细胞培养基, 所述制瘤素 M的含量为 1至 100 ng/ml所述肝脏细胞培养基; 所述地塞 米松在所述肝脏细胞培养基中的浓度为 0.05至 1 μΜ。
9. 权利要求 1至 8中任一所述的方法获得肝脏细胞,优选所述肝脏细胞表达肝脏 细胞的标记分子 AFP, Alb, CK8, CK18, CK19, HNF4a, 和 /或 GAPDH, 更优选所 述肝脏细胞具有糖原合成和贮存功能、 具有尿素合成功能、 具有分泌白细胞的功能和 / 或具有响应药物诱导的 P450酶活性。
10. 权利要求 1至 8中任一所述的方法获得肝脏细胞在制备人工肝脏、 药物的毒 性测试或药物筛选中的应用。
11. 一种将胚胎干细胞 (ESC) 或诱导形成的多潜能千细胞 (iPS ) 诱导分化为肝 脏内胚层细胞的方法, 所述方法包括以下步骤-
1 ) 将胚胎干细胞 (ESC) 或诱导形成的多潜能千细胞 (iPS ) 在含有活化素 A的 基础细胞培养基中培养;
2) 将获自步骤 1 ) 的细胞转入含有胰岛素-转铁蛋白 -硒盐 (优选亚硒酸钠) 和活 化素 A的基础细胞培养基中培养; 和
3 ) 将获自步骤 2 ) 的细胞在含有成纤维细胞生长因子 (FGF)和骨形态形成蛋白 (BMP)的肝脏内胚层细胞诱导培养基中培养, 获得肝脏内胚层细胞,
其中优选所述胚胎干细胞(ESC)或诱导形成的多潜能干细胞(iPS) 是哺乳动物 细胞, 更优选为小鼠或人细胞, 最优选人细胞, 其中当所述细胞是人细胞时, 优选所 述活化素 A为人活化素 A, 所述成纤维细胞生长因子为人成纤维细胞生长因子, 所述 骨形态形成蛋白为人骨形态形成蛋白。
12. 根据权利要求 11所述的方法, 其中在步骤 1 ) 和 2 ) 中的所述基础细胞培养 基还含有牛血清白蛋白组分 V, 其中优选所述成纤维细胞生长因子为酸性成纤维细胞 生长因子、 成纤维细胞生长因子 2或成纤维细胞生长因子 4; 所述骨形态形成蛋白为 骨形态形成蛋白 2或骨形态形成蛋白 4。
13. 根据权利要求 11或 12所述的方法, 其中在步骤 2) 中首先将获自歩骤 1 )的 细胞转入含有活化素 A和第一浓度的胰岛素-转铁蛋白 -硒盐的基础细胞培养基中培养, 然后将获得的细胞在含有活化素 A和第二浓度的胰岛素-转铁蛋白 -硒盐的基础细胞培 养基中培养, 所述第二浓度高于所述第一浓度。
14. 根据权利要求 13所述的方法, 其中在步骤 1 ) 中所用的培养基为含有质量百 分含量 0.02%-1%的牛血清白蛋白组分 V和 50-200 ng/ml人活化素 A的基础细胞培养 基; 在步骤 2 ) 中所用的培养基分别为含有质量百分含量 0.02%-1%的牛血清白蛋白组 分 V、 体积百分含量 0.05%-0.5%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人活化素 A的基础细胞培养基, 以及含有质量百分含量 0.02%-1%的牛血 清白蛋白组分 V, 体积百分含量 0.5%-2%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人活化素 A的基础细胞培养基; 所述肝脏内胚层细胞诱导培养基为含有 20-60ng/ml人成纤维细胞生长因子 -4和 10-30ng/ml人骨形态形成蛋白 -2的肝脏细胞培 养基。
15. 根据权利要求 11-14 中任一项所述的方法, 其中所述基础细胞培养基选自由 以下组成的组: MEM、 DMEM、 BME、 DMEM / F12、 RPMI 1640和 Fischer's。
16. 根据权利要求 11所述的方法, 其在步骤 3 ) 后还包括以下步骤: 用流式细胞 仪分选表达神经性钙黏附蛋白表面蛋白的细胞。
17. 根据权利要求 11所述的方法, 其中在步骤 1 )、 2) 和 3 ) 中细胞培养的时间 分别为 24小时、 48小时和 5天。
18. 根据权利要求 11所述的方法,其中所述胚胎干细胞(ESC)为人胚胎干细胞, 所述人胚胎干细胞为可从商业途径获得的人胚胎干细胞系;优选为下述任一种细胞系: BG01, BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UC01, UC06, WAOl, WA07, WA09, WA13和 WA14; 所述编号为 NIH的编号。
19. 肝脏内胚层细胞, 其是通过权利要求 11-18 中任一项所述的方法从人胚胎干 细胞或人诱导的多潜能干细胞分化获得的, 优选至少表达甲胎蛋白、 肝脏细胞核因子 4A和神经性钙黏附蛋白这三种标志性蛋白的肝脏内胚层细胞。
20. 根据权利要求 19 所述的肝脏内胚层细胞, 所述肝脏内胚层细胞表达甲胎蛋 白、 白蛋白、 肝脏细胞核因子 4A、 肝脏细胞核因子 3B和神经性钙黏附蛋白。
21. 根据权利要求 19或 20所述肝脏内胚层细胞在制备类肝实质细胞或胆管细胞 中的应用。
22. 一种将胚胎干细胞 (ESC ) 或诱导形成的多潜能干细胞 (IPS ) 诱导分化为肝 脏前体细胞的方法, 所述方法包括以下步骤:
1 ) 将胚胎干细胞 (ESC ) 或诱导形成的多潜能干细胞 (iPS ) 在含有活化素 A的 基础细胞培养基中培养;
2) 将获自步骤 1 ) 的细胞转入含有胰岛素-转铁蛋白 -硒盐 (优选亚硒酸钠) 和活 化素 A的基础细胞培养基中培养; 和
3 ) 将获自步骤 2 ) 的细胞在含有成纤维细胞生长因子 (FGF)和骨形态形成蛋白 (BMP)的肝脏内胚层细胞诱导培养基中培养, 获得肝脏内胚层细胞, 和
4) 将获自步骤 3 ) 的肝脏内胚层细胞在 STO细胞饲养层上用肝脏前体细胞培养 基进行培养, 获得肝脏前体细胞,
其中优选所述胚胎干细胞(ESC)或诱导形成的多潜能干细胞(iPS) 是哺乳动物 细胞, 更优选为小鼠或人细胞, 最优选人细胞, 其中当所述细胞是人细胞时, 优选所 述活化素 A为人活化素 A, 所述成纤维细胞生长因子为人成纤维细胞生长因子, 所述 骨形态形成蛋白为人骨形态形成蛋白。
23. 根据权利要求 22所述的方法, 其中在步骤 1 ) 和 2) 中的所述基础细胞培养 基还含有牛血清白蛋白组分 V, 其中优选所述成纤维细胞生长因子为酸性成纤维细胞 生长因子、 成纤维细胞生长因子 2或成纤维细胞生长因子 4; 所述骨形态形成蛋白为 骨形态形成蛋白 2或骨形态形成蛋白 4。
24. 根据权利要求 22或 23所述的方法, 其中在步骤 2)中首先将获自步骤 1 )的 细胞转入含有活化素 A和第一浓度的胰岛素-转铁蛋白 -硒盐的基础细胞培养基中培养, 然后将获得的细胞在含有活化素 A和第二浓度的胰岛素-转铁蛋白 -硒盐的基础细胞培 养基中培养, 所述第二浓度高于所述第一浓度。
25. 根据权利要求 24所述的方法, 其中在步骤 1 ) 中所用的培养基为含有质量百 分含量 0.02%-1%的牛血清白蛋白组分 V和 50-200 ng/ml人活化素 A的基础细胞培养 基; 在步骤 2) 中所用的培养基分别为含有质量百分含量 0.02%-1%的牛血清白蛋白组 分 V、 体积百分含量 0.05%-0.5%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人活化素 A的基础细胞培养基, 以及含有质量百分含量 0.02%-1%的牛血 清白蛋白组分 V, 体积百分含量 0.5%-2%的胰岛素-转铁蛋白-亚硒酸钠混合补充液和 50-200ng/ml人活化素 A的基础细胞培养基; 所述肝脏内胚层细胞诱导培养基为含有 20-60ng/ml人成纤维细胞生长因子 -4和 10-30ng/ml人骨形态形成蛋白 -2的肝脏细胞培 养基, 所述肝脏前体细胞培养基为含有 5-25 mM HEPES, 体积比含量 0.5%-2%的胰岛 素-转铁蛋白-亚硒酸钠混合补充液, 质量百分含量 0.02%-1%的牛血清白蛋白组分 V, 2-20 mM 尼克酰胺, 0.2-2mM的二磷酸化抗坏血酸, 0.02-0.2μΜ地塞米松,和 5-40ng/ml EGF的基础细胞培养基。
26. 根据权利要求 22-25 中任一项所述的方法, 其中所述基础细胞培养基选自由 以下组成的组: MEM、 DMEM> BME、 DMEM / F12、 RPMI 1640和 Fischer,s。
27. 根据权利要求 22所述的方法, 其在步骤 3 ) 后还包括以下步骤: 用流式细胞 仪分选表达神经性钙黏附蛋白表面蛋白的细胞。
28. 根据权利要求 22所述的方法, 其中在步骤 1 )、 2) 和 3 ) 中细胞培养的时间 分别为 24小时、 48小时和 5天。
29. 根据权利要求 22-28中任一所述的方法, 其中在所述方法中, 还包括肝脏前 体细胞的传代步骤; 肝脏前体细胞的传代方法为将所述肝脏前体细胞用胰酶 -EDTA消 化液消化, 然后在 STO细胞作为饲养层的肝脏前体细胞培养基上培养。
30. 根据权利要求 22所述的方法,其中所述胚胎干细胞(ESC)为人胚胎干细胞, 所述人胚胎干细胞为可从商业途径获得的人胚胎干细胞系;优选为下述任一种细胞系: BG01, BG02, BG03, BG04, SA01, SA02, SA03, ES01, ES02, ES03, ES04, ES05, ES06, TE03, TE32, TE33, TE04, TE06, TE62, TE07, TE72, UCOl, UC06, WAOl, WA07, WA09, WA13和 WA14; 所述编号为 NIH的编号。
31. 肝脏前体细胞, 其是通过权利要求 22-30 中任一项所述的方法从人胚胎干细 胞或人诱导的多潜能干细胞分化获得的, 优选表达甲胎蛋白、角蛋白 19和角蛋白 7的 肝脏前体细胞, 其具有增殖能力并具有向类肝实质细胞和类胆管细胞的双向分化的潜 能。
32. 根据权利要求 31 所述的肝脏前体细胞在制备类肝实质细胞或胆管细胞中的 应用。
PCT/CN2010/001118 2009-07-23 2010-07-23 通过诱导分化获得肝脏细胞、肝脏内胚层细胞和肝脏前体细胞的方法 WO2011009294A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012520888A JP2012533310A (ja) 2009-07-23 2010-07-23 分化誘導による肝細胞、肝内胚葉細胞及び肝前駆細胞を得る方法
EP10801854.0A EP2457998A4 (en) 2009-07-23 2010-07-23 METHODS FOR OBTAINING HEPATIC CELLS, HEPATIC ENDODERM CELLS, AND HEPATIC PRECURSOR CELLS BY INDUCING THE DIFFERENTIATION
US13/386,373 US20120190059A1 (en) 2009-07-23 2010-07-23 Methods for obtaining hepatocytes, hepatic endoderm cells and hepatic progenitor cells by induced differentiation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN 200910089765 CN101962630B (zh) 2009-07-23 2009-07-23 诱导人胚胎干细胞或人诱导形成的多潜能干细胞向肝细胞分化的方法
CN200910089765.6 2009-07-23
CN200910089695.4 2009-07-24
CN 200910089693 CN101962628B (zh) 2009-07-24 2009-07-24 肝脏内胚层细胞及其制备和纯化方法
CN200910089695.4A CN101962629B (zh) 2009-07-24 2009-07-24 肝脏前体细胞及其制备方法与应用
CN200910089693.5 2009-07-24

Publications (1)

Publication Number Publication Date
WO2011009294A1 true WO2011009294A1 (zh) 2011-01-27

Family

ID=43498733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001118 WO2011009294A1 (zh) 2009-07-23 2010-07-23 通过诱导分化获得肝脏细胞、肝脏内胚层细胞和肝脏前体细胞的方法

Country Status (4)

Country Link
US (1) US20120190059A1 (zh)
EP (1) EP2457998A4 (zh)
JP (1) JP2012533310A (zh)
WO (1) WO2011009294A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103289956A (zh) * 2013-05-28 2013-09-11 吉林省拓华生物科技有限公司 快速分离扩增神经干细胞的培养基及方法
US20130259836A1 (en) * 2012-03-29 2013-10-03 Oscar Kuang-Sheng LEE Mature hepatocyte cells derived from induced pluripotent stem cells, a generating method thereof, and use thereof for treatment of liver diseases
JP2015523063A (ja) * 2012-05-23 2015-08-13 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 内胚葉細胞および肝実質細胞の組成物ならびにそれらの細胞を入手および使用する方法
CN112553143A (zh) * 2020-12-22 2021-03-26 上海交通大学医学院附属第九人民医院 一种肝脏模型及其制备方法和用途
CN113201480A (zh) * 2021-03-30 2021-08-03 弗元(上海)生物科技有限公司 干细胞分化诱导为肝细胞的方法
EP3905880A4 (en) * 2019-01-03 2022-10-05 Merck Sharp & Dohme Corp. SUPPLEMENTED SERUM CONTAINING CULTURE MEDIUM FOR ENHANCEMENT OF ARPE-19 GROWTH AND FOR THE PREPARATION OF A HUMAN CYTOMEGALOVIRUS VACCINE

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913366A (zh) * 2013-02-18 2022-01-11 大学健康网络 由多能干细胞生成肝细胞和胆管细胞的方法
JP6174155B2 (ja) * 2013-09-10 2017-08-02 富士フイルム株式会社 多能性幹細胞の培養方法ならびにこれに用いる多能性幹細胞の培養用キットおよび培地
KR101542849B1 (ko) * 2013-11-01 2015-08-10 주식회사 비비에이치씨 중간엽 줄기세포로부터 유도된 만능 줄기세포를 이용하여 간세포로 분화시키는 방법
WO2016022930A1 (en) 2014-08-07 2016-02-11 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Reversible stencils for fabricating micro-tissues
KR101873430B1 (ko) 2015-07-24 2018-07-02 강원대학교 산학협력단 탈세포화된 생체 조직 유래의 생체적합성 가용화 스캐폴드 농축물을 이용하여 줄기세포를 간세포로 분화시키는 방법
CN108601801A (zh) 2015-10-05 2018-09-28 欧瑞3恩公司 基于鉴别和改善肝功能障碍来诊断和治疗帕金森病
US10683486B2 (en) 2015-10-30 2020-06-16 Biolamina Ab Methods for producing hepatocytes
JP2019134682A (ja) * 2016-06-01 2019-08-15 国立研究開発法人医薬基盤・健康・栄養研究所 肝幹細胞様細胞の調製方法
CN109890956A (zh) * 2016-10-28 2019-06-14 国立研究开发法人国立癌研究中心 人肝前体细胞的制备方法
EP3702444A4 (en) * 2017-10-12 2021-06-02 Tokyo Institute of Technology METHOD FOR INDUCING THE DIFFERENTIATION OF PLURIPOTENT STEM CELLS IN HEPATOCYTE
CN109749981B (zh) * 2017-11-06 2023-10-10 博品(上海)生物医药科技有限公司 人源脂肪干细胞来源的肝细胞样细胞及其制备方法和应用
CN111073843A (zh) * 2018-10-22 2020-04-28 立沃生物科技(深圳)有限公司 一种肝样细胞成熟与扩增的方法
CN111394391B (zh) * 2019-07-11 2022-12-06 上海赛立维生物科技有限公司 肝祖细胞样细胞库的构建方法及其制备的细胞株与应用
JPWO2021085649A1 (zh) * 2019-10-31 2021-05-06
CN111235094B (zh) * 2020-03-11 2023-06-30 上海东方星际干细胞科技有限公司 一种人多能干细胞向内胚层分化的方法
CN112375731A (zh) * 2020-11-24 2021-02-19 河北医科大学 一种皮肤成纤维细胞分离培养方法
CN113403282A (zh) * 2021-05-26 2021-09-17 丁建强 一种人源诱导肝向分化干细胞的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007130474A2 (en) * 2006-05-02 2007-11-15 Wisconsin Alumni Research Foundation Method of differentiating stem cells into cells of the endoderm and pancreatic lineage

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020187133A1 (en) * 1999-10-01 2002-12-12 Hiroshi Kubota Methods of isolating bipotent hepatic progenitor cells
EP1686178A1 (en) * 2005-01-19 2006-08-02 Takahiro Ochiya Human hepatocyte-like cells and uses thereof
JP5124820B2 (ja) * 2007-05-30 2013-01-23 国立大学法人 熊本大学 Es細胞の分化誘導方法
WO2009013254A1 (en) * 2007-07-20 2009-01-29 Cellartis Ab A novel population of hepatocytes derived via definitive endoderm (de-hep) from human blastocysts stem cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007130474A2 (en) * 2006-05-02 2007-11-15 Wisconsin Alumni Research Foundation Method of differentiating stem cells into cells of the endoderm and pancreatic lineage

Non-Patent Citations (24)

* Cited by examiner, † Cited by third party
Title
CAI J., HEPATOLOGY, vol. 45, 2007, pages 1229 - 1239
CHAMBERS SM., NAT BIOTECHNOL, vol. 27, 2009, pages 275 - 280
CHOI KD., STEM CELLS, vol. 27, 2009, pages 559 - 567
DHNOS JT., SCIENCE, vol. 321, 2008, pages I218D1221
FANIMIZU; MIYAJIMA, J CELL SCI., vol. 117, 1 July 2004 (2004-07-01), pages 3165 - 3174
GIGLIOZZI ET AL., GASTROENTEROLOGY, vol. 119, October 2000 (2000-10-01), pages 1113 - 1122
HIRAMI Y, NEUROSCI LETT, vol. 458, 2009, pages 126 - 131
JUN CAI ET AL.: "Directed Differentiation of Human Embryonic Stem Cells into Functional Hepatic Cells", HEPATOLOGY, vol. 45, no. 5, May 2007 (2007-05-01), pages 1229 - 1239, XP002454566 *
KAMER E., J CELL PHYSIOL, vol. 218, 2009, pages 323 - 333
KARUMBAYARAM S., STEM CELLS, vol. 27, 2009, pages 806 - 811
REISS ET AL., EMBO J., vol. 24, 23 February 2005 (2005-02-23), pages 742 - 752
SCHMELZER ET AL., J EXP MED., vol. 204, no. 8, 6 August 2007 (2007-08-06), pages 1973 - 87
See also references of EP2457998A4 *
TAKAHASHI K., CELL, vol. 131, 2007, pages 861 - 872
TAKAHASHI, K., CELL, vol. 126, 2006, pages 663 - 676
TATEISHI K., J BIOL CHEM, vol. 283, 2008, pages 31601 - 31607
TAURA D., ARTERIOSCLER THROMB VASE BIOL, 2009
TAURA D., FEBS LETT, vol. 583, 2009, pages 1029 - 1033
YANG ZHAO: "Two supporting factors greatly improve the efficiency of human iPSC generation", CELL STEM CELL, vol. 3, 2008, pages 475 - 479, XP008129613, DOI: doi:10.1016/j.stem.2008.10.002
YOSHIDA; TAKEICHI, CELL, vol. 28, no. 2, February 1982 (1982-02-01), pages 217 - 24
YU J ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920
ZHANG D., CELL RES, vol. 19, 2009, pages 429 - 438
ZHANG J., CIRC RES, vol. 104, 2009, pages E30 - 41
ZHIHUA SONG ET AL.: "Efficient generation of hepatocyte-like cells from human induced Pluripotent stem cells", CELL RESEARCH, vol. 19, no. 11, 8 September 2009 (2009-09-08), pages 1233 - 1242, XP009154692 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130259836A1 (en) * 2012-03-29 2013-10-03 Oscar Kuang-Sheng LEE Mature hepatocyte cells derived from induced pluripotent stem cells, a generating method thereof, and use thereof for treatment of liver diseases
TWI449789B (zh) * 2012-03-29 2014-08-21 Univ Nat Yang Ming 由人類誘導式全能型幹細胞快速引導分化為成熟肝細胞之方法,及其用於治療肝病之用途
US9732323B2 (en) * 2012-03-29 2017-08-15 National Yang-Ming University Methods for producing mature hepatocytes
JP2015523063A (ja) * 2012-05-23 2015-08-13 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 内胚葉細胞および肝実質細胞の組成物ならびにそれらの細胞を入手および使用する方法
CN103289956A (zh) * 2013-05-28 2013-09-11 吉林省拓华生物科技有限公司 快速分离扩增神经干细胞的培养基及方法
EP3905880A4 (en) * 2019-01-03 2022-10-05 Merck Sharp & Dohme Corp. SUPPLEMENTED SERUM CONTAINING CULTURE MEDIUM FOR ENHANCEMENT OF ARPE-19 GROWTH AND FOR THE PREPARATION OF A HUMAN CYTOMEGALOVIRUS VACCINE
CN112553143A (zh) * 2020-12-22 2021-03-26 上海交通大学医学院附属第九人民医院 一种肝脏模型及其制备方法和用途
CN113201480A (zh) * 2021-03-30 2021-08-03 弗元(上海)生物科技有限公司 干细胞分化诱导为肝细胞的方法

Also Published As

Publication number Publication date
EP2457998A1 (en) 2012-05-30
US20120190059A1 (en) 2012-07-26
EP2457998A9 (en) 2014-05-07
EP2457998A4 (en) 2013-08-21
JP2012533310A (ja) 2012-12-27

Similar Documents

Publication Publication Date Title
WO2011009294A1 (zh) 通过诱导分化获得肝脏细胞、肝脏内胚层细胞和肝脏前体细胞的方法
JP7078615B2 (ja) 肝臓オルガノイド組成物ならびにその作製および使用方法
Zhao et al. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells
AU2014218290B2 (en) Methods for generating hepatocytes and cholangiocytes from pluripotent stem cells
Sancho-Bru et al. Directed differentiation of murine-induced pluripotent stem cells to functional hepatocyte-like cells
Luo et al. Three-dimensional hydrogel culture conditions promote the differentiation of human induced pluripotent stem cells into hepatocytes
Shiraki et al. Efficient differentiation of embryonic stem cells into hepatic cells in vitro using a feeder-free basement membrane substratum
EP3397753B1 (en) Microtissue formation using stem cell-derived human hepatocytes
US20190194607A1 (en) Highly functional liver cells derived from pluripotent stem cells, method for producing same, and method for testing metabolism/toxicity of drug
CN101962629B (zh) 肝脏前体细胞及其制备方法与应用
US20160145570A1 (en) Methods for differentiating cells into hepatic stellate cells and hepatic sinusoidal endothelial cells, cells produced by the method, and methods for using the cells
US11713448B2 (en) Methods for producing hepatocytes
KR20210096631A (ko) 간세포 확장 방법
JP2018512886A (ja) 真正膵臓前駆細胞の単離
JP6421335B2 (ja) 肝幹前駆様細胞の培養方法及びその培養物
JP2021531018A (ja) 肝胆膵組織およびその作製方法
EP3630948A1 (en) Methods for chemically induced lineage reprogramming
WO2010140464A1 (ja) 細胞の分化誘導方法
Raggi et al. Leveraging interacting signaling pathways to robustly improve the quality and yield of human pluripotent stem cell-derived hepatoblasts and hepatocytes
Pan et al. Synergistic modulation of signaling pathways to expand and maintain the bipotency of human hepatoblasts
WO2011016485A1 (ja) iPS細胞から肝実質細胞への分化誘導方法
US20180016548A1 (en) Acellular scaffolds for maturation of ipsc-hepatocytes
Miki Hepatic differentiation of human embryonic and induced pluripotent stem cells for regenerative medicine
Kamei et al. Robust direct differentiation and maturation of human pluripotent stem cells to hepatocyte-like cells
Ramasamy A Study to Improve the Differentiation of Human Embryonic Stem Cells to Functional Hepatocytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10801854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012520888

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010801854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13386373

Country of ref document: US