WO2011009149A1 - Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens - Google Patents

Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens Download PDF

Info

Publication number
WO2011009149A1
WO2011009149A1 PCT/AT2010/000267 AT2010000267W WO2011009149A1 WO 2011009149 A1 WO2011009149 A1 WO 2011009149A1 AT 2010000267 W AT2010000267 W AT 2010000267W WO 2011009149 A1 WO2011009149 A1 WO 2011009149A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
liquid distributor
valve
liquefied gas
pressure
Prior art date
Application number
PCT/AT2010/000267
Other languages
English (en)
French (fr)
Inventor
Werner Hermeling
Original Assignee
Lo Solutions Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lo Solutions Gmbh filed Critical Lo Solutions Gmbh
Priority to EP10740121.8A priority Critical patent/EP2457014B1/de
Priority to RU2012106249/06A priority patent/RU2012106249A/ru
Priority to US13/386,490 priority patent/US20120159969A1/en
Publication of WO2011009149A1 publication Critical patent/WO2011009149A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0146Two-phase
    • F17C2225/0153Liquefied gas, e.g. LPG, GPL
    • F17C2225/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0107Propulsion of the fluid by pressurising the ullage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0121Propulsion of the fluid by gravity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0311Air heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/039Localisation of heat exchange separate on the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/01Intermediate tanks

Definitions

  • the invention relates to a method for loading evaporators with cryogenic liquefied gases and to an apparatus for carrying out this method.
  • Refrigerated liquefied gases are usually evaporated before they are used.
  • evaporators are used, wherein the evaporation takes place using different heat transfer medium.
  • the evaporation starts spontaneously and uncontrollably.
  • the introduction of liquid into an evaporator via the pressure difference between the evaporator and a pressure booster, which is usually designed as a pump.
  • the liquid is thus pressed with the pump energy into the evaporator and separated by closing the exhaust valve from the evaporator.
  • the transition from the liquid phase into the gas phase or into the supercritical state occurs as a function of the heat supplied.
  • the pump must apply appropriate pressure to produce the appropriate pressure difference, which allows a flow of liquid into the evaporator first.
  • the invention aims to load an evaporator with cryogenic liquefied gases without the need for a separate pump would be required.
  • the method for loading evaporators with cryogenic liquefied gases according to the invention is carried out such that the evaporator, a tank, a thermally insulated, acted upon with a gas pressure dosing memory and a thermally insulated liquid distributor upstream, the connecting lines are shut off by a respective valve, wherein the cryogenic liquefied gas is metered from the tank into the dosing, whereupon after opening the valve in the connecting line the cryogenic liquefied gas is transferred from the dosing memory in the liquid distributor, after what Introducing the cryogenic liquefied gas into the liquid distributor and then closing the valve in the connecting line, the transport of the cryogenic liquefied gas in a tubular evaporator under the hydrostatic pressure of the liquid is made from the liquid distributor, for which a
  • this can be filled in a simple manner by the hydrostatic pressure of the cryogenic liquefied gas. Because the liquid distributor itself is thermally insulated, no evaporation occurs in it. When the valve between the liquid distributor and the evaporator is subsequently opened, the cryogenic liquefied gas enters a non-thermally insulated container and evaporates there, at the same time increasing the pressure.
  • the method is carried out in such a way that the pressure exceeding the pressure in the metering reservoir is used in the evaporator to pressurize the metering reservoir.
  • the pressure for squeezing out of the dosing storage is not applied by pumping, but it can be used directly, the pressure that arises during evaporation.
  • the metering reservoir can be pressed out into a further container whose pressure is lower than the pressure in the evaporator. In a return of gas into the tank, this can be done via a throttle, so that both liquid phase and gas phase enters the tank.
  • the tank, the metering reservoir and the liquid distributor (s) are vacuum-insulated, whereby the heat input is reduced.
  • These containers can also be cooled to ensure that the cryogenic liquefied gas does not evaporate before the evaporator and thus increases the pressure of the system in an undesirable manner.
  • the procedure is such that when using liquefied gas different from the cryogenic liquid coolant, the coolant is so dimensioned that the coolant's own heat capacity precludes reaching the solidification point of the cryogenic liquefied gas. This prevents that the cryogenic liquefied gas solidifies and the line system is clogged by the lumps formed.
  • the apparatus for carrying out the method according to the invention comprising an insulated tank for cryogenic liquefied gas, at least one connected via a line with an intermediate valve isolated metered storage and at least one evaporator is designed such that between the evaporator and tank an insulated liquid distributor is provided, which at his the head end has an overflow line and at the opposite end a valve having a branch line, both of which open into the evaporator.
  • an isolated liquid distributor this can be filled without the cryogenic liquefied gas evaporates and, accordingly, without pressure increase. If the liquid distributor is filled to the head end, the cryogenic liquefied gas flows through the overflow line into the evaporator and the pressure rises abruptly.
  • the valve between the metering reservoir and the liquid distributor is closed and the valve in the branch line is opened, so that the cryogenic liquefied gas enters the evaporator and evaporates there.
  • the liquid distributor thus has the function to bring a predetermined amount of cryogenic liquefied gas to the evaporator. Without an intermediate liquid distributor, the cryogenic liquefied gas would evaporate immediately upon entering the evaporator and produce a pressure increase, so that no further cryogenic liquefied gas could be introduced into the evaporator.
  • the device is developed such that the evaporator and the liquid distributor are tubular.
  • the tubular design ensures that the insulation, in particular vacuum insulation, of the liquid distributor is inexpensive; on the other hand, the high pressures that occur during evaporation can be better absorbed.
  • the device according to the invention is preferably further developed in such a way that the liquid distributor has, on the top side, a branch line connected to a valve, which again flows into the metering reservoir or via a throttle into the tank.
  • the increased pressure in the evaporator can be used to squeeze the Dosier Items and it can be dispensed with a pump.
  • the device according to the invention is preferably further developed in such a way that a plurality of evaporators is connected downstream of the metering reservoir, with each evaporator being preceded by a liquid distributor.
  • a higher pressure in one of the evaporators can be used to squeeze the metering reservoir into a liquid distributor located at a lower pressure.
  • Such a device can therefore load continuously and pumpless evaporator. Since at least at the inlet to the evaporator temperatures occur which are far below the ambient temperature and are below the freezing point of the water, a freezing is inevitable.
  • the device is therefore preferably developed in such a way that the evaporator is provided with a nano-coating in order to prevent sticking of ice crystals.
  • FIG. 1 shows a first embodiment
  • FIG. 2 shows a second embodiment of the device according to the invention.
  • denoted by 1 is a metering reservoir which is surrounded by a vacuum insulating layer 2.
  • the metering memory can be filled after pressure equalization of a tank 3 via a line 4 with intermediate valve 5 with cryogenic liquefied gas with the hydrostatic pressure. Subsequently, the cryogenic liquefied gas is spent via an insulated line 6 and the open valve 7 in the liquid distributor 8, which is also surrounded by an insulating layer 2. If the liquid distributor 8 is arranged below the metering container 1, metering into the liquid distributor 8 can take place without pressure.
  • the liquid distributor 8 has at its head end an overflow line 9 which breaks through the insulating layer 2 and is subsequently no longer insulated.
  • the overflow line 9 opens into an evaporator 10.
  • liquid sensors 12 can also be arranged at the head-side outlet of the overflow line 9 from the liquid distributor 8.
  • the valve 7 is closed and an amount defined by the volume of the liquid gas in the liquid distributor is available for evaporation.
  • the Valve 13 is opened at the lower end of the liquid distributor 8, which a line 14, which also opens into the evaporator 10, switches.
  • the cryogenic liquefied gas can run into the evaporator or in this evaporation.
  • a further embodiment is shown, in which at the head end of the liquid distributor 8 at the same height of the overflow line 9, a further line 17 exits from the liquid distributor 8, which can be connected via a further valve 16. This further line leads back into the dosing 1.
  • the increased pressure by the evaporation can now be used to press the contents of the dosing 1 in the liquid distributor 8. All in all, this system does not require any maintenance-intensive pumps.
  • at least two evaporators 10 each having an upstream liquid distributor 8 are provided, which alternately pressurize the metering reservoir 1 and press the metering reservoir 1 into the respective other liquid distributor 8.
  • Another possibility of loading the evaporator with liquid is to fill the liquid distributor directly from the tank, bypassing or omitting the metering reservoir.
  • the liquid distributor is not only separated at the bottom with a valve from the evaporator, but in 'the same way head side. If the liquid distributor is filled with liquid after the pressure equalization with the tank by the hydrostatic pressure, both valves are opened, with the now applied hydrostatic pressure of the liquid distributor, the evaporator is filled. After evaporation, the liquid distributor is separated from the evaporator by closing the valves. The valve lying between the head end of the liquid distributor and the gas space of the tank is now opened and the pending gas pressure is released via a throttle into its gas space. It will produce gas phase and liquid phase. It adjusts pressure equalization, so that a new filling of the liquid distributor is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Bei einem Verfahren und einer Vorrichtung zum Beladen von Verdampfern (10) mit tief kalt verflüssigten Gasen werden dem Verdampfer (10) ein thermisch isolierten, mit einem Gasdruck beaufschlagbarer Dosierspeicher (1) und ein thermisch isolierter Flüssigkeitsverteiler (8) vorgeschaltet, deren Verbindungsleitungen durch jeweils ein Ventil absperrbar sind, wobei das tief kalt verflüssigte Gas in den Dosierspeicher (1) dosiert wird. Nach Öffnen des Ventils in der Verbindungsleitung wird das tief kalt verflüssigte Gas vom Dosierspeicher (1) in den Flüssigkeitsverteiler (8) verbracht, worauf nach Einfüllen des tief kalt verflüssigten Gases in den Flüssigkeitsverteiler (8) und anschließendem Schließen des Ventils in der Verbindungsleitung der Transport des tiefkalt verflüssigten Gases in einen rohrförmigen Verdampfer (10) unter dem hydrostatischen Druck der Flüssigkeit im Flüssigkeitsverteiler (8) vorgenommen wird, wofür ein Ventil zwischen dem Flüssigkeitsverteiler und dem Verdampfer (10) geöffnet wird.

Description

Verfahren zum Beladen von Verdampfern mit tiefkalt verflüssigten Gasen sowie eine Vorrichtung zur Durchführung dieses Verfahrens Die Erfindung betrifft ein Verfahren zum Beladen von Verdampfern mit tiefkalt verflüssigten Gasen sowie eine Vorrichtung zur Durchführung dieses Verfahrens.
Tiefkalt verflüssigte Gase werden in aller Regel vor ihrem Ein- satz verdampft. Zu diesem Zwecke werden Verdampfer eingesetzt, wobei das Verdampfen unter Einsatz verschiedener Wärmeträger erfolgt. In der Regel setzt die Verdampfung spontan und unkontrolliert ein. Das Einbringen von Flüssigkeit in einen Verdampfer erfolgt über den Druckunterschied zwischen dem Verdampfer und einer Druckerhöhungsanlage, welche üblicherweise als Pumpe ausgebildet ist. Die Flüssigkeit wird somit mit der Pumpenergie in den Verdampfer gedrückt und durch Schließen des Auslassventils vom Verdampfer getrennt. Im Verdampfer erfolgt in Abhängigkeit von der zugeführten Wärme der Übergang von der Flüssig- phase in die Gasphase bzw. in den überkritischen Zustand. Die Pumpe muss entsprechenden Druck aufbringen, um die entsprechende Druckdifferenz zu erzeugen, die ein Einströmen der Flüssigkeit in den Verdampfer erst ermöglicht. Für eine derartige Pumpe ist daher in aller Regel Energie erforderlich, die zumeist in Form von elektrischer Energie bereitgestellt wird. Die Erfindung zielt darauf ab, einen Verdampfer mit tiefkalt verflüssigten Gasen zu beladen, ohne dass dafür eine gesonderte Pumpe erforderlich wäre. Zur Lösung dieser Aufgabe wird das Verfahren zum Beladen von Verdampfern mit tiefkalt verflüssigten Gasen erfindungsgemäß derart durchgeführt, dass dem Verdampfer ein Tank, ein thermisch isolierter, mit einem Gasdruck beaufschlagbarer Dosierspeicher und ein thermisch isolierter Flüssigkeitsverteiler vorgeschaltet werden, deren Verbindungsleitungen durch jeweils ein Ventil absperrbar sind, wobei das tiefkalt verflüssigte Gas aus dem Tank in den Dosierspeicher dosiert wird, worauf nach Öffnen des Ventils in der Verbindungsleitung das tiefkalt ver- flüssigte Gas vom Dosierspeicher in den Flüssigkeitsverteiler verbracht wird, worauf nach Einfüllen des tiefkalt verflüssigten Gases in den Flüssigkeitsverteiler und anschließendem Schließen des Ventils in der Verbindungsleitung der Transport des tiefkalt verflüssigten Gases in einen rohrförmigen Verdamp- fer unter dem hydrostatischen Druck der Flüssigkeit aus dem Flüssigkeitsverteiler vorgenommen wird, wofür ein Ventil zwischen dem Flüssigkeitsverteiler und dem Verdampfer geöffnet wird. Bei einem ersten Befüllen des Flüssigkeitsverteilers kann dieser in einfacher Weise durch den hydrostatischen Druck des tiefkalt verflüssigten Gases befüllt werden. Dadurch, dass der Flüssigkeitsverteiler selbst thermisch isoliert ist, tritt in diesem keine Verdampfung ein. Wird im Anschluss das Ventil zwischen Flüssigkeitsverteiler und Verdampfer geöffnet, tritt das tiefkalt verflüssigte Gas in einen nicht thermisch isolierten Behälter und verdampft dort unter gleichzeitiger Erhöhung des Druckes.
In bevorzugter Weise wird das Verfahren derart durchgeführt, dass der den Druck im Dosierspeicher übersteigende Druck im Verdampfer zum Beaufschlagen des Dosierspeichers eingesetzt wird. Dadurch wird der Druck zum Auspressen des Dosierspeichers nicht durch Pumpen aufgebracht, sondern es kann der Druck, welcher beim Verdampfen entsteht, direkt verwendet werden. Der Dosierspeicher kann hierbei in einen weiteren Behälter ausge- presst werden, dessen Druck niedriger ist als der Druck im Verdampfer. Bei einer Rückführung von Gas in den Tank kann dies über eine Drossel erfolgen, so dass sowohl flüssige Phase als auch Gasphase in den Tank gelangt. In einfacher Weise ist der Tank, der Dosierspeicher und der bzw. die Flüssigkeitsverteiler vakuumisoliert, wodurch der Wär- meeintrag reduziert wird. Diese Behälter können aber auch gekühlt sein, um sicherzustellen, dass das tiefkalt verflüssigte Gas nicht schon vor dem Verdampfer verdampft und damit den Druck des Systems in unerwünschter Weise erhöht. In bevorzugter Weise wird hierbei so vorgegangen, dass bei Verwendung von vom tiefkalt verflüssigten Gas verschiedenen flüssigen Kühlmitteln das Kühlmittel so bemessen ist, dass die dem Kühlmittel eigene Wärmekapazität ein Erreichen des Erstarrungspunktes des tiefkalt verflüssigten Gases ausschließt. Dadurch wird verhindert, dass das tiefkalt verflüssigte Gas erstarrt und das Leitungssystem durch die gebildeten Klumpen verstopft wird. Die Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens umfassend einen isolierten Tank für tiefkalt verflüssigtes Gas, wenigstens einen über eine Leitung mit einem zwischengeschalteten Ventil verbundenen isolierten Dosierspeicher und wenigstens einen Verdampfer ist derartig ausgebildet, dass zwischen Verdampfer und Tank ein isolierter Flüssigkeitsverteiler vorgesehen ist, der an seinem kopfseitigen Ende eine Überlaufleitung und an dem gegenüberliegenden Ende eine ein Ventil aufweisende Zweigleitung aufweist, welche beide in den Verdampfer münden. Durch die Zwischenschaltung eines isolierten Flüssigkeitsverteilers kann dieser befüllt werden, ohne dass das tiefkalt verflüssigte Gas verdampft und dementsprechend ohne Druckerhöhung. Ist der Flüssigkeitsverteiler bis zum kopfseitigen Ende gefüllt, läuft das tiefkalt verflüssigte Gas über die Überlaufleitung in den Verdampfer und der Druck steigt schlagartig an. Wenn der Druckanstieg detektiert wird, wird das Ventil zwischen Dosierspeicher und Flüssigkeitsverteiler geschlossen und das Ventil in der Zweigleitung geöffnet, sodass das tiefkalt verflüssigte Gas in den Verdampfer eintritt und dort verdampft. Der Flüssigkeitsverteiler hat also die Funktion ein vorbestimmtes Maß an tiefkalt verflüssigtem Gas zum Verdampfer zu bringen. Ohne zwischengeschalteten Flüssigkeitsverteiler würde das tiefkalt verflüssigte Gas bei einem Eintritt in den Verdampfer sofort verdampfen und einen Druckanstieg pro- duzieren, sodass kein weiteres tiefkalt verflüssigtes Gas in den Verdampfer verbracht werden könnte.
In bevorzugter Weise ist die Vorrichtung derart weitergebildet, dass der Verdampfer und der Flüssigkeitsverteiler rohrförmig sind. Durch die rohrförmige Ausbildung ist einerseits gewährleistet, dass die Isolierung, insbesondere Vakuumisolierung, des Flüssigkeitsverteilers kostengünstig ist, andererseits können die hohen Drücke, die bei der Verdampfung entstehen, besser aufgenommen werden.
Für einen pumpenlosen Betrieb ist die erfindungsgemäße Vorrichtung bevorzugt derart weitergebildet, dass der Flüssigkeitsverteiler kopfseitig eine mit einem Ventil geschaltete Zweigleitung aufweist, welche wieder in den Dosierspeicher bzw. über eine Drossel in den Tank mündet. Durch diese Ausbildung kann der erhöhte Druck im Verdampfer dazu verwendet werden den Dosierspeicher auszupressen und es kann auf eine Pumpe verzichtet werden. Für einen kontinuierlichen Betrieb ist die erfindungsgemäße Vorrichtung bevorzugt derart weitergebildet, dass dem Dosierspeicher eine Mehrzahl an Verdampfern nachgeschaltet ist, wobei jedem Verdampfer ein Flüssigkeitsverteiler vorgeschaltet ist. Durch die richtige Schaltung der Ventile kann demnach ein höherer Druck in einem der Verdampfer dazu verwendet werden, den Dosierspeicher in einen auf einem niedrigeren Druck befindlichen Flüssigkeitsverteiler auszupressen. Eine derartige Vorrichtung kann demnach kontinuierlich und pumpenlos Verdampfer beladen. Da mindestens am Eintritt in die Verdampfer Temperaturen auftreten, die weit unter der Umgebungstemperatur sind und unter dem Gefrierpunkt des Wassers liegen, ist ein Zufrieren un- umgänglich. Die Vorrichtung ist demnach bevorzugt derart weitergebildet, dass der Verdampfer mit einer Nanobeschichtung versehen ist, um ein Ankleben von Eiskristallen hintanzuhalten.
Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispieles näher erläutert. In dieser zeigen Fig. 1 eine erste Ausbildung und Fig. 2 eine zweite Ausbildung der erfindungsgemäßen Vorrichtung.
In Fig. 1 ist mit 1 ein Dosierspeicher bezeichnet, der mit ei- ner Vakuum-Isolierschicht 2 umgeben ist. Der Dosierspeicher kann nach Druckausgleich von einem Tank 3 über eine Leitung 4 mit zwischengeschaltetem Ventil 5 mit tiefkalt verflüssigtem Gas mit dem hydrostarischen Druck befüllt werden. In weiterer Folge wird das tiefkalt verflüssigte Gas über eine isolierte Leitung 6 und das geöffnete Ventil 7 in den Flüssigkeitsverteiler 8 verbracht, welcher ebenfalls von einer Isolierschicht 2 umgeben ist. Wenn der Flüssigkeitsverteiler 8 unterhalb des Dosierbehälters 1 angeordnet ist, kann das Dosieren in den Flüssigkeitsverteiler 8 drucklos erfolgen. Der Flüssig- keitsverteiler 8 weist an seinem Kopfende eine Überlaufleitung 9 auf, welche durch die Isolierschicht 2 bricht und in weiterer Folge nicht mehr isoliert ist. Die Überlaufleitung 9 mündet in einen Verdampfer 10. An dem Austritt der Überlaufleitung 9 aus der Isolierschicht 2 sind Drucksensoren 11 angeordnet. Alterna- tiv oder zusätzlich können auch Flüssigkeitssensoren 12 am kopfseitigen Austritt der Überlaufleitung 9 aus dem Flüssigkeitsverteiler 8 angeordnet sein. Sobald die Sensoren entweder einen Druckanstieg oder Flüssigkeit detektieren, wird das Ventil 7 geschlossen und eine über das Volumen des Flüssiggases in dem Flüssigkeitsverteiler definierte Menge steht zur Verdampfung zur Verfügung. Zum Verdampfen wird in einfacher Weise das Ventil 13 am unteren Ende des Flüssigkeitsverteilers 8 geöffnet, welches eine Leitung 14, die ebenfalls in den Verdampfer 10 mündet, schaltet. Dadurch kann das tiefkalt verflüssigte Gas in den Verdampfer rinnen bzw. in diesem Verdampfen.
In Fig. 2 ist eine weitere Ausbildung gezeigt, bei der am Kopfende des Flüssigkeitsverteilers 8 auf gleicher Höhe der Überlaufleitung 9 eine weitere Leitung 17 aus dem Flüssigkeitsverteiler 8 austritt, welche über ein weiteres Ventil 16 geschalten werden kann. Diese weitere Leitung führt wieder in den Dosierspeicher 1. Der durch die Verdampfung erhöhte Druck kann nun dazu verwendet werden, den Inhalt des DosierSpeichers 1 in den Flüssigkeitsverteiler 8 zu pressen. Insgesamt kommt dieses System gänzlich ohne wartungsintensive Pumpen aus. Für einen kontinuierlichen Betrieb sind wenigsten zwei Verdampfer 10 mit jeweils einem vorgeschalteten Flüssigkeitsverteiler 8 vorgesehen, welche alternierend den Dosierspeicher 1 mit Druck beaufschlagen und den Dosierspeicher 1 in den jeweils anderen Flüssigkeitsverteiler 8 auspressen.
Eine weitere Möglichkeit der Beladung des Verdampfers mit Flüssigkeit besteht darin, den Flüssigkeitsverteiler unter Umgehung oder Weglassens des Dosierspeichers direkt aus dem Tank zu be- füllen. Dazu wird der Flüssigkeitsverteiler nicht nur unten mit einem Ventil vom Verdampfer getrennt, sondern in' gleicher Weise kopfseitig. Ist der Flüssigkeitsverteiler nach erfolgtem Druckausgleich mit dem Tank durch den hydrostatischen Druck mit Flüssigkeit gefüllt, werden beide Ventile geöffnet, mit dem nun anliegenden hydrostatischen Druck des Flüssigkeitsverteilers wird der Verdampfer gefüllt. Nach erfolgter Verdampfung wird durch Schließen der Ventile der Flüssigkeitsverteiler vom Verdampfer getrennt. Das zwischen dem Kopfende des Flüssigkeitsverteilers und dem Gasraum des Tanks liegende Ventil wird nun geöffnet und der anstehende Gasdruck über eine Drossel in des- sen Gasraum entspannt. Es wird Gasphase und Flüssigphase anfallen. Es stellt sich Druckausgleich ein, so dass eine erneute Befüllung des Flüssigkeitsverteilers möglich wird.

Claims

Ansprüche :
1. Verfahren zum Beladen von Verdampfern mit tiefkalt verflüssigten Gasen, dadurch gekennzeichnet, dass dem Verdampfer ein Tank, ein thermisch isolierter, mit einem Gasdruck beaufschlagbarer Dosierspeicher und ein thermisch isolierter Flüssigkeitsverteiler vorgeschaltet werden, deren Verbindungsleitungen durch jeweils ein Ventil absperrbar sind, wobei das tiefkalt verflüssigte Gas aus dem Tank in den Dosierspei- eher dosiert wird, worauf nach Öffnen des Ventils in der Verbindungsleitung das tiefkalt verflüssigte Gas vom Dosierspeicher in den Flüssigkeitsverteiler verbracht wird, worauf nach Einfüllen des tiefkalt verflüssigten Gases in den Flüssigkeitsverteiler und anschließendem Schließen des Ventils in der Verbindungsleitung der Transport des tiefkalt verflüssigten Gases in einen rohrförmigen Verdampfer unter dem hydrostatischen Druck der Flüssigkeit im Flüssigkeitsverteiler vorgenommen wird, wofür ein Ventil zwischen dem Flüssigkeitsverteiler und dem Verdampfer geöffnet wird.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass der den Druck im Dosierspeicher übersteigende Druck im Verdampfer zum Beaufschlagen des Dosierspeichers eingesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei Verwendung von vom tiefkalt verflüssigten Gas verschiedenen flüssigen Kühlmitteln das Kühlmittel so bemessen ist, dass die dem Kühlmittel eigene Wärmekapazität ein Erreichen des Erstarrungspunktes des tiefkalt verflüssigten Gases ausschließt.
4. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1, 2 oder 3 umfassend einen isolierten Tank (3) für tiefkalt verflüssigtes Gas, einen über eine Leitung (4) mit einem zwischengeschalteten Ventil (5) verbundenen isolierten Dosierspeicher (1) und wenigstens einen Verdampfer (10), dadurch gekennzeichnet, dass zwischen Verdampfer (10) und Do- sierspeicher (1) ein isolierter Flüssigkeitsverteiler (8) vorgesehen ist, der an seinem kopfseitigen Ende eine Überlauflei- tung (9) und an dem gegenüberliegenden Ende eine ein Ventil (13) aufweisende Zweigleitung (14) aufweist, welche beide in den Verdampfer (10) münden.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Verdampfer (10) und der Flüssigkeitsverteiler (8) rohrför- mig sind.
6. Vorrichtung nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der Flüssigkeitsverteiler (8) kopfseitig eine mit einem Ventil (16) geschaltete Zweigleitung (17) aufweist, welche wieder in den Dosierspeicher (1) bzw. über eine Drossel in den Tank (3) mündet.
7. Vorrichtung nach Anspruch 4 , 5 oder 6 , dadurch gekennzeichnet, dass dem Dosierspeicher (1) eine Mehrzahl an Verdampfern (10) nachgeschaltet ist, wobei jedem Verdampfer (10) ein Flüssigkeitsverteiler (8) vorgeschaltet ist.
8. Vorrichtung nach einem der Ansprüche 4 bis 7 , dadurch gekennzeichnet dass der Verdampfer (10) mit einer Nanobe- schichtung versehen ist.
PCT/AT2010/000267 2009-07-22 2010-07-22 Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens WO2011009149A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10740121.8A EP2457014B1 (de) 2009-07-22 2010-07-22 Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens
RU2012106249/06A RU2012106249A (ru) 2009-07-22 2010-07-22 Способ загрузки испарителей сжиженными при низкой температуре газами, а также устройство для осуществления этого способа
US13/386,490 US20120159969A1 (en) 2009-07-22 2010-07-22 Method for charging evaporators with cryogenically liquefied gases, and a device for carrying out said method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM458/2009 2009-07-22
AT4582009 2009-07-22

Publications (1)

Publication Number Publication Date
WO2011009149A1 true WO2011009149A1 (de) 2011-01-27

Family

ID=43498649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2010/000267 WO2011009149A1 (de) 2009-07-22 2010-07-22 Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens

Country Status (4)

Country Link
US (1) US20120159969A1 (de)
EP (1) EP2457014B1 (de)
RU (1) RU2012106249A (de)
WO (1) WO2011009149A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182907A2 (de) * 2012-06-05 2013-12-12 Werner Hermeling Verfahren und vorrichtung zum regasifizieren von tiefkalt verflüssigtem gas
ITRA20120014A1 (it) * 2012-08-09 2014-02-10 Ilaria Bernardini Perfezionamenti negli impianti di pompaggio in alta e bassa pressione di gas criogenici o liquefatti.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11118243B2 (en) * 2015-07-13 2021-09-14 Curtin University Measurement apparatus for measuring a volume of a desired solid component in a sample volume of a solid-liquid slurry

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2035396A (en) * 1935-03-01 1936-03-24 Linde Air Prod Co Method and apparatus for dispensing gas material
US2489514A (en) * 1946-02-11 1949-11-29 Phillips Petroleum Co Method of storing and vaporizing liquefied gases
GB847508A (en) * 1957-01-15 1960-09-07 Air Prod Inc Improvements in pumping and vaporizing liquefied gases
US5520000A (en) * 1995-03-30 1996-05-28 Praxair Technology, Inc. Cryogenic gas compression system
US5924291A (en) * 1997-10-20 1999-07-20 Mve, Inc. High pressure cryogenic fluid delivery system
WO2007128023A1 (de) * 2006-05-08 2007-11-15 Hermeling, Katharina Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2610471A (en) * 1947-08-28 1952-09-16 Union Carbide & Carbon Corp Process of and apparatus for metering a liquefied gas
US3045437A (en) * 1960-07-14 1962-07-24 Worthington Corp Vessel for subcooled liquid
US3972202A (en) * 1974-08-23 1976-08-03 Vacuum Barrier Corporation Closed loop cryogenic delivery
FR2302479A1 (fr) * 1975-02-25 1976-09-24 Air Liquide Dispositif pour la distribution controlee de fluide cryogenique
FR2379018A1 (fr) * 1976-12-23 1978-08-25 Air Liquide Procede et installation cryogeniques de distribution de gaz sous pression
US5272881A (en) * 1992-08-27 1993-12-28 The Boc Group, Inc. Liquid cryogen dispensing apparatus and method
US6631615B2 (en) * 2000-10-13 2003-10-14 Chart Inc. Storage pressure and heat management system for bulk transfers of cryogenic liquids
US20050126766A1 (en) * 2003-09-16 2005-06-16 Koila,Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer with improved contact

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2035396A (en) * 1935-03-01 1936-03-24 Linde Air Prod Co Method and apparatus for dispensing gas material
US2489514A (en) * 1946-02-11 1949-11-29 Phillips Petroleum Co Method of storing and vaporizing liquefied gases
GB847508A (en) * 1957-01-15 1960-09-07 Air Prod Inc Improvements in pumping and vaporizing liquefied gases
US5520000A (en) * 1995-03-30 1996-05-28 Praxair Technology, Inc. Cryogenic gas compression system
US5924291A (en) * 1997-10-20 1999-07-20 Mve, Inc. High pressure cryogenic fluid delivery system
WO2007128023A1 (de) * 2006-05-08 2007-11-15 Hermeling, Katharina Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013182907A2 (de) * 2012-06-05 2013-12-12 Werner Hermeling Verfahren und vorrichtung zum regasifizieren von tiefkalt verflüssigtem gas
WO2013182907A3 (de) * 2012-06-05 2014-12-11 Werner Hermeling Verfahren und vorrichtung zum regasifizieren von tiefkalt verflüssigtem gas
ITRA20120014A1 (it) * 2012-08-09 2014-02-10 Ilaria Bernardini Perfezionamenti negli impianti di pompaggio in alta e bassa pressione di gas criogenici o liquefatti.

Also Published As

Publication number Publication date
US20120159969A1 (en) 2012-06-28
RU2012106249A (ru) 2013-08-27
EP2457014B1 (de) 2013-07-24
EP2457014A1 (de) 2012-05-30

Similar Documents

Publication Publication Date Title
EP2217845B1 (de) Betriebsverfahren für einen kryodruck-tank
DE2748796C2 (de)
EP2831491B1 (de) Betriebsverfahren für einen kryo-drucktank
DE102004043488B4 (de) Verfahren und Vorrichtung zum Pumpen einer kryogenen Flüssigkeit aus einem Vorratsbehälter
DE2647597A1 (de) Verfahren und vorrichtung zum karbonisieren und kuehlen einer fluessigkeit in einem einzigen arbeitsgang
EP2457014B1 (de) Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens
DE102015003340B4 (de) Verfahren und Vorrichtung zum Befüllen eines mobilen Tanks mit flüssigem Kohlendioxid
DE60111962T2 (de) System und verfahren zum kühlen und zum verdichten von tieftemperaturflüssigkeiten
DE2754132C2 (de) Kühlvorrichtung
DE2900388A1 (de) Absorptionskaeltemaschine mit speichereinrichtung fuer den betrieb mit zeitlich unterschiedlichem anfall von heizenergie und kaeltebedarf
EP2057381B1 (de) Verfahren zur zyklischen kolbenlosen kompression des gasphase tiefkalt verflüssigter gase
AT508872B1 (de) Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens
DE102014000671B4 (de) Solaranlage und Verfahren zum Betreiben einer solchen
DE102019133184A1 (de) Anlage zum Pasteurisieren von in verschlossenen Behältnissen abgefüllten Lebensmitteln oder Getränken mit einer Prozessflüssigkeit
EP3450819B1 (de) Verfahren zum befüllen eines mobilen kältemitteltanks mit einem kryogenen kältemittel
EP2906350A2 (de) Verfahren und vorrichtung zum regasifizieren von tiefkalt verflüssigtem gas
EP2280904B1 (de) Vorrichtung zur entleerung eines mit fliessfähigen erdölprodukten gefüllten kesselwagens
DE19936523B4 (de) Kälteanlage
DE102018201494A1 (de) Prüfvorrichtung zur zyklischen Druckbelastung von mindestens einem Druckbehälter
DE2705894A1 (de) Kaeltespeicher
WO2006082122A1 (de) Verfahren und vorrichtung zum befüllen von druckbehältern mit nicht verflüssigten gasen oder gasgemischen
AT512979B1 (de) Verfahren und Vorrichtung zum Regasifizieren von tiefkalt verflüssigtem Gas
EP3018435B1 (de) Vorrichtung und verfahren zum warten einer klimaanlage
DE102017000060A1 (de) Kühl- und/oder Gefriergerät
WO2023025410A1 (de) Verfahren und fördervorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10740121

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010740121

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 243/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012106249

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13386490

Country of ref document: US