AT508872B1 - Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens - Google Patents

Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens Download PDF

Info

Publication number
AT508872B1
AT508872B1 AT80302010A AT80302010A AT508872B1 AT 508872 B1 AT508872 B1 AT 508872B1 AT 80302010 A AT80302010 A AT 80302010A AT 80302010 A AT80302010 A AT 80302010A AT 508872 B1 AT508872 B1 AT 508872B1
Authority
AT
Austria
Prior art keywords
liquid distributor
evaporator
valve
liquid
pressure
Prior art date
Application number
AT80302010A
Other languages
English (en)
Other versions
AT508872A1 (de
Original Assignee
Hermeling Werner Dipl Ing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hermeling Werner Dipl Ing filed Critical Hermeling Werner Dipl Ing
Priority to AT80302010A priority Critical patent/AT508872B1/de
Publication of AT508872A1 publication Critical patent/AT508872A1/de
Application granted granted Critical
Publication of AT508872B1 publication Critical patent/AT508872B1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0391Thermal insulations by vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/018Supporting feet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0121Propulsion of the fluid by gravity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/039Localisation of heat exchange separate on the pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Bei einem Verfahren und einer Vorrichtung zum Beladen von Verdampfern (10) mit tiefkalt verflüssigten Gasen werden dem Verdampfer (10) ein thermisch isolierten, mit einem Gasdruck beaufschlagbarer Dosierspeicher (1) und ein thermisch isolierter Flüssigkeitsverteiler (8) vorgeschaltet, deren Verbindungsleitungen durch jeweils ein Ventil absperrbar sind, wobei das tiefkalt verflüssigte Gas in den Dosierspeicher (1) dosiert wird. Nach Öffnen des Ventils in der Verbindungsleitung wird das tiefkalt verflüssigte Gas vom Dosierspeicher (1) in den Flüssigkeitsverteiler (8) verbracht, worauf nach Einfüllen des tiefkalt verflüssigten Gases in den Flüssigkeitsverteiler (8) und anschließendem Schließen des Ventils in der Verbindungsleitung der Transport des tiefkalt verflüssigten Gases in einen rohrförmigen Verdampfer (10) unter dem hydrostatischen Druck der Flüssigkeit im Flüssigkeitsverteiler (8) vorgenommen wird, wofür ein Ventil zwischen dem Flüssigkeitsverteiler und dem Verdampfer (10) geöffnet wird.

Description

österreichisches Patentamt AT508 872B1 2011-06-15
Beschreibung [0001] Die Erfindung betrifft ein Verfahren zum Beladen von Verdampfern mit tiefkalt verflüssigten Gasen sowie eine Vorrichtung zur Durchführung dieses Verfahrens.
[0002] Tiefkalt verflüssigte Gase werden in aller Regel vor ihrem Einsatz verdampft. Zu diesem Zwecke werden Verdampfer eingesetzt, wobei das Verdampfen unter Einsatz verschiedener Wärmeträger erfolgt. In der Regel setzt die Verdampfung spontan und unkontrolliert ein. Das Einbringen von Flüssigkeit in einen Verdampfer erfolgt über den Druckunterschied zwischen dem Verdampfer und einer Druckerhöhungsanlage, welche üblicherweise als Pumpe ausgebildet ist. Die Flüssigkeit wird somit mit der Pumpenergie in den Verdampfer gedrückt und durch Schließen des Auslassventils vom Verdampfer getrennt. Im Verdampfer erfolgt in Abhängigkeit von der zugeführten Wärme der Übergang von der Flüssigphase in die Gasphase bzw. in den überkritischen Zustand. Die Pumpe muss entsprechenden Druck aufbringen, um die entsprechende Druckdifferenz zu erzeugen, die ein Einströmen der Flüssigkeit in den Verdampfer erst ermöglicht. Für eine derartige Pumpe ist daher in aller Regel Energie erforderlich, die zumeist in Form von elektrischer Energie bereitgestellt wird. Die Erfindung zielt darauf ab, einen Verdampfer mit tiefkalt verflüssigten Gasen zu beladen, ohne dass dafür eine gesonderte Pumpe erforderlich wäre.
[0003] Zur Lösung dieser Aufgabe wird das Verfahren zum Beladen von Verdampfern mit tiefkalt verflüssigten Gasen erfindungsgemäß derart durchgeführt, dass dem Verdampfer ein Tank, ein thermisch isolierter, mit einem Gasdruck beaufschlagbarer Dosierspeicher und ein thermisch isolierter Flüssigkeitsverteiler vorgeschaltet werden, deren Verbindungsleitungen durch jeweils ein Ventil absperrbar sind, wobei das tiefkalt verflüssigte Gas aus dem Tank in den Dosierspeicher dosiert wird, worauf nach Öffnen des Ventils in der Verbindungsleitung das tiefkalt verflüssigte Gas vom Dosierspeicher in den Flüssigkeitsverteiler verbracht wird, worauf nach Einfüllen des tief-kalt verflüssigten Gases in den Flüssigkeitsverteiler und anschließendem Schließen des Ventils in der Verbindungsleitung der Transport des tiefkalt verflüssigten Gases in einen rohrförmigen Verdampfer unter dem hydrostatischen Druck der Flüssigkeit aus dem Flüssigkeitsverteiler vorgenommen wird, wofür ein Ventil zwischen dem Flüssigkeitsverteiler und dem Verdampfer geöffnet wird. Bei einem ersten Befüllen des Flüssigkeitsverteilers kann dieser in einfacher Weise durch den hydrostatischen Druck des tiefkalt verflüssigten Gases befüllt werden. Dadurch, dass der Flüssigkeitsverteiler selbst thermisch isoliert ist, tritt in diesem keine Verdampfung ein. Wird im Anschluss das Ventil zwischen Flüssigkeitsverteiler und Verdampfer geöffnet, tritt das tiefkalt verflüssigte Gas in einen nicht thermisch isolierten Behälter und verdampft dort unter gleichzeitiger Erhöhung des Druckes.
[0004] In bevorzugter Weise wird das Verfahren derart durchgeführt, dass der den Druck im Dosierspeicher übersteigende Druck im Verdampfer zum Beaufschlagen des Dosierspeichers eingesetzt wird. Dadurch wird der Druck zum Auspressen des Dosierspeichers nicht durch Pumpen aufgebracht, sondern es kann der Druck, welcher beim Verdampfen entsteht, direkt verwendet werden. Der Dosierspeicher kann hierbei in einen weiteren Behälter ausgepresst werden, dessen Druck niedriger ist als der Druck im Verdampfer. Bei einer Rückführung von Gas in den Tank kann dies über eine Drossel erfolgen, so dass sowohl flüssige Phase als auch Gasphase in den Tank gelangt.
[0005] In einfacher Weise ist der Tank, der Dosierspeicher und der bzw. die Flüssigkeitsverteiler vakuumisoliert, wodurch der Wärmeeintrag reduziert wird. Diese Behälter können aber auch gekühlt sein, um sicherzustellen, dass das tiefkalt verflüssigte Gas nicht schon vor dem Verdampfer verdampft und damit den Druck des Systems in unerwünschter Weise erhöht. In bevorzugter Weise wird hierbei so vorgegangen, dass bei Verwendung von vom tiefkalt verflüssigten Gas verschiedenen flüssigen Kühlmitteln das Kühlmittel so bemessen ist, dass die dem Kühlmittel eigene Wärmekapazität ein Erreichen des Erstarrungspunktes des tiefkalt verflüssigten Gases ausschließt. Dadurch wird verhindert, dass das tiefkalt verflüssigte Gas erstarrt und das Leitungssystem durch die gebildeten Klumpen verstopft wird. 1/5 österreichisches Patentamt AT508 872B1 2011-06-15 [0006] Die Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens umfassend einen isolierten Tank für tiefkalt verflüssigtes Gas, wenigstens einen über eine Leitung mit einem zwischengeschalteten Ventil verbundenen isolierten Dosierspeicher und wenigstens einen Verdampfer ist derartig ausgebildet, dass zwischen Verdampfer und Tank ein isolierter Flüssigkeitsverteiler vorgesehen ist, der an seinem kopfseitigen Ende eine Überlaufleitung und an dem gegenüberliegenden Ende eine ein Ventil aufweisende Zweigleitung aufweist, welche beide in den Verdampfer münden. Durch die Zwischenschaltung eines isolierten Flüssigkeitsverteilers kann dieser befüllt werden, ohne dass das tiefkalt verflüssigte Gas verdampft und dementsprechend ohne Druckerhöhung. Ist der Flüssigkeitsverteiler bis zum kopfseitigen Ende gefüllt, läuft das tiefkalt verflüssigte Gas über die Überlaufleitung in den Verdampfer und der Druck steigt schlagartig an. Wenn der Druckanstieg detektiert wird, wird das Ventil zwischen Dosierspeicher und Flüssigkeitsverteiler geschlossen und das Ventil in der Zweigleitung geöffnet, sodass das tiefkalt verflüssigte Gas in den Verdampfer eintritt und dort verdampft. Der Flüssigkeitsverteiler hat also die Funktion ein vorbestimmtes Maß an tiefkalt verflüssigtem Gas zum Verdampfer zu bringen. Ohne zwischengeschalteten Flüssigkeitsverteiler würde das tiefkalt verflüssigte Gas bei einem Eintritt in den Verdampfer sofort verdampfen und einen Druckanstieg produzieren, sodass kein weiteres tiefkalt verflüssigtes Gas in den Verdampfer verbracht werden könnte.
[0007] In bevorzugter Weise ist die Vorrichtung derart weitergebildet, dass der Verdampfer und der Flüssigkeitsverteiler rohrförmig sind. Durch die rohrförmige Ausbildung ist einerseits gewährleistet, dass die Isolierung, insbesondere Vakuumisolierung, des Flüssigkeitsverteilers kostengünstig ist, andererseits können die hohen Drücke, die bei der Verdampfung entstehen, besser aufgenommen werden.
[0008] Für einen pumpenlosen Betrieb ist die erfindungsgemäße Vorrichtung bevorzugt derart weitergebildet, dass der Flüssigkeitsverteiler kopfseitig eine mit einem Ventil geschaltete Zweigleitung aufweist, welche wieder in den Dosierspeicher bzw. über eine Drossel in den Tank mündet. Durch diese Ausbildung kann der erhöhte Druck im Verdampfer dazu verwendet werden den Dosierspeicher auszupressen und es kann auf eine Pumpe verzichtet werden.
[0009] Für einen kontinuierlichen Betrieb ist die erfindungsgemäße Vorrichtung bevorzugt derart weitergebildet, dass dem Dosierspeicher eine Mehrzahl an Verdampfern nachgeschaltet ist, wobei jedem Verdampfer ein Flüssigkeitsverteiler vorgeschaltet ist. Durch die richtige Schaltung der Ventile kann demnach ein höherer Druck in einem der Verdampfer dazu verwendet werden, den Dosierspeicher in einen auf einem niedrigeren Druck befindlichen Flüssigkeitsverteiler auszupressen. Eine derartige Vorrichtung kann demnach kontinuierlich und pumpenlos Verdampfer beladen.
[0010] Da mindestens am Eintritt in die Verdampfer Temperaturen auftreten, die weit unter der Umgebungstemperatur sind und unter dem Gefrierpunkt des Wassers liegen, ist ein Zufrieren unumgänglich. Die Vorrichtung ist demnach bevorzugt derart weitergebildet, dass der Verdampfer mit einer Nanobeschichtung versehen ist, um ein Ankleben von Eiskristallen hintanzuhalten.
[0011] Die Erfindung wird nachfolgend anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispieles näher erläutert. In dieser zeigen Fig. 1 eine erste Ausbildung und Fig. 2 eine zweite Ausbildung der erfindungsgemäßen Vorrichtung.
[0012] In Fig. 1 ist mit 1 ein Dosierspeicher bezeichnet, der mit einer Vakuum-Isolierschicht 2 umgeben ist. Der Dosierspeicher kann nach Druckausgleich von einem Tank 3 über eine Leitung 4 mit zwischengeschaltetem Ventil 5 mit tiefkalt verflüssigtem Gas mit dem hydrostari-schen Druck befüllt werden. In weiterer Folge wird das tiefkalt verflüssigte Gas über eine isolierte Leitung 6 und das geöffnete Ventil 7 in den Flüssigkeitsverteiler 8 verbracht, welcher ebenfalls von einer Isolierschicht 2 umgeben ist. Wenn der Flüssigkeitsverteiler 8 unterhalb des Dosierbehälters 1 angeordnet ist, kann das Dosieren in den Flüssigkeitsverteiler 8 drucklos erfolgen. Der Flüssigkeitsverteiler 8 weist an seinem Kopfende eine Überlaufleitung 9 auf, welche durch die Isolierschicht 2 bricht und in weiterer Folge nicht mehr isoliert ist. Die Überlaufleitung 9 mündet in einen Verdampfer 10. An dem Austritt der Überlaufleitung 9 aus der Isolierschicht 2 sind Drucksensoren 11 angeordnet. Alternativ oder zusätzlich können auch Flüssig- 2/5

Claims (8)

  1. österreichisches Patentamt AT508 872 B1 2011-06-15 keitssensoren 12 am kopfseitigen Austritt der Überlaufleitung 9 aus dem Flüssigkeitsverteiler 8 angeordnet sein. Sobald die Sensoren entweder einen Druckanstieg oder Flüssigkeit detektie-ren, wird das Ventil 7 geschlossen und eine über das Volumen des Flüssiggases in dem Flüssigkeitsverteiler definierte Menge steht zur Verdampfung zur Verfügung. Zum Verdampfen wird in einfacher Weise das Ventil 13 am unteren Ende des Flüssigkeitsverteilers 8 geöffnet, welches eine Leitung 14, die ebenfalls in den Verdampfer 10 mündet, schaltet. Dadurch kann das tiefkalt verflüssigte Gas in den Verdampfer rinnen bzw. in diesem Verdampfen. [0013] In Fig. 2 ist eine weitere Ausbildung gezeigt, bei der am Kopfende des Flüssigkeitsverteilers 8 auf gleicher Höhe der Überlaufleitung 9 eine weitere Leitung 17 aus dem Flüssigkeitsverteiler 8 austritt, welche über ein weiteres Ventil 16 geschalten werden kann. Diese weitere Leitung führt wieder in den Dosierspeicher 1. Der durch die Verdampfung erhöhte Druck kann nun dazu verwendet werden, den Inhalt des Dosierspeichers 1 in den Flüssigkeitsverteiler 8 zu pressen. Insgesamt kommt dieses System gänzlich ohne wartungsintensive Pumpen aus. Für einen kontinuierlichen Betrieb sind wenigsten zwei Verdampfer 10 mit jeweils einem vorgeschalteten Flüssigkeitsverteiler 8 vorgesehen, welche alternierend den Dosierspeicher 1 mit Druck beaufschlagen und den Dosierspeicher 1 in den jeweils anderen Flüssigkeitsverteiler 8 auspressen. [0014] Eine weitere Möglichkeit der Beladung des Verdampfers mit Flüssigkeit besteht darin, den Flüssigkeitsverteiler unter Umgehung oder Weglassens des Dosierspeichers direkt aus dem Tank zu befüllen. Dazu wird der Flüssigkeitsverteiler nicht nur unten mit einem Ventil vom Verdampfer getrennt, sondern in gleicher Weise kopfseitig. Ist der Flüssigkeitsverteiler nach erfolgtem Druckausgleich mit dem Tank durch den hydrostatischen Druck mit Flüssigkeit gefüllt, werden beide Ventile geöffnet, mit dem nun anliegenden hydrostatischen Druck des Flüssigkeitsverteilers wird der Verdampfer gefüllt. Nach erfolgter Verdampfung wird durch Schließen der Ventile der Flüssigkeitsverteiler vom Verdampfer getrennt. Das zwischen dem Kopfende des Flüssigkeitsverteilers und dem Gasraum des Tanks liegende Ventil wird nun geöffnet und der anstehende Gasdruck über eine Drossel in dessen Gasraum entspannt. Es wird Gasphase und Flüssigphase anfallen. Es stellt sich Druckausgleich ein, so dass eine erneute Befüllung des Flüssigkeitsverteilers möglich wird. Patentansprüche 1. Verfahren zum Beladen von Verdampfern mit tiefkalt verflüssigten Gasen dadurch gekennzeichnet, dass dem Verdampfer ein Tank, ein thermisch isolierter, mit einem Gasdruck beaufschlagbarer Dosierspeicher und ein thermisch isolierter Flüssigkeitsverteiler vorgeschaltet werden, deren Verbindungsleitungen durch jeweils ein Ventil absperrbar sind, wobei das tiefkalt verflüssigte Gas aus dem Tank in den Dosierspeicher dosiert wird, worauf nach Öffnen des Ventils in der Verbindungsleitung das tiefkalt verflüssigte Gas vom Dosierspeicher in den Flüssigkeitsverteiler verbracht wird, worauf nach Einfüllen des tiefkalt verflüssigten Gases in den Flüssigkeitsverteiler und anschließendem Schließen des Ventils in der Verbindungsleitung der Transport des tiefkalt verflüssigten Gases in einen rohrförmigen Verdampfer unter dem hydrostatischen Druck der Flüssigkeit im Flüssigkeitsverteiler vorgenommen wird, wofür ein Ventil zwischen dem Flüssigkeitsverteiler und dem Verdampfer geöffnet wird.
  2. 2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass der den Druck im Dosierspeicher übersteigende Druck im Verdampfer zum Beaufschlagen des Dosierspeichers eingesetzt wird.
  3. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass bei Verwendung von vom tiefkalt verflüssigten Gas verschiedenen flüssigen Kühlmitteln das Kühlmittel so bemessen ist, dass die dem Kühlmittel eigene Wärmekapazität ein Erreichen des Erstarrungspunktes des tiefkalt verflüssigten Gases ausschließt. 3/5 österreichisches Patentamt AT508 872 B1 2011-06-15
  4. 4. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1, 2 oder 3 umfassend einen isolierten Tank (3) für tiefkalt verflüssigtes Gas, einen über eine Leitung (4) mit einem zwischengeschalteten Ventil (5) verbundenen isolierten Dosierspeicher (1) und wenigstens einen Verdampfer (10), dadurch gekennzeichnet, dass zwischen Verdampfer (10) und Dosierspeicher (1) ein isolierter Flüssigkeitsverteiler (8) vorgesehen ist, der an seinem kopfseitigen Ende eine Überlaufleitung (9) und an dem gegenüberliegenden Ende eine ein Ventil (13) aufweisende Zweigleitung (14) aufweist, welche beide in den Verdampfer (10) münden.
  5. 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass der Verdampfer (10) und der Flüssigkeitsverteiler (8) rohrförmig sind.
  6. 6. Vorrichtung nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der Flüssigkeitsverteiler (8) kopfseitig eine mit einem Ventil (16) geschaltete Zweigleitung (17) aufweist, welche wieder in den Dosierspeicher (1) bzw. über eine Drossel in den Tank (3) mündet.
  7. 7. Vorrichtung nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, dass dem Dosierspeicher (1) eine Mehrzahl an Verdampfern (10) nachgeschaltet ist, wobei jedem Verdampfer (10) ein Flüssigkeitsverteiler (8) vorgeschaltet ist.
  8. 8. Vorrichtung nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet dass der Verdampfer (10) mit einer Nanobeschichtung versehen ist. Hierzu 1 Blatt Zeichnungen 4/5
AT80302010A 2009-07-22 2009-07-22 Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens AT508872B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80302010A AT508872B1 (de) 2009-07-22 2009-07-22 Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT80302010A AT508872B1 (de) 2009-07-22 2009-07-22 Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens

Publications (2)

Publication Number Publication Date
AT508872A1 AT508872A1 (de) 2011-04-15
AT508872B1 true AT508872B1 (de) 2011-06-15

Family

ID=43825050

Family Applications (1)

Application Number Title Priority Date Filing Date
AT80302010A AT508872B1 (de) 2009-07-22 2009-07-22 Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens

Country Status (1)

Country Link
AT (1) AT508872B1 (de)

Also Published As

Publication number Publication date
AT508872A1 (de) 2011-04-15

Similar Documents

Publication Publication Date Title
EP2217845A1 (de) Betriebsverfahren für einen kryodruck-tank
DE102005007551B4 (de) Verfahren zum Betreiben eines Tieftemperatur-Flüssiggasspeichertanks
DE2647597A1 (de) Verfahren und vorrichtung zum karbonisieren und kuehlen einer fluessigkeit in einem einzigen arbeitsgang
EP2457014B1 (de) Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens
EP3081842A1 (de) Verfahren und vorrichtung zum befüllen eines mobilen tanks mit flüssigem kohlendioxid
DE2550117A1 (de) Verfahren zur umformung einer masse eines nicht gasfoermigen fluidproduktes in kuegelchen geringer abmessungen und vorrichtung zur durchfuehrung dieses verfahrens
AT508872B1 (de) Verfahren zum beladen von verdampfern mit tiefkalt verflüssigten gasen sowie eine vorrichtung zur durchführung dieses verfahrens
EP3594554A1 (de) Vorrichtung zum unterkühlen von verflüssigten gasen
WO2017148604A1 (de) Verfahren zum abkühlen eines ersten kryogenen druckbehälters
DE1299393B (de) Warmwassererzeuger, insbesondere Heizwassererzeuger
DE102019133184A1 (de) Anlage zum Pasteurisieren von in verschlossenen Behältnissen abgefüllten Lebensmitteln oder Getränken mit einer Prozessflüssigkeit
DE102007003827A1 (de) Flüssigwasserstoff-Speichertank mit reduzierten Tank-Verlusten
WO2019149567A1 (de) Vorrichtung und verfahren zur zuführung von wasser in eine kraftstoffhochdruckpumpe einer in einem kraftfahrzeug vorgesehenen brennkraftmaschine
DE19720170C2 (de) Verfahren und Vorrichtung zum Füllen von Gebinden
EP3450819B1 (de) Verfahren zum befüllen eines mobilen kältemitteltanks mit einem kryogenen kältemittel
DE102014000671A1 (de) Solaranlage und Verfahren zum Betreiben einer solchen
DE102005031682A1 (de) Verfahren und Vorrichtung zum Befüllen eines Behälters
EP2280904B1 (de) Vorrichtung zur entleerung eines mit fliessfähigen erdölprodukten gefüllten kesselwagens
DE102018201494A1 (de) Prüfvorrichtung zur zyklischen Druckbelastung von mindestens einem Druckbehälter
DE1419621C3 (de) Vorrichtung zum kontinuierlichen Erhitzen eines fließfähigen Materials
DE19936523B4 (de) Kälteanlage
DE2705894A1 (de) Kaeltespeicher
DE1923320A1 (de) Verdampfungskuehler
EP2906350A2 (de) Verfahren und vorrichtung zum regasifizieren von tiefkalt verflüssigtem gas
DE3136479A1 (de) "leitungssystem"

Legal Events

Date Code Title Description
EIH Change in the person of patent owner
MM01 Lapse because of not paying annual fees

Effective date: 20140722