WO2011007826A1 - Dme fuel supply system and method for cooling dme fuel - Google Patents

Dme fuel supply system and method for cooling dme fuel Download PDF

Info

Publication number
WO2011007826A1
WO2011007826A1 PCT/JP2010/061964 JP2010061964W WO2011007826A1 WO 2011007826 A1 WO2011007826 A1 WO 2011007826A1 JP 2010061964 W JP2010061964 W JP 2010061964W WO 2011007826 A1 WO2011007826 A1 WO 2011007826A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
dme
line
cooling
engine
Prior art date
Application number
PCT/JP2010/061964
Other languages
French (fr)
Japanese (ja)
Inventor
カンドカー・アブ ライハン
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020117030968A priority Critical patent/KR101273675B1/en
Priority to CN201080032191.XA priority patent/CN102472202B/en
Publication of WO2011007826A1 publication Critical patent/WO2011007826A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/08Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for non-gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0209Hydrocarbon fuels, e.g. methane or acetylene
    • F02M21/0212Hydrocarbon fuels, e.g. methane or acetylene comprising at least 3 C-Atoms, e.g. liquefied petroleum gas [LPG], propane or butane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M31/00Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
    • F02M31/20Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0052Details on the fuel return circuit; Arrangement of pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a technique for cooling DME fuel flowing in a fuel circuit for supplying DME fuel from a fuel tank to a DME engine.
  • a fuel circuit for supplying DME (dimethyl ether) fuel to a DME engine is known.
  • the fuel circuit includes, for example, a supply line that supplies fuel from the fuel tank to the DME engine, and a return line that returns fuel from the DME engine to the fuel tank.
  • the fuel that passes through the return line is heated by the engine. For this reason, the temperature of the fuel in the fuel circuit tends to increase.
  • Patent Document 1 also discloses a technique for cooling the DME fuel in the fuel circuit.
  • DME has a low boiling point and easily evaporates. For this reason, when the temperature of the fuel increases, the fuel evaporates in the fuel circuit. When gas is mixed with liquid fuel, the pressure of the fuel supplied to the engine becomes unstable. Further, when cavitation occurs due to the evaporation of fuel, the rotation speed of the feed pump decreases. As a result, the fuel cannot be properly supplied to the engine.
  • the present invention provides a DME fuel supply system and a DME fuel cooling method capable of efficiently cooling the fuel in the fuel circuit without increasing the output of the chiller.
  • a first aspect of the present invention includes a supply line for supplying DME fuel from a fuel tank to a DME engine, a feed pump for sending the DME fuel along the supply line, and the DME fuel from the DME engine to the fuel tank.
  • a DME fuel supply system comprising: a bypass line that communicates a downstream side of the first heat exchanger and an upstream side of the second heat exchanger of the return line.
  • the DME fuel supply system according to the first aspect of the present invention adopts the configurations (a) and (b).
  • the first chiller and the second chiller are the same chiller, and the same chiller supplies a cooling refrigerant to both the first heat exchanger and the second heat exchanger.
  • a second aspect of the present invention is a DME fuel cooling method for circulating between a fuel tank and a DME engine through a fuel circuit, the first cooling step cooling the DME fuel delivered from the fuel tank, After the first cooling step, the DME fuel is distributed to a first fuel that passes through the DME engine and a second fuel that does not pass through the DME engine;
  • a DME fuel cooling method comprising: a merging step for merging one fuel and the second fuel; and a second cooling step for cooling the DME fuel merged in the merging step.
  • the DME fuel cooling method according to the second aspect of the present invention adopts the configuration (c).
  • the distribution step maintains or changes a ratio of the flow rate of the second fuel to the flow rate of the first fuel.
  • the present invention can efficiently cool the fuel in the fuel circuit without increasing the output of the chiller.
  • FIG. 1 is a schematic diagram showing a fuel supply system and a DME supply source 100.
  • the fuel supply system is a system that supplies DME fuel to the engine 2.
  • the DME supply source 100 supplies DME fuel to the fuel tank 3 of the fuel supply system.
  • the fuel supply system includes a fuel circuit 1 for supplying fuel.
  • the fuel circuit 1 includes an engine 2, a fuel tank 3, and a high pressure pump 4.
  • the fuel circuit 1 includes a supply line 10 that supplies fuel from the fuel tank 3 to the engine 2, a return line 20 that returns fuel from the engine 2 to the fuel tank 3, and a bypass line that connects the supply line 10 and the return line 20 to each other.
  • the supply line 10 includes a first sub supply line 11, a second sub supply line 12, a third sub supply line 13, and a fourth sub supply line 14.
  • the return line 20 includes a first sub return line 21, a second sub return line 22, a third sub return line 23, and a fourth sub return line 24.
  • the bypass line 30 includes a first sub bypass line 31 and a second sub bypass line 32.
  • the high-pressure pump (feed pump) 4 is disposed between the first sub supply line 11 and the second sub supply line 12.
  • the engine 2 is disposed between the fourth sub supply line 14 and the first sub return line 21.
  • the fuel tank 3 is disposed between the fourth sub return line 24 and the first sub supply line 11.
  • the branch part 1 a is a connection part between the supply line 10 and the bypass line 30.
  • the second sub supply line 12 branches into a third sub supply line 13 and a first sub bypass line 31 in the branching section 1a.
  • the junction 1 b is a connection between the return line 20 and the bypass line 30.
  • the second sub bypass line 32 and the third sub return line 23 merge with the fourth sub return line 24 at the junction 1b.
  • the fuel circuit 1 includes two solenoid valves CV-1 and CV-2.
  • the first electromagnetic valve CV-1 is disposed between the third sub supply line 13 and the fourth sub supply line 14.
  • the second electromagnetic valve CV-2 is disposed between the first sub return line 21 and the second sub return line 22.
  • the fuel circuit 1 includes two pressure regulating valves 41 and 42.
  • the first pressure regulating valve 41 is disposed between the first sub bypass line 31 and the second sub bypass line 32.
  • the second pressure regulating valve 42 is disposed between the second sub return line 22 and the third sub return line 23.
  • the two pressure regulating valves 41 and 42 are provided to keep the pressure of the fuel supplied to the engine 2 constant.
  • the pressure from the high pressure pump 4 to the upstream side of the two pressure regulating valves 41 and 42 is kept high.
  • the pressure from the downstream side of the two pressure regulating valves 41 and 42 to the high pressure pump 4 is low.
  • the high pressure is 1.6 MPa and the low pressure is 0.6 MPa.
  • the fuel circuit 1 includes a check valve 43 between the fuel tank 3 and the fourth sub return line 24.
  • the check valve 43 prevents fuel from flowing from the fuel tank 3 to the fourth sub return line 24.
  • the fuel supply system includes five pressure sensors PS-2, PS-3, PS-4, PS-5, and PS-6 for detecting the pressure of the fuel in each part of the fuel circuit 1.
  • the second pressure sensor PS-2 detects the pressure of the fuel in the first sub supply line 11.
  • the pressure of the fuel in the first sub supply line 11 is equal to the pressure of the fuel in the fuel tank 3.
  • the third pressure sensor PS-3 detects the pressure of the fuel in the second upstream supply line 12.
  • the fourth pressure sensor PS-4 detects the pressure of the fuel in the fourth sub supply line 14.
  • the fifth pressure sensor PS-5 detects the fuel pressure in the second sub-return line 22.
  • the sixth pressure sensor PS-6 detects the pressure of the fuel in the fourth sub return line 24.
  • the fuel supply system includes a cooling means for cooling the fuel in the fuel circuit 1.
  • the cooling means is a chiller 5 (an apparatus for circulating a low-temperature refrigerant).
  • the chiller 5 includes heat exchangers 51 and 52 in the supply line 10 and the return line 20.
  • the first heat exchanger 51 is disposed in the second sub supply line 12.
  • the second heat exchanger 52 is disposed in the fourth sub return line 24.
  • the chiller 5 cools the fuel in the supply line 10 and the return line 20 via the two heat exchangers 51 and 52.
  • the fuel supply system includes seven temperature sensors 61 to 67 for detecting the temperature of the fuel in each part of the fuel circuit 1.
  • the first temperature sensor 61 detects the temperature of the fuel in the first sub supply line 11.
  • the second temperature sensor 62 and the third temperature sensor 63 detect the temperature of the fuel on the upstream side and the downstream side of the first heat exchanger 51 in the second sub supply line 12.
  • the fourth temperature sensor 64 detects the temperature of the fuel at the end of the supply line 10, that is, at the inlet of the engine 2.
  • the fifth temperature sensor 65 detects the temperature of the fuel at the start end of the return line 20, that is, at the outlet of the engine 2.
  • the sixth temperature sensor 66 and the seventh temperature sensor 67 detect the temperature of the fuel on the upstream side and the downstream side of the second heat exchanger 52 in the fourth sub return line 24.
  • the fuel supply system includes a control device 6.
  • the control device 6 can control driving of the engine 2, the high-pressure pump 4, and the chiller 5.
  • the control device 6 can maintain or change the opening degree of the two electromagnetic valves CV-1 and CV-2.
  • the control device 6 can confirm detection information from the five pressure sensors PS-2 to PS-6 and the seven temperature sensors 61 to 67.
  • the fuel in the fuel circuit 1 circulates through the fuel tank 3 and the engine 2 through four steps.
  • the four steps are a first cooling step, a distribution step, a merging step, and a second cooling step.
  • the control device 6 starts driving the high-pressure pump 4 and the chiller 5 before starting the engine 2.
  • the fuel in the fuel tank 3 flows along the supply line 10.
  • the fuel is cooled by the first heat exchanger 51 when passing through the second sub supply line 12. This is the first cooling step.
  • the fuel that has passed through the second sub supply line 12 is distributed to the first fuel supplied to the third sub supply line 13 and the second fuel supplied to the first sub bypass line 31 in the branch portion 1a.
  • the ratio of the flow rates of the fuel before branching, the first fuel, and the second fuel is, for example, 20:10:10.
  • the first fuel is supplied to the engine 2 via the third sub supply line 13 and the fourth sub supply line 14.
  • the first fuel is heated by the heat of the engine 2 in the engine 2. For this reason, the temperature of the first fuel rises.
  • the first fuel passes through the engine 2, it reaches the junction 1 b via the first sub return line 21 and the second sub return line 22. Part of the first fuel is consumed in the engine 2. For this reason, the ratio of the flow rate before and after passage of the engine 2 is, for example, 10: 9.
  • the second fuel reaches the junction 1b via the first sub-bypass line 31 and the second sub-bypass line 32.
  • the first fuel and the second fuel merge at the junction 1b. This is the merging process.
  • the ratio of the flow rates of the first fuel after passing through the engine 2, the second fuel, and the joined fuel is, for example, 9:10:19.
  • the joined fuel is cooled by the second heat exchanger 52 when passing through the fourth sub return line 24. This is the second cooling step.
  • the fuel is cooled in the supply line 10 and the return line 20.
  • the fuel circuit 1 is provided with a bypass line 30. For this reason, not only the first fuel that passes through the engine 2 but also the second fuel that does not pass through the engine 2 is cooled by the chiller 5.
  • the cooling efficiency of the fuel can be increased by making the flow rate of the second fuel larger than the flow rate of the first fuel.
  • the flow rate of the first fuel and the flow rate of the second fuel can be changed by changing the opening degree of the first electromagnetic valve CV-1 and the second electromagnetic valve CV-2.
  • the first electromagnetic valve CV-1 and the second electromagnetic valve CV-2 are disposed on the inlet side and the outlet side of the engine 2. For this reason, as the opening degree of the first solenoid valve CV-1 and the second solenoid valve CV-2 decreases, the ratio of the flow rate of the second fuel to the flow rate of the first fuel increases.
  • the control device 6 can maintain or change the ratio R21 of the flow rate of the second fuel to the flow rate of the first fuel by controlling the first solenoid valve CV-1 and the second solenoid valve CV-2.
  • V1 Flow rate of the first fuel
  • V2 Flow rate of the second fuel.
  • the proportion of the second fuel that receives only cooling increases. That is, the flow rate of the fuel (first fuel + second fuel) passing through the heat exchangers 51 and 52 is increased without increasing the flow rate of the fuel (first fuel) heated by the engine 2. For this reason, it is not necessary to excessively reduce the temperature of the refrigerant for cooling the fuel, and the fuel supply system according to the present embodiment can efficiently utilize the output of the chiller 5 to the maximum extent.
  • the fuel supply system according to the present embodiment can efficiently reduce the temperature of the fuel, and thus can prevent cavitation.
  • the fuel supply system according to the present embodiment cools the two heat exchangers 51 and 52 by the same chiller 5.
  • a chiller may be provided for each heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

A DME fuel supply system is provided with: a supply line (10) for supplying a DME fuel from a fuel tank (3) to a DME engine (2); a high-pressure pump (4) for forcing the DME fuel along the supply line (10); a return line (20) for returning the DME fuel from the DME engine (2) to the fuel tank (3); a first heat exchanger (51) for a chiller (5), disposed in the supply line (10) (second secondary supply line (12)); a second heat exchanger (52) for the chiller (5), disposed in the return line (20) (fourth secondary return line (24)); and a bypass line (30) for connecting the downstream side of the first heat exchanger (51) in the supply line (10) and the upstream side of the second heat exchanger (52) in the return line (20).

Description

DME燃料供給システム及びDME燃料の冷却方法DME fuel supply system and DME fuel cooling method
 燃料タンクからDMEエンジンにDME燃料を供給するための燃料回路内を流れるDME燃料を冷却するための技術に関する。 The present invention relates to a technique for cooling DME fuel flowing in a fuel circuit for supplying DME fuel from a fuel tank to a DME engine.
 DMEエンジンにDME(ジメチルエーテル)燃料を供給する燃料回路が知られている。この燃料回路は、例えば、燃料タンクからDMEエンジンに燃料を供給する供給ラインと、DMEエンジンから燃料タンクに燃料を戻すリターンラインと、を備えている。リターンラインを通過する燃料は、エンジンによって加熱される。このため、燃料回路内の燃料の温度は、上昇する傾向にある。 A fuel circuit for supplying DME (dimethyl ether) fuel to a DME engine is known. The fuel circuit includes, for example, a supply line that supplies fuel from the fuel tank to the DME engine, and a return line that returns fuel from the DME engine to the fuel tank. The fuel that passes through the return line is heated by the engine. For this reason, the temperature of the fuel in the fuel circuit tends to increase.
 従来の燃料回路では、燃料回路内を流れる燃料の温度が上昇するのを防止するため、フィードポンプは、エンジンへの注入ポンプに直接接続されている。また、燃料の温度を下げるために、供給ライン及びリターンラインのそれぞれに、チラー(冷媒を冷やす装置)が設けられている。特許文献1にも、燃料回路内のDME燃料を冷却させるための技術が開示されている。 In the conventional fuel circuit, the feed pump is directly connected to the injection pump to the engine in order to prevent the temperature of the fuel flowing in the fuel circuit from rising. In order to lower the temperature of the fuel, a chiller (an apparatus for cooling the refrigerant) is provided in each of the supply line and the return line. Patent Document 1 also discloses a technique for cooling the DME fuel in the fuel circuit.
特開2003-56410号公報JP 2003-56410 A
 DMEは沸点が低く、蒸発しやすい。このため、燃料の温度が高くなると、燃料回路内で燃料が蒸発する。液体である燃料に気体が混じると、エンジンに供給される燃料の圧力が不安定になる。また、燃料の蒸発によってキャビテーションが発生すると、フィードポンプの回転数が低下する。この結果、エンジンに燃料を適切に供給することができなくなる。 DME has a low boiling point and easily evaporates. For this reason, when the temperature of the fuel increases, the fuel evaporates in the fuel circuit. When gas is mixed with liquid fuel, the pressure of the fuel supplied to the engine becomes unstable. Further, when cavitation occurs due to the evaporation of fuel, the rotation speed of the feed pump decreases. As a result, the fuel cannot be properly supplied to the engine.
 燃料を冷却するために、上述したように、燃料回路内には合計2つのチラーが設けられている。熱交換器を介して燃料を冷却する場合、冷媒の温度までしか燃料を冷却することはできない。このため、チラーの出力を最大限利用するには、熱交換器を通過する燃料の量を多くする必要がある。したがって、熱交換器を通過する燃料の量が比較的少ない場合、燃料回路内の燃料を十分に冷却するために、冷媒の温度をより一層低下させる必要がある。つまり、チラーによる冷却効率が低いために、チラーの出力を向上させる必要がある。このため、供給ライン及びリターンラインを通過する燃料を冷却しているだけでは、チラーの出力を大きくしない限り、燃料回路内の燃料を効率的に冷却することができなかった。 In order to cool the fuel, as described above, a total of two chillers are provided in the fuel circuit. When cooling the fuel via the heat exchanger, the fuel can be cooled only to the temperature of the refrigerant. For this reason, in order to make maximum use of the output of the chiller, it is necessary to increase the amount of fuel passing through the heat exchanger. Therefore, when the amount of fuel passing through the heat exchanger is relatively small, it is necessary to further reduce the temperature of the refrigerant in order to sufficiently cool the fuel in the fuel circuit. That is, since the cooling efficiency by the chiller is low, it is necessary to improve the output of the chiller. For this reason, simply cooling the fuel passing through the supply line and the return line cannot efficiently cool the fuel in the fuel circuit unless the output of the chiller is increased.
 そこで、本発明は、チラーの出力を増大させることなく、燃料回路内の燃料を効率的に冷却できる、DME燃料供給システム及びDME燃料の冷却方法を提供する。 Therefore, the present invention provides a DME fuel supply system and a DME fuel cooling method capable of efficiently cooling the fuel in the fuel circuit without increasing the output of the chiller.
 本発明の第1の観点は、燃料タンクからDMEエンジンにDME燃料を供給する供給ラインと、前記DME燃料を前記供給ラインに沿って送り出すフィードポンプと、前記DMEエンジンから前記燃料タンクに前記DME燃料を戻すリターンラインと、前記供給ライン上に配置される、第1チラーの第1熱交換器と、前記リターンライン上に配置される、第2チラーの第2熱交換器と、前記供給ラインの前記第1熱交換器の下流側と、前記リターンラインの前記第2熱交換器の上流側とを連通接続する、バイパスラインと、を備えている、DME燃料供給システムを提供する。 A first aspect of the present invention includes a supply line for supplying DME fuel from a fuel tank to a DME engine, a feed pump for sending the DME fuel along the supply line, and the DME fuel from the DME engine to the fuel tank. A return line, a first chiller first heat exchanger disposed on the supply line, a second chiller second heat exchanger disposed on the return line, and the supply line A DME fuel supply system comprising: a bypass line that communicates a downstream side of the first heat exchanger and an upstream side of the second heat exchanger of the return line.
 本発明の第1の観点に係るDME燃料供給システムは、構成(a)、(b)を採用することが好ましい。 It is preferable that the DME fuel supply system according to the first aspect of the present invention adopts the configurations (a) and (b).
(a)前記DME燃料供給システムは、前記供給ラインから前記バイパスラインが分岐する分岐部の下流側において、前記供給ライン上に配置される第1電磁弁と、前記リターンラインに前記バイパスラインが合流する合流部の上流側において、前記リターンライン上に配置される第2電磁弁と、を備えている。 (A) In the DME fuel supply system, the first solenoid valve disposed on the supply line and the bypass line merge with the return line on the downstream side of the branch portion where the bypass line branches from the supply line And a second solenoid valve disposed on the return line on the upstream side of the joining portion.
(b)第1チラー及び第2チラーが同一のチラーであり、前記同一のチラーが、前記第1熱交換器及び前記第2熱交換器の双方に、冷却用の冷媒を供給する。 (B) The first chiller and the second chiller are the same chiller, and the same chiller supplies a cooling refrigerant to both the first heat exchanger and the second heat exchanger.
 本発明の第2の観点は、燃料回路を通じて燃料タンクとDMEエンジンとを循環するDME燃料の冷却方法であって、前記燃料タンクから送り出された前記DME燃料を冷却する、第1冷却工程と、前記第1冷却工程の後に、前記DME燃料を、前記DMEエンジンを経由させる第1燃料と、前記DMEエンジンを経由させない第2燃料とに分配する、分配工程と、前記DMEエンジンを経由した前記第1燃料と、前記第2燃料とを合流させる、合流工程と、前記合流工程において合流したDME燃料を冷却する、第2冷却工程と、を備えている、DME燃料の冷却方法を提供する。 A second aspect of the present invention is a DME fuel cooling method for circulating between a fuel tank and a DME engine through a fuel circuit, the first cooling step cooling the DME fuel delivered from the fuel tank, After the first cooling step, the DME fuel is distributed to a first fuel that passes through the DME engine and a second fuel that does not pass through the DME engine; Provided is a DME fuel cooling method, comprising: a merging step for merging one fuel and the second fuel; and a second cooling step for cooling the DME fuel merged in the merging step.
 本発明の第2の観点に係るDME燃料の冷却方法は、構成(c)を採用することが好ましい。 It is preferable that the DME fuel cooling method according to the second aspect of the present invention adopts the configuration (c).
(c)前記分配工程は、前記第1燃料の流量に対する前記第2燃料の流量の比を、維持又は変更する。 (C) The distribution step maintains or changes a ratio of the flow rate of the second fuel to the flow rate of the first fuel.
 本発明は、チラーの出力を増大させることなく、燃料回路内の燃料を効率的に冷却できる。 The present invention can efficiently cool the fuel in the fuel circuit without increasing the output of the chiller.
燃料供給システムを示す概略図である。It is the schematic which shows a fuel supply system.
 図1は、燃料供給システム及びDME供給源100を示す概略図である。燃料供給システムは、エンジン2にDME燃料を供給するシステムである。DME供給源100は、燃料供給システムの燃料タンク3に、DME燃料を供給する。 FIG. 1 is a schematic diagram showing a fuel supply system and a DME supply source 100. The fuel supply system is a system that supplies DME fuel to the engine 2. The DME supply source 100 supplies DME fuel to the fuel tank 3 of the fuel supply system.
 燃料供給システムは、燃料を供給するための燃料回路1を備えている。燃料回路1は、エンジン2と、燃料タンク3と、高圧ポンプ4と、を備えている。燃料回路1は、燃料タンク3からエンジン2に燃料を供給する供給ライン10と、エンジン2から燃料タンク3に燃料を戻すリターンライン20と、供給ライン10とリターンライン20とを連通接続するバイパスライン30と、を備えている。供給ライン10は、第1サブ供給ライン11と、第2サブ供給ライン12と、第3サブ供給ライン13と、第4サブ供給ライン14と、からなっている。リターンライン20は、第1サブリターンライン21と、第2サブリターンライン22と、第3サブリターンライン23と、第4サブリターンライン24と、からなっている。バイパスライン30は、第1サブバイパスライン31と、第2サブバイパスライン32と、からなっている。 The fuel supply system includes a fuel circuit 1 for supplying fuel. The fuel circuit 1 includes an engine 2, a fuel tank 3, and a high pressure pump 4. The fuel circuit 1 includes a supply line 10 that supplies fuel from the fuel tank 3 to the engine 2, a return line 20 that returns fuel from the engine 2 to the fuel tank 3, and a bypass line that connects the supply line 10 and the return line 20 to each other. 30. The supply line 10 includes a first sub supply line 11, a second sub supply line 12, a third sub supply line 13, and a fourth sub supply line 14. The return line 20 includes a first sub return line 21, a second sub return line 22, a third sub return line 23, and a fourth sub return line 24. The bypass line 30 includes a first sub bypass line 31 and a second sub bypass line 32.
 高圧ポンプ(フィードポンプ)4は、第1サブ供給ライン11と第2サブ供給ライン12との間に配置されている。エンジン2は、第4サブ供給ライン14と第1サブリターンライン21との間に配置されている。燃料タンク3は、第4サブリターンライン24と第1サブ供給ライン11との間に配置されている。 The high-pressure pump (feed pump) 4 is disposed between the first sub supply line 11 and the second sub supply line 12. The engine 2 is disposed between the fourth sub supply line 14 and the first sub return line 21. The fuel tank 3 is disposed between the fourth sub return line 24 and the first sub supply line 11.
 分岐部1aは、供給ライン10とバイパスライン30との接続部である。第2サブ供給ライン12は、分岐部1aにおいて、第3サブ供給ライン13と第1サブバイパスライン31とに分岐している。合流部1bは、リターンライン20とバイパスライン30との接続部である。第2サブバイパスライン32及び第3サブリターンライン23は、合流部1bにおいて、第4サブリターンライン24に合流している。 The branch part 1 a is a connection part between the supply line 10 and the bypass line 30. The second sub supply line 12 branches into a third sub supply line 13 and a first sub bypass line 31 in the branching section 1a. The junction 1 b is a connection between the return line 20 and the bypass line 30. The second sub bypass line 32 and the third sub return line 23 merge with the fourth sub return line 24 at the junction 1b.
 燃料回路1は、2つの電磁弁CV-1、CV-2を備えている。第1電磁弁CV-1は、第3サブ供給ライン13と第4サブ供給ライン14との間に配置されている。第2電磁弁CV-2は、第1サブリターンライン21と第2サブリターンライン22との間に配置されている。 The fuel circuit 1 includes two solenoid valves CV-1 and CV-2. The first electromagnetic valve CV-1 is disposed between the third sub supply line 13 and the fourth sub supply line 14. The second electromagnetic valve CV-2 is disposed between the first sub return line 21 and the second sub return line 22.
 燃料回路1は、2つの圧力調整弁41、42を備えている。第1圧力調整弁41は、第1サブバイパスライン31と第2サブバイパスライン32との間に配置されている。第2圧力調整弁42は、第2サブリターンライン22と第3サブリターンライン23との間に配置されている。2つの圧力調整弁41、42は、エンジン2に供給される燃料の圧力を、一定に保つために設けられている。高圧ポンプ4から2つの圧力調整弁41、42の上流側までの圧力は、高圧に保たれている。2つの圧力調整弁41、42の下流側から高圧ポンプ4までは、低圧である。本実施形態では、高圧は1.6MPaであり、低圧は0.6MPaである。 The fuel circuit 1 includes two pressure regulating valves 41 and 42. The first pressure regulating valve 41 is disposed between the first sub bypass line 31 and the second sub bypass line 32. The second pressure regulating valve 42 is disposed between the second sub return line 22 and the third sub return line 23. The two pressure regulating valves 41 and 42 are provided to keep the pressure of the fuel supplied to the engine 2 constant. The pressure from the high pressure pump 4 to the upstream side of the two pressure regulating valves 41 and 42 is kept high. The pressure from the downstream side of the two pressure regulating valves 41 and 42 to the high pressure pump 4 is low. In this embodiment, the high pressure is 1.6 MPa and the low pressure is 0.6 MPa.
 燃料回路1は、燃料タンク3と第4サブリターンライン24との間に、逆止弁43を備えている。逆止弁43は、燃料タンク3から第4サブリターンライン24に燃料が流れることを防止する。 The fuel circuit 1 includes a check valve 43 between the fuel tank 3 and the fourth sub return line 24. The check valve 43 prevents fuel from flowing from the fuel tank 3 to the fourth sub return line 24.
 燃料供給システムは、燃料回路1内の各部に、燃料の圧力を検出する5つの圧力センサPS-2、PS-3、PS-4、PS-5、及びPS-6を備えている。第2圧力センサPS-2は、第1サブ供給ライン11内の燃料の圧力を検出する。ここで、第1サブ供給ライン11内の燃料の圧力は、燃料タンク3内の燃料の圧力に等しい。第3圧力センサPS-3は、第2上流供給ライン12内の燃料の圧力を検出する。第4圧力センサPS-4は、第4サブ供給ライン14内の燃料の圧力を検出する。第5圧力センサPS-5は、第2サブリターンライン22内の燃料の圧力を検出する。第6圧力センサPS-6は、第4サブリターンライン24内の燃料の圧力を検出する。 The fuel supply system includes five pressure sensors PS-2, PS-3, PS-4, PS-5, and PS-6 for detecting the pressure of the fuel in each part of the fuel circuit 1. The second pressure sensor PS-2 detects the pressure of the fuel in the first sub supply line 11. Here, the pressure of the fuel in the first sub supply line 11 is equal to the pressure of the fuel in the fuel tank 3. The third pressure sensor PS-3 detects the pressure of the fuel in the second upstream supply line 12. The fourth pressure sensor PS-4 detects the pressure of the fuel in the fourth sub supply line 14. The fifth pressure sensor PS-5 detects the fuel pressure in the second sub-return line 22. The sixth pressure sensor PS-6 detects the pressure of the fuel in the fourth sub return line 24.
 燃料供給システムは、燃料回路1内の燃料を冷却するための冷却手段を備えている。冷却手段は、チラー5(低温冷媒を循環させる装置)である。チラー5は、供給ライン10及びリターンライン20に、熱交換器51、52を備えている。第1熱交換器51は、第2サブ供給ライン12内に配置されている。第2熱交換器52は、第4サブリターンライン24内に配置されている。チラー5は、2つの熱交換器51、52を介して、供給ライン10及びリターンライン20内の燃料を冷却する。 The fuel supply system includes a cooling means for cooling the fuel in the fuel circuit 1. The cooling means is a chiller 5 (an apparatus for circulating a low-temperature refrigerant). The chiller 5 includes heat exchangers 51 and 52 in the supply line 10 and the return line 20. The first heat exchanger 51 is disposed in the second sub supply line 12. The second heat exchanger 52 is disposed in the fourth sub return line 24. The chiller 5 cools the fuel in the supply line 10 and the return line 20 via the two heat exchangers 51 and 52.
 燃料供給システムは、燃料回路1内の各部に、燃料の温度を検出する7つの温度センサ61~67を備えている。第1温度センサ61は、第1サブ供給ライン11内の燃料の温度を検出する。第2温度センサ62及び第3温度センサ63は、第2サブ供給ライン12において、第1熱交換器51の上流側及び下流側の燃料の温度を検出する。第4温度センサ64は、供給ライン10の終端部、つまりエンジン2の入口における燃料の温度を検出する。第5温度センサ65は、リターンライン20の始端部、つまりエンジン2の出口における燃料の温度を検出する。第6温度センサ66及び第7温度センサ67は、第4サブリターンライン24において、第2熱交換器52の上流側及び下流側の燃料の温度を検出する。 The fuel supply system includes seven temperature sensors 61 to 67 for detecting the temperature of the fuel in each part of the fuel circuit 1. The first temperature sensor 61 detects the temperature of the fuel in the first sub supply line 11. The second temperature sensor 62 and the third temperature sensor 63 detect the temperature of the fuel on the upstream side and the downstream side of the first heat exchanger 51 in the second sub supply line 12. The fourth temperature sensor 64 detects the temperature of the fuel at the end of the supply line 10, that is, at the inlet of the engine 2. The fifth temperature sensor 65 detects the temperature of the fuel at the start end of the return line 20, that is, at the outlet of the engine 2. The sixth temperature sensor 66 and the seventh temperature sensor 67 detect the temperature of the fuel on the upstream side and the downstream side of the second heat exchanger 52 in the fourth sub return line 24.
 燃料供給システムは、制御装置6を備えている。制御装置6は、エンジン2、高圧ポンプ4、及びチラー5の駆動を制御できる。制御装置6は、2つの電磁弁CV-1、CV-2の開度を維持又は変更できる。制御装置6は、5つの圧力センサPS-2~PS-6及び7つの温度センサ61~67による検出情報を確認できる。 The fuel supply system includes a control device 6. The control device 6 can control driving of the engine 2, the high-pressure pump 4, and the chiller 5. The control device 6 can maintain or change the opening degree of the two electromagnetic valves CV-1 and CV-2. The control device 6 can confirm detection information from the five pressure sensors PS-2 to PS-6 and the seven temperature sensors 61 to 67.
 次に、燃料供給システムの作動を説明する。燃料供給システムの作動により、燃料回路1内の燃料が、4つの工程を経て、燃料タンク3及びエンジン2を経由するように循環する。4つの工程は、第1冷却工程、分配工程、合流工程、及び第2冷却工程である。 Next, the operation of the fuel supply system will be described. By the operation of the fuel supply system, the fuel in the fuel circuit 1 circulates through the fuel tank 3 and the engine 2 through four steps. The four steps are a first cooling step, a distribution step, a merging step, and a second cooling step.
 制御装置6は、エンジン2の起動に先だって、高圧ポンプ4及びチラー5の駆動を開始する。高圧ポンプ4の駆動により、燃料タンク3内の燃料が、供給ライン10に沿って流される。燃料は、第2サブ供給ライン12を通過するときに、第1熱交換器51により、冷却される。これが、第1冷却工程である。 The control device 6 starts driving the high-pressure pump 4 and the chiller 5 before starting the engine 2. By driving the high pressure pump 4, the fuel in the fuel tank 3 flows along the supply line 10. The fuel is cooled by the first heat exchanger 51 when passing through the second sub supply line 12. This is the first cooling step.
 第2サブ供給ライン12を通過した燃料は、分岐部1aにおいて、第3サブ供給ライン13に供給される第1燃料と、第1サブバイパスライン31に供給される第2燃料と、に分配される。これが、分配工程である。分岐前の燃料、第1燃料、及び第2燃料における流量の比は、例えば、20:10:10である。 The fuel that has passed through the second sub supply line 12 is distributed to the first fuel supplied to the third sub supply line 13 and the second fuel supplied to the first sub bypass line 31 in the branch portion 1a. The This is the distribution process. The ratio of the flow rates of the fuel before branching, the first fuel, and the second fuel is, for example, 20:10:10.
 第1燃料は、第3サブ供給ライン13及び第4サブ供給ライン14を経由して、エンジン2に供給される。第1燃料は、エンジン2内において、エンジン2の熱によって加熱される。このため、第1燃料の温度が上昇する。第1燃料は、エンジン2を通過すると、第1サブリターンライン21及び第2サブリターンライン22を経由して、合流部1bに到達する。第1燃料の一部は、エンジン2において消費される。このため、エンジン2の通過前及び通過後における流量の比は、例えば、10:9である。 The first fuel is supplied to the engine 2 via the third sub supply line 13 and the fourth sub supply line 14. The first fuel is heated by the heat of the engine 2 in the engine 2. For this reason, the temperature of the first fuel rises. When the first fuel passes through the engine 2, it reaches the junction 1 b via the first sub return line 21 and the second sub return line 22. Part of the first fuel is consumed in the engine 2. For this reason, the ratio of the flow rate before and after passage of the engine 2 is, for example, 10: 9.
 第2燃料は、第1サブバイパスライン31及び第2サブバイパスライン32を経由して、合流部1bに到達する。 The second fuel reaches the junction 1b via the first sub-bypass line 31 and the second sub-bypass line 32.
 第1燃料及び第2燃料は、合流部1bにおいて、合流する。これが、合流工程である。エンジン2通過後の第1燃料、第2燃料、及び合流後の燃料における流量の比は、例えば、9:10:19である。 The first fuel and the second fuel merge at the junction 1b. This is the merging process. The ratio of the flow rates of the first fuel after passing through the engine 2, the second fuel, and the joined fuel is, for example, 9:10:19.
 合流した燃料は、第4サブリターンライン24を通過するときに、第2熱交換器52により、冷却される。これが、第2冷却工程である。 The joined fuel is cooled by the second heat exchanger 52 when passing through the fourth sub return line 24. This is the second cooling step.
 以上のようにして、燃料は、供給ライン10及びリターンライン20において、冷却される。ここで、燃料回路1には、バイパスライン30が設けられている。このため、エンジン2を通過する第1燃料だけでなく、エンジン2を通過しない第2燃料が、チラー5によって冷却されている。特に、第1燃料の流量よりも第2燃料の流量を大きくすることによって、燃料の冷却効率を上昇させることができる。 As described above, the fuel is cooled in the supply line 10 and the return line 20. Here, the fuel circuit 1 is provided with a bypass line 30. For this reason, not only the first fuel that passes through the engine 2 but also the second fuel that does not pass through the engine 2 is cooled by the chiller 5. In particular, the cooling efficiency of the fuel can be increased by making the flow rate of the second fuel larger than the flow rate of the first fuel.
 第1燃料の流量及び第2燃料の流量は、第1電磁弁CV-1及び第2電磁弁CV-2の開度を変更することによって、変更できる。第1電磁弁CV-1及び第2電磁弁CV-2は、エンジン2の入口側及び出口側に配置されている。このため、第1電磁弁CV-1及び第2電磁弁CV-2の開度が小さくなるにつれて、第1燃料の流量に対する第2燃料の流量の比が、大きくなる。制御装置6は、第1電磁弁CV-1及び第2電磁弁CV-2を制御することによって、第1燃料の流量に対する第2燃料の流量の比R21を維持又は変更できる。 The flow rate of the first fuel and the flow rate of the second fuel can be changed by changing the opening degree of the first electromagnetic valve CV-1 and the second electromagnetic valve CV-2. The first electromagnetic valve CV-1 and the second electromagnetic valve CV-2 are disposed on the inlet side and the outlet side of the engine 2. For this reason, as the opening degree of the first solenoid valve CV-1 and the second solenoid valve CV-2 decreases, the ratio of the flow rate of the second fuel to the flow rate of the first fuel increases. The control device 6 can maintain or change the ratio R21 of the flow rate of the second fuel to the flow rate of the first fuel by controlling the first solenoid valve CV-1 and the second solenoid valve CV-2.
 R21=V2/V1。V1:第1燃料の流量、V2:第2燃料の流量。 R21 = V2 / V1. V1: Flow rate of the first fuel, V2: Flow rate of the second fuel.
 比R21が大きくなるにつれて、冷却のみを受ける第2燃料の割合が大きくなる。つまり、エンジン2によって加熱される燃料(第1燃料)の流量を増大させることなく、熱交換器51、52を通過する燃料(第1燃料+第2燃料)の流量が増大している。このため、燃料の冷却のために冷媒の温度を過剰に低下させる必要がなく、本実施形態に係る燃料供給システムは、チラー5の出力を最大限に効率的に利用することができる。 As the ratio R21 increases, the proportion of the second fuel that receives only cooling increases. That is, the flow rate of the fuel (first fuel + second fuel) passing through the heat exchangers 51 and 52 is increased without increasing the flow rate of the fuel (first fuel) heated by the engine 2. For this reason, it is not necessary to excessively reduce the temperature of the refrigerant for cooling the fuel, and the fuel supply system according to the present embodiment can efficiently utilize the output of the chiller 5 to the maximum extent.
 本実施形態に係る燃料供給システムは、燃料の温度を効率的に低下させることができるので、キャビテーションの発生も防止できる。 The fuel supply system according to the present embodiment can efficiently reduce the temperature of the fuel, and thus can prevent cavitation.
 本実施形態に係る燃料供給システムは、同一のチラー5により、2つの熱交換器51、52を冷却している。この構成に代えて、熱交換器毎にチラーが設けられても良い。 The fuel supply system according to the present embodiment cools the two heat exchangers 51 and 52 by the same chiller 5. Instead of this configuration, a chiller may be provided for each heat exchanger.
  1 燃料回路
  1a 分岐部
  1b 合流部
  2 エンジン
  3 燃料タンク
  4 高圧ポンプ(フィードポンプ)
  5 チラー
  6 制御装置
  10 供給ライン
  11 第1サブ供給ライン
  12 第2サブ供給ライン
  13 第3サブ供給ライン
  14 第4サブ供給ライン
  20 リターンライン
  21 第1サブリターンライン
  22 第2サブリターンライン
  23 第3サブリターンライン
  24 第4サブリターンライン
  30 バイパスライン
  31 第1サブバイパスライン
  32 第2サブバイパスライン
  41 第1圧力調整弁
  42 第2圧力調整弁
  43 逆止弁
  51 第1熱交換器
  52 第2熱交換器
  CV-1 第1電磁弁
  CV-2 第2電磁弁
DESCRIPTION OF SYMBOLS 1 Fuel circuit 1a Branch part 1b Merge part 2 Engine 3 Fuel tank 4 High pressure pump (feed pump)
5 Chiller 6 Control Device 10 Supply Line 11 First Sub Supply Line 12 Second Sub Supply Line 13 Third Sub Supply Line 14 Fourth Sub Supply Line 20 Return Line 21 First Sub Return Line 22 Second Sub Return Line 23 Third Sub return line 24 Fourth sub return line 30 Bypass line 31 First sub bypass line 32 Second sub bypass line 41 First pressure regulating valve 42 Second pressure regulating valve 43 Check valve 51 First heat exchanger 52 Second heat Exchanger CV-1 1st solenoid valve CV-2 2nd solenoid valve

Claims (5)

  1.  燃料タンクからDMEエンジンにDME燃料を供給する供給ラインと、
     前記DME燃料を前記供給ラインに沿って送り出すフィードポンプと、
     前記DMEエンジンから前記燃料タンクに前記DME燃料を戻すリターンラインと、
     前記供給ライン上に配置される、第1チラーの第1熱交換器と、
     前記リターンライン上に配置される、第2チラーの第2熱交換器と、
     前記供給ラインの前記第1熱交換器の下流側と、前記リターンラインの前記第2熱交換器の上流側とを連通接続する、バイパスラインと、
     を備えている、DME燃料供給システム。
    A supply line for supplying DME fuel from the fuel tank to the DME engine;
    A feed pump for delivering the DME fuel along the supply line;
    A return line for returning the DME fuel from the DME engine to the fuel tank;
    A first heat exchanger of a first chiller disposed on the supply line;
    A second heat exchanger of a second chiller disposed on the return line;
    A bypass line connecting the downstream side of the first heat exchanger of the supply line and the upstream side of the second heat exchanger of the return line;
    A DME fuel supply system.
  2.  前記供給ラインから前記バイパスラインが分岐する分岐部の下流側において、前記供給ライン上に配置される第1電磁弁と、
     前記リターンラインに前記バイパスラインが合流する合流部の上流側において、前記リターンライン上に配置される第2電磁弁と、
     を備えている、
     請求項1に記載のDME燃料供給システム。
    A first solenoid valve disposed on the supply line on a downstream side of a branching portion where the bypass line branches from the supply line;
    A second solenoid valve disposed on the return line on the upstream side of the merge portion where the bypass line merges with the return line;
    With
    The DME fuel supply system according to claim 1.
  3.  第1チラー及び第2チラーが同一のチラーであり、
     前記同一のチラーが、前記第1熱交換器及び前記第2熱交換器の双方に、冷却用の冷媒を供給する、
     請求項1又は2に記載のDME燃料供給システム。
    The first chiller and the second chiller are the same chiller,
    The same chiller supplies a cooling refrigerant to both the first heat exchanger and the second heat exchanger.
    The DME fuel supply system according to claim 1 or 2.
  4.  燃料回路を通じて燃料タンクとDMEエンジンとを循環するDME燃料の冷却方法であって、
     前記燃料タンクから送り出された前記DME燃料を冷却する、第1冷却工程と、
     前記第1冷却工程の後に、前記DME燃料を、前記DMEエンジンを経由させる第1燃料と、前記DMEエンジンを経由させない第2燃料とに分配する、分配工程と、
     前記DMEエンジンを経由した前記第1燃料と、前記第2燃料とを合流させる、合流工程と、
     前記合流工程において合流したDME燃料を冷却する、第2冷却工程と、
     を備えている、
     DME燃料の冷却方法。
    A method for cooling DME fuel that circulates between a fuel tank and a DME engine through a fuel circuit,
    A first cooling step of cooling the DME fuel delivered from the fuel tank;
    A distribution step of distributing, after the first cooling step, the DME fuel into a first fuel passing through the DME engine and a second fuel not passing through the DME engine;
    A merging step of merging the first fuel and the second fuel via the DME engine;
    A second cooling step for cooling the DME fuel merged in the merging step;
    With
    DME fuel cooling method.
  5.  前記分配工程は、前記第1燃料の流量に対する前記第2燃料の流量の比を、維持又は変更する、
     請求項4に記載のDME燃料の冷却方法。
    The distributing step maintains or changes a ratio of the flow rate of the second fuel to the flow rate of the first fuel;
    The method for cooling DME fuel according to claim 4.
PCT/JP2010/061964 2009-07-16 2010-07-15 Dme fuel supply system and method for cooling dme fuel WO2011007826A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020117030968A KR101273675B1 (en) 2009-07-16 2010-07-15 Dme fuel supply system and method for cooling dme fuel
CN201080032191.XA CN102472202B (en) 2009-07-16 2010-07-15 DME fuel supply system and method for cooling DME fuel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009167931A JP5501682B2 (en) 2009-07-16 2009-07-16 DME fuel supply system and DME fuel cooling method
JP2009-167931 2009-07-16

Publications (1)

Publication Number Publication Date
WO2011007826A1 true WO2011007826A1 (en) 2011-01-20

Family

ID=43449435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061964 WO2011007826A1 (en) 2009-07-16 2010-07-15 Dme fuel supply system and method for cooling dme fuel

Country Status (4)

Country Link
JP (1) JP5501682B2 (en)
KR (1) KR101273675B1 (en)
CN (1) CN102472202B (en)
WO (1) WO2011007826A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371485B1 (en) * 2012-12-07 2014-03-10 현대자동차주식회사 Return fuel cooling system for lpi vehicle
DE102012025021A1 (en) * 2012-12-20 2014-06-26 Man Diesel & Turbo Se Fuel system plant for marine diesel combustion engine of ship, has control valve controlled based on measuring signal such that constant amount of fuel is conveyed into mixing tank irrespective of actual fuel consumption of engine
KR101361347B1 (en) * 2012-12-28 2014-02-10 현대자동차주식회사 Common rail system for dme fuel
JP6982439B2 (en) * 2017-09-08 2021-12-17 川崎重工業株式会社 Ship

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276473A (en) * 2001-03-22 2002-09-25 Isuzu Motors Ltd Fuel supply system for dimethyl ether engine
JP2004044574A (en) * 2002-05-16 2004-02-12 Bosch Automotive Systems Corp Dme fuel supply device of diesel engine
JP2005139910A (en) * 2003-11-04 2005-06-02 Hino Motors Ltd Fuel supply device of liquefied gas engine
JP2006250136A (en) * 2005-03-14 2006-09-21 Komotetsuku:Kk Fuel supplying device for cylinder fuel injection engine
JP2007177697A (en) * 2005-12-28 2007-07-12 Nissan Diesel Motor Co Ltd Fuel device of liquefied gas engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216634B2 (en) * 2002-07-09 2007-05-15 Bosch Automotive Systems Corporation Diesel engine DME fuel supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276473A (en) * 2001-03-22 2002-09-25 Isuzu Motors Ltd Fuel supply system for dimethyl ether engine
JP2004044574A (en) * 2002-05-16 2004-02-12 Bosch Automotive Systems Corp Dme fuel supply device of diesel engine
JP2005139910A (en) * 2003-11-04 2005-06-02 Hino Motors Ltd Fuel supply device of liquefied gas engine
JP2006250136A (en) * 2005-03-14 2006-09-21 Komotetsuku:Kk Fuel supplying device for cylinder fuel injection engine
JP2007177697A (en) * 2005-12-28 2007-07-12 Nissan Diesel Motor Co Ltd Fuel device of liquefied gas engine

Also Published As

Publication number Publication date
JP5501682B2 (en) 2014-05-28
JP2011021556A (en) 2011-02-03
CN102472202A (en) 2012-05-23
CN102472202B (en) 2014-10-29
KR101273675B1 (en) 2013-06-12
KR20120026566A (en) 2012-03-19

Similar Documents

Publication Publication Date Title
US9726327B2 (en) System and method for processing liquefied gas
WO2011007826A1 (en) Dme fuel supply system and method for cooling dme fuel
CN103597191B (en) Fuel feed system and fuel feeding method for explosive motor
JP2016510378A (en) System and method for supplying rocket engine
SE1451342A1 (en) Heater
JP2009262925A (en) Ship, and thermal energy recovery method in ship
US20140060057A1 (en) Method and apparatus for heating liquid fuel supplied to a gas turbine combustor
WO2019087882A1 (en) Liquid temperature adjustment apparatus and temperature adjustment method using same
JP4947292B2 (en) Fuel temperature control device
CN103097709B (en) For the heating system of internal-combustion engine
JP2010174692A (en) Liquefied gas fuel feed system
CN103727674A (en) Water heater
JP6881329B2 (en) Component adjustment device for multi-component liquefied gas
KR101686912B1 (en) Devivce for liquefied gas supply
WO2017037810A1 (en) Lng gasification system for use in ship, ship equipped with same, and lng gasification method for use in ship
KR102027515B1 (en) Rankine cycle-based heat engine using ejector for waste heat recovery and method for operating the same heat engine
JP5613903B2 (en) Temperature control device
CN102971518B (en) Cooling system
JP5259514B2 (en) How to start the DME engine
CN102644534A (en) Starting system for non-cyclical water-cooling single liquefied natural gas fuel engine
JP5473720B2 (en) Turbine device and cold power generation system including the turbine device
JP6870624B2 (en) Component adjustment device for multi-component liquefied gas
JP6722072B2 (en) Ship
JP2013133797A (en) Fuel measurement system
EP2947392B1 (en) Multiple temperature system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032191.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799884

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20117030968

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799884

Country of ref document: EP

Kind code of ref document: A1