WO2011007476A1 - Device and method for processing substrate, and method for producing a processed substrate - Google Patents

Device and method for processing substrate, and method for producing a processed substrate Download PDF

Info

Publication number
WO2011007476A1
WO2011007476A1 PCT/JP2010/002197 JP2010002197W WO2011007476A1 WO 2011007476 A1 WO2011007476 A1 WO 2011007476A1 JP 2010002197 W JP2010002197 W JP 2010002197W WO 2011007476 A1 WO2011007476 A1 WO 2011007476A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
processing
abrasive grains
glass substrate
angle
Prior art date
Application number
PCT/JP2010/002197
Other languages
French (fr)
Japanese (ja)
Inventor
吉澤武徳
水上恵文
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201080031670.XA priority Critical patent/CN102470509B/en
Priority to US13/383,855 priority patent/US20120115399A1/en
Publication of WO2011007476A1 publication Critical patent/WO2011007476A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/02Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/02Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other
    • B24C3/04Abrasive blasting machines or devices; Plants characterised by the arrangement of the component assemblies with respect to each other stationary

Definitions

  • the present invention relates to a substrate processing apparatus, a substrate processing method, and a processed substrate manufacturing method. More specifically, the substrate surface after processing can be made smooth (mirror surface) and is simple, a substrate processing device, a substrate processing method using the processing device, and a processed substrate using the processing method It is related with the manufacturing method.
  • the defect of a glass substrate means internal defects, such as an internal bubble and an internal foreign material, and surface defects, such as a permite
  • display defects such as bright spots and black spots occur in the vicinity of the defects.
  • an internal bubble having a certain size for example, a diameter of 100 ⁇ m or more
  • the vicinity thereof is observed as a bright spot.
  • the mechanism by which the bright bubbles are generated by the internal bubbles is not necessarily clear, but the presence of the internal bubbles may cause the lens effect due to the glass around the internal bubbles and the disorder of the polarization state due to the stress remaining on the glass around the internal bubbles. It is thought to be the cause.
  • black spots may be generated when the internal foreign matter is made of a light-shielding material.
  • the glass substrate has as few defects as possible.
  • Internal bubbles are generated when bubbles are formed in the melted glass raw material due to entrainment of air, release of gas from the refractory material, or the like in the process of melting the glass raw material when manufacturing the glass substrate. Furthermore, depending on the glass raw material used, there is a glass raw material itself that generates gas. Such internal bubbles exist with a certain probability depending on the volume, and it is not easy to reduce the probability. In addition, when the position of the bubble which exists in a glass substrate is near the surface, a permite
  • the protrusion formed on the surface of the glass substrate is a surface defect caused by internal bubbles or internal foreign matter as described above.
  • scratches formed on the surface of the glass substrate are caused by the glass substrates coming into contact with each other in a step of cutting out the glass substrate from a large glass plate called an original plate and performing peripheral processing.
  • the conventional substrate processing method has a problem that it is difficult to correct a defect of the substrate.
  • Such a requirement is common to general substrates such as glass substrates constituting flat display panels such as liquid crystal display panels and plasma display panels.
  • glass for liquid crystal display panels is particularly used for the following reasons. This is noticeable in the substrate.
  • the semiconductor element is easily affected by alkali metals. Therefore, it is common to use an alkali-free glass that does not contain an alkali metal as an additive component (the alkali metal as an impurity is 1% or less) as a glass substrate for a liquid crystal display panel.
  • the alkali-free glass has a high melting point, the alkali-free glass is difficult to remove bubbles when the glass raw material is melted, and internal bubbles are likely to remain. Therefore, since the glass substrate for liquid crystal display panels tends to include defects as internal bubbles, there is a particularly high demand for a technique for improving the quality of the substrate by correcting the defects.
  • At least one of powder or fluid is sprayed onto a portion where the defect to be corrected formed on the substrate is located, and an area including at least the defect to be corrected from the substrate.
  • the technique for performing the brittle processing has a problem that the processed substrate surface cannot be smoothed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to use a substrate processing apparatus that can smooth a substrate surface after processing and is simple, and the processing apparatus.
  • An object of the present invention is to provide a method for processing a substrate and a method for manufacturing a processed substrate using the processing method.
  • the substrate processing apparatus of the present invention is provided on the substrate on which the abrasive grain injection member is arranged so that the abrasive injection angle with respect to the processed surface of the substrate becomes an angle in brittle processing.
  • the angle of entry of the abrasive grains into the processing surface of the substrate is changed from the angle in the brittle processing to the ductile processing between the spray member and the processing surface of the substrate in the spray direction of the abrasive grains.
  • An injection direction changing member for changing to an angle is arranged, and the injection direction changing member is movable.
  • the said injection direction change member is arrange
  • the approach angle can be changed from an angle in brittle processing to an angle in ductile processing.
  • the processed substrate surface can be smoothed.
  • the injection direction changing member is movable, the angle of entry of the abrasive grains into the processing surface of the substrate is changed again from the angle in ductile processing to the angle in brittle processing. Can do.
  • the injection direction changing member moves to a position where it does not come into contact with the abrasive grains, so that the angle of entry of the abrasive grains into the processing surface of the substrate is changed again from the angle in ductile processing to the angle in brittle processing. be able to.
  • substrate can be changed from the angle in a brittle process to the angle in a ductile process using only one injection member, and also ductility. Since the angle in processing can be changed to the angle in brittle processing, the substrate processing apparatus can be simplified.
  • the substrate processing apparatus of the present invention is a substrate processing apparatus in which the abrasive grain spraying member is disposed so that the abrasive grain spraying angle with respect to the substrate processing surface is an angle in brittle processing. Then, the angle of entry of the abrasive grains into the processed surface of the substrate is changed from the angle in the brittle processing to the angle in ductile processing between the spray member in the spray direction of the abrasive grains and the processed surface of the substrate.
  • the injection direction change member for this is arrange
  • the substrate processing apparatus of the present invention has an effect that the processed substrate surface can be smoothed and has a simple structure.
  • Embodiment 1 The first embodiment of the present invention will be described as follows. Note that the present invention is not limited to this, and the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not particularly limited unless otherwise specified. It is not intended to limit the scope to that, but merely an illustrative example. In this specification and the like, “A to B” indicating a range indicates “A or more and B or less”.
  • a glass substrate defect correcting device and a defect correcting method will be described as examples in the substrate processing apparatus and processing method.
  • the present invention is not limited to these, and can also be applied to a general substrate (material) processing apparatus and processing method.
  • the substrate (material) that is the object to be processed is not particularly limited as long as it is a brittle material, and examples thereof include glass and ceramics.
  • the defect correction method of this embodiment is a glass substrate defect correction method for constituting a display panel, and the defect to be corrected is an internal defect formed on the glass substrate.
  • defect correction method of the present embodiment can be applied to glass substrates for constituting various display panels such as a liquid crystal display panel and a plasma display panel (PDP).
  • various display panels such as a liquid crystal display panel and a plasma display panel (PDP).
  • PDP plasma display panel
  • the defect correction method of the present embodiment can be carried out at various stages in the production of glass substrates and display panels. For example, a stage in which a glass manufacturer cuts a glass substrate from the original plate and ships it; a stage in which the display substrate manufacturer accepts the glass substrate and then uses it for a display panel; Thereafter, the defect correction method of this embodiment can be performed in various stages such as a stage until the display device is assembled.
  • the defect correction method of the present embodiment forms the glass substrate manufacturing method. It will be.
  • the glass substrate is for a liquid crystal display panel
  • the stage from the inspection of the configured display panel to the assembly as a display device is assumed as an implementation stage of the defect correction method.
  • internal bubbles as internal defects, a method for correcting internal bubbles will be described.
  • the defect correcting method of the present embodiment is particularly effective for a glass substrate for constituting a liquid crystal display panel.
  • FIG. 2 is a cross-sectional view of the glass substrate 1 on which internal bubbles 1b as internal defects to be corrected are formed.
  • the internal bubble 1b may not be accompanied by the protrusion 1p depending on its size and position.
  • the internal bubbles 1b may have various sizes from those having a maximum diameter of 100 ⁇ m or less to those having the same thickness as the glass substrate 1 (for example, 0.7 mm). For the small internal bubbles 1b having a maximum diameter of, for example, 100 ⁇ m or less, since the adverse effect on the display is small, it may be considered that no special measures are taken. Further, for the internal bubbles 1b having a maximum diameter of, for example, 100 to 300 ⁇ m, it may be considered to take a measure such as blackening. However, for the internal bubbles 1b whose maximum diameter exceeds, for example, 300 ⁇ m, it is difficult to consider an effective measure for sufficiently reducing the adverse effect on the display, except for the defect correction method of the present embodiment described below.
  • the defect correcting method according to the present embodiment can deal with a wide range of internal bubbles 1b from small to large, but is particularly effective for large internal bubbles 1b for which it is difficult to consider other effective measures.
  • the abrasive grains are sprayed at a position where the internal bubble 1b, which is an internal defect formed in the glass substrate 1, is located, and at least the internal portion from the surface 1s of the glass substrate 1.
  • the glass material is removed until the bubbles 1b are reached.
  • the glass material 1d surrounding the internal bubble 1b (hereinafter referred to as a winding part) 1d may cause a lens effect or a disorder of the polarization state, and therefore, it is removed together with the internal bubble 1b. preferable.
  • FIGS. 1A to 1E are diagrams showing a process of removing internal defects by the defect correction method of this embodiment.
  • abrasive grains 12a are sprayed at a predetermined spraying speed onto the protrusions 1p on the surface 1s of the glass substrate 1.
  • alumina having a particle size of 800 (about 0.03 mm (30 ⁇ m)) is used as the abrasive grains 12 a, but is not limited to this, and is appropriately selected according to the type of the substrate to be processed. be able to.
  • the abrasive grains 12a include alumina and cerium.
  • an alumina as the abrasive grain 12a.
  • the grain size of the abrasive grains 12a is preferably 0.1 to 100 ⁇ m.
  • the particle size of the abrasive grains 12a may be changed between brittle processing and ductile processing. In this case, at the time of brittle processing, the particle size of the abrasive grains 12a is increased to increase the processing force, while at the time of ductile processing, the particle size of the abrasive grains 12a is decreased to decrease the processing force.
  • the scanning speed (moving speed of the correction head 12) is set to 0.2 mm / s to 0.6 mm / s, but is not limited to this, and is appropriately determined according to the type of the substrate to be processed. Can be selected.
  • the injection amount (injection pressure) of the abrasive grains 12a is injected with 0.8 MPa of air, but is not limited to this, and can be appropriately selected according to the type of the substrate to be processed.
  • the spraying time of the abrasive grains 12a is not particularly limited, and can be appropriately selected according to the type of the substrate to be processed, the depth of the substrate to be processed, and the like.
  • the abrasive grains 12a are continuously sprayed at the above injection speed, and the glass material of the protrusions 1p is removed by the abrasive grains 12a until the abrasive grains 12a reach the internal bubbles 1b as shown in FIG. . And the grinding area
  • 1A to 1C are diagrams for explaining brittle processing. Further, as shown in FIG.
  • FIG. 1D and FIG. 1E are diagrams for explaining ductility processing.
  • the approach angle of the abrasive grains in the brittle processing is larger than 35 ° and within a range of 90 ° or less with respect to the surface 1s of the substrate 1.
  • the substrate is a glass substrate, it is preferably 90 °.
  • the approach angle of the abrasive grains in the ductile processing is larger than 0 ° and within a range of 35 ° or less with respect to the surface 1s of the substrate 1.
  • the substrate is a glass substrate, it is preferably 30 °.
  • FIG. 3A is a cross-sectional view of the defect correction apparatus 10 for performing the defect correction method of the present embodiment.
  • the defect correcting device 10 is fixed to the substrate mounting table 13 and a substrate mounting table 13 for fixing the glass substrate 1 as a correction target in a direction perpendicular to the ground on the mounting surface 11 a of the mounting table 11.
  • a reflecting plate mounting base 15 on which a rotating member 16 having a jetting direction changing member 19 provided with a fixing member 17 is mounted is provided.
  • the reflector 18 preferably contains ceramic, and more preferably consists of ceramic only.
  • the ceramic include silicon carbide (SiC) and silicon nitride (SiN).
  • the material of the reflecting plate support member 17 is not specifically limited, For example, a metal etc. are mentioned.
  • the size of the reflector 18 is not particularly limited, but the area is preferably 1 cm square or more.
  • the rotating member 16 rotates the reflecting plate 18 around the injection direction of the abrasive grains 12a injected from the correction head 12 (the normal direction from the processing surface of the glass substrate 1 passing through the reflecting plate 18). Is.
  • the correction head 12 is provided on the head mounting base 14 so as to be movable in a horizontal direction and a vertical direction with respect to the ground, and the spraying direction of the abrasive grains 12a is horizontal with respect to the ground (with respect to the glass substrate 1). Vertical direction).
  • the correction head 12 includes an injection nozzle (described later) for injecting abrasive grains 12a for grinding the glass substrate 1. That is, the defect correction apparatus 10 moves the correction head 12 to a position facing the internal bubble 1b or the reflection plate 18 of the glass substrate 1, and the abrasive grains 12a are moved to the surface 1s of the glass substrate 1 or the surface of the reflection plate 18 at that position. It is designed to be sprayed into the grinding process.
  • the abrasive grains 12 a do not contact (collision) the reflecting plate 18 and the glass substrate 1.
  • the surface is sprayed onto the surface 1s to perform grinding.
  • grinding is performed by spraying the abrasive grains 12a onto the surface of the reflecting plate 18 (in the case of ductility processing)
  • the abrasive grains 12a contacting (collising) with the reflecting plate 18 are reflected in the direction of the glass substrate 1.
  • grinding is performed by spraying onto the surface 1s of the glass substrate 1 at a shallow angle.
  • the ejection direction changing member 19 is provided so as to be movable in the horizontal direction along with the circular surface (rotating surface) of the rotating member 16 in the reflecting plate mounting base 15 together with the rotating member 16.
  • the injection direction changing member 19 moves to a position where it does not come into contact with the abrasive grains 12a ejected from the correction head 12 during brittle machining, and moves to a position where it comes into contact with the abrasive grains 12a ejected from the correction head 12 during ductility machining.
  • the direction of the abrasive grains 12a sprayed is changed.
  • the mounting table 11 is also movably provided, and the spray position of the abrasive grains 12a may be adjusted by moving the glass substrate 1 on the mounting table 11.
  • the reflecting plate R (not shown) on the glass substrate 1 is provided.
  • the abrasive grains 12a are sprayed toward the reflector R at a shallow angle, and the abrasive grains 12a that contact (impact) the reflector R reflect in the direction in which the reflector R is not provided on the glass substrate 1.
  • grinding may be performed by spraying the surface 1 s of the glass substrate 1 at a shallow angle.
  • the inclination angle of the reflecting plate R is adjusted in consideration of the spray position of the abrasive grains 12a on the glass substrate 1.
  • the material of the reflector R is the same as that of the reflector 18. Moreover, the area, height, etc. of this reflector R are not specifically limited.
  • FIG. 3B is a plan view showing a main part of the defect correcting apparatus 10 for performing the defect correcting method of the present embodiment. Specifically, it is a plan view showing a configuration excluding the substrate mounting table 13, the glass substrate 1, and the mounting table 11 when the defect correction apparatus 10 is viewed from the substrate mounting table 13 side. As shown in FIG. 3B, the rotating member 16 is rotated by the rotating shaft 25 in the reflecting plate mounting base 15. As a result, the defect correcting device 10 can change the injection position (injection direction) of the abrasive grains 12a.
  • FIG. 3C is a cross-sectional view showing the main part of the defect correcting apparatus 10 for carrying out the defect correcting method of the present embodiment. Specifically, it is a cross-sectional view showing the configuration of the injection direction changing member 19.
  • the reflection plate control member 27 in the reflection plate support member 17 causes the reflection plate 18 to pass through the injection direction of the abrasive grains 12 a (from the processed surface of the glass substrate 1 passing through the reflection plate 18).
  • the angle of the abrasive grains 12a with respect to the (normal direction) can be changed.
  • the defect correction apparatus 10 can change the spray position of the abrasive grains 12a (the spray position in the depth direction in the grinding region).
  • a liquid crystal display panel is produced using the glass substrate 1 before defect correction. And when irradiating uniform light from the back surface of the created liquid crystal display panel, inspecting whether bright spots are observed due to the internal bubbles 1b formed on the glass substrate 1, and observed The position is specified in advance. Thereafter, the liquid crystal display panel is fixed to the substrate mounting table 13 of the defect correcting apparatus 10, and grinding processing described later is performed at the specified position.
  • FIG. 4 is a schematic diagram of the correction head 12 provided in the defect correction apparatus 10.
  • the correction head 12 has a structure having an abrasive supply nozzle 121 for supplying a fixed amount of abrasive grains 12a.
  • the abrasive grain supply nozzle 121 is made of a cylinder, a cylindrical front end hole 121a serving as a discharge hole for the abrasive grains 12a, a cylindrical rear end hole 121b serving as an air supply hole, and the cylindrical front end hole 121a and the cylindrical rear end hole 121b. And an abrasive grain supply hole 121c serving as a supply hole for the abrasive grains 12a.
  • the abrasive grain supply hole 121c of the abrasive grain supply nozzle 121 is connected to an abrasive tank 122 for storing abrasive grains, and the cylindrical rear end hole 121b is connected to a high-speed solenoid valve 123.
  • the abrasive grain tank 122 is provided with an opening / closing lid (not shown) at a connection portion with the abrasive grain supply nozzle 121, and the opening / closing lid is opened only when the abrasive grains 12a are supplied. .
  • the high-speed solenoid valve 123 includes a connection cylinder 123a connected to the cylindrical rear end hole 121b of the abrasive grain supply nozzle 121 and an air intake port for taking in supply air from an air supply unit (not shown).
  • an air supply unit not shown.
  • the high-speed solenoid valve 123 is open, the supply air taken in from the air intake port 123b is supplied to the connecting cylinder 123a.
  • the high-speed solenoid valve 123 is closed, the air intake Supplying supply air taken in from the port 123b to the connecting cylinder 123a is stopped.
  • the abrasive grains 12a are ejected from the abrasive supply nozzle 121 by the supply air. Is done. If the high-speed solenoid valve 123 is in the closed state, the abrasive grains 12 a are not injected from the abrasive grain supply nozzle 121 regardless of the open / closed state of the opening / closing lid of the abrasive tank 122.
  • the high-speed solenoid valve 123 is open and the opening / closing lid of the abrasive tank 122 is closed, only air that does not contain the abrasive grains 12a can be injected from the abrasive supply nozzle 121. it can.
  • the correction head 12 having the above-described configuration is provided with, for example, abrasive grains 12a made of alumina having a particle size of 800 on the projection 1p on the surface 1s of the glass substrate 1 or a reflecting plate at a processing speed of 0.2 mm / s to 0.6 mm / s.
  • abrasive grains 12a made of alumina having a particle size of 800 on the projection 1p on the surface 1s of the glass substrate 1 or a reflecting plate at a processing speed of 0.2 mm / s to 0.6 mm / s.
  • the abrasive grains 12 a are continuously sprayed from the correction head 12 onto the surface 1 a of the glass substrate 1 or the surface of the reflector, the abrasive grains 12 a remain on the ground portion of the glass substrate 1. In such a case, the newly-injected abrasive grains 12a collide with the abrasive grains 12a remaining in the grinding site and cannot be directly ground on the actual grinding target surface, resulting in a problem of reduced grinding efficiency. .
  • the abrasive grains 12a remaining at the grinding site can be removed by injection of only air. Can do. Thereby, it becomes possible to improve the grinding efficiency.
  • the high-speed solenoid valve 123 is opened and the lid of the abrasive tank 122 is opened and closed intermittently, the air containing the abrasive grains 12a and Air that does not include the abrasive grains 12a can be alternately injected.
  • AJM ABRASIVE Jet Machining
  • removal processing up to the state shown in FIG. 1 (e) may be performed.
  • the state shown in (e) of FIG. 1 is not necessarily an ideal state as the shape of the glass substrate 1, but as a result of actually confirming the influence on the display, it is compared with the state before the removal processing. Thus, the bright spots due to the internal bubbles 1b are hardly observed.
  • FIG. 5 (a) when a recess having a shape in which a part of the processed surface 1w is vertically formed with respect to the surface 1s is formed, the processed surface is observed in the observation direction D perpendicular to the surface 1s. Since the vertical portion 1w coincides with the observation direction D, the influence on the display of the processed surface 1w is accumulated in the observation direction D. As a result, the processed surface 1w is easily noticeable.
  • the processing surface 1w does not stand perpendicular to the surface 1s as described above, and a tangential plane at an arbitrary position of the processing surface 1w (( b)) is parallel or inclined with respect to the surface 1s, the influence on the display of the processed surface 1w is not accumulated in the observation direction D, and the processed surface 1w is conspicuous. Can be difficult.
  • the spraying speed of the abrasive grains 12a sprayed from the correction head 12 may be changed depending on the defect position. For example, when trying to obtain a recess having a shape as shown in FIG. 5B, the spraying speed of the abrasive grains 12a is increased at the center of the recess, and the abrasive is directed outward from the center of the recess. What is necessary is just to slow down the injection speed of the grain 12a gradually.
  • the refractive index change in the depression can be reduced as compared with an empty state in the depression.
  • the dent can be made inconspicuous.
  • a liquid transparent resin may be filled into the hollow and solidified.
  • alumina is used as the abrasive grains 12a, but the present invention is not limited to this, and silicon carbide, boron carbide, cerium oxide, or the like may be used.
  • the grain size of the abrasive grains 12a is not limited to 800, but may be other grain sizes, more preferably after finishing with 800 and finishing with 2000, and may be changed according to the object to be ground. .
  • the glass substrate 1 on which the internal bubbles 1b as internal defects are formed As shown in FIG. 7, the glass substrate 1 on which the internal foreign matter 1c as internal defects is formed. May be the correction target. Even in this case, it is possible to reduce the lens effect and polarization state disturbance described above. Further, in the case where the internal foreign matter 1c is made of a light-shielding material, an effect of removing black spots can be obtained by performing processing that completely removes the internal foreign matter 1c.
  • the defect correction method of this embodiment is a glass substrate defect correction method for constituting a display panel, and the defect to be corrected is a protrusion as a surface defect formed on the glass substrate. As described in the first embodiment, this protrusion may be formed due to the presence of an internal defect, but may be formed independently of the internal defect.
  • the defect correcting method of the present embodiment can be applied to glass substrates for constituting various display panels such as a liquid crystal display panel and a plasma display panel (PDP), as in the case of the first embodiment.
  • various display panels such as a liquid crystal display panel and a plasma display panel (PDP), as in the case of the first embodiment.
  • PDP plasma display panel
  • defect correction method of the present embodiment can be carried out at various stages in the production of the glass substrate and the display panel as in the case of the first embodiment.
  • FIG. 8 is a cross-sectional view of the glass substrate 1 on which protrusions 1p as surface defects to be corrected are formed.
  • the defect correcting apparatus 10 described in the first embodiment can be used.
  • FIGS. 9A to 9C are diagrams for explaining brittle processing. Furthermore, as shown in FIG.
  • FIG. 9 (d) the abrasive grains 12a are continuously injected at the above-described injection speed at a shallower angle than the case shown in FIG. 9 (b). In this state, the abrasive grains 12a are further sprayed, and the glass material is completely removed until the correction surface 1f becomes smooth (mirror surface) as shown in FIG. 9 (e).
  • FIG. 9D and FIG. 9E are diagrams for explaining ductility processing.
  • removal processing up to the state of FIG. 9 (e) may be performed.
  • the height of the protrusion 1p is lowered by removing a part or all of the protrusion 1p, and this is referred to as flattening of the protrusion 1p.
  • the surface 1s on which the protrusion 1p is formed can be brought close to the original surface shape. As a result, it is possible to make it difficult to generate a bright spot due to the protrusion 1p.
  • alumina having a particle size of 800 is used and injected at a processing speed of 0.2 mm / s to 0.6 mm / s (injection speed of 150 to 200 m / s). You may make it do, and you may change the material of the abrasive grain 12a, a particle size, and an injection speed as needed.
  • the defect to be corrected for the glass substrate 1 is the protrusion 1p.
  • the defect to be corrected for the glass substrate 1 is a surface scratch. An example will be described.
  • the defect correction method of the present embodiment is a glass substrate defect correction method for constituting a display panel, and the defect to be corrected is a scratch as a surface defect formed on the glass substrate.
  • the defect correcting method of the present embodiment can be applied to glass substrates for constituting various display panels such as a liquid crystal display panel and a plasma display panel (PDP), as in the case of the first embodiment.
  • various display panels such as a liquid crystal display panel and a plasma display panel (PDP), as in the case of the first embodiment.
  • PDP plasma display panel
  • defect correction method of the present embodiment can be carried out at various stages in the production of the glass substrate and the display panel as in the case of the first embodiment.
  • FIG. 10 is a cross-sectional view of the glass substrate 1 on which scratches 1v as surface defects to be corrected are formed.
  • the defect correcting apparatus 10 described in the first embodiment can be used.
  • FIG. 11 are diagrams showing the progress of the grinding process.
  • the abrasive grains 12 a are ejected by the correction head 12, as shown in FIG. 11A, the ground abrasive 12 a comes into contact with the surface 1 s of the glass substrate 1 to start grinding. Then, the abrasive grains 12a are ejected while the correction head 12 is swung in the horizontal direction, thereby forming a scratch 1v on the original surface 1s of the glass substrate 1 as shown in FIG. The angle formed by the surface can be reduced.
  • FIG. 11 and (b) of FIG. 11 are figures explaining brittle processing. Further, as shown in FIG.
  • the abrasive grains 12a are continuously injected at the above-described injection speed at a shallower angle than the case shown in FIG. In this state, the abrasive grains 12a are continuously sprayed, and as shown in FIG. 11D, the angle formed by the surface formed by the scratches 1v is made until the correction surface 1f becomes smooth (mirror surface). Make it smaller.
  • FIG. 11 and (d) in FIG. 11 are diagrams for explaining ductility processing.
  • the angle formed by the surface formed by the scratch 1v with respect to the original surface 1s of the glass substrate 1 is reduced, and this is smoothed. Called.
  • the surface 1s on which the scratch 1v is formed can be brought close to the original surface shape. As a result, it is possible to make it difficult to generate a bright spot due to the scratch 1v.
  • the tangent plane at an arbitrary position of the processed surface 1w is the surface 1s. It is desirable to be parallel or inclined with respect to. Moreover, as shown in FIG. 6 in Embodiment 1, it is desirable to fill the formed recess with the transparent material 2.
  • FIG. 12A is a plan view showing a liquid crystal display panel according to an embodiment of the present invention
  • FIG. 12B is a cross-sectional view showing the liquid crystal display panel.
  • the liquid crystal display panel 20 is configured by two glass substrates 1 facing each other at a predetermined interval and sealing the periphery with a liquid crystal 21 sandwiched therebetween. Although not shown, a polarizing plate or the like is attached to the outer surfaces of the two glass substrates 1.
  • the two glass substrates 1 have a processed surface 1w on the surface in the display area 20a of the liquid crystal display panel 20 on which the glass material removal processing described in the first to third embodiments is performed.
  • this processed surface 1w may have both of the two glass substrates 1, and may have either one.
  • the processed surface 1w is preferably filled with a transparent material.
  • the glass material removal processing described in the first to third embodiments is applied to the internal defects and surface defects originally formed on the two glass substrates 1, and as a result, The adverse effect is reduced, and the liquid crystal display panel 20 that had to be handled as a defective product in the past can also be made non-defective.
  • the defect correcting apparatus in which the correction head 12 is installed so that the injection direction of the abrasive grains 12a is horizontal with respect to the ground is not limited to this.
  • the spray direction of the abrasive grains 12a is perpendicular to the ground (perpendicular to the glass substrate 1). It is also possible to use the defect correction apparatus 110 in which the correction head 12 is installed so that
  • the defect correcting device 110 includes a casing 111 having a mounting surface 111a for mounting the glass substrate 1, and a correcting head 12 that is suspended from the ceiling portion of the casing 111 and is movable in the horizontal direction and the vertical direction. And a reflecting plate mounting base 15 mounted with a rotating member 16 fixed to an ejection direction changing member 19 provided with the reflecting plate 18 and the reflecting plate supporting member 17.
  • the defect correction apparatus 10 moves the correction head 12 above the internal bubbles 1b of the glass substrate 1 or above the reflector 18 and at the position, the abrasive grains 12a are placed on the surface 1s of the glass substrate 1 or the surface of the reflector 18. It is designed to perform grinding by spraying.
  • the supply air supply control since only supply air is supplied, the supply air supply control directly controls the injection / stop of the abrasive grains 12a. In order to inject only air that does not include 12a, it is necessary to control the opening / closing of the opening / closing lid of the abrasive grain tank 122.
  • FIG. 14 shows a correction head capable of injecting only air that does not contain the abrasive grains 12a without performing opening / closing control of the opening / closing lid of the abrasive tank 122.
  • the correction head 112 has a structure in which an acceleration nozzle 124 for accelerating and injecting the abrasive grains 12a supplied by the abrasive supply nozzle 121 is newly added.
  • the acceleration nozzle 124 includes an injection hole 124a for injecting the abrasive grains 12a to the outside, an air supply hole 124b for supplying acceleration air for accelerating the abrasive grains 12a and injecting the abrasive grains 12a from the injection holes 124a, A mixing chamber 124c is formed between the injection hole 124a and the air supply hole 124b, and mixes the abrasive grains 12a and the accelerating air and guides them to the injection hole 124a.
  • the cylindrical tip hole 121a of the abrasive grain supply nozzle 121 is disposed so as to protrude into the mixing chamber 124c of the acceleration nozzle 124.
  • the abrasive grains 12a are supplied from the abrasive supply nozzle 121 to the acceleration nozzle 124 by the supply air, and are taken in from the air supply hole 124b.
  • the air including the abrasive grains 12a is ejected from the ejection holes 124a by the accelerated air.
  • the high-speed solenoid valve 123 is in the closed state, the supply air is not supplied to the abrasive grain supply nozzle 121, so that the abrasive grains 12 a are not supplied to the acceleration nozzle 124. For this reason, only the air which does not contain the abrasive grain 12a is injected from the injection hole 124a of the acceleration nozzle 124.
  • Each air supply is adjusted so that the relationship of P1 ⁇ P2 is established, where the pressure of the acceleration air is P1 and the pressure of the supply air is P2.
  • the abrasive grains 12a in the abrasive grain supply nose 121 are always supplied to the accelerating nozzle 124, and no backflow occurs.
  • the abrasive grains 12 a are continuously sprayed from the correction head 112 onto the surface 1 a of the glass substrate 1 or the surface of the reflecting plate 18, the abrasive grains 12 a remain on the ground portion of the glass substrate 1. In such a case, the newly-injected abrasive grains 12a collide with the abrasive grains 12a remaining in the grinding site and cannot be directly ground on the actual grinding target surface, resulting in a problem of reduced grinding efficiency. .
  • the air taken in from the air intake port 123b is intermittently supplied to the connecting cylinder 123a, so that the abrasive grains If the supply of the abrasive grains 12a from the supply nozzle 121 to the accelerating nozzle 124 is intermittently performed, the injection of the abrasive grains 12a and the injection of only air, which is a medium for injecting the abrasive grains 12a, are alternately performed.
  • the injection of the abrasive grains 12a remaining in the grinding portion by jetting only air. Thereby, it becomes possible to improve the grinding efficiency.
  • the correction head 112 shown in FIG. 14 can be mounted on either the defect correction apparatus 10 shown in FIG. 3A or the defect correction apparatus 110 shown in FIG. 13 in the same manner as the correction head 12 shown in FIG. is there.
  • abrasive grains that are powders are jetted by air to grind the correction target.
  • fluid That is, it is possible to grind the object to be corrected by spraying water or the like.
  • the correction head 12 may be changed to a head that ejects water.
  • FIG. 15 is a diagram showing the appearance of the surface of the glass substrate 1 before and after grinding in the above-described first to third embodiments.
  • 15A shows the appearance of the surface of the glass substrate 1 before grinding
  • FIG. 15B shows the appearance of the surface of the glass substrate 1 after grinding.
  • a rotating member for rotating the injection direction changing member about the normal from the processing surface passing through the injection direction changing member may be further arranged. preferable.
  • the substrate processing apparatus of the present invention can change the spraying direction of the abrasive grains after being reflected by the spraying direction changing member.
  • the substrate processing apparatus of the present invention further includes an injection direction control member for changing an angle of the injection direction changing member with respect to a normal line from the processing surface passing through the injection direction changing member. It is preferable that
  • the substrate processing apparatus of the present invention can control the spray angle of the abrasive after being reflected by the spray direction changing member.
  • the jetting direction changing member contains at least one of silicon carbide and silicon nitride.
  • the injection direction changing member is not easily deteriorated, and the efficiency of the substrate processing operation can be improved.
  • the substrate is preferably a glass substrate, and the abrasive grains are preferably alumina.
  • alumina has a hardness (Mohs) of 9, and can be suitably used as abrasive grains for grinding.
  • the substrate processing apparatus of the present invention preferably alternately performs the ejection of abrasive grains and a medium for ejecting the abrasive grains and the ejection of only the medium.
  • Abrasive grains that are sprayed and ground onto the processing part of the substrate remain in the grinding part. Therefore, the grinding efficiency of the next abrasive grain is obstructed, and the grinding efficiency decreases as the abrasive grain continues. To do.
  • the ejection of abrasive grains and a medium for ejecting the abrasive grains and the ejection of only the medium are alternately performed.
  • grinding of the processed portion of the substrate and removal of residues such as abrasive grains remaining in the ground portion are alternately performed, so that unnecessary abrasive grains can be eliminated.
  • the substrate processing apparatus of the present invention can increase the grinding efficiency.
  • the substrate processing apparatus of the present invention it is preferable to fill the processed portion of the substrate with a transparent material.
  • the substrate processing apparatus of the present invention is filled with a transparent material (individual) in a portion (indentation, groove, etc.) from which the substrate has been removed by processing, and this portion is compared with an empty state.
  • the refractive index change at this portion can be reduced.
  • the substrate processing apparatus of the present invention can make the portion from which the substrate has been removed by the processing difficult to notice.
  • the substrate processing apparatus of the present invention may be one in which the substrate constitutes a liquid crystal display panel.
  • a substrate (glass substrate) for constituting a liquid crystal display panel has a low alkali metal content and a high melting point, and thus easily generates internal bubbles. Therefore, the substrate processing apparatus of the present invention is particularly effective for a substrate for constituting a liquid crystal display panel.
  • the substrate processing method of the present invention is characterized in that in order to solve the above-described problems, the substrate processing apparatus is used for processing, and after the substrate is brittlely processed, the substrate is ductile processed.
  • the substrate processing apparatus can perform ductile processing of the substrate after brittle processing of the substrate, so that the substrate surface after processing can be smoothed.
  • the method for manufacturing a processed substrate of the present invention is characterized by including a step of using the substrate processing method in order to solve the above-mentioned problems.
  • the surface of the manufactured processed substrate can be smoothed.
  • the present invention can be used in all fields for processing brittle materials.
  • a glass substrate constituting a flat display panel such as a liquid crystal display panel or a plasma display panel (PDP).
  • PDP plasma display panel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Glass (AREA)
  • Liquid Crystal (AREA)

Abstract

Disclosed are a device for processing a substrate and a method for processing a substrate employing said processing device, which are simple and make it possible to provide a processed substrate which has a smooth surface. Also provided is a method for producing a processed substrate employing said processing method. A device (10) for processing a substrate (1) has disposed thereon a member (12) for spraying abrasive grains (12a) in such a way that the angle of spraying of the abrasive grains (12a) with respect to the surface of the substrate (1) which is being processed is an angle employed in brittleness processing, and a spray direction changing member (18) for changing the angle of entry of the abrasive grains (12a) onto the processing surface of the substrate (1) from an angle employed in brittleness processing to an angle employed in ductility processing is disposed between the spraying member (12) and the processing surface of the substrate (1) in the direction of spraying of the abrasive grains (12a). The spray direction changing member (18) is moveable.

Description

基板の加工装置および基板の加工方法、並びに加工基板の製造方法Substrate processing apparatus, substrate processing method, and processed substrate manufacturing method
 本発明は、基板の加工装置および基板の加工方法、並びに加工基板の製造方法に関するものである。さらに詳しくは、加工後の基板表面を平滑(鏡面)にすることができ、かつシンプルである基板の加工装置、および該加工装置を用いた基板の加工方法、並びに該加工方法を用いた加工基板の製造方法に関するものである。 The present invention relates to a substrate processing apparatus, a substrate processing method, and a processed substrate manufacturing method. More specifically, the substrate surface after processing can be made smooth (mirror surface) and is simple, a substrate processing device, a substrate processing method using the processing device, and a processed substrate using the processing method It is related with the manufacturing method.
 従来、基板の欠陥を修正すること等を目的として基板の表面に凹部を形成するために、基板の加工、例えばブラスト加工等を行うのが一般的である。 Conventionally, in order to form a recess on the surface of a substrate for the purpose of correcting a defect of the substrate, etc., it is common to perform processing of the substrate, for example, blasting.
 例えばガラス基板に関しては、近年のディスプレイの大画面化に伴うガラス基板に対する要求の1つとして、ガラス基板の欠陥の低減がある。ここで、ガラス基板の欠陥とは、内部泡や内部異物等の内部欠陥と、表面に形成された突起や傷等の表面欠陥とを意味する。 For example, regarding glass substrates, one of the requirements for glass substrates accompanying the recent increase in screen size is reduction of defects in the glass substrates. Here, the defect of a glass substrate means internal defects, such as an internal bubble and an internal foreign material, and surface defects, such as a processus | protrusion and a damage | wound formed in the surface.
 欠陥を有するガラス基板を用いてフラットディスプレイを作成すると、欠陥の近傍において輝点や黒点等の表示不良が生じることになる。例えば、ある程度の大きさ(例えば直径100μm以上)の内部泡が存在すると、その付近が輝点として観察されることになる。内部泡によって輝点が生じるメカニズムについては必ずしも明らかではないが、内部泡が存在することにより、内部泡周辺のガラスによるレンズ効果や、内部泡周辺のガラスに残留する応力による偏光状態の乱れ等が原因であるものと考えられる。また、ある程度の大きさの内部異物が存在する場合についても、内部異物が遮光性の材料からなる場合には黒点を生じることもある。さらに、突起や傷等の表面欠陥についても、ガラス基板の本来の表面とは異なる方向に微小な屈折面や反射面が形成されることになる結果、これらに起因した輝点を生じ得る。したがって、ガラス基板の欠陥はできるだけ少ないことが望ましい。 When a flat display is produced using a glass substrate having defects, display defects such as bright spots and black spots occur in the vicinity of the defects. For example, when an internal bubble having a certain size (for example, a diameter of 100 μm or more) is present, the vicinity thereof is observed as a bright spot. The mechanism by which the bright bubbles are generated by the internal bubbles is not necessarily clear, but the presence of the internal bubbles may cause the lens effect due to the glass around the internal bubbles and the disorder of the polarization state due to the stress remaining on the glass around the internal bubbles. It is thought to be the cause. Further, even when a certain amount of internal foreign matter exists, black spots may be generated when the internal foreign matter is made of a light-shielding material. Further, surface defects such as protrusions and scratches may cause a fine refracting surface or reflecting surface to be formed in a direction different from the original surface of the glass substrate, resulting in bright spots due to these. Therefore, it is desirable that the glass substrate has as few defects as possible.
 ここで、ガラス基板の欠陥の発生原因について説明しておく。 Here, the cause of the glass substrate defect will be described.
 内部泡は、ガラス基板を製造する際のガラス原料を溶解する工程において、空気の巻き込みや耐火材からのガスの放出等によって、溶解したガラス原料の中に泡が形成されることにより発生する。さらに、使用するガラス原料によっては、ガラス原料自らがガスを発生するものもある。このような内部泡は、体積に応じてある確率で存在し、その確率を下げることは容易ではない。なお、ガラス基板に存在する泡の位置が表面に近い場合には、ガラス基板の表面に突起(盛り上がりやうねりを含む)を伴うこともある。 Internal bubbles are generated when bubbles are formed in the melted glass raw material due to entrainment of air, release of gas from the refractory material, or the like in the process of melting the glass raw material when manufacturing the glass substrate. Furthermore, depending on the glass raw material used, there is a glass raw material itself that generates gas. Such internal bubbles exist with a certain probability depending on the volume, and it is not easy to reduce the probability. In addition, when the position of the bubble which exists in a glass substrate is near the surface, a processus | protrusion (a rise and a wave | undulation are included) may be accompanied on the surface of a glass substrate.
 内部異物は、原料に起因するものと、外部からのコンタミネーションに起因するものとがある。原料に起因する内部異物としては、ガラス原料が溶解されずに残ることにより異物化したものや、ガラス原料に混在していた難溶解性の異物等がある。また、外部からのコンタミネーションとしては、ガラス原料を溶解する際に用いた耐火材がガラスに混入することによって異物となったもの等がある。なお、ガラス基板に存在する異物の位置が表面に近い場合には、内部泡と同じく、ガラス基板の表面に突起(盛り上がりやうねりを含む)を伴うこともある。 ∙ There are two types of internal foreign matters, one caused by raw materials and one caused by external contamination. Examples of the internal foreign matters resulting from the raw materials include those that have been made foreign due to the glass raw material remaining undissolved, and hardly soluble foreign matters that have been mixed in the glass raw material. Moreover, as contamination from the outside, there is a material that has become a foreign substance when the refractory material used when melting the glass raw material is mixed into the glass. In addition, when the position of the foreign material which exists in a glass substrate is near the surface, a processus | protrusion (a swelling and a wave | undulation) may be accompanied on the surface of a glass substrate like an internal bubble.
 ガラス基板の表面に形成される突起は、上述したように、内部泡や内部異物に伴って生じる表面欠陥である。 The protrusion formed on the surface of the glass substrate is a surface defect caused by internal bubbles or internal foreign matter as described above.
 また、ガラス基板の表面に形成される傷は、原板といわれる大型のガラス板からガラス基板を切り出して周辺加工を施す工程において、ガラス基板同士が接触すること等によって生じるものである。 Further, scratches formed on the surface of the glass substrate are caused by the glass substrates coming into contact with each other in a step of cutting out the glass substrate from a large glass plate called an original plate and performing peripheral processing.
 ところで、上記ガラス基板の欠陥に対処するための技術ではないが、不良画素に起因する輝点不良を解消するために、ガラス基板における不良画素に対応する領域に凹所を形成し、その凹所に遮光性樹脂を充填することによって光の漏れを防止する技術が知られている(例えば、特許文献1,2参照)。 By the way, although it is not a technique for coping with the defect of the glass substrate, in order to eliminate the bright spot defect caused by the defective pixel, a recess is formed in a region corresponding to the defective pixel in the glass substrate, and the recess There is known a technique for preventing light leakage by filling a light-blocking resin into the film (for example, see Patent Documents 1 and 2).
 また、液晶表示パネルのカラーフィルタに形成される微小突起を研削により除去する研磨装置も知られている(例えば、特許文献3参照)。 Also known is a polishing apparatus that removes minute protrusions formed on a color filter of a liquid crystal display panel by grinding (for example, see Patent Document 3).
日本国公開特許公報「特開平5-210074号公報(公開日:1993年8月20日)」Japanese Patent Publication “JP-A-5-210074 (Publication Date: August 20, 1993)” 日本国公開特許公報「特開2005-189360号公報(公開日:2005年7月14日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-189360 (Publication Date: July 14, 2005)” 日本国公開特許公報「特開平6-313871号公報(公開日:1994年11月8日)」Japanese Patent Publication “Japanese Patent Laid-Open No. 6-313871 (Publication Date: November 8, 1994)”
 しかしながら、上記従来の基板の加工方法では、基板の欠陥を修正することは困難であるという問題点を有している。 However, the conventional substrate processing method has a problem that it is difficult to correct a defect of the substrate.
 したがって、欠陥のない基板を用いることが理想ではあるが、そのような基板を製造することは不可能である。また、基板の製造工程を見直すことによって、欠陥の発生をある程度までは低減できたとしても所詮限界がある。 Therefore, although it is ideal to use a substrate without defects, it is impossible to manufacture such a substrate. Even if the generation of defects can be reduced to a certain extent by reviewing the manufacturing process of the substrate, there is a limit.
 一方、欠陥を含む基板すべてを不良品とした場合には、歩留りの低下、ひいては基板のコストアップという問題を招来することになる。特に、大画面に対応した大型のガラス基板では、確率的に欠陥を含みやすいため、歩留り低下の問題は深刻である。 On the other hand, if all of the substrates including defects are defective, this leads to a problem of a decrease in yield and an increase in substrate cost. In particular, a large glass substrate corresponding to a large screen is prone to include defects stochastically, so the problem of yield reduction is serious.
 したがって、製造された基板に欠陥が含まれていたとしても、それを修正するための加工を施すことによって良品化する技術が求められている。 Therefore, there is a demand for a technique for improving the quality of a manufactured substrate by performing processing for correcting the defect even if the manufactured substrate contains a defect.
 なお、このような要求は、液晶表示パネルやプラズマディスプレイパネル等のフラットディスプレイ用パネルを構成するガラス基板などの一般的な基板にとって共通ではあるが、次の理由により、特に液晶表示パネル用のガラス基板において顕著である。 Such a requirement is common to general substrates such as glass substrates constituting flat display panels such as liquid crystal display panels and plasma display panels. However, glass for liquid crystal display panels is particularly used for the following reasons. This is noticeable in the substrate.
 液晶表示パネル用のガラス基板には、その表面に半導体素子を形成する必要があり、半導体素子はアルカリ金属から悪影響を受けやすい。そのため、液晶表示パネル用のガラス基板には、添加成分としてアルカリ金属を含まない(不純物としてのアルカリ金属は1%以下である)無アルカリガラスを用いるのが一般的である。しかし、無アルカリガラスは融点が高いため、無アルカリガラスでは、ガラス原料の溶解時において泡が抜けにくく、内部泡が残りやすい。したがって、液晶表示パネル用のガラス基板は、内部泡としての欠陥を含みやすいため、欠陥を修正することによって基板を良品化する技術への要求が特に高い。 It is necessary to form a semiconductor element on the surface of a glass substrate for a liquid crystal display panel, and the semiconductor element is easily affected by alkali metals. Therefore, it is common to use an alkali-free glass that does not contain an alkali metal as an additive component (the alkali metal as an impurity is 1% or less) as a glass substrate for a liquid crystal display panel. However, since the alkali-free glass has a high melting point, the alkali-free glass is difficult to remove bubbles when the glass raw material is melted, and internal bubbles are likely to remain. Therefore, since the glass substrate for liquid crystal display panels tends to include defects as internal bubbles, there is a particularly high demand for a technique for improving the quality of the substrate by correcting the defects.
 さらに、上記問題点を解消するために、基板に形成された修正対象欠陥の位置する部位に対して、粉体または流体の少なくとも一方を噴射して、該基板から少なくとも該修正対象欠陥を含む領域の材料を除去するために脆性加工を行う技術が存在している。 Further, in order to solve the above-mentioned problem, at least one of powder or fluid is sprayed onto a portion where the defect to be corrected formed on the substrate is located, and an area including at least the defect to be corrected from the substrate In order to remove the material, there is a technique for performing brittle processing.
 しかしながら、上記脆性加工を行う技術では、加工後の基板表面を平滑にすることができないという問題点を有している。 However, the technique for performing the brittle processing has a problem that the processed substrate surface cannot be smoothed.
 ここで、加工後の基板表面を平滑にするためには、脆性加工の後に延性加工を行う、つまり脆性加工から延性加工に切り替えることが考えられるが、粉体または流体を噴射する部材を移動させることにより脆性加工から延性加工に切り替えると、加工装置が複雑になり、かつ大型化するという新たな問題点を生じる。 Here, in order to smooth the substrate surface after processing, it is conceivable to perform ductile processing after brittle processing, that is, switch from brittle processing to ductile processing. However, the member for injecting powder or fluid is moved. Therefore, when the brittle processing is switched to the ductile processing, a new problem arises that the processing apparatus becomes complicated and increases in size.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、加工後の基板表面を平滑にすることができ、かつシンプルである基板の加工装置、および該加工装置を用いた基板の加工方法、並びに該加工方法を用いた加工基板の製造方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to use a substrate processing apparatus that can smooth a substrate surface after processing and is simple, and the processing apparatus. An object of the present invention is to provide a method for processing a substrate and a method for manufacturing a processed substrate using the processing method.
 本発明の基板の加工装置は、上記の課題を解決するために、基板の加工面に対する砥粒の噴射角度が脆性加工における角度となるように、該砥粒の噴射部材が配置された基板の加工装置であって、上記砥粒の噴射方向における上記噴射部材と上記基板の加工面との間に、該基板の加工面への該砥粒の進入角度を上記脆性加工における角度から延性加工における角度に変更するための噴射方向変更部材が配置されているものであり、上記噴射方向変更部材が移動可能であることを特徴としている。 In order to solve the above-described problems, the substrate processing apparatus of the present invention is provided on the substrate on which the abrasive grain injection member is arranged so that the abrasive injection angle with respect to the processed surface of the substrate becomes an angle in brittle processing. In the processing apparatus, the angle of entry of the abrasive grains into the processing surface of the substrate is changed from the angle in the brittle processing to the ductile processing between the spray member and the processing surface of the substrate in the spray direction of the abrasive grains. An injection direction changing member for changing to an angle is arranged, and the injection direction changing member is movable.
 上記の構成によれば、上記砥粒の噴射方向における上記噴射部材と上記基板の加工面との間に上記噴射方向変更部材が配置されているので、該基板の加工面への該砥粒の進入角度を、脆性加工における角度から延性加工における角度に変更することができる。これにより、加工後の基板表面を平滑にすることができる。さらに、上記の構成によれば、上記噴射方向変更部材が移動可能であるので、該基板の加工面への該砥粒の進入角度を、延性加工における角度から脆性加工における角度に再度変更することができる。つまり、上記噴射方向変更部材が、上記砥粒と接触しない位置に移動することで、該基板の加工面への該砥粒の進入角度を、延性加工における角度から脆性加工における角度に再度変更することができる。 According to said structure, since the said injection direction change member is arrange | positioned between the said injection member in the injection direction of the said abrasive grain, and the processed surface of the said board | substrate, the said abrasive grain to the processed surface of this board | substrate The approach angle can be changed from an angle in brittle processing to an angle in ductile processing. Thereby, the processed substrate surface can be smoothed. Further, according to the above configuration, since the injection direction changing member is movable, the angle of entry of the abrasive grains into the processing surface of the substrate is changed again from the angle in ductile processing to the angle in brittle processing. Can do. That is, the injection direction changing member moves to a position where it does not come into contact with the abrasive grains, so that the angle of entry of the abrasive grains into the processing surface of the substrate is changed again from the angle in ductile processing to the angle in brittle processing. be able to.
 また、上記の構成によれば、1つの噴射部材のみを用いて上記基板の加工面への上記砥粒の進入角度を、脆性加工における角度から延性加工における角度に変更することができ、さらに延性加工における角度から脆性加工における角度に変更することができるので、基板の加工装置をシンプルにすることが可能となる。 Moreover, according to said structure, the angle of approach of the said abrasive grain to the process surface of the said board | substrate can be changed from the angle in a brittle process to the angle in a ductile process using only one injection member, and also ductility. Since the angle in processing can be changed to the angle in brittle processing, the substrate processing apparatus can be simplified.
 本発明の基板の加工装置は、以上のように、基板の加工面に対する砥粒の噴射角度が脆性加工における角度となるように、該砥粒の噴射部材が配置された基板の加工装置であって、上記砥粒の噴射方向における上記噴射部材と上記基板の加工面との間に、該基板の加工面への該砥粒の進入角度を上記脆性加工における角度から延性加工における角度に変更するための噴射方向変更部材が配置されているものであり、上記噴射方向変更部材が移動可能である。 As described above, the substrate processing apparatus of the present invention is a substrate processing apparatus in which the abrasive grain spraying member is disposed so that the abrasive grain spraying angle with respect to the substrate processing surface is an angle in brittle processing. Then, the angle of entry of the abrasive grains into the processed surface of the substrate is changed from the angle in the brittle processing to the angle in ductile processing between the spray member in the spray direction of the abrasive grains and the processed surface of the substrate. The injection direction change member for this is arrange | positioned, and the said injection direction change member is movable.
 それゆえ、本発明の基板の加工装置は、加工後の基板表面を平滑にすることができ、かつシンプルな構造になるという効果を奏する。 Therefore, the substrate processing apparatus of the present invention has an effect that the processed substrate surface can be smoothed and has a simple structure.
本発明の第1の実施形態における研削加工の進行状況を示す断面図である。It is sectional drawing which shows the progress of the grinding process in the 1st Embodiment of this invention. 本発明の第1の実施形態において、欠陥修正の対象となるガラス基板の要部を示す断面図である。In the 1st Embodiment of this invention, it is sectional drawing which shows the principal part of the glass substrate used as the object of defect correction. 本発明の第1の実施形態において用いる欠陥修正装置を示す説明図であり、(a)は、当該欠陥修正装置の構成の断面を示し、(b)は、当該欠陥修正装置の要部の平面を示し、(c)は、当該欠陥修正装置の要部の断面を示している。It is explanatory drawing which shows the defect correction apparatus used in the 1st Embodiment of this invention, (a) shows the cross section of the structure of the said defect correction apparatus, (b) is the plane of the principal part of the said defect correction apparatus. (C) has shown the cross section of the principal part of the said defect correction apparatus. 図3に示す欠陥修正装置に備えられた修正ヘッドを示す断面図である。It is sectional drawing which shows the correction head with which the defect correction apparatus shown in FIG. 3 was equipped. 上記研削加工による加工面の形状を示す断面図である。It is sectional drawing which shows the shape of the processing surface by the said grinding process. 上記研削加工によって形成された窪みに透明材料を充填した状態を示す断面図である。It is sectional drawing which shows the state which filled the hollow formed by the said grinding process with the transparent material. 本発明の第1の実施形態において、欠陥修正の対象となる他のガラス基板の要部を示す断面図である。In 1st Embodiment of this invention, it is sectional drawing which shows the principal part of the other glass substrate used as the object of defect correction. 本発明の第2の実施形態において、欠陥修正の対象となるガラス基板の要部を示す断面図である。In 2nd Embodiment of this invention, it is sectional drawing which shows the principal part of the glass substrate used as the object of defect correction. 本発明の第2の実施形態における研削加工の進行状況を示す断面図である。It is sectional drawing which shows the progress of the grinding process in the 2nd Embodiment of this invention. 本発明の第3の実施形態において、欠陥修正の対象となるガラス基板の要部を示す断面図である。It is sectional drawing which shows the principal part of the glass substrate used as the object of defect correction in the 3rd Embodiment of this invention. 本発明の第3の実施形態における研削加工の進行状況を示す断面図である。It is sectional drawing which shows the progress of the grinding process in the 3rd Embodiment of this invention. 本発明の実施形態における液晶表示パネルを示す説明図であり、(a)は、当該液晶表示パネルの平面を示し、(b)は、当該液晶表示パネルの断面を示している。It is explanatory drawing which shows the liquid crystal display panel in embodiment of this invention, (a) shows the plane of the said liquid crystal display panel, (b) has shown the cross section of the said liquid crystal display panel. 本発明の欠陥修正方法において使用する他の欠陥修正装置の構成を示す断面図である。It is sectional drawing which shows the structure of the other defect correction apparatus used in the defect correction method of this invention. 本発明の欠陥修正方法において使用する他の修正ヘッドを示す断面図である。It is sectional drawing which shows the other correction head used in the defect correction method of this invention. 本発明の欠陥修正方法における研削加工前後のガラス基板表面の外観を示す図であり、(a)は、研削加工前のガラス基板表面の外観を示し、(b)は、研削加工後のガラス基板表面の外観を示している。なお、研削加工前後のガラス基板表面の外観は、一般的なデジタルカメラを用いて600万画素で撮影したものである。It is a figure which shows the external appearance of the glass substrate surface before and behind the grinding process in the defect correction method of this invention, (a) shows the external appearance of the glass substrate surface before a grinding process, (b) is a glass substrate after a grinding process The appearance of the surface is shown. The appearance of the surface of the glass substrate before and after grinding was taken with 6 million pixels using a general digital camera.
 〔実施形態1〕
 本発明の第1の実施形態について説明すれば、以下の通りである。なお、本発明はこれに限定されるものではなく、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に限定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。なお、本明細書等において、範囲を示す「A~B」は、「A以上、B以下」であることを示す。
Embodiment 1
The first embodiment of the present invention will be described as follows. Note that the present invention is not limited to this, and the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not particularly limited unless otherwise specified. It is not intended to limit the scope to that, but merely an illustrative example. In this specification and the like, “A to B” indicating a range indicates “A or more and B or less”.
 本実施形態では、基板の加工装置および加工方法の中で、ガラス基板の欠陥修正装置および欠陥修正方法を例に挙げて説明する。ただし、本発明はこれらに限定されず、一般的な基板(材料)の加工装置および加工方法にも適用することが可能である。 In the present embodiment, a glass substrate defect correcting device and a defect correcting method will be described as examples in the substrate processing apparatus and processing method. However, the present invention is not limited to these, and can also be applied to a general substrate (material) processing apparatus and processing method.
 ここで、加工対象物である基板(材料)は、脆性材料であれば特に限定されず、例えばガラス、セラミック等が挙げられる。 Here, the substrate (material) that is the object to be processed is not particularly limited as long as it is a brittle material, and examples thereof include glass and ceramics.
 本実施形態の欠陥修正方法は、表示パネルを構成するためのガラス基板の欠陥修正方法であり、修正対象となる欠陥はガラス基板に形成された内部欠陥である。 The defect correction method of this embodiment is a glass substrate defect correction method for constituting a display panel, and the defect to be corrected is an internal defect formed on the glass substrate.
 また、本実施形態の欠陥修正方法は、液晶表示パネルやプラズマディスプレイパネル(PDP)等種々の表示パネルを構成するためのガラス基板に対して適用できる。 Further, the defect correction method of the present embodiment can be applied to glass substrates for constituting various display panels such as a liquid crystal display panel and a plasma display panel (PDP).
 さらに、本実施形態の欠陥修正方法は、ガラス基板や表示パネルの製造等における種々の段階において実施することができる。例えば、ガラス製造者においてガラス基板を原板から切り出した後、出荷するまでの段階;表示装置の製造者においてガラス基板を受け入れた後、表示パネルに用いるまでの段階;構成された表示パネルを検査した後、表示装置として組み立てられるまでの段階;等の種々の段階において本実施形態の欠陥修正方法を実施することができる。特に、ガラス製造者においてガラス基板を原板から切り出した後、出荷するまでの段階において本実施形態の欠陥修正方法を実施する場合には、本実施形態の欠陥修正方法はガラス基板の製造方法をなすことになる。 Furthermore, the defect correction method of the present embodiment can be carried out at various stages in the production of glass substrates and display panels. For example, a stage in which a glass manufacturer cuts a glass substrate from the original plate and ships it; a stage in which the display substrate manufacturer accepts the glass substrate and then uses it for a display panel; Thereafter, the defect correction method of this embodiment can be performed in various stages such as a stage until the display device is assembled. In particular, when the glass manufacturer performs the defect correction method of the present embodiment in the stage from cutting out the glass substrate from the original plate to shipping, the defect correction method of the present embodiment forms the glass substrate manufacturing method. It will be.
 以下では、ガラス基板として液晶表示パネル用のものを想定するとともに、欠陥修正方法の実施段階として、構成された表示パネルを検査した後、表示装置として組み立てられるまでの段階を想定する。また、内部欠陥として内部泡を想定し、内部泡の修正方法について説明する。 In the following, it is assumed that the glass substrate is for a liquid crystal display panel, and the stage from the inspection of the configured display panel to the assembly as a display device is assumed as an implementation stage of the defect correction method. Further, assuming internal bubbles as internal defects, a method for correcting internal bubbles will be described.
 なお、液晶表示パネルを構成するためのガラス基板は、アルカリ金属の含有量が少なく融点が高いため、内部泡を発生しやすい。したがって、本実施形態の欠陥修正方法は、液晶表示パネルを構成するためのガラス基板に対して特に有効である。 In addition, since the glass substrate for constituting the liquid crystal display panel has a low alkali metal content and a high melting point, it tends to generate internal bubbles. Therefore, the defect correcting method of the present embodiment is particularly effective for a glass substrate for constituting a liquid crystal display panel.
 図2は、修正対象となる内部欠陥としての内部泡1bが形成されたガラス基板1の断面図である。 FIG. 2 is a cross-sectional view of the glass substrate 1 on which internal bubbles 1b as internal defects to be corrected are formed.
 図2に示す内部泡1bは、そのサイズが比較的大きく、また、その位置がガラス基板1の表面1sに比較的近いことから、ガラス基板1の表面1sに突起1pを伴っている。なお、内部泡1bは、そのサイズや位置によっては、突起1pを伴わないこともある。 2 has a relatively large size and its position is relatively close to the surface 1s of the glass substrate 1, so that the surface 1s of the glass substrate 1 is accompanied by a protrusion 1p. The internal bubble 1b may not be accompanied by the protrusion 1p depending on its size and position.
 内部泡1bは、最大径が100μm以下のものから、ガラス基板1の厚さ(例えば0.7mm)と同程度のものまで様々な大きさのものが存在しうる。最大径が例えば100μm以下の小さな内部泡1bについては、表示への悪影響が小さいことから、特段の措置をとらないことも考えられる。また、最大径が例えば100~300μmの内部泡1bについては、黒点化するといった措置をとることも考えられる。しかしながら、最大径が例えば300μmを超える内部泡1bについては、表示への悪影響を十分に低減する有効な措置は、以下において説明する本実施形態の欠陥修正方法を除いて考え難い。 The internal bubbles 1b may have various sizes from those having a maximum diameter of 100 μm or less to those having the same thickness as the glass substrate 1 (for example, 0.7 mm). For the small internal bubbles 1b having a maximum diameter of, for example, 100 μm or less, since the adverse effect on the display is small, it may be considered that no special measures are taken. Further, for the internal bubbles 1b having a maximum diameter of, for example, 100 to 300 μm, it may be considered to take a measure such as blackening. However, for the internal bubbles 1b whose maximum diameter exceeds, for example, 300 μm, it is difficult to consider an effective measure for sufficiently reducing the adverse effect on the display, except for the defect correction method of the present embodiment described below.
 このように、本実施形態の欠陥修正方法は、内部泡1bとして小さなものから大きなものまで広く対応できるが、他の有効な措置が考え難い大きな内部泡1bに対して特に有効である。 As described above, the defect correcting method according to the present embodiment can deal with a wide range of internal bubbles 1b from small to large, but is particularly effective for large internal bubbles 1b for which it is difficult to consider other effective measures.
 ガラス基板1に形成される内部泡1bに起因して、輝点が観察される。その理由としては、詳細なメカニズムは必ずしも明らかではないが、次のように考えることができる。 Bright spots are observed due to the internal bubbles 1b formed on the glass substrate 1. Although the detailed mechanism is not necessarily clear as the reason, it can be considered as follows.
 内部泡1bが形成されたガラス基板1を用いて液晶表示パネルを構成すると、内部泡1bの周辺のガラスによるレンズ効果や、内部泡1bの周辺のガラスに残留する応力による偏光状態の乱れ等によって、内部泡1b付近が輝点として観察されることになる。 When a liquid crystal display panel is configured using the glass substrate 1 on which the internal bubbles 1b are formed, due to the lens effect by the glass around the internal bubbles 1b, the disorder of the polarization state due to the stress remaining on the glass around the internal bubbles 1b, etc. The vicinity of the internal bubble 1b is observed as a bright spot.
 そこで、本実施形態にかかる欠陥修正方法は、上記ガラス基板1に形成された内部欠陥である内部泡1bの位置する部位において、砥粒を噴射して該ガラス基板1の表面1sから少なくとも上記内部泡1bに達するまでガラス材料の除去加工を行う方法である。 Therefore, in the defect correcting method according to the present embodiment, the abrasive grains are sprayed at a position where the internal bubble 1b, which is an internal defect formed in the glass substrate 1, is located, and at least the internal portion from the surface 1s of the glass substrate 1. In this method, the glass material is removed until the bubbles 1b are reached.
 また、図2に示すように、内部泡1bを取り巻くガラス材料(以下、取巻部と称する)1dは、レンズ効果や偏光状態の乱れが生じるおそれがあるので、内部泡1bとともに除去するのが好ましい。 Further, as shown in FIG. 2, the glass material 1d surrounding the internal bubble 1b (hereinafter referred to as a winding part) 1d may cause a lens effect or a disorder of the polarization state, and therefore, it is removed together with the internal bubble 1b. preferable.
 図1の(a)~(e)は、本実施形態の欠陥修正方法による内部欠陥の除去工程を示す図である。 FIGS. 1A to 1E are diagrams showing a process of removing internal defects by the defect correction method of this embodiment.
 図1の(a)に示すように、ガラス基板1の表面1sの突起1pに対して、所定の噴射速度で砥粒12aを噴き付ける。このとき、砥粒12aとして、粒径が800番(約0.03mm(30μm))のアルミナを用いているが、これに限定されず、加工対象物である基板の種類に応じて適宜選定することができる。砥粒12aとしては、例えばアルミナ、セリウム等が挙げられる。なお、加工対象物がガラス基板1の場合には、砥粒12aとしてアルミナを用いることが好ましい。また、砥粒12aの粒径としては、0.1~100μmであることが好ましい。砥粒12aの粒径は、脆性加工時と延性加工時とで変更してもよい。この場合、脆性加工時には、加工力を大きくするため砥粒12aの粒径を大きくし、一方、延性加工時には、加工力を小さくするため砥粒12aの粒径を小さくする。 As shown in FIG. 1 (a), abrasive grains 12a are sprayed at a predetermined spraying speed onto the protrusions 1p on the surface 1s of the glass substrate 1. At this time, alumina having a particle size of 800 (about 0.03 mm (30 μm)) is used as the abrasive grains 12 a, but is not limited to this, and is appropriately selected according to the type of the substrate to be processed. be able to. Examples of the abrasive grains 12a include alumina and cerium. In addition, when a workpiece is the glass substrate 1, it is preferable to use an alumina as the abrasive grain 12a. The grain size of the abrasive grains 12a is preferably 0.1 to 100 μm. The particle size of the abrasive grains 12a may be changed between brittle processing and ductile processing. In this case, at the time of brittle processing, the particle size of the abrasive grains 12a is increased to increase the processing force, while at the time of ductile processing, the particle size of the abrasive grains 12a is decreased to decrease the processing force.
 また、走査速度(修正ヘッド12の移動速度)は、0.2mm/s~0.6mm/sに設定されているが、これに限定されず、加工対象物である基板の種類に応じて適宜選定することができる。砥粒12aの噴射量(噴射圧)は、0.8MPaのエアーで噴射しているが、これに限定されず、加工対象物である基板の種類に応じて適宜選定することができる。砥粒12aの噴射時間は、特に限定されず、加工対象物である基板の種類、加工する基板の深さ等に応じて適宜選定することができる。 Further, the scanning speed (moving speed of the correction head 12) is set to 0.2 mm / s to 0.6 mm / s, but is not limited to this, and is appropriately determined according to the type of the substrate to be processed. Can be selected. The injection amount (injection pressure) of the abrasive grains 12a is injected with 0.8 MPa of air, but is not limited to this, and can be appropriately selected according to the type of the substrate to be processed. The spraying time of the abrasive grains 12a is not particularly limited, and can be appropriately selected according to the type of the substrate to be processed, the depth of the substrate to be processed, and the like.
 そして、上記の噴射速度により砥粒12aを噴き付け続けて、図1の(b)に示すように、砥粒12aが内部泡1bに達するまで、砥粒12aによって突起1pのガラス材料を除去する。そして、砥粒12aを噴射し続けることで、砥粒12aによる研削領域が内部泡1bにまで達する。この状態で、さらに、砥粒12aを噴射し続けて、図1の(c)に示すように、レンズ効果や偏光状態の乱れが生じるおそれのない修正面1eが露出するまで、内部泡1bの取巻部1dのガラス材料を除去する。なお、図1の(a)~(c)は脆性加工を説明する図である。さらに、図1の(d)に示すように、図1の(b)に示す場合よりも浅い角度で(図1の(b)に示す場合における噴射方向(略垂直方向)に対して斜め方向から)、上記の噴射速度により砥粒12aを噴射し続ける。この状態で、さらに、砥粒12aを噴射し続けて、図1の(e)に示すように、修正面1fが平滑(鏡面)になるまでガラス材料を除去する。なお、図1の(d)および図1の(e)は延性加工を説明する図である。 Then, the abrasive grains 12a are continuously sprayed at the above injection speed, and the glass material of the protrusions 1p is removed by the abrasive grains 12a until the abrasive grains 12a reach the internal bubbles 1b as shown in FIG. . And the grinding area | region by the abrasive grain 12a reaches to the internal bubble 1b by continuing spraying the abrasive grain 12a. In this state, the abrasive grains 12a are further sprayed until the correction surface 1e is exposed, as shown in (c) of FIG. The glass material of the winding part 1d is removed. 1A to 1C are diagrams for explaining brittle processing. Further, as shown in FIG. 1 (d), at an angle shallower than the case shown in FIG. 1 (b) (the oblique direction with respect to the injection direction (substantially vertical direction) in the case shown in FIG. 1 (b)) From the above, the abrasive grains 12a are continuously ejected at the above-described ejection speed. In this state, the abrasive grains 12a are further sprayed, and the glass material is removed until the correction surface 1f becomes smooth (mirror surface) as shown in FIG. Note that FIG. 1D and FIG. 1E are diagrams for explaining ductility processing.
 上記の研削は、噴射された砥粒12aの衝突によって生じる微細な脆性加工の積み重ねによって加工が進展するため、微細かつ高品位な加工を行うことができる。さらに、上記の研削は、脆性加工から延性加工に切り替えることによって加工が進展するため、加工後の基板表面を平滑にすることができる。 Since the above-described grinding progresses by the accumulation of fine brittleness processing caused by the collision of the injected abrasive grains 12a, fine and high-quality processing can be performed. Furthermore, since the grinding proceeds by switching from brittle machining to ductile machining, the substrate surface after machining can be smoothed.
 ここで、脆性加工での砥粒の進入角度は、基板1の表面1sに対して35°よりも大きく、90°以下の範囲内である。例えば、基板がガラス基板の場合には90°であることが好ましい。 Here, the approach angle of the abrasive grains in the brittle processing is larger than 35 ° and within a range of 90 ° or less with respect to the surface 1s of the substrate 1. For example, when the substrate is a glass substrate, it is preferably 90 °.
 一方、延性加工での砥粒の進入角度は、基板1の表面1sに対して0°よりも大きく、35°以下の範囲内である。例えば、基板がガラス基板の場合には30°であることが好ましい。 On the other hand, the approach angle of the abrasive grains in the ductile processing is larger than 0 ° and within a range of 35 ° or less with respect to the surface 1s of the substrate 1. For example, when the substrate is a glass substrate, it is preferably 30 °.
 本実施形態の欠陥修正方法を実現するための装置について以下に説明する。 An apparatus for realizing the defect correction method of this embodiment will be described below.
 図3の(a)は、本実施形態の欠陥修正方法を実施するための欠陥修正装置10の断面図である。 FIG. 3A is a cross-sectional view of the defect correction apparatus 10 for performing the defect correction method of the present embodiment.
 この欠陥修正装置10は、載置台11の載置面11a上に、修正対象物としてのガラス基板1を地面に対して垂直方向に固定するための基板載置台13と、基板載置台13に固定されたガラス基板1の修正箇所1bまたは反射板(噴射方向変更部材)18に対して砥粒12aを噴射するための修正ヘッド12を搭載したヘッド搭載台14と、反射板18および反射板支持部材17を備えた噴射方向変更部材19を固定した回転部材16を搭載した反射板搭載台15とが設けられている。 The defect correcting device 10 is fixed to the substrate mounting table 13 and a substrate mounting table 13 for fixing the glass substrate 1 as a correction target in a direction perpendicular to the ground on the mounting surface 11 a of the mounting table 11. Head mounting base 14 on which correction head 12 for injecting abrasive grains 12a is applied to correction location 1b or reflection plate (injection direction changing member) 18 of glass substrate 1, and reflection plate 18 and reflection plate support member A reflecting plate mounting base 15 on which a rotating member 16 having a jetting direction changing member 19 provided with a fixing member 17 is mounted is provided.
 ここで、反射板18は、セラミックを含有していることが好ましく、セラミックのみからなることがより好ましい。該セラミックとしては、例えば、炭化ケイ素(SiC)、窒化ケイ素(SiN)等が挙げられる。また、反射板支持部材17の材質は特に限定されず、例えば、金属等が挙げられる。 Here, the reflector 18 preferably contains ceramic, and more preferably consists of ceramic only. Examples of the ceramic include silicon carbide (SiC) and silicon nitride (SiN). Moreover, the material of the reflecting plate support member 17 is not specifically limited, For example, a metal etc. are mentioned.
 また、反射板18の大きさは特に限定されないが、面積が1cm角以上であることが好ましい。 The size of the reflector 18 is not particularly limited, but the area is preferably 1 cm square or more.
 また、回転部材16は、修正ヘッド12から噴射される砥粒12aの噴射方向(反射板18を通る、ガラス基板1の加工面からの法線方向)を中心として反射板18を回転させるためのものである。 The rotating member 16 rotates the reflecting plate 18 around the injection direction of the abrasive grains 12a injected from the correction head 12 (the normal direction from the processing surface of the glass substrate 1 passing through the reflecting plate 18). Is.
 上記修正ヘッド12は、上記ヘッド搭載台14において、地面に対して水平方向および垂直方向に移動可能に設けられており、砥粒12aの噴射方向が地面に対して水平方向(ガラス基板1に対して垂直方向)となるようになっている。 The correction head 12 is provided on the head mounting base 14 so as to be movable in a horizontal direction and a vertical direction with respect to the ground, and the spraying direction of the abrasive grains 12a is horizontal with respect to the ground (with respect to the glass substrate 1). Vertical direction).
 また、修正ヘッド12は、ガラス基板1を研削するための砥粒12aを噴射する噴射ノズル(後述する)を備えている。つまり、欠陥修正装置10は、修正ヘッド12をガラス基板1の内部泡1bまたは反射板18に対向する位置へ移動させ、その位置において砥粒12aをガラス基板1の表面1sまたは反射板18の表面に噴射して研削加工を行うようになっている。ここで、砥粒12aをガラス基板1の表面1sに噴射して研削加工を行う場合(脆性加工の場合)には、砥粒12aが反射板18には接触(衝突)せずにガラス基板1の表面1sに噴射して研削加工を行うようになっている。一方、砥粒12aを反射板18の表面に噴射して研削加工を行う場合(延性加工の場合)には、反射板18に接触(衝突)した砥粒12aがガラス基板1の方向に反射して、ガラス基板1の表面1sに浅い角度で噴射して研削加工を行うようになっている。 Moreover, the correction head 12 includes an injection nozzle (described later) for injecting abrasive grains 12a for grinding the glass substrate 1. That is, the defect correction apparatus 10 moves the correction head 12 to a position facing the internal bubble 1b or the reflection plate 18 of the glass substrate 1, and the abrasive grains 12a are moved to the surface 1s of the glass substrate 1 or the surface of the reflection plate 18 at that position. It is designed to be sprayed into the grinding process. Here, when grinding is performed by spraying the abrasive grains 12 a onto the surface 1 s of the glass substrate 1 (in the case of brittle processing), the abrasive grains 12 a do not contact (collision) the reflecting plate 18 and the glass substrate 1. The surface is sprayed onto the surface 1s to perform grinding. On the other hand, when grinding is performed by spraying the abrasive grains 12a onto the surface of the reflecting plate 18 (in the case of ductility processing), the abrasive grains 12a contacting (collising) with the reflecting plate 18 are reflected in the direction of the glass substrate 1. Thus, grinding is performed by spraying onto the surface 1s of the glass substrate 1 at a shallow angle.
 上記噴射方向変更部材19は、回転部材16とともに、反射板搭載台15において、回転部材16における円形の面(回転する面)と水平方向に移動可能に設けられている。噴射方向変更部材19は、脆性加工時には修正ヘッド12から噴射された砥粒12aとは接触しない位置に移動し、一方、延性加工時には修正ヘッド12から噴射された砥粒12aと接触する位置に移動して噴射された砥粒12aの方向を変えるものである。 The ejection direction changing member 19 is provided so as to be movable in the horizontal direction along with the circular surface (rotating surface) of the rotating member 16 in the reflecting plate mounting base 15 together with the rotating member 16. The injection direction changing member 19 moves to a position where it does not come into contact with the abrasive grains 12a ejected from the correction head 12 during brittle machining, and moves to a position where it comes into contact with the abrasive grains 12a ejected from the correction head 12 during ductility machining. The direction of the abrasive grains 12a sprayed is changed.
 また、載置台11も移動可能に設けられており、載置台11上のガラス基板1を移動させることによって、砥粒12aの噴射位置を調整してもよい。 The mounting table 11 is also movably provided, and the spray position of the abrasive grains 12a may be adjusted by moving the glass substrate 1 on the mounting table 11.
 なお、延性加工を実現する場合には、欠陥修正装置10に反射板18および反射板支持部材17を備えた噴射方向変更部材19を設ける代わりに、ガラス基板1上に反射板R(図示しない)を設け、砥粒12aを該反射板Rに向けて浅い角度で噴射して、該反射板Rに接触(衝突)した砥粒12aがガラス基板1における該反射板Rを設けていない方向に反射して、ガラス基板1の表面1sに浅い角度で噴射して研削加工を行ってもよい。該反射板Rの傾斜角は、ガラス基板1における砥粒12aの噴射位置を考慮して調整する。これにより、ガラス基板1に砥粒12aを直接当てた場合に生じるガラス基板1表面の曇り(鏡面ムラ)を解消することが可能となる。この場合、該反射板Rの材質は、反射板18と同様である。また、該反射板Rの面積、高さ等は特に限定されない。 In addition, when implement | achieving ductile processing, instead of providing the injection direction change member 19 provided with the reflecting plate 18 and the reflecting plate support member 17 in the defect correction apparatus 10, the reflecting plate R (not shown) on the glass substrate 1 is provided. The abrasive grains 12a are sprayed toward the reflector R at a shallow angle, and the abrasive grains 12a that contact (impact) the reflector R reflect in the direction in which the reflector R is not provided on the glass substrate 1. Then, grinding may be performed by spraying the surface 1 s of the glass substrate 1 at a shallow angle. The inclination angle of the reflecting plate R is adjusted in consideration of the spray position of the abrasive grains 12a on the glass substrate 1. Thereby, it becomes possible to eliminate cloudiness (mirror surface unevenness) on the surface of the glass substrate 1 which occurs when the abrasive grains 12a are directly applied to the glass substrate 1. In this case, the material of the reflector R is the same as that of the reflector 18. Moreover, the area, height, etc. of this reflector R are not specifically limited.
 図3の(b)は、本実施形態の欠陥修正方法を実施するための欠陥修正装置10の要部を示す平面図である。具体的には、欠陥修正装置10を基板載置台13側から見た場合の、基板載置台13、ガラス基板1および載置台11を除いた構成を示す平面図である。図3の(b)に示すように、反射板搭載台15における回転軸25によって回転部材16が回転する。その結果、欠陥修正装置10は、砥粒12aの噴射位置(噴射方向)を変えることができる。 FIG. 3B is a plan view showing a main part of the defect correcting apparatus 10 for performing the defect correcting method of the present embodiment. Specifically, it is a plan view showing a configuration excluding the substrate mounting table 13, the glass substrate 1, and the mounting table 11 when the defect correction apparatus 10 is viewed from the substrate mounting table 13 side. As shown in FIG. 3B, the rotating member 16 is rotated by the rotating shaft 25 in the reflecting plate mounting base 15. As a result, the defect correcting device 10 can change the injection position (injection direction) of the abrasive grains 12a.
 図3の(c)は、本実施形態の欠陥修正方法を実施するための欠陥修正装置10の要部を示す断面図である。具体的には、噴射方向変更部材19の構成を示す断面図である。図3の(c)に示すように、反射板支持部材17における反射板制御部材27によって、反射板18が、砥粒12aの噴射方向(反射板18を通る、ガラス基板1の加工面からの法線方向)に対する砥粒12aの角度を変更することができる。その結果、欠陥修正装置10は、砥粒12aの噴射位置(研削領域における深さ方向の噴射位置)を変えることができる。 FIG. 3C is a cross-sectional view showing the main part of the defect correcting apparatus 10 for carrying out the defect correcting method of the present embodiment. Specifically, it is a cross-sectional view showing the configuration of the injection direction changing member 19. As shown in (c) of FIG. 3, the reflection plate control member 27 in the reflection plate support member 17 causes the reflection plate 18 to pass through the injection direction of the abrasive grains 12 a (from the processed surface of the glass substrate 1 passing through the reflection plate 18). The angle of the abrasive grains 12a with respect to the (normal direction) can be changed. As a result, the defect correction apparatus 10 can change the spray position of the abrasive grains 12a (the spray position in the depth direction in the grinding region).
 本実施形態の欠陥修正方法を実施するにあたっては、例えば次の手順で行うことができる。まずは欠陥修正前のガラス基板1を用いて液晶表示パネルを作成する。そして、作成された液晶表示パネルの裏面から均一な光を照射しつつ、ガラス基板1に形成された内部泡1bに起因して輝点が観察されるか否かを検査し、観察された場合には、その位置を特定しておく。その後、液晶表示パネルを欠陥修正装置10の基板載置台13に固定し、上記特定した位置において、後述する研削加工を行う。なお、ガラス基板1の表面に偏光板が貼り付けられる場合には、研削加工を行う前に一旦偏光板を剥がし、研削加工終了後に偏光板を貼り直すようにすればよい。 In carrying out the defect correction method of the present embodiment, for example, the following procedure can be used. First, a liquid crystal display panel is produced using the glass substrate 1 before defect correction. And when irradiating uniform light from the back surface of the created liquid crystal display panel, inspecting whether bright spots are observed due to the internal bubbles 1b formed on the glass substrate 1, and observed The position is specified in advance. Thereafter, the liquid crystal display panel is fixed to the substrate mounting table 13 of the defect correcting apparatus 10, and grinding processing described later is performed at the specified position. In addition, when a polarizing plate is affixed on the surface of the glass substrate 1, what is necessary is just to peel a polarizing plate once before performing a grinding process and to re-apply a polarizing plate after completion | finish of a grinding process.
 図4は、上記欠陥修正装置10に備えられた修正ヘッド12の模式図である。 FIG. 4 is a schematic diagram of the correction head 12 provided in the defect correction apparatus 10.
 上記修正ヘッド12は、図4に示すように、砥粒12aを定量供給するための砥粒供給ノズル121を有する構造となっている。 As shown in FIG. 4, the correction head 12 has a structure having an abrasive supply nozzle 121 for supplying a fixed amount of abrasive grains 12a.
 上記砥粒供給ノズル121は、円筒からなり、砥粒12aの吐出孔となる円筒先端孔121aと、エアーの供給孔となる円筒後端孔121bと、上記円筒先端孔121aと円筒後端孔121bとの間に形成され、砥粒12aの供給孔となる砥粒供給孔121cとを有している。 The abrasive grain supply nozzle 121 is made of a cylinder, a cylindrical front end hole 121a serving as a discharge hole for the abrasive grains 12a, a cylindrical rear end hole 121b serving as an air supply hole, and the cylindrical front end hole 121a and the cylindrical rear end hole 121b. And an abrasive grain supply hole 121c serving as a supply hole for the abrasive grains 12a.
 上記砥粒供給ノズル121の砥粒供給孔121cは、砥粒を貯蔵する砥粒タンク122に接続され、円筒後端孔121bは、高速電磁弁123に接続されている。 The abrasive grain supply hole 121c of the abrasive grain supply nozzle 121 is connected to an abrasive tank 122 for storing abrasive grains, and the cylindrical rear end hole 121b is connected to a high-speed solenoid valve 123.
 上記砥粒タンク122には、上記砥粒供給ノズル121との接続部分に開閉蓋(図示せず)が設けられており、砥粒12aの供給時のみ上記開閉蓋が開放するようになっている。 The abrasive grain tank 122 is provided with an opening / closing lid (not shown) at a connection portion with the abrasive grain supply nozzle 121, and the opening / closing lid is opened only when the abrasive grains 12a are supplied. .
 上記高速電磁弁123は、上記砥粒供給ノズル121の円筒後端孔121bに接続される接続用筒123aと、エアー供給部(図示せず)からの供給用エアーを取り込むためのエアー取込口123bと有し、当該高速電磁弁123が開状態のとき、エアー取込口123bから取り込んだ供給用エアーを接続用筒123aに供給し、当該高速電磁弁123が閉状態のとき、エアー取込口123bから取り込んだ供給用エアーを接続用筒123aに供給するのを停止するようになっている。 The high-speed solenoid valve 123 includes a connection cylinder 123a connected to the cylindrical rear end hole 121b of the abrasive grain supply nozzle 121 and an air intake port for taking in supply air from an air supply unit (not shown). When the high-speed solenoid valve 123 is open, the supply air taken in from the air intake port 123b is supplied to the connecting cylinder 123a. When the high-speed solenoid valve 123 is closed, the air intake Supplying supply air taken in from the port 123b to the connecting cylinder 123a is stopped.
 したがって、上記構成の修正ヘッド12では、上記高速電磁弁123が開状態であって、かつ砥粒タンク122の開閉蓋が開状態のとき、供給エアーによって砥粒供給ノズル121から砥粒12aが噴射される。また、上記高速電磁弁123が閉状態であれば、砥粒タンク122の開閉蓋の開閉状態に関わらず、砥粒12aは砥粒供給ノズル121から噴射されない。なお、上記高速電磁弁123が開状態であって、かつ砥粒タンク122の開閉蓋が閉状態であれば、砥粒供給ノズル121からは、砥粒12aを含まないエアーのみを噴射させることができる。 Therefore, in the correction head 12 having the above-described configuration, when the high-speed solenoid valve 123 is open and the opening / closing lid of the abrasive tank 122 is open, the abrasive grains 12a are ejected from the abrasive supply nozzle 121 by the supply air. Is done. If the high-speed solenoid valve 123 is in the closed state, the abrasive grains 12 a are not injected from the abrasive grain supply nozzle 121 regardless of the open / closed state of the opening / closing lid of the abrasive tank 122. If the high-speed solenoid valve 123 is open and the opening / closing lid of the abrasive tank 122 is closed, only air that does not contain the abrasive grains 12a can be injected from the abrasive supply nozzle 121. it can.
 上記構成の修正ヘッド12は、ガラス基板1の表面1sの突起1pまたは反射板に対して、例えば、粒度が800番のアルミナからなる砥粒12aを加工速度0.2mm/s~0.6mm/s(噴射速度150~200m/s)で噴射することで、内部欠陥である内部泡1bに達するまでガラス材料を除去するようになる。 The correction head 12 having the above-described configuration is provided with, for example, abrasive grains 12a made of alumina having a particle size of 800 on the projection 1p on the surface 1s of the glass substrate 1 or a reflecting plate at a processing speed of 0.2 mm / s to 0.6 mm / s. By spraying at s (jetting speed 150 to 200 m / s), the glass material is removed until the internal bubbles 1b, which are internal defects, are reached.
 通常、修正ヘッド12から砥粒12aをガラス基板1の表面1aまたは反射板の表面に噴射し続けると、該ガラス基板1の研削部位に砥粒12aが残る。このような場合、新たに噴射される砥粒12aが、研削部位に残った砥粒12aに衝突し、実際の研削対象面に直接研削できないようになるので、研削効率が低下するという問題が生じる。 Normally, when the abrasive grains 12 a are continuously sprayed from the correction head 12 onto the surface 1 a of the glass substrate 1 or the surface of the reflector, the abrasive grains 12 a remain on the ground portion of the glass substrate 1. In such a case, the newly-injected abrasive grains 12a collide with the abrasive grains 12a remaining in the grinding site and cannot be directly ground on the actual grinding target surface, resulting in a problem of reduced grinding efficiency. .
 そこで、砥粒12aの噴射と、砥粒12aを噴射するための媒体であるエアーのみの噴射とを交互に行うことで、エアーのみの噴射によって、研削部位に残った砥粒12aを除去することができる。これにより、研削効率の向上を図ることが可能となる。この場合の具体的な方法としては、上述したように、高速電磁弁123を開状態として、砥粒タンク122の開閉蓋の開閉を断続的に行うようにすれば、砥粒12aを含むエアーと砥粒12aを含まないエアーとを交互に噴射することができる。 Thus, by alternately performing injection of the abrasive grains 12a and injection of only air that is a medium for injecting the abrasive grains 12a, the abrasive grains 12a remaining at the grinding site can be removed by injection of only air. Can do. Thereby, it becomes possible to improve the grinding efficiency. As a specific method in this case, as described above, if the high-speed solenoid valve 123 is opened and the lid of the abrasive tank 122 is opened and closed intermittently, the air containing the abrasive grains 12a and Air that does not include the abrasive grains 12a can be alternately injected.
 上記のような修正ヘッド12としては、例えば株式会社仙台ニコン製のAJM(ABRASIVE Jet Machining)を使用することが可能である。 As the correction head 12 as described above, for example, AJM (ABRASIVE Jet Machining) manufactured by Sendai Nikon Corporation can be used.
 本実施形態の欠陥修正方法では、上記図1の(e)の状態までの除去加工を行ってもよい。図1の(e)に示した状態は、ガラス基板1の形状としては必ずしも理想的な状態ではないが、実際に表示への影響を確認した結果では、上記除去加工を行う前の状態と比較して、内部泡1bに起因する輝点は観察され難くなった。 In the defect correction method of the present embodiment, removal processing up to the state shown in FIG. 1 (e) may be performed. The state shown in (e) of FIG. 1 is not necessarily an ideal state as the shape of the glass substrate 1, but as a result of actually confirming the influence on the display, it is compared with the state before the removal processing. Thus, the bright spots due to the internal bubbles 1b are hardly observed.
 次に、望ましい加工形状について説明する。図5の(a)に示すように、加工面1wの一部が表面1sに対して垂直に切り立った形状の窪みが形成された場合には、表面1sに垂直な観察方向Dでは、加工面1wの垂直部分と観察方向Dとが一致するため、この観察方向Dにおいて加工面1wの表示への影響が累積される。その結果、加工面1wが目立ちやすくなってしまう。 Next, a desirable machining shape will be described. As shown in FIG. 5 (a), when a recess having a shape in which a part of the processed surface 1w is vertically formed with respect to the surface 1s is formed, the processed surface is observed in the observation direction D perpendicular to the surface 1s. Since the vertical portion 1w coincides with the observation direction D, the influence on the display of the processed surface 1w is accumulated in the observation direction D. As a result, the processed surface 1w is easily noticeable.
 これに対し、図5の(b)に示すように、加工面1wが上記のように表面1sに対して垂直に切り立っておらず、加工面1wの任意の位置における接平面(図5の(b)において一点鎖線により示す)が、表面1sに対して平行または傾斜している場合には、観察方向Dにおいて加工面1wの表示への影響が累積されることはなく、加工面1wを目立ち難くすることができる。 On the other hand, as shown in FIG. 5B, the processing surface 1w does not stand perpendicular to the surface 1s as described above, and a tangential plane at an arbitrary position of the processing surface 1w (( b)) is parallel or inclined with respect to the surface 1s, the influence on the display of the processed surface 1w is not accumulated in the observation direction D, and the processed surface 1w is conspicuous. Can be difficult.
 したがって、加工形状としては、図5の(b)に示すように、加工面1wの任意の位置における接平面が、表面1sに対して平行または傾斜していることが望ましい。このような加工形状を得るには、例えば修正ヘッド12から噴射する砥粒12aの噴射速度を欠陥位置によって変えればよい。例えば、図5の(b)に示すような形状の窪みを得ようとする場合には、窪みの中央となる部位では砥粒12aの噴射速度は早くし、窪みの中央から外側に向かって砥粒12aの噴射速度を徐々に遅くすればよい。 Therefore, as a processed shape, as shown in FIG. 5B, it is desirable that the tangent plane at an arbitrary position of the processed surface 1w is parallel or inclined with respect to the surface 1s. In order to obtain such a processed shape, for example, the spraying speed of the abrasive grains 12a sprayed from the correction head 12 may be changed depending on the defect position. For example, when trying to obtain a recess having a shape as shown in FIG. 5B, the spraying speed of the abrasive grains 12a is increased at the center of the recess, and the abrasive is directed outward from the center of the recess. What is necessary is just to slow down the injection speed of the grain 12a gradually.
 また、除去加工によって形成された窪みには、図6に示すように、透明材料2を充填することが望ましい。上記窪みに透明材料が充填されることにより、この窪み内が空の状態と比較して、この窪みにおける屈折率変化を小さくすることができる。その結果、上記窪みを目立ち難くすることができる。このように除去加工によって形成された窪みに透明材料2を充填するには、液体状の透明樹脂を窪みに充填して固化する等すればよい。 Further, it is desirable to fill the recess formed by the removal process with the transparent material 2 as shown in FIG. By filling the depression with a transparent material, the refractive index change in the depression can be reduced as compared with an empty state in the depression. As a result, the dent can be made inconspicuous. In order to fill the hollow formed by the removal process with the transparent material 2 in this way, a liquid transparent resin may be filled into the hollow and solidified.
 上記欠陥修正装置10では、砥粒12aとして、アルミナを使用しているが、これに限定されるものではなく、炭化珪素、炭化ホウ素、酸化セリウム等を使用してもよい。また、砥粒12aの粒度としては、800番に限定されず、他の粒度であってもよく、800番で加工した後に2000番で仕上げるとなお好ましく、研削対象物に応じて変更すればよい。 In the defect correcting apparatus 10, alumina is used as the abrasive grains 12a, but the present invention is not limited to this, and silicon carbide, boron carbide, cerium oxide, or the like may be used. Further, the grain size of the abrasive grains 12a is not limited to 800, but may be other grain sizes, more preferably after finishing with 800 and finishing with 2000, and may be changed according to the object to be ground. .
 以上の説明は、内部欠陥としての内部泡1bが形成されたガラス基板1を修正対象とするものであるが、図7に示すように、内部欠陥としての内部異物1cが形成されたガラス基板1を修正対象としてもよい。この場合でも、上述したレンズ効果や偏光状態の乱れの軽減を実現することができる。また、内部異物1cが遮光性の材料からなる場合において、内部異物1cを完全に除去してしまうような加工を施すことにより、黒点を除去するという効果も得られる。 Although the above description is intended to correct the glass substrate 1 on which the internal bubbles 1b as internal defects are formed, as shown in FIG. 7, the glass substrate 1 on which the internal foreign matter 1c as internal defects is formed. May be the correction target. Even in this case, it is possible to reduce the lens effect and polarization state disturbance described above. Further, in the case where the internal foreign matter 1c is made of a light-shielding material, an effect of removing black spots can be obtained by performing processing that completely removes the internal foreign matter 1c.
 また、本実施形態では、修正対象となる欠陥をガラス基板1の内部に形成される内部泡1bや内部異物1cを想定した欠陥修正方法の例について説明したが、以下の実施の形態2では、修正対象となる欠陥はガラス基板に形成された表面欠陥としての突起を研削により除去する例について説明する。 Further, in the present embodiment, an example of the defect correction method assuming the internal bubbles 1b and the internal foreign matter 1c formed inside the glass substrate 1 as the defects to be corrected has been described, but in the following Embodiment 2, A description will be given of an example in which the defects to be corrected are removed by grinding the projections as surface defects formed on the glass substrate.
 〔実施形態2〕
 本発明の第2の実施形態について説明すれば以下の通りである。なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
The second embodiment of the present invention will be described as follows. For convenience of explanation, members having the same functions as those in the drawings explained in the first embodiment are given the same reference numerals and explanations thereof are omitted.
 本実施形態の欠陥修正方法は、表示パネルを構成するためのガラス基板の欠陥修正方法であり、修正対象となる欠陥はガラス基板に形成された表面欠陥としての突起である。この突起は、実施形態1において説明したように、内部欠陥の存在によって形成されることもあるが、内部欠陥とは無関係に形成されることもある。 The defect correction method of this embodiment is a glass substrate defect correction method for constituting a display panel, and the defect to be corrected is a protrusion as a surface defect formed on the glass substrate. As described in the first embodiment, this protrusion may be formed due to the presence of an internal defect, but may be formed independently of the internal defect.
 また、本実施形態の欠陥修正方法は、実施形態1の場合と同じく、液晶表示パネルやプラズマディスプレイパネル(PDP)等種々の表示パネルを構成するためのガラス基板に対して適用できる。 Also, the defect correcting method of the present embodiment can be applied to glass substrates for constituting various display panels such as a liquid crystal display panel and a plasma display panel (PDP), as in the case of the first embodiment.
 さらに、本実施形態の欠陥修正方法は、実施形態1の場合と同じく、ガラス基板や表示パネルの製造における種々の段階において実施することができる。 Furthermore, the defect correction method of the present embodiment can be carried out at various stages in the production of the glass substrate and the display panel as in the case of the first embodiment.
 図8は、修正対象となる表面欠陥としての突起1pが形成されたガラス基板1の断面図である。本実施形態の欠陥修正方法を実施するための装置としては、実施形態1において説明した欠陥修正装置10を利用することができる。 FIG. 8 is a cross-sectional view of the glass substrate 1 on which protrusions 1p as surface defects to be corrected are formed. As the apparatus for carrying out the defect correcting method of the present embodiment, the defect correcting apparatus 10 described in the first embodiment can be used.
 図9の(a)~(e)は、研削加工の進行状況を示す図である。修正ヘッド12により、砥粒12aが噴射されると、図9の(a)に示すように、噴射された砥粒12aがガラス基板1の突起1pに当接することによって研削加工が始まる。さらに砥粒12aを噴射し続けると、図9の(b)に示すように、突起1pの高さは低くなる。さらに砥粒12aを噴射し続けると、図9の(c)に示すように、突起1pは除去される。なお、図9の(a)~(c)は脆性加工を説明する図である。さらに、図9の(d)に示すように、図9の(b)に示す場合よりも浅い角度で、上記の噴射速度により砥粒12aを噴射し続ける。この状態で、さらに、砥粒12aを噴射し続けて、図9の(e)に示すように、修正面1fが平滑(鏡面)になるまでガラス材料を完全に除去する。なお、図9の(d)および図9の(e)は延性加工を説明する図である。 (A) to (e) of FIG. 9 are diagrams showing the progress of grinding. When the abrasive grains 12 a are ejected by the correction head 12, the grinding starts as the ejected abrasive grains 12 a come into contact with the protrusions 1 p of the glass substrate 1 as shown in FIG. When the abrasive grains 12a are further sprayed, the height of the protrusion 1p is lowered as shown in FIG. 9B. When the abrasive grains 12a are further sprayed, the protrusion 1p is removed as shown in FIG. FIGS. 9A to 9C are diagrams for explaining brittle processing. Furthermore, as shown in FIG. 9 (d), the abrasive grains 12a are continuously injected at the above-described injection speed at a shallower angle than the case shown in FIG. 9 (b). In this state, the abrasive grains 12a are further sprayed, and the glass material is completely removed until the correction surface 1f becomes smooth (mirror surface) as shown in FIG. 9 (e). Note that FIG. 9D and FIG. 9E are diagrams for explaining ductility processing.
 上記の研削は、噴射された砥粒12aの衝突によって生じる微細な脆性加工の積み重ねによって加工が進展するため、微細かつ高品位な加工を行うことができる。さらに、上記の研削は、脆性加工から延性加工に切り替えることによって加工が進展するため、加工後の基板表面を平滑にすることができる。 Since the above-described grinding progresses by the accumulation of fine brittleness processing caused by the collision of the injected abrasive grains 12a, fine and high-quality processing can be performed. Furthermore, since the grinding proceeds by switching from brittle machining to ductile machining, the substrate surface after machining can be smoothed.
 本実施形態の欠陥修正方法では、上記図9の(e)の状態までの除去加工を行ってもよい。このように、本実施形態の欠陥修正方法では、突起1pの一部または全部を除去することによって突起1pの高さを低くしており、これを突起1pの平坦化と称する。これにより、突起1pの形成された表面1sを本来の表面形状に近づけることができる。その結果、突起1pに起因した輝点を生じ難くすることができる。 In the defect correction method of the present embodiment, removal processing up to the state of FIG. 9 (e) may be performed. Thus, in the defect correction method of the present embodiment, the height of the protrusion 1p is lowered by removing a part or all of the protrusion 1p, and this is referred to as flattening of the protrusion 1p. Thereby, the surface 1s on which the protrusion 1p is formed can be brought close to the original surface shape. As a result, it is possible to make it difficult to generate a bright spot due to the protrusion 1p.
 なお、突起1pを平坦化することによって、突起1pが形成されていた部分に多少の窪みが形成されてもよい。その場合には、加工形状としては、実施形態1において図5の(b)に示したように、加工面1wの任意の位置における接平面が、表面1sに対して平行または傾斜していることが望ましい。また、形成された窪みには、実施形態1において図6に示したように、透明材料2を充填することが望ましい。 Note that, by flattening the protrusion 1p, a slight depression may be formed in the portion where the protrusion 1p was formed. In that case, as a processing shape, as shown in FIG. 5B in Embodiment 1, the tangent plane at an arbitrary position of the processing surface 1w is parallel or inclined with respect to the surface 1s. Is desirable. Moreover, as shown in FIG. 6 in Embodiment 1, it is desirable to fill the formed recess with the transparent material 2.
 また、砥粒12aとしては、前記実施形態1と同様に、粒度が800番のアルミナを用いて、加工速度0.2mm/s~0.6mm/s(噴射速度150~200m/s)で噴射するようにしてもよいし、砥粒12aの材料、粒度、噴射速度を必要に応じて変更してもよい。 As the abrasive grains 12a, as in the first embodiment, alumina having a particle size of 800 is used and injected at a processing speed of 0.2 mm / s to 0.6 mm / s (injection speed of 150 to 200 m / s). You may make it do, and you may change the material of the abrasive grain 12a, a particle size, and an injection speed as needed.
 以上のように、本実施形態2では、ガラス基板1の修正対象となる欠陥を突起1pとしていたが、以下の実施形態3では、ガラス基板1の修正対象となる欠陥を表面の傷の場合を例にして説明する。 As described above, in the second embodiment, the defect to be corrected for the glass substrate 1 is the protrusion 1p. However, in the following third embodiment, the defect to be corrected for the glass substrate 1 is a surface scratch. An example will be described.
 〔実施形態3〕
 本発明の第3の実施形態について説明すれば以下の通りである。なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The third embodiment of the present invention will be described as follows. For convenience of explanation, members having the same functions as those in the drawings explained in the first embodiment are given the same reference numerals and explanations thereof are omitted.
 本実施形態の欠陥修正方法は、表示パネルを構成するためのガラス基板の欠陥修正方法であり、修正対象となる欠陥はガラス基板に形成された表面欠陥としての傷である。 The defect correction method of the present embodiment is a glass substrate defect correction method for constituting a display panel, and the defect to be corrected is a scratch as a surface defect formed on the glass substrate.
 また、本実施形態の欠陥修正方法は、実施形態1の場合と同じく、液晶表示パネルやプラズマディスプレイパネル(PDP)等種々の表示パネルを構成するためのガラス基板に対して適用できる。 Also, the defect correcting method of the present embodiment can be applied to glass substrates for constituting various display panels such as a liquid crystal display panel and a plasma display panel (PDP), as in the case of the first embodiment.
 さらに、本実施形態の欠陥修正方法は、実施形態1の場合と同じく、ガラス基板や表示パネルの製造における種々の段階において実施することができる。 Furthermore, the defect correction method of the present embodiment can be carried out at various stages in the production of the glass substrate and the display panel as in the case of the first embodiment.
 図10は、修正対象となる表面欠陥としての傷1vが形成されたガラス基板1の断面図である。本実施形態の欠陥修正方法を実施するための装置としては、実施形態1において説明した欠陥修正装置10を利用することができる。 FIG. 10 is a cross-sectional view of the glass substrate 1 on which scratches 1v as surface defects to be corrected are formed. As the apparatus for carrying out the defect correcting method of the present embodiment, the defect correcting apparatus 10 described in the first embodiment can be used.
 図11の(a)~(d)は、研削加工の進行状況を示す図である。修正ヘッド12により、砥粒12aが噴射されると、図11の(a)に示すように、噴射された砥粒12aがガラス基板1の表面1sに当接することによって研削加工が始まる。そして修正ヘッド12を水平方向に揺動させつつ砥粒12aを噴射させることによって、図11の(b)に示すように、ガラス基板1の本来の表面1sに対して、傷1vによって形成される表面がなしている角度を小さくすることができる。なお、図11の(a)および図11の(b)は脆性加工を説明する図である。さらに、図11の(c)に示すように、図11の(a)に示す場合よりも浅い角度で、上記の噴射速度により砥粒12aを噴射し続ける。この状態で、さらに、砥粒12aを噴射し続けて、図11の(d)に示すように、修正面1fが平滑(鏡面)になるまで傷1vによって形成される表面がなしている角度を小さくする。なお、図11の(c)および図11の(d)は延性加工を説明する図である。 (A) to (d) of FIG. 11 are diagrams showing the progress of the grinding process. When the abrasive grains 12 a are ejected by the correction head 12, as shown in FIG. 11A, the ground abrasive 12 a comes into contact with the surface 1 s of the glass substrate 1 to start grinding. Then, the abrasive grains 12a are ejected while the correction head 12 is swung in the horizontal direction, thereby forming a scratch 1v on the original surface 1s of the glass substrate 1 as shown in FIG. The angle formed by the surface can be reduced. In addition, (a) of FIG. 11 and (b) of FIG. 11 are figures explaining brittle processing. Further, as shown in FIG. 11C, the abrasive grains 12a are continuously injected at the above-described injection speed at a shallower angle than the case shown in FIG. In this state, the abrasive grains 12a are continuously sprayed, and as shown in FIG. 11D, the angle formed by the surface formed by the scratches 1v is made until the correction surface 1f becomes smooth (mirror surface). Make it smaller. In addition, (c) in FIG. 11 and (d) in FIG. 11 are diagrams for explaining ductility processing.
 上記の研削は、噴射された砥粒12aの衝突によって生じる微細な脆性加工の積み重ねによって加工が進展するため、微細かつ高品位な加工を行うことができる。さらに、上記の研削は、脆性加工から延性加工に切り替えることによって加工が進展するため、加工後の基板表面を平滑にすることができる。 Since the above-described grinding progresses by the accumulation of fine brittleness processing caused by the collision of the injected abrasive grains 12a, fine and high-quality processing can be performed. Furthermore, since the grinding proceeds by switching from brittle machining to ductile machining, the substrate surface after machining can be smoothed.
 このように、本実施形態の欠陥修正方法では、ガラス基板1の本来の表面1sに対して、傷1vによって形成される表面がなしている角度を小さくしており、これを傷1vの平滑化と称する。これにより、傷1vの形成された表面1sを本来の表面形状に近づけることができる。その結果、傷1vに起因した輝点を生じ難くすることができる。 As described above, in the defect correction method of the present embodiment, the angle formed by the surface formed by the scratch 1v with respect to the original surface 1s of the glass substrate 1 is reduced, and this is smoothed. Called. Thereby, the surface 1s on which the scratch 1v is formed can be brought close to the original surface shape. As a result, it is possible to make it difficult to generate a bright spot due to the scratch 1v.
 なお、傷1vを平滑化することによって形成された窪みの加工形状としては、実施形態1において図5の(b)に示したように、加工面1wの任意の位置における接平面が、表面1sに対して平行または傾斜していることが望ましい。また、形成された窪みには、実施形態1において図6に示したように、透明材料2を充填することが望ましい。 In addition, as the processed shape of the dent formed by smoothing the scratch 1v, as shown in FIG. 5B in the first embodiment, the tangent plane at an arbitrary position of the processed surface 1w is the surface 1s. It is desirable to be parallel or inclined with respect to. Moreover, as shown in FIG. 6 in Embodiment 1, it is desirable to fill the formed recess with the transparent material 2.
 以上、実施形態1~3において述べたガラス基板1を用いて構成される表示パネルとしての液晶表示パネル20を図12に示す。図12の(a)は本発明の実施形態における液晶表示パネルを示す平面図であり、図12の(b)は上記液晶表示パネルを示す断面図である。 A liquid crystal display panel 20 as a display panel configured using the glass substrate 1 described in the first to third embodiments is shown in FIG. 12A is a plan view showing a liquid crystal display panel according to an embodiment of the present invention, and FIG. 12B is a cross-sectional view showing the liquid crystal display panel.
 液晶表示パネル20は、2枚のガラス基板1を所定間隔隔てて互いに対向させ、互いの間に液晶21を挟持した状態で周囲をシールすることによって構成される。なお、図示していないが、2枚のガラス基板1の外側表面には偏光板等が貼り付けられている。 The liquid crystal display panel 20 is configured by two glass substrates 1 facing each other at a predetermined interval and sealing the periphery with a liquid crystal 21 sandwiched therebetween. Although not shown, a polarizing plate or the like is attached to the outer surfaces of the two glass substrates 1.
 2枚のガラス基板1には、液晶表示パネル20の表示領域20a内の表面において、実施形態1~3において述べたガラス材料の除去加工が施された加工面1wを有している。なお、この加工面1wは、2枚のガラス基板1の両方が有している場合もあれば、何れか一方が有している場合もある。また、加工面1wには、透明材料が充填されていることが望ましい。 The two glass substrates 1 have a processed surface 1w on the surface in the display area 20a of the liquid crystal display panel 20 on which the glass material removal processing described in the first to third embodiments is performed. In addition, this processed surface 1w may have both of the two glass substrates 1, and may have either one. The processed surface 1w is preferably filled with a transparent material.
 この液晶表示パネル20では、もともと2枚のガラス基板1に形成されていた内部欠陥や表面欠陥に対して、実施形態1~3において述べたガラス材料の除去加工が施された結果、表示への悪影響が低減されることになり、従来であれば不良品として扱わざるを得なかった液晶表示パネル20をも良品化することができるようになる。 In this liquid crystal display panel 20, the glass material removal processing described in the first to third embodiments is applied to the internal defects and surface defects originally formed on the two glass substrates 1, and as a result, The adverse effect is reduced, and the liquid crystal display panel 20 that had to be handled as a defective product in the past can also be made non-defective.
 また、上述の実施形態1~3では、図3の(a)に示すように、砥粒12aの噴射方向が地面に対して水平方向となるように、修正ヘッド12が設置された欠陥修正装置10を使用した例について説明したが、これに限定されるものではなく、例えば、図13に示すように、砥粒12aの噴射方向が地面に対して垂直方向(ガラス基板1に対して垂直方向)となるように、修正ヘッド12が設置された欠陥修正装置110を使用することもできる。 In the above-described first to third embodiments, as shown in FIG. 3A, the defect correcting apparatus in which the correction head 12 is installed so that the injection direction of the abrasive grains 12a is horizontal with respect to the ground. However, the present invention is not limited to this. For example, as shown in FIG. 13, the spray direction of the abrasive grains 12a is perpendicular to the ground (perpendicular to the glass substrate 1). It is also possible to use the defect correction apparatus 110 in which the correction head 12 is installed so that
 この欠陥修正装置110は、ガラス基板1を載置するための載置面111aを有する筐体111と、筐体111の天井部分からつり下げられ、水平方向および垂直方向に移動可能な修正ヘッド12と、筐体111に設置され、反射板18および反射板支持部材17を備えた噴射方向変更部材19を固定した回転部材16を搭載した反射板搭載台15とを備えている。 The defect correcting device 110 includes a casing 111 having a mounting surface 111a for mounting the glass substrate 1, and a correcting head 12 that is suspended from the ceiling portion of the casing 111 and is movable in the horizontal direction and the vertical direction. And a reflecting plate mounting base 15 mounted with a rotating member 16 fixed to an ejection direction changing member 19 provided with the reflecting plate 18 and the reflecting plate supporting member 17.
 上記欠陥修正装置10は、修正ヘッド12をガラス基板1の内部泡1bの上方または反射板18の上方へ移動させ、その位置において砥粒12aをガラス基板1の表面1sまたは反射板18の表面に噴射して研削加工を行うようになっている。 The defect correction apparatus 10 moves the correction head 12 above the internal bubbles 1b of the glass substrate 1 or above the reflector 18 and at the position, the abrasive grains 12a are placed on the surface 1s of the glass substrate 1 or the surface of the reflector 18. It is designed to perform grinding by spraying.
 また、上記の修正ヘッド12では、図4に示したように、供給用エアーのみが供給されるので、供給用エアーの供給制御がそのまま砥粒12aの噴射・停止の制御となるものの、砥粒12aを含まないエアーのみを噴射するためには砥粒タンク122の開閉蓋の開閉を制御する必要がある。 Further, in the correction head 12, as shown in FIG. 4, since only supply air is supplied, the supply air supply control directly controls the injection / stop of the abrasive grains 12a. In order to inject only air that does not include 12a, it is necessary to control the opening / closing of the opening / closing lid of the abrasive grain tank 122.
 そこで、砥粒タンク122の開閉蓋の開閉制御を行うことなく、砥粒12aを含まないエアーのみを噴射することのできる修正ヘッドを図14に示す。 Therefore, FIG. 14 shows a correction head capable of injecting only air that does not contain the abrasive grains 12a without performing opening / closing control of the opening / closing lid of the abrasive tank 122.
 図14に示す修正ヘッド112は、図4に示した修正ヘッド12に対して、供給用エアーに加えて加速エアーを供給できるように加速ノズル124を加えている。他の構成要素については図4に示す修正ヘッド12と同じである。 14 has an acceleration nozzle 124 added to the correction head 12 shown in FIG. 4 so that acceleration air can be supplied in addition to supply air. Other components are the same as those of the correction head 12 shown in FIG.
 上記修正ヘッド112は、図14に示すように、砥粒供給ノズル121によって供給された砥粒12aを加速させて噴射する加速ノズル124が新たに追加された構造となっている。 As shown in FIG. 14, the correction head 112 has a structure in which an acceleration nozzle 124 for accelerating and injecting the abrasive grains 12a supplied by the abrasive supply nozzle 121 is newly added.
 上記加速ノズル124は、砥粒12aを外部に噴射する噴射孔124aと、該砥粒12aを加速して上記噴射孔124aから噴射させるための加速用エアーを供給するためのエアー供給孔124bと、上記噴射孔124aとエアー供給孔124bとの間に形成され、砥粒12aと加速エアーとを混合して上記噴射孔124aへ導く混合室124cとを有している。 The acceleration nozzle 124 includes an injection hole 124a for injecting the abrasive grains 12a to the outside, an air supply hole 124b for supplying acceleration air for accelerating the abrasive grains 12a and injecting the abrasive grains 12a from the injection holes 124a, A mixing chamber 124c is formed between the injection hole 124a and the air supply hole 124b, and mixes the abrasive grains 12a and the accelerating air and guides them to the injection hole 124a.
 上記砥粒供給ノズル121の円筒先端孔121aは、上記加速ノズル124の混合室124cに突出した状態で配置されている。 The cylindrical tip hole 121a of the abrasive grain supply nozzle 121 is disposed so as to protrude into the mixing chamber 124c of the acceleration nozzle 124.
 したがって、上記構成の修正ヘッド112では、上記高速電磁弁123が開状態のとき、供給エアーによって砥粒供給ノズル121から砥粒12aが加速ノズル124に供給され、ここで、エアー供給孔124bから取り込まれた加速エアーによって、噴射孔124aから砥粒12aを含んだエアーが噴射される。また、上記高速電磁弁123が閉状態のとき、供給エアーが砥粒供給ノズル121に供給されないので、砥粒12aが加速ノズル124に供給されない。このため、加速ノズル124の噴射孔124aからは、砥粒12aを含まないエアーのみが噴射される。 Therefore, in the correction head 112 having the above-described configuration, when the high-speed solenoid valve 123 is in the open state, the abrasive grains 12a are supplied from the abrasive supply nozzle 121 to the acceleration nozzle 124 by the supply air, and are taken in from the air supply hole 124b. The air including the abrasive grains 12a is ejected from the ejection holes 124a by the accelerated air. Further, when the high-speed solenoid valve 123 is in the closed state, the supply air is not supplied to the abrasive grain supply nozzle 121, so that the abrasive grains 12 a are not supplied to the acceleration nozzle 124. For this reason, only the air which does not contain the abrasive grain 12a is injected from the injection hole 124a of the acceleration nozzle 124.
 なお、加速エアーの圧力をP1、供給エアーの圧力をP2としたとき、P1<P2の関係が成り立つように各エアー供給が調整されている。これにより、砥粒供給ノズ121内の砥粒12aは必ず加速ノズル124に供給されるようになり、逆流は生じない。 Each air supply is adjusted so that the relationship of P1 <P2 is established, where the pressure of the acceleration air is P1 and the pressure of the supply air is P2. As a result, the abrasive grains 12a in the abrasive grain supply nose 121 are always supplied to the accelerating nozzle 124, and no backflow occurs.
 通常、修正ヘッド112から砥粒12aをガラス基板1の表面1aまたは反射板18の表面に噴射し続けると、該ガラス基板1の研削部位に砥粒12aが残る。このような場合、新たに噴射される砥粒12aが、研削部位に残った砥粒12aに衝突し、実際の研削対象面に直接研削できないようになるので、研削効率が低下するという問題が生じる。 Usually, when the abrasive grains 12 a are continuously sprayed from the correction head 112 onto the surface 1 a of the glass substrate 1 or the surface of the reflecting plate 18, the abrasive grains 12 a remain on the ground portion of the glass substrate 1. In such a case, the newly-injected abrasive grains 12a collide with the abrasive grains 12a remaining in the grinding site and cannot be directly ground on the actual grinding target surface, resulting in a problem of reduced grinding efficiency. .
 そこで、修正ヘッド112の高速電磁弁124に、パルス状の駆動信号を供給することによって、エアー取込口123bから取り込んだエアーを断続的に上記接続用筒123aに供給するようにして、砥粒供給ノズル121から加速ノズル124への砥粒12aの供給を断続的に行うにようにすれば、砥粒12aの噴射と、砥粒12aを噴射するための媒体であるエアーのみの噴射とを交互に行うことで、エアーのみの噴射によって、研削部位に残った砥粒12aを除去することができる。これにより、研削効率の向上を図ることが可能となる。 Therefore, by supplying a pulsed drive signal to the high-speed solenoid valve 124 of the correction head 112, the air taken in from the air intake port 123b is intermittently supplied to the connecting cylinder 123a, so that the abrasive grains If the supply of the abrasive grains 12a from the supply nozzle 121 to the accelerating nozzle 124 is intermittently performed, the injection of the abrasive grains 12a and the injection of only air, which is a medium for injecting the abrasive grains 12a, are alternately performed. By performing the above, it is possible to remove the abrasive grains 12a remaining in the grinding portion by jetting only air. Thereby, it becomes possible to improve the grinding efficiency.
 なお、図14に示す修正ヘッド112は、図4に示す修正ヘッド12と同様に、図3の(a)に示す欠陥修正装置10、図13に示す欠陥修正装置110の何れにも搭載可能である。 The correction head 112 shown in FIG. 14 can be mounted on either the defect correction apparatus 10 shown in FIG. 3A or the defect correction apparatus 110 shown in FIG. 13 in the same manner as the correction head 12 shown in FIG. is there.
 上述の実施形態1~3では、粉体である砥粒をエアーによって噴射して修正対象物を研削するようにした例について説明したが、砥粒を噴射する媒体として粉体以外に、流体、すなわち水等を噴射することにより、修正対象物を研削することも可能である。この場合、修正ヘッド12として水を噴射するヘッドに変更すればよい。 In the above-described first to third embodiments, examples in which abrasive grains that are powders are jetted by air to grind the correction target have been described. However, in addition to powders, fluid, That is, it is possible to grind the object to be corrected by spraying water or the like. In this case, the correction head 12 may be changed to a head that ejects water.
 ここで、図15は、上述の実施形態1~3における研削加工前後のガラス基板1表面の外観を示す図である。図15の(a)が研削加工前のガラス基板1表面の外観を示し、図15の(b)が研削加工後のガラス基板1表面の外観を示している。図15によれば、脆性加工から延性加工に切り替えることにより、加工後の基板表面を平滑にすることができるということが明らかになった。 Here, FIG. 15 is a diagram showing the appearance of the surface of the glass substrate 1 before and after grinding in the above-described first to third embodiments. 15A shows the appearance of the surface of the glass substrate 1 before grinding, and FIG. 15B shows the appearance of the surface of the glass substrate 1 after grinding. According to FIG. 15, it became clear that the substrate surface after processing can be smoothed by switching from brittle processing to ductile processing.
 〔本発明の好ましい形態〕
 本発明の基板の加工装置は、上記噴射方向変更部材を通る、上記加工面からの法線を中心として上記噴射方向変更部材を回転させるための回転部材がさらに配置されているものであることが好ましい。
[Preferred form of the present invention]
In the substrate processing apparatus of the present invention, a rotating member for rotating the injection direction changing member about the normal from the processing surface passing through the injection direction changing member may be further arranged. preferable.
 これにより、本発明の基板の加工装置は、上記噴射方向変更部材に反射した後の上記砥粒の噴射方向を変更することができる。 Thereby, the substrate processing apparatus of the present invention can change the spraying direction of the abrasive grains after being reflected by the spraying direction changing member.
 また、本発明の基板の加工装置は、上記噴射方向変更部材を通る、上記加工面からの法線に対する上記噴射方向変更部材の角度を変更するための噴射方向制御部材がさらに配置されているものであることが好ましい。 Further, the substrate processing apparatus of the present invention further includes an injection direction control member for changing an angle of the injection direction changing member with respect to a normal line from the processing surface passing through the injection direction changing member. It is preferable that
 これにより、本発明の基板の加工装置は、上記噴射方向変更部材に反射した後の上記砥粒の噴射角度を制御することができる。 Thereby, the substrate processing apparatus of the present invention can control the spray angle of the abrasive after being reflected by the spray direction changing member.
 また、本発明の基板の加工装置は、上記噴射方向変更部材が炭化ケイ素および窒化ケイ素のうちの少なくとも1つを含有するものであることが好ましい。 In the substrate processing apparatus of the present invention, it is preferable that the jetting direction changing member contains at least one of silicon carbide and silicon nitride.
 これにより、本発明の基板の加工装置は、上記噴射方向変更部材が劣化し難くなり、基板の加工作業の効率化を図ることができる。 Thereby, in the substrate processing apparatus of the present invention, the injection direction changing member is not easily deteriorated, and the efficiency of the substrate processing operation can be improved.
 また、本発明の基板の加工装置は、上記基板がガラス基板であり、かつ上記砥粒がアルミナであることが好ましい。 In the substrate processing apparatus of the present invention, the substrate is preferably a glass substrate, and the abrasive grains are preferably alumina.
 これにより、アルミナは硬度(モース)が9であり、研削用の砥粒として好適に用いることができる。 Thereby, alumina has a hardness (Mohs) of 9, and can be suitably used as abrasive grains for grinding.
 また、本発明の基板の加工装置は、砥粒および該砥粒を噴射するための媒体の噴射と、該媒体のみの噴射とを、交互に行うことが好ましい。 In addition, the substrate processing apparatus of the present invention preferably alternately performs the ejection of abrasive grains and a medium for ejecting the abrasive grains and the ejection of only the medium.
 上記基板の加工部位に噴射されて研削を行う砥粒は、研削部位で残留するため、次の砥粒の噴射による研削の邪魔になり、砥粒の噴射を続ければ続けるほど、研削効率が低下する。しかし、上記基板の加工装置では、砥粒および該砥粒を噴射するための媒体の噴射と、該媒体のみの噴射とを、交互に行うようにしている。これにより、基板の加工部位の研削と、研削部位に残留する砥粒等の残留物の除去とを交互に行うことになるので、不要な砥粒の残留を無くすことができる。その結果、本発明の基板の加工装置は、研削効率を高めることが可能となる。 Abrasive grains that are sprayed and ground onto the processing part of the substrate remain in the grinding part. Therefore, the grinding efficiency of the next abrasive grain is obstructed, and the grinding efficiency decreases as the abrasive grain continues. To do. However, in the substrate processing apparatus, the ejection of abrasive grains and a medium for ejecting the abrasive grains and the ejection of only the medium are alternately performed. Thus, grinding of the processed portion of the substrate and removal of residues such as abrasive grains remaining in the ground portion are alternately performed, so that unnecessary abrasive grains can be eliminated. As a result, the substrate processing apparatus of the present invention can increase the grinding efficiency.
 また、本発明の基板の加工装置は、上記基板の加工部位に透明材料を充填することが好ましい。 Further, in the substrate processing apparatus of the present invention, it is preferable to fill the processed portion of the substrate with a transparent material.
 これにより、本発明の基板の加工装置は、加工によって基板が除去された部位(窪み、溝等)に透明材料(個体)が充填されることになり、この部位内が空の状態と比較して、この部位における屈折率変化を小さくすることができる。その結果、本発明の基板の加工装置は、上記加工によって基板が除去された部位を目立ち難くすることができる。 As a result, the substrate processing apparatus of the present invention is filled with a transparent material (individual) in a portion (indentation, groove, etc.) from which the substrate has been removed by processing, and this portion is compared with an empty state. Thus, the refractive index change at this portion can be reduced. As a result, the substrate processing apparatus of the present invention can make the portion from which the substrate has been removed by the processing difficult to notice.
 また、本発明の基板の加工装置は、上記基板が液晶表示パネルを構成するためのものであってもよい。 The substrate processing apparatus of the present invention may be one in which the substrate constitutes a liquid crystal display panel.
 液晶表示パネルを構成するための基板(ガラス基板)は、アルカリ金属の含有量が少なく融点が高いため、内部泡を発生しやすい。したがって、本発明の基板の加工装置は、液晶表示パネルを構成するための基板に対して特に有効である。 A substrate (glass substrate) for constituting a liquid crystal display panel has a low alkali metal content and a high melting point, and thus easily generates internal bubbles. Therefore, the substrate processing apparatus of the present invention is particularly effective for a substrate for constituting a liquid crystal display panel.
 また、本発明の基板の加工方法は、上記の課題を解決するために、上記基板の加工装置を用いて加工し、基板の脆性加工の後に、基板の延性加工を行うことを特徴としている。 The substrate processing method of the present invention is characterized in that in order to solve the above-described problems, the substrate processing apparatus is used for processing, and after the substrate is brittlely processed, the substrate is ductile processed.
 上記の構成によれば、上記基板の加工装置により、基板の脆性加工の後に、基板の延性加工を行うことができるので、加工後の基板表面を平滑にすることが可能となる。 According to the above configuration, the substrate processing apparatus can perform ductile processing of the substrate after brittle processing of the substrate, so that the substrate surface after processing can be smoothed.
 また、本発明の加工基板の製造方法は、上記の課題を解決するために、上記基板の加工方法を用いる工程を含んでいることを特徴としている。 Further, the method for manufacturing a processed substrate of the present invention is characterized by including a step of using the substrate processing method in order to solve the above-mentioned problems.
 上記の構成によれば、製造された加工基板の表面を平滑にすることができる。 According to the above configuration, the surface of the manufactured processed substrate can be smoothed.
 〔その他〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
[Others]
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 すなわち、上述した具体的な実施形態および実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内において、いろいろと変更して実施することができるものである。 That is, the specific embodiments and examples described above are merely to clarify the technical contents of the present invention, and should not be interpreted in a narrow sense by limiting only to such specific examples. Various modifications can be made within the spirit of the present invention and the following claims.
 本発明は、脆性材料を加工する全ての分野で利用することができる。例えば、液晶表示パネルやプラズマディスプレイパネル(PDP)等のフラットディスプレイ用パネルを構成するガラス基板について好適に利用することができる。 The present invention can be used in all fields for processing brittle materials. For example, it can be suitably used for a glass substrate constituting a flat display panel such as a liquid crystal display panel or a plasma display panel (PDP).
 1 ガラス基板(基板)
 1a 表面
 1b 内部泡(修正対象欠陥、内部欠陥)
 1c 内部異物(修正対象欠陥、内部欠陥)
 1d ガラス材料
 1d 取巻部
 1e 修正面
 1f 修正面
 1p 突起(修正対象欠陥、内部欠陥)
 1s 表面
 1v 傷(修正対象欠陥、内部欠陥)
 1w 加工面
 2 透明材料
 10 欠陥修正装置(加工装置)
 11 筐体
 11a 載置面
 12 修正ヘッド(噴射部材)
 12a 砥粒
 13 基板載置台
 14 ヘッド搭載台
 15 反射板搭載台
 16 回転部材
 17 反射板支持部材
 18 反射板(噴射方向変更部材)
 19 噴射方向変更部材
 20 液晶表示パネル
 20a 表示領域
 21 液晶
 25 回転軸
 27 反射板制御部材(噴射方向制御部材)
 121 砥粒供給ノズル
 121a 円筒先端孔
 121b 円筒後端孔
 121c 砥粒供給孔
 122 加速ノズル
 122a 噴射孔
 122b エアー供給孔
 122c 混合室
 123 砥粒タンク
 124 高速電磁弁
 124a 接続用筒
 124b エアー取込口
1 Glass substrate (substrate)
1a Surface 1b Internal bubbles (defects to be corrected, internal defects)
1c Internal foreign matter (fixed defect, internal defect)
1d Glass material 1d Winding part 1e Correction surface 1f Correction surface 1p Protrusion (defect to be corrected, internal defect)
1s Surface 1v Scratches (defects to be corrected, internal defects)
1w Processing surface 2 Transparent material 10 Defect correction device (processing device)
11 Housing 11a Placement surface 12 Correction head (jetting member)
12a Abrasive grain 13 Substrate mounting table 14 Head mounting table 15 Reflecting plate mounting table 16 Rotating member 17 Reflecting plate support member 18 Reflecting plate (injection direction changing member)
DESCRIPTION OF SYMBOLS 19 Injection direction change member 20 Liquid crystal display panel 20a Display area 21 Liquid crystal 25 Rotating shaft 27 Reflector control member (injection direction control member)
121 Abrasive grain supply nozzle 121a Cylindrical tip hole 121b Cylindrical rear end hole 121c Abrasive grain supply hole 122 Acceleration nozzle 122a Injection hole 122b Air supply hole 122c Mixing chamber 123 Abrasive tank 124 High-speed solenoid valve 124a Connection cylinder 124b Air intake port

Claims (10)

  1.  基板の加工面に対する砥粒の噴射角度が脆性加工における角度となるように、該砥粒の噴射部材が配置された基板の加工装置であって、
     上記砥粒の噴射方向における上記噴射部材と上記基板の加工面との間に、該基板の加工面への該砥粒の進入角度を上記脆性加工における角度から延性加工における角度に変更するための噴射方向変更部材が配置されているものであり、
     上記噴射方向変更部材が移動可能であることを特徴とする基板の加工装置。
    A substrate processing apparatus in which the abrasive grain injection member is disposed such that the abrasive injection angle with respect to the processed surface of the substrate is an angle in brittle processing,
    For changing the angle of entry of the abrasive grains into the processed surface of the substrate from the angle in the brittle processing to the angle in ductile processing between the spray member and the processed surface of the substrate in the spray direction of the abrasive grains An injection direction changing member is arranged,
    The substrate processing apparatus, wherein the spray direction changing member is movable.
  2.  上記噴射方向変更部材を通る、上記加工面からの法線を中心として該噴射方向変更部材を回転させるための回転部材がさらに配置されているものであることを特徴とする請求項1に記載の基板の加工装置。 The rotating member for rotating this injection direction change member centering on the normal line from the said processed surface which passes the said injection direction change member is further arrange | positioned. Substrate processing equipment.
  3.  上記噴射方向変更部材を通る、上記加工面からの法線に対する該噴射方向変更部材の角度を変更するための噴射方向制御部材がさらに配置されているものであることを特徴とする請求項1または2に記載の基板の加工装置。 The injection direction control member for changing the angle of the said injection direction change member with respect to the normal line from the said processed surface which passes the said injection direction change member is further arrange | positioned, It is characterized by the above-mentioned. 3. The substrate processing apparatus according to 2.
  4.  上記噴射方向変更部材が炭化ケイ素および窒化ケイ素のうちの少なくとも1つを含有するものであることを特徴とする請求項1~3のいずれか1項に記載の基板の加工装置。 The substrate processing apparatus according to any one of claims 1 to 3, wherein the jetting direction changing member contains at least one of silicon carbide and silicon nitride.
  5.  上記基板がガラス基板であり、かつ上記砥粒がアルミナであることを特徴とする請求項1~4のいずれか1項に記載の基板の加工装置。 The substrate processing apparatus according to any one of claims 1 to 4, wherein the substrate is a glass substrate, and the abrasive grains are alumina.
  6.  砥粒および該砥粒を噴射するための媒体の噴射と、該媒体のみの噴射とを、交互に行うことを特徴とする請求項1~5のいずれか1項に記載の基板の加工装置。 6. The substrate processing apparatus according to claim 1, wherein the abrasive grains and the medium for ejecting the abrasive grains are alternately ejected and only the medium is ejected.
  7.  上記基板の加工部位に透明材料を充填することを特徴とする請求項1~6のいずれか1項に記載の基板の加工装置。 The substrate processing apparatus according to any one of claims 1 to 6, wherein a processing part of the substrate is filled with a transparent material.
  8.  上記基板が液晶表示パネルを構成するためのものであることを特徴とする請求項1~7のいずれか1項に記載の基板の加工装置。 8. The substrate processing apparatus according to claim 1, wherein the substrate is for constituting a liquid crystal display panel.
  9.  請求項1~8のいずれか1項に記載の基板の加工装置を用いて加工し、
     基板の脆性加工の後に、基板の延性加工を行うことを特徴とする基板の加工方法。
    Processing using the substrate processing apparatus according to any one of claims 1 to 8,
    A substrate processing method comprising performing ductility processing of a substrate after brittle processing of the substrate.
  10.  請求項9に記載の基板の加工方法を用いる工程を含んでいることを特徴とする加工基板の製造方法。 A method for manufacturing a processed substrate, comprising a step of using the substrate processing method according to claim 9.
PCT/JP2010/002197 2009-07-15 2010-03-26 Device and method for processing substrate, and method for producing a processed substrate WO2011007476A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080031670.XA CN102470509B (en) 2009-07-15 2010-03-26 Device and method for processing substrate, and method for producing a processed substrate
US13/383,855 US20120115399A1 (en) 2009-07-15 2010-03-26 Device and method for processing substrate, and method for producing a processed substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009167110A JP2011020212A (en) 2009-07-15 2009-07-15 Device and method for processing substrate, and method for manufacturing processed substrate
JP2009-167110 2009-07-15

Publications (1)

Publication Number Publication Date
WO2011007476A1 true WO2011007476A1 (en) 2011-01-20

Family

ID=43449088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002197 WO2011007476A1 (en) 2009-07-15 2010-03-26 Device and method for processing substrate, and method for producing a processed substrate

Country Status (4)

Country Link
US (1) US20120115399A1 (en)
JP (1) JP2011020212A (en)
CN (1) CN102470509B (en)
WO (1) WO2011007476A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103348397B (en) * 2011-02-18 2016-01-13 夏普株式会社 The modification method of image display panel
KR20130090209A (en) * 2012-02-03 2013-08-13 삼성전자주식회사 Apparatus and method for treating substrate
CN104209867A (en) * 2013-08-27 2014-12-17 东旭集团有限公司 Method and system for carrying out surface treatment on glass substrate
CA3127966A1 (en) * 2019-02-13 2020-08-20 Millerworks, Inc. D/B/A Pavo Real Glass Method of etching glass
JP7517902B2 (en) * 2020-08-11 2024-07-17 日立Geニュークリア・エナジー株式会社 Processing Equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084120A (en) * 2007-10-01 2009-04-23 Sharp Corp Method for correcting defect of glass substrate, method for producing glass substrate, glass substrate for display panel, and display panel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4039621A1 (en) * 1990-12-12 1992-06-17 Badische Maschf Gmbh BLASTING UNIT FOR BLASTING THE SURFACE OF SHEETS, PROFILES OR THE LIKE
JPH0736982B2 (en) * 1991-11-18 1995-04-26 日本発条株式会社 Shot peening equipment for leaf spring centerpiece
US5964644A (en) * 1996-03-01 1999-10-12 Extrude Hone Corporation Abrasive jet stream polishing
JPH10239828A (en) * 1996-12-25 1998-09-11 Konica Corp Method for repairing defect of photomask glass
NL1007589C1 (en) * 1997-11-20 1999-05-25 Tno Method and device for machining a workpiece.
JP3546751B2 (en) * 1999-04-08 2004-07-28 株式会社日立製作所 Manufacturing method of plasma display device and plasma display device
TWI250133B (en) * 2002-01-31 2006-03-01 Shinetsu Chemical Co Large-sized substrate and method of producing the same
JP4369307B2 (en) * 2004-06-09 2009-11-18 東京エレクトロン株式会社 Pattern processing method and pattern processing apparatus
JP2008229765A (en) * 2007-03-19 2008-10-02 Toyohashi Univ Of Technology Air blasting method and device for hard and brittle material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084120A (en) * 2007-10-01 2009-04-23 Sharp Corp Method for correcting defect of glass substrate, method for producing glass substrate, glass substrate for display panel, and display panel

Also Published As

Publication number Publication date
US20120115399A1 (en) 2012-05-10
JP2011020212A (en) 2011-02-03
CN102470509A (en) 2012-05-23
CN102470509B (en) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2011007476A1 (en) Device and method for processing substrate, and method for producing a processed substrate
JP5584884B2 (en) Glass substrate defect correction method, glass substrate manufacturing method
JP5267286B2 (en) Nozzle, nozzle unit, and blasting apparatus
TWI417264B (en) Apparatus of cleaning glass substrate and method of cleaning glass substrate
US10071462B2 (en) Method and device for cutting out hard-brittle substrate
US8298045B2 (en) Method of remedying glass substrate defect
JP2013076901A (en) Bonding structure and manufacturing method of the same
WO2013153880A1 (en) Method for polishing glass substrate
JP2012216255A (en) Method for manufacturing glass substrate for magnetic disk
KR20060096973A (en) The cutting method of a plate glass to use the water jet for the dispaly window
JP2014100766A (en) Sapphire substrate
EP1566241B1 (en) Method for preparing large-size substrate
KR101454446B1 (en) Method of cutting and chamfering strengthened glass
JP2003145426A (en) Pattern eliminating method for recycle of masked substrate, and pattern eliminating device, and masking- pattern-eliminated substrate
JP2006188410A (en) Method for etching doughnut-type glass substrate
JP2012136430A (en) Glass substrate cleaning apparatus and glass substrate cleaning method
KR101555528B1 (en) Coating machine and its ink filling method
JP2005262432A (en) Method of manufacturing large-size substrate
CN116852267A (en) Roughening processing method for back surface of ultrathin lithium tantalate wafer
JP2011113019A (en) Apparatus for injecting liquid crystal and cassette installed in the apparatus
JP2022014017A (en) Nozzle-type machining head system eem machining method
JP2004237415A (en) Material machining method and device
KR20060057774A (en) Apparatus for providing fluids for coating lcds or pdps
JPH09289182A (en) Flattening method of semiconductor substrate and its equipment
JP2011125954A (en) Method for measuring polishing amount of glass article

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031670.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799540

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13383855

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799540

Country of ref document: EP

Kind code of ref document: A1